1
|
Song Z, Liu J, Qian X, Xia Z, Wang B, Liu N, Yi Z, Li Z, Dong Z, Zhang C, Zhang B, Tadege M, Dong Y, Li Y. Functional Verification of the Soybean Pseudo-Response Factor GmPRR7b and Regulation of Its Rhythmic Expression. Int J Mol Sci 2025; 26:2446. [PMID: 40141089 PMCID: PMC11942516 DOI: 10.3390/ijms26062446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The pseudo response regulator (PRR) gene is an important component of the core oscillator involved in plant circadian rhythms and plays an important role in regulating plant growth and development and stress responses. In this study, we investigated the function of GmPRR7b by overexpression and gene editing approaches. It was found that GmPRR7b plays a role in delaying flowering. While GmPRR7b overexpressing plants showed significantly delayed flowering compared to untransformed WT, GmPRR7b edited plants flowered earlier than the control WT. On the basis of previous research results and bioinformatics analysis, we re-identified 14 soybean PRR genes and analysed their rhythmic expression. Based on the rhythmic expression pattern, we found that GmPRR5/9a and GmPRR5/9b interacted with GmPRR7b by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments. Combined with the expression regulatory networks of the GmPRR7b, we inferred a possible regulatory mechanism by which GmPRR7b affects flowering through quit rhythm expression. These research elements provide valuable references for understanding growth, development, and circadian regulation in soybean.
Collapse
Affiliation(s)
- Ziye Song
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Jia Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Xueyan Qian
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhengjun Xia
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Bo Wang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Nianxi Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhigang Yi
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhi Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhimin Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Chunbao Zhang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VI 24061, USA;
| | - Million Tadege
- Institute of Agricultural Biosciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yingshan Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Yuqiu Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| |
Collapse
|
2
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
3
|
Yu B, Hu Y, Hou X. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:425-439. [PMID: 39466065 PMCID: PMC11951404 DOI: 10.1111/jipb.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements. In addition, recent studies have uncovered roles for CO in organ development and stress responses. These pleiotropic roles in model plants and crops make CO a potentially fruitful target for molecular breeding aimed at modifying crop agronomic traits. This review systematically traces research on CO, from its discovery and functional studies to the exploration of its regulatory mechanisms and newly discovered functions, providing important insight into the roles of CO and laying a foundation for future research.
Collapse
Affiliation(s)
- Bin Yu
- College of Life SciencesXinyang Normal UniversityXinyang464000China
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
| | - Yilong Hu
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou510650China
| | - Xingliang Hou
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou510650China
| |
Collapse
|
4
|
Joshi PS, Singla Pareek SL, Pareek A. Shaping resilience: The critical role of plant response regulators in salinity stress. Biochim Biophys Acta Gen Subj 2025; 1869:130749. [PMID: 39719184 DOI: 10.1016/j.bbagen.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling. Two component system (TCS) are important multistep phosphorelay signal transduction machinery converging cytokinin, ethylene and light signal transduction pathways together. Plant TCS comprises of histidine kinases, phosho-transfer proteins and response regulators. Histidine kinases perceive the signal and relay it to response regulator via histidine containing phosphor-transfer proteins. SCOPE OF REVIEW Response regulators are one of the major and diverse component of TCS system which have been extensively studied for their role in plant growth, development and circadian rhythm. However, knowledge of their regulatory role in abiotic stress signaling is limited. This mini-review specifically focus on role of response regulators in salinity stress signaling. MAJOR CONCLUSION Response regulators is the divergent node of TCS machinery, where cross-talks with other stress-mediated, phytohormone-mediated, as well as, light-mediated signaling pathways ensues. Studies from past few years have established central role of response regulators in salinity stress, however, the detailed mechanism of their actions need to be studied further. GENERAL SIGNIFICANCE Response regulators act as both negative as well as positive regulator of salinity and cytokinin signaling, making it an excellent target to increase crop yield as well as stress tolerance capabilities.
Collapse
Affiliation(s)
- Priyanka S Joshi
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India
| | - Sneh L Singla Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India; Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Freidinger AG, Woodward LA, Bùi JT, Doty G, Ruiz S, Conant E, Hicks KA. Cycling DOF factor mediated seasonal regulation of sexual reproduction and cold response is not conserved in Physcomitrium patens. PLANT DIRECT 2024; 8:e70020. [PMID: 39600727 PMCID: PMC11588431 DOI: 10.1002/pld3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Many land plants have evolved such that the transition from vegetative to reproductive development is synchronized with environmental cues. Examples of reproduction in response to seasonal cues can be found in both vascular and nonvascular species; however, most of our understanding of the molecular events controlling this timing has been worked out in angiosperm model systems. While the organism-level mechanisms of sexual reproduction vary dramatically between vascular and nonvascular plants, phylogenetic and transcriptomic evidence suggest paralogs in nonvascular plants may have conserved function with their vascular counterparts. Given that Physcomitrium patens undergoes sexual reproductive development in response to photoperiodic and cold temperature cues, it is well-suited for studying evolutionarily conserved mechanisms of seasonal control of reproduction. Thus, we used publicly available microarray data to identify genes differentially expressed in response to temperature cues. We identified two CDF-like (CDL) genes in the P. patens genome that are the most like the angiosperm Arabidopsis thaliana CDFs based on conservation of protein motifs and diurnal expression patterns. In angiosperms, DNA-One Finger Transcription Factors (DOFs) play an important role in regulating photoperiodic flowering, regulating physiological changes in response to seasonal temperature changes, and mediating the cold stress response. We created knockout mutations and tested their impact on sexual reproduction and response to cold stress. Unexpectedly, the timing of sexual reproduction in the ppcdl-double mutants did not differ significantly from wild type, suggesting that the PpCDLs are not necessary for seasonal regulation of this developmental transition. We also found that there was no change in expression of downstream cold-regulated genes in response to cold stress and no change in freezing tolerance in the knockout mutant plants. Finally, we observed no interaction between PpCDLs and the partial homologs of FKF1, an A. thaliana repressor of CDFs. This is different from what is observed in angiosperms, which suggests that the functions of CDF proteins in angiosperms are not conserved in P. patens.
Collapse
Affiliation(s)
| | | | | | | | - Shawn Ruiz
- Biology DepartmentKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
6
|
Liu X, Han M, Jiang T, Liu L, Luo J, Lu Y, Zhao Y, Jiang CZ, Gao J, Hong B, Ma C. AGAMOUS-LIKE 24 senses continuous inductive photoperiod in the inflorescence meristem to promote anthesis in chrysanthemum. THE PLANT CELL 2024; 36:4658-4671. [PMID: 39159157 PMCID: PMC11448879 DOI: 10.1093/plcell/koae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
During the floral transition, many plant species including chrysanthemum (Chrysanthemum morifolium) require continuous photoperiodic stimulation for successful anthesis. Insufficient photoperiodic stimulation results in flower bud arrest or even failure. The molecular mechanisms underlying how continuous photoperiodic stimulation promotes anthesis are not well understood. Here, we reveal that in wild chrysanthemum (Chrysanthemum indicum), an obligate short-day (SD) plant, floral evocation is not limited to SD conditions. However, SD signals generated locally in the inflorescence meristem (IM) play a vital role in ensuring anthesis after floral commitment. Genetic analyses indicate that the florigen FLOWERING LOCUS T-LIKE3 (CiFTL3) plays an important role in floral evocation, but a lesser role in anthesis. Importantly, our data demonstrate that AGAMOUS-LIKE 24 (CiAGL24) is a critical component of SD signal perception in the IM to promote successful anthesis, and that floral evocation and anthesis are two separate developmental events in chrysanthemum. We further reveal that the central circadian clock component PSEUDO-RESPONSE REGULATOR 7 (CiPRR7) in the IM activates CiAGL24 expression in response to SD conditions. Moreover, our findings elucidate a negative feedback loop in which CiAGL24 and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (CiSOC1) modulate LEAFY (CiLFY) expression. Together, our results demonstrate that the CiPRR7-CiAGL24 module is vital for sustained SD signal perception in the IM to ensure successful anthesis in chrysanthemum.
Collapse
Affiliation(s)
- Xuening Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingzheng Han
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhua Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Luo
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ying Lu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Junping Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Liu Z, Liu W, Wang Z, Xie Z, Qi K, Yue D, Li Y, Zhang S, Wu J, Wang P. Molecular characterization of PSEUDO RESPONSE REGULATOR family in Rosaceae and function of PbPRR59a and PbPRR59b in flowering regulation. BMC Genomics 2024; 25:794. [PMID: 39169310 PMCID: PMC11340073 DOI: 10.1186/s12864-024-10720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.
Collapse
Affiliation(s)
- Zhe Liu
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yue
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
11
|
Leckie KM, Sawler J, Kapos P, MacKenzie JO, Giles I, Baynes K, Lo J, Baute GJ, Celedon JM. Loss of daylength sensitivity by splice site mutation in Cannabis pseudo-response regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2020-2036. [PMID: 38525679 DOI: 10.1111/tpj.16726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Photoperiod insensitivity (auto-flowering) in drug-type Cannabis sativa circumvents the need for short day (SD) flowering requirements making outdoor cultivation in high latitudes possible. However, the benefits of photoperiod insensitivity are counterbalanced by low cannabinoid content and poor flower quality in auto-flowering genotypes. Despite recent studies in cannabis flowering, a mechanistic understanding of photoperiod insensitivity is still lacking. We used a combination of genome-wide association study and genetic fine-mapping to identify the genetic cause of auto-flowering in cannabis. We then used gene expression analyses and transient transformation assays to characterize flowering time control. Herein, we identify a splice site mutation within circadian clock gene PSEUDO-RESPONSE REGULATOR 37 (CsPRR37) in auto-flowering cannabis. We show that CsPRR37 represses FT expression and its circadian oscillations transition to a less repressive state during SD as compared to long days (LD). We identify several key circadian clock genes whose expression is altered in auto-flowering cannabis, particularly under non-inductive LD. Research into the pervasiveness of this mutation and others affecting flowering time will help elucidate cannabis domestication history and advance cannabis breeding toward a more sustainable outdoor cultivation system.
Collapse
Affiliation(s)
- Keegan M Leckie
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jason Sawler
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Paul Kapos
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - John O MacKenzie
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Ingrid Giles
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Katherine Baynes
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jessica Lo
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Gregory J Baute
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jose M Celedon
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| |
Collapse
|
12
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Billah M, Renju L, Wei H, Qanmber G, Da Y, Lan Y, Qing-di Y, Fuguang L, Zhaoen Y. A cotton mitochondrial alternative electron transporter, GhD2HGDH, induces early flowering by modulating GA and photoperiodic pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14378. [PMID: 38887925 DOI: 10.1111/ppl.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Liu Renju
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Hu Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Da
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Lan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Yan Qing-di
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Li Fuguang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhaoen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
15
|
Su H, Cao L, Ren Z, Sun W, Zhu B, Ma S, Sun C, Zhang D, Liu Z, Zeng H, Yang W, Liu Y, Zheng L, Yang Y, Wu Z, Zhu Y, Ku L, Chong L, Chen Y. ZmELF6-ZmPRR37 module regulates maize flowering and salt response. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:929-945. [PMID: 38009862 PMCID: PMC10955496 DOI: 10.1111/pbi.14236] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.
Collapse
Affiliation(s)
- Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Liru Cao
- The Shennong LaboratoryZhengzhouHenanChina
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Wenhao Sun
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Bingqi Zhu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Chongyu Sun
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yingpeng Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Lingling Zheng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhendong Wu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Leelyn Chong
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
16
|
Yuan L, Avello P, Zhu Z, Lock SCL, McCarthy K, Redmond EJ, Davis AM, Song Y, Ezer D, Pitchford JW, Quint M, Xie Q, Xu X, Davis SJ, Ronald J. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology. Genetics 2024; 226:iyad217. [PMID: 38142447 PMCID: PMC10917503 DOI: 10.1093/genetics/iyad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Paula Avello
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Sarah C L Lock
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Amanda M Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jonathan W Pitchford
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Seth J Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Wang X, Hao Y, Altaf MA, Shu H, Cheng S, Wang Z, Zhu G. Evolution and Dynamic Transcriptome of Key Genes of Photoperiodic Flowering Pathway in Water Spinach ( Ipomoea aquatica). Int J Mol Sci 2024; 25:1420. [PMID: 38338699 PMCID: PMC10855745 DOI: 10.3390/ijms25031420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
18
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
19
|
Zhang Y, Ma Y, Zhang H, Xu J, Gao X, Zhang T, Liu X, Guo L, Zhao D. Environmental F actors coordinate circadian clock function and rhythm to regulate plant development. PLANT SIGNALING & BEHAVIOR 2023; 18:2231202. [PMID: 37481743 PMCID: PMC10364662 DOI: 10.1080/15592324.2023.2231202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Changes in the external environment necessitate plant growth plasticity, with environmental signals such as light, temperature, and humidity regulating growth and development. The plant circadian clock is a biological time keeper that can be "reset" to adjust internal time to changes in the external environment. Exploring the regulatory mechanisms behind plant acclimation to environmental factors is important for understanding how plant growth and development are shaped and for boosting agricultural production. In this review, we summarize recent insights into the coordinated regulation of plant growth and development by environmental signals and the circadian clock, further discussing the potential of this knowledge.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yuru Ma
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hao Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Jiahui Xu
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaokuan Gao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Tengteng Zhang
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xigang Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Lin Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
20
|
Zhao JX, Wang S, Liu J, Jiang XD, Wen J, Suo ZQ, Liu J, Zhong MC, Wang Q, Gu Z, Liu C, Deng Y, Hu JY, Li DZ. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1842-1855. [PMID: 37665679 DOI: 10.1111/tpj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiazhi Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Wen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Quan Suo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhirong Gu
- Administration of National Nature Reserve of Badagongshan, Sangzhi, 427000, Hunan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
21
|
Wang X, Zhang J, Liu X, Kong Y, Han L. The Roles of the PSEUDO-RESPONSE REGULATORs in Circadian Clock and Flowering Time in Medicago truncatula. Int J Mol Sci 2023; 24:16834. [PMID: 38069157 PMCID: PMC10706769 DOI: 10.3390/ijms242316834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
PSEUDO-RESPONSE REGULATORs (PRRs) play key roles in the circadian rhythms and flowering in plants. Here, we identified the four members of the PRR family in Medicago truncatula, including MtPRR9a, MtPRR9b, MtPRR7 and MtPRR5, and isolated their Tnt1 retrotransposon-tagged mutants. They were expressed in different organs and were nuclear-localized. The four MtPRRs genes played important roles in normal clock rhythmicity maintenance by negatively regulating the expression of MtGI and MtLHY. Surprisingly, the four MtPRRs functioned redundantly in regulating flowering time under long-day conditions, and the quadruple mutant flowered earlier. Moreover, MtPRR can recruit the MtTPL/MtTPR corepressors and the other MtPRRs to form heterodimers to constitute the core mechanism of the circadian oscillator.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| |
Collapse
|
22
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
24
|
Chepurnov GY, Ovchinnikova ES, Blinov AG, Chikida NN, Belousova MK, Goncharov NP. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss. PLANTS (BASEL, SWITZERLAND) 2023; 12:3596. [PMID: 37896059 PMCID: PMC10610194 DOI: 10.3390/plants12203596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants.
Collapse
Affiliation(s)
- Grigory Yurievich Chepurnov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Ekaterina Sergeevna Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Alexander Genadevich Blinov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Nadezhda Nikolaevna Chikida
- Division of Wheat Genetic Resources, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Khasbulatovna Belousova
- Wheat Laboratory, Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Saint Petersburg, Russia;
| | - Nikolay Petrovich Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| |
Collapse
|
25
|
Lee KC, Kim YC, Kim JK, Lee H, Lee JH. Regulation of Flowering Time and Other Developmental Plasticities by 3' Splicing Factor-Mediated Alternative Splicing in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3508. [PMID: 37836248 PMCID: PMC10575287 DOI: 10.3390/plants12193508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Plants, as sessile organisms, show a high degree of plasticity in their growth and development and have various strategies to cope with these alterations under continuously changing environments and unfavorable stress conditions. In particular, the floral transition from the vegetative and reproductive phases in the shoot apical meristem (SAM) is one of the most important developmental changes in plants. In addition, meristem regions, such as the SAM and root apical meristem (RAM), which continually generate new lateral organs throughout the plant life cycle, are important sites for developmental plasticity. Recent findings have shown that the prevailing type of alternative splicing (AS) in plants is intron retention (IR) unlike in animals; thus, AS is an important regulatory mechanism conferring plasticity for plant growth and development under various environmental conditions. Although eukaryotes exhibit some similarities in the composition and dynamics of their splicing machinery, plants have differences in the 3' splicing characteristics governing AS. Here, we summarize recent findings on the roles of 3' splicing factors and their interacting partners in regulating the flowering time and other developmental plasticities in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Keh Chien Lee
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Horim Lee
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
26
|
Du J, Zhu X, He K, Kui M, Zhang J, Han X, Fu Q, Jiang Y, Hu Y. CONSTANS interacts with and antagonizes ABF transcription factors during salt stress under long-day conditions. PLANT PHYSIOLOGY 2023; 193:1675-1694. [PMID: 37379562 DOI: 10.1093/plphys/kiad370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure. Here, we show that the expression of CO responds to salinity treatment. CO negatively mediated salinity tolerance under long-day (LD) conditions. Seedlings from co-mutants were more tolerant to salinity stress, whereas overexpression of CO resulted in plants with reduced tolerance to salinity stress. Further genetic analyses revealed the negative involvement of GIGANTEA (GI) in salinity tolerance requires a functional CO. Mechanistic analysis demonstrated that CO physically interacts with 4 critical basic leucine zipper (bZIP) transcription factors; ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), ABF2, ABF3, and ABF4. Disrupting these ABFs made plants hypersensitive to salinity stress, demonstrating that ABFs enhance salinity tolerance. Moreover, ABF mutations largely rescued the salinity-tolerant phenotype of co-mutants. CO suppresses the expression of several salinity-responsive genes and influences the transcriptional regulation function of ABF3. Collectively, our results show that the LD-induced CO works antagonistically with ABFs to modulate salinity responses, thus revealing how CO negatively regulates plant adaptation to salinity stress.
Collapse
Affiliation(s)
- Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiang Zhu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
27
|
Wang P, Li Y, Liu Z, Li X, Wang Y, Liu W, Li X, Hu J, Zhu W, Wang C, Li S, Gu T, Xu D, Tang C, Wang Y, Li C, Zhang S, Wu J. Reciprocal regulation of flower induction by ELF3α and ELF3β generated via alternative promoter usage. THE PLANT CELL 2023; 35:2095-2113. [PMID: 36883592 PMCID: PMC10226570 DOI: 10.1093/plcell/koad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 05/30/2023]
Abstract
Flowering is critical for sexual reproduction and fruit production. Several pear (Pyrus sp.) varieties produce few flower buds, but the underlying mechanisms are unknown. The circadian clock regulator EARLY FLOWERING3 (ELF3) serves as a scaffold protein in the evening complex that controls flowering. Here, we report that the absence of a 58-bp sequence in the 2nd intron of PbELF3 is genetically associated with the production of fewer flower buds in pear. From rapid amplification of cDNA ends sequencing results, we identified a short, previously unknown transcript from the PbELF3 locus, which we termed PbELF3β, whose transcript level was significantly lower in pear cultivars that lacked the 58-bp region. The heterologous expression of PbELF3β in Arabidopsis (Arabidopsis thaliana) accelerated flowering, whereas the heterologous expression of the full-length transcript PbELF3α caused late flowering. Notably, ELF3β was functionally conserved in other plants. Deletion of the 2nd intron reduced AtELF3β expression and caused delayed flowering time in Arabidopsis. AtELF3β physically interacted with AtELF3α, disrupting the formation of the evening complex and consequently releasing its repression of flower induction genes such as GIGANTEA (GI). AtELF3β had no effect in the absence of AtELF3α, supporting the idea that AtELF3β promotes flower induction by blocking AtELF3α function. Our findings show that alternative promoter usage at the ELF3 locus allows plants to fine-tune flower induction.
Collapse
Affiliation(s)
- Peng Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Xuhan Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Yicheng Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijuan Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Li
- Shijiazhuang Institute of Fruit Trees, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050061, China
| | - Jianjian Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyi Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongqing Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingtao Wang
- Shijiazhuang Institute of Fruit Trees, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050061, China
| | - Chao Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
28
|
Riekötter J, Oklestkova J, Muth J, Twyman RM, Epping J. Transcriptomic analysis of Chinese yam ( Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development. Front Nutr 2023; 10:1112793. [PMID: 37215221 PMCID: PMC10196131 DOI: 10.3389/fnut.2023.1112793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.
Collapse
Affiliation(s)
- Jenny Riekötter
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jana Oklestkova
- Laboratory of Growth Regulators, The Czech Academy of Science, Institute of Experimental Botany and Palacký University, Faculty of Science, Olomouc, Czechia
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | | | - Janina Epping
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
30
|
Liu Z, Liu W, Wang Z, Qi K, Xie Z, Zhang S, Wu J, Wang P. Diurnal transcriptome dynamics reveal the photoperiod response of Pyrus. PHYSIOLOGIA PLANTARUM 2023; 175:e13893. [PMID: 36929905 DOI: 10.1111/ppl.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.
Collapse
Affiliation(s)
- Zhe Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
31
|
Brůna T, Aryal R, Dudchenko O, Sargent DJ, Mead D, Buti M, Cavallini A, Hytönen T, Andrés J, Pham M, Weisz D, Mascagni F, Usai G, Natali L, Bassil N, Fernandez GE, Lomsadze A, Armour M, Olukolu B, Poorten T, Britton C, Davik J, Ashrafi H, Aiden EL, Borodovsky M, Worthington M. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. "Hillquist"). G3 (BETHESDA, MD.) 2023; 13:jkac289. [PMID: 36331334 PMCID: PMC9911083 DOI: 10.1093/g3journal/jkac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, UK
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Daniel Mead
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Owlstone Medical Ltd, Cambridge CB4 0GJ, UK
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - David Weisz
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Gina E Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Alexandre Lomsadze
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Mitchell Armour
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, N-1431 Ås, Norway
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Erez Lieberman Aiden
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Mark Borodovsky
- Department of Biomedical Engineering, School of Computational Science and Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332USA
| | | |
Collapse
|
32
|
Shomodder A, Imaizumi T, Nagata M, Kasai E, Shiina T, Tsuta M, Thammawong M, Nakano K. Existence of circadian rhythm and its response behavior under different storage conditions of soybean sprouts. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153906. [PMID: 36621022 DOI: 10.1016/j.jplph.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The circadian system plays an essential role in plant cells, and numerous physiological events are generally modulated by circadian clock genes. To further improve postharvest handling of fresh produce, it is vital to understanding the behavior of clock gene expression and its underlying interactions with changes in quality. In this study, the effect of temperature and controlled atmosphere storage on the expression of clock genes (GmLCL1, GmPRR7, GmGI, GmTOC1, and GmLUX), postharvest quality characteristics and their related genes in soybean sprouts were investigated. By fitting the obtained gene expression level using the qPCR method with the cosine curve equation, it was successfully found that the circadian rhythm existed under constant dark storage conditions of soybean sprouts. A significant rhythm in clock gene expression was observed in control soybean sprouts. In contrast, low temperature storage diminished the cyclic expression of GmLCL1, GmPRR7, and GmTOC1, which also affected GmGI and GmLUX expression. Additionally, high CO2 concentrations during storage disturbed the circadian clock by affecting the phase and amplitude of each gene; for low O2 concentrations, it was only affected by amplitude. Interestingly, low temperature, low O2, and high CO2 maintained postharvest quality, including reduced respiration, weight loss and browning incidence. The expression behaviors of postharvest quality attribute-related genes (GmFUM1, GmCS, Gm2-OGDH, GmPPO1, GmPAL) were also influenced by the storage treatments. Overall, the findings first suggest a possible link between clock disruption and postharvest quality maintenance of soybean sprouts.
Collapse
Affiliation(s)
- Anupama Shomodder
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Teppei Imaizumi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masayasu Nagata
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eri Kasai
- Faculty of Home Economics, Gifu Women's University, 80 Taroumaru, Gifu City, Gifu, 501-2592, Japan
| | - Takeo Shiina
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Mizuki Tsuta
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Manasikan Thammawong
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Kohei Nakano
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
33
|
Soorni A, Karimi M, Al Sharif B, Habibi K. Genome-wide screening and characterization of long noncoding RNAs involved in flowering/bolting of Lactuca sativa. BMC PLANT BIOLOGY 2023; 23:3. [PMID: 36588159 PMCID: PMC9806901 DOI: 10.1186/s12870-022-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) is considered the most important vegetable in the leafy vegetable group. However, bolting affects quality, gives it a bitter taste, and as a result makes it inedible. Bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components. Although bolting/flowering responsive genes have been identified in most sensitive and non-sensitive species, non-coding RNA molecules like long non-coding RNAs (lncRNAs) have not been investigated in lettuce. Hence, in this study, potential long non-coding RNAs that regulate flowering /bolting were investigated in two lettuce strains S24 (resistant strain) and S39 (susceptible strain) in different flowering times to better understand the regulation of lettuce bolting mechanism. For this purpose, we used two RNA-seq datasets to discover the lncRNA transcriptome profile during the transition from vegetative to reproductive phase. RESULTS For identifying unannotated transcripts in these datasets, a 7-step pipeline was employed to filter out these transcripts and terminate with 293 novel lncRNAs predicted by PLncPRO and CREMA. These transcripts were then utilized to predict cis and trans flowering-associated targets and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Computational predictions of target gene function showed the involvement of putative flowering-related genes and enrichment of the floral regulators FLC, CO, FT, and SOC1 in both datasets. Finally, 17 and 18 lncRNAs were proposed as competing endogenous target mimics (eTMs) for novel and known lncRNA miRNAs, respectively. CONCLUSION Overall, this study provides new insights into lncRNAs that control the flowering time of plants known for bolting, such as lettuce, and opens new windows for further study.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | | - Batoul Al Sharif
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khashayar Habibi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
34
|
Zhang L, Song C, Guo D, Guo L, Hou X, Wang H. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony ( Paeonia ostii). PLANT SIGNALING & BEHAVIOR 2022; 17:2056364. [PMID: 35343364 PMCID: PMC8959526 DOI: 10.1080/15592324.2022.2056364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tree peony is a famous flower plant in China, but the short and concentrated flowering period limits its ornamental value and economic value. Brassinolide (BR) plays an important role in plant growth and development including flowering. There have been a large number of reports on the molecular aspects of the flowering process, but the genetic mechanism that was responsible for miRNA-guided regulation of tree peony is almost unclear. In this study, the leaves of tree peony cultivar, 'Feng Dan', were sprayed with different concentrations of BR, and the obvious bloom delay was found at the treatment with BR 50 μg/L. The small RNA sequencing and transcriptome sequencing were performed on the petals of tree peony under an untreated control (CK) and the treatment with BR 50 μg/L during four consecutive flowering development stages. A total of 22 known miRNAs belonging to 12 families were identified and 84 novel miRNAs were predicted. Combined with transcriptome data, a total of 376 target genes were predicted for the 18 differentially expressed known miRNAs and 177 target genes were predicted for the 23 differentially expressed novel miRNAs. Additionally, the potential miRNAs and their target genes were identified, including miR156b targeting SPL, miR172a_4 targeting AP2 and four novel miRNAs targeting SPA1, and revealed that they might affect the flowering time in tree peony. Collectively, these results would provide a theoretical basis for further analysis of miRNA-guided regulation on flowering period in tree peony.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Chengwei Song
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Huafang Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Chen Z, Li Z. Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Han X, Tang Q, Xu L, Guan Z, Tu J, Yi B, Liu K, Yao X, Lu S, Guo L. Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1065766. [PMID: 36479520 PMCID: PMC9721451 DOI: 10.3389/fpls.2022.1065766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Flowering time is strongly related to the environment, while the genotype-by-environment interaction study for flowering time is lacking in Brassica napus. Here, a total of 11,700,689 single nucleotide polymorphisms in 490 B. napus accessions were used to associate with the flowering time and related climatic index in eight environments using a compressed variance-component mixed model, 3VmrMLM. As a result, 19 stable main-effect quantitative trait nucleotides (QTNs) and 32 QTN-by-environment interactions (QEIs) for flowering time were detected. Four windows of daily average temperature and precipitation were found to be climatic factors highly correlated with flowering time. Ten main-effect QTNs were found to be associated with these flowering-time-related climatic indexes. Using differentially expressed gene (DEG) analysis in semi-winter and spring oilseed rapes, 5,850 and 5,511 DEGs were found to be significantly expressed before and after vernalization. Twelve and 14 DEGs, including 7 and 9 known homologs in Arabidopsis, were found to be candidate genes for stable QTNs and QEIs for flowering time, respectively. Five DEGs were found to be candidate genes for main-effect QTNs for flowering-time-related climatic index. These candidate genes, such as BnaFLCs, BnaFTs, BnaA02.VIN3, and BnaC09.PRR7, were further validated by the haplotype, selective sweep, and co-expression networks analysis. The candidate genes identified in this study will be helpful to breed B. napus varieties adapted to particular environments with optimized flowering time.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
37
|
Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal JS, Rellán-Álvarez R, Sawers RJH, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, Wei W, Wang Y, Luo Y, Jiang C, Deng M, Jin M, Jian L, Yu Y, Zhang M, Yang X, Hufford MB, Fernie AR, Warburton ML, Ross-Ibarra J, Yan J. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat Genet 2022; 54:1736-1745. [PMID: 36266506 DOI: 10.1038/s41588-022-01184-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.
Collapse
Affiliation(s)
- Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Alyssa Phillips
- Center for Population Biology, University of California Davis, Davis, CA, USA.,Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Brenda Cameron
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Qing Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xinnan Ye
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanhui Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maolin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service: Western Regional Plant Introduction Station, Washington State University, Pullman, WA, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology, Genome Center, University of California Davis, Davis, CA, USA.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
38
|
Oravec MW, Greenham K. The adaptive nature of the plant circadian clock in natural environments. PLANT PHYSIOLOGY 2022; 190:968-980. [PMID: 35894658 PMCID: PMC9516730 DOI: 10.1093/plphys/kiac337] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
The plant circadian clock coordinates developmental, physiological, and metabolic processes with diel changes in light and temperature throughout the year. The balance between the persistence and plasticity of the clock in response to predictable and unpredictable environmental changes may be key to the clock's adaptive nature across temporal and spatial scales. Studies under controlled conditions have uncovered critical signaling pathways involved in light and temperature perception by the clock; however, they don't account for the natural lag of temperature behind photoperiod. Studies in natural environments provide key insights into the clock's adaptive advantage under more complex natural settings. Here, we discuss the role of the circadian clock in light and temperature perception and signaling, how the clock integrates these signals for a coordinated and adaptive response, and the adaptive advantage conferred by the clock across time and space in natural environments.
Collapse
Affiliation(s)
- Madeline W Oravec
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
39
|
Wang P, Wang L, Zhang L, Wu T, Sun B, Zhang J, Sapey E, Yuan S, Jiang B, Chen F, Wu C, Hou W, Sun S, Bai J, Han T. Genomic Dissection and Diurnal Expression Analysis Reveal the Essential Roles of the PRR Gene Family in Geographical Adaptation of Soybean. Int J Mol Sci 2022; 23:ijms23179970. [PMID: 36077363 PMCID: PMC9456279 DOI: 10.3390/ijms23179970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.
Collapse
Affiliation(s)
- Peiguo Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwei Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Baiquan Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Junquan Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Enoch Sapey
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Council for Scientific and Industrial Research (CSIR)-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jiangping Bai
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (J.B.); (T.H.)
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Correspondence: (J.B.); (T.H.)
| |
Collapse
|
40
|
Blair EJ, Goralogia GS, Lincoln MJ, Imaizumi T, Nagel DH. Clock-Controlled and Cold-Induced CYCLING DOF FACTOR6 Alters Growth and Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:919676. [PMID: 35958204 PMCID: PMC9361860 DOI: 10.3389/fpls.2022.919676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock represents a critical regulatory network, which allows plants to anticipate environmental changes as inputs and promote plant survival by regulating various physiological outputs. Here, we examine the function of the clock-regulated transcription factor, CYCLING DOF FACTOR 6 (CDF6), during cold stress in Arabidopsis thaliana. We found that the clock gates CDF6 transcript accumulation in the vasculature during cold stress. CDF6 mis-expression results in an altered flowering phenotype during both ambient and cold stress. A genome-wide transcriptome analysis links CDF6 to genes associated with flowering and seed germination during cold and ambient temperatures, respectively. Analysis of key floral regulators indicates that CDF6 alters flowering during cold stress by repressing photoperiodic flowering components, FLOWERING LOCUS T (FT), CONSTANS (CO), and BROTHER OF FT (BFT). Gene ontology enrichment further suggests that CDF6 regulates circadian and developmental-associated genes. These results provide insights into how the clock-controlled CDF6 modulates plant development during moderate cold stress.
Collapse
Affiliation(s)
- Emily J. Blair
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Greg S. Goralogia
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Matthew J. Lincoln
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Dawn H. Nagel
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
41
|
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:134-148. [PMID: 35442527 DOI: 10.1111/tpj.15783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn. Brassica rapa) ssp. chinensis (pak choi) to screen the ABA-induced pak choi library and identified the transcription activator ABF3 (BrABF3). BrABF3, the expression of which was induced by ABA in pak choi, directly bound to the CO promoter from both pak choi and Arabidopsis. The BrABF3 promoter is specifically active in the Arabidopsis leaf vascular tissue, where CO is mainly expressed. Impaired BrABF3 expression in pak choi decreased BrCO expression levels and delayed flowering, whereas ectopic expression of BrABF3 in Arabidopsis increased CO expression and induced earlier flowering under the long-day conditions. Electrophoretic mobility shift assay analysis showed that BrABF3 was enriched at the canonical ABA-responsive element-ABRE binding factor (ABRE-ABF) binding motifs of the BrCO promoter. The direct binding of BrABF3 to the ABRE elements of CO was further confirmed by chromatin immunoprecipitation quantitative PCR. In addition, the induction of BrCO transcription by BrABF3 could be repressed by BrCDF1 in the morning. Thus, our results suggest that ABA could accelerate the floral transition by directly activating BrCO transcription through BrABF3 in pak choi.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
42
|
The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A 2022; 119:e2122582119. [PMID: 35733265 DOI: 10.1073/pnas.2122582119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plants use photoperiodism to activate flowering in response to a particular daylength. In rice, flowering is accelerated in short-day conditions, and even a brief exposure to light during the dark period (night-break) is sufficient to delay flowering. Although many of the genes involved in controlling flowering in rice have been uncovered, how the long- and short-day flowering pathways are integrated, and the mechanism of photoperiod perception is not understood. While many of the signaling components controlling photoperiod-activated flowering are conserved between Arabidopsis and rice, flowering in these two systems is activated by opposite photoperiods. Here we establish that photoperiodism in rice is controlled by the evening complex (EC). We show that mutants in the EC genes LUX ARRYTHMO (LUX) and EARLY FLOWERING3 (ELF3) paralogs abolish rice flowering. We also show that the EC directly binds and suppresses the expression of flowering repressors, including PRR37 and Ghd7. We further demonstrate that light acts via phyB to cause a rapid and sustained posttranslational modification of ELF3-1. Our results suggest a mechanism by which the EC is able to control both long- and short-day flowering pathways.
Collapse
|
43
|
Liang F, Zhang Y, Wang X, Yang S, Fang T, Zheng S, Zeng L. Integrative mRNA and Long Noncoding RNA Analysis Reveals the Regulatory Network of Floral Bud Induction in Longan ( Dimocarpus longan Lour.). FRONTIERS IN PLANT SCIENCE 2022; 13:923183. [PMID: 35774802 PMCID: PMC9237614 DOI: 10.3389/fpls.2022.923183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a tropical/subtropical fruit tree of significant economic importance. Floral induction is an essential process for longan flowering and plays decisive effects on the longan yield. Due to the instability of flowering, it is necessary to understand the molecular mechanisms of floral induction in longan. In this study, mRNA and long noncoding RNA (lncRNA) transcriptome sequencing were performed using the apical buds of fruiting branches as materials. A total of 7,221 differential expressions of mRNAs (DEmRNAs) and 3,238 differential expressions of lncRNAs (DElncRNAs) were identified, respectively. KEGG enrichment analysis of DEmRNAs highlighted the importance of starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways during floral induction. Combining the analysis of weighted gene co-expression network (WGCNA) and expression pattern of DEmRNAs in the three pathways, specific transcriptional characteristics at each stage during floral induction and regulatory network involving co-expressed genes were investigated. The results showed that sucrose metabolism and auxin signal transduction may be crucial for the growth and maturity of autumn shoots in September and October (B1-B2 stage); starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways participated in the regulation of floral bud physiological differentiation together in November and December (B3-B4 stage) and the crosstalk among three pathways was also found. Hub genes in the co-expression network and key DEmRNAs in three pathways were identified. The circadian rhythm genes FKF1 and GI were found to activate SOC1gene through the photoperiod core factor COL genes, and they were co-expressed with auxin, gibberellin, abscisic acid, ethylene signaling genes, and sucrose biosynthesis genes at B4 stage. A total of 12 hub-DElncRNAs had potential for positively affecting their distant target genes in three putative key pathways, predominantly in a co-transcriptional manner. A hypothetical model of regulatory pathways and key genes and lncRNAs during floral bud induction in longan was proposed finally. Our studies will provide valuable clues and information to help elucidate the potential molecular mechanisms of floral initiation in longan and woody fruit trees.
Collapse
Affiliation(s)
- Fan Liang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyong Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Yang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzho, China
| | - Lihui Zeng
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
45
|
Liang J, Zheng J, Wu Z, Wang H. Time-Course Transcriptomic Profiling of Floral Induction in Cultivated Strawberry. Int J Mol Sci 2022; 23:ijms23116126. [PMID: 35682808 PMCID: PMC9181015 DOI: 10.3390/ijms23116126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The initiation and quality of flowering directly affect the time to market and economic benefit of cultivated strawberries, but the underlying mechanisms of these processes are largely unknown. To investigate the gene activity during the key period of floral induction in strawberries, time-course transcriptome analysis was performed on the shoot apex of the strawberry cultivar ‘Benihoppe.’ A total of 7177 differentially expressed genes (DEGs) were identified through pairwise comparisons. These DEGs were grouped into four clusters with dynamic expression patterns. By analyzing the key genes in the potential flowering pathways and the development of the leaf and flower, at least 73 DEGs that may be involved in the regulatory network of floral induction in strawberries were identified, some of which belong to the NAC, MYB, MADS, and SEB families. A variety of eight hormone signaling pathway genes that might play important roles in floral induction were analyzed. In particular, the gene encoding DELLA, a key inhibitor of the gibberellin signaling pathway, was found to be significantly differentially expressed during the floral induction. Furthermore, the differential expression of some important candidate genes, such as TFL1, SOC1, and GAI-like, was further verified by qRT-PCR. Therefore, we used this time-course transcriptome data for a preliminary exploration of the regulatory network of floral induction and to provide potential candidate genes for future studies of flowering in strawberries.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (J.Z.)
- Correspondence: ; Tel.: +86-136-8301-8901
| |
Collapse
|
46
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
47
|
In Silico Characterization and Expression Analysis of GIGANTEA Genes in Potato. Biochem Genet 2022; 60:2137-2154. [PMID: 35277794 PMCID: PMC9617960 DOI: 10.1007/s10528-022-10214-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
GIGANTEA (GI) genes are ubiquitous in the plant kingdom and are involved in diverse processes from flowering during stress responses to tuberization; the latter occurs in potato (Solanum tuberosum L.). GI genes have a diurnal cycle of expression; however, no details on the regulation of GI gene expression in potato have been reported thus far. The aim of our work was the analysis of the GI promoter sequence and studying GI expression in different organs and under abiotic stress conditions in potato. Two GI genes homologous to Arabidopsis GI located on chromosomes 4 and 12 (StGI.04 and StGI.12) were identified in the genome-sequenced potato S. phureja. The GI promoter regions of the commercial potato cultivar ‘Désirée’ were cloned and found to be almost identical to the S. phureja GI promoter sequence. More than ten TF families binding to the GI promoters were predicted. EVENING ELEMENT and ABSCISIC ACID RESPONSE ELEMENT LIKE elements related to circadian regulation and a binding site for POTATO HOMEOBOX 20 presumably involved in tuber initiation were detected in both GI promoters. However, the locations of these elements and several other cis-acting regulatory elements as well as the organ-specific expression and responses of the genes to abiotic stresses and abscisic acid were different. Thus, we presume that the function of StGI.04 and StGI.12 are at least partially different. This study lays foundation for further investigation of the roles of GI genes in potato.
Collapse
|
48
|
Zhang H, Jiao B, Dong F, Liang X, Zhou S, Wang H. Genome-wide identification of CCT genes in wheat (Triticum aestivum L.) and their expression analysis during vernalization. PLoS One 2022; 17:e0262147. [PMID: 34986172 PMCID: PMC8730456 DOI: 10.1371/journal.pone.0262147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous CCT genes are known to regulate various biological processes, such as circadian rhythm regulation, flowering, light signaling, plant development, and stress resistance. The CCT gene family has been characterized in many plants but remains unknown in the major cereal wheat (Triticum aestivum L.). Extended exposure to low temperature (vernalization) is necessary for winter wheat to flower successfully. VERNALIZATION2 (VRN2), a specific CCT-containing gene, has been proved to be strongly associated with vernalization in winter wheat. Mutation of all VRN2 copies in three subgenomes results in the eliminated demands of low temperature in flowering. However, no other CCT genes have been reported to be associated with vernalization to date. The present study screened CCT genes in the whole wheat genome, and preliminarily identified the vernalization related CCT genes through expression analysis. 127 CCT genes were identified in three subgenomes of common wheat through a hidden Markov model-based method. Based on multiple alignment, these genes were grouped into 40 gene clusters, including the duplicated gene clusters TaCMF6 and TaCMF8, each tandemly arranged near the telomere. The phylogenetic analysis classified these genes into eight groups. The transcriptome analysis using leaf tissues collected before, during, and after vernalization revealed 49 upregulated and 31 downregulated CCT genes during vernalization, further validated by quantitative real-time PCR. Among the differentially expressed and well-investigated CCT gene clusters analyzed in this study, TaCMF11, TaCO18, TaPRR95, TaCMF6, and TaCO16 were induced during vernalization but decreased immediately after vernalization, while TaCO1, TaCO15, TaCO2, TaCMF8, and TaPPD1 were stably suppressed during and after vernalization. These data imply that some vernalization related CCT genes other than VRN2 may exist in wheat. This study improves our understanding of CCT genes and provides a foundation for further research on CCT genes related to vernalization in wheat.
Collapse
Affiliation(s)
- HongWei Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bo Jiao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - FuShuang Dong
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - XinXia Liang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Shuo Zhou
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| | - HaiBo Wang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| |
Collapse
|
49
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
50
|
Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci 2021; 23:466. [PMID: 35008892 PMCID: PMC8745532 DOI: 10.3390/ijms23010466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Mengnan Yin
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
| | - Yuehui He
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| |
Collapse
|