1
|
Li J, Hu Y, Hu J, Xie Q, Chen X, Qi X. Sucrose synthase: An enzyme with multiple roles in plant physiology. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154352. [PMID: 39332324 DOI: 10.1016/j.jplph.2024.154352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Sucrose synthase (SuS) is a key enzyme in the regulation of sucrose metabolism in plants and participates in the reversible reaction of sucrose conversion to uridine diphosphate-glucose and fructose. It plays an important role in promoting taproot development, starch synthesis, cellulose synthesis, improving plant nitrogen fixation capacity, sugar metabolism, and fruit and seed development. Recent studies have shown that SuS responds to abiotic stresses such as drought stress, cold stress and waterlogging stress, especially in waterlogging stress. This paper provides a comprehensive review on the basic properties, physiological functions, and signal transduction pathways of SuS, aiming to establish a theoretical foundation for its further research.
Collapse
Affiliation(s)
- Jinling Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yingying Hu
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jiajia Hu
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Qingmin Xie
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xiaohua Qi
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Mareri L, Guerriero G, Hausman JF, Cai G. Purification and Biochemical Characterization of Sucrose synthase from the Stem of Nettle ( Urtica dioica L.). Int J Mol Sci 2021; 22:ijms22020851. [PMID: 33467001 PMCID: PMC7829918 DOI: 10.3390/ijms22020851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Sucrose synthase is a key enzyme in sucrose metabolism as it saves an important part of sucrose energy in the uridine-5'-diphosphate glucose (UDP-glucose) molecule. As such it is also involved in the synthesis of fundamental molecules such as callose and cellulose, the latter being present in all cell walls of plant cells and therefore also in the gelatinous cell walls of sclerenchyma cells such as bast fibers. Given the importance of these cells in plants of economic interest such as hemp, flax and nettle, in this work we have studied the occurrence of Sucrose synthase in nettle stems by analyzing its distribution between the cytosol, membranes and cell wall. We have therefore developed a purification protocol that can allow the analysis of various characteristics of the enzyme. In nettle, Sucrose synthase is encoded by different genes and each form of the enzyme could be subjected to different post-translational modifications. Therefore, by two-dimensional electrophoresis analysis, we have also traced the phosphorylation profile of Sucrose synthase isoforms in the various cell compartments. This information paves the way for further investigation of Sucrose synthase in plants such as nettle, which is both economically important, but also difficult to study.
Collapse
Affiliation(s)
- Lavinia Mareri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100 Siena, Italy;
- Correspondence: ; Tel.: +39-0577-232856
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (G.G.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg; (G.G.); (J.-F.H.)
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100 Siena, Italy;
| |
Collapse
|
3
|
Zhang Y, Xia B, Li Y, Lin X, Wu Q. Substrate Engineering in Lipase-Catalyzed Selective Polymerization of d-/l-Aspartates and Diols to Prepare Helical Chiral Polyester. Biomacromolecules 2021; 22:918-926. [PMID: 33427463 DOI: 10.1021/acs.biomac.0c01605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of optically pure polymers is one of the most challenging tasks in polymer chemistry. Herein, Novozym 435 (Lipase B from Candida antarctica, immobilized on Lewatit VP OC 1600)-catalyzed polycondensation between d-/l-aspartic acid (Asp) diester and diols for the preparation of helical chiral polyesters was reported. Compared with d-Asp diesters, the fast-reacting l-Asp diesters easily reacted with diols to provide a series of chiral polyesters containing N-substitutional l-Asp repeating units. Besides amino acid configuration, N-substituent side chains and the chain length of diols were also investigated and optimized. It was found that bulky acyl N-substitutional groups like N-Boc and N-Cbz were more favorable for this polymerization than small ones probably due to competitively binding of these small acyl groups into the active site of Novozym 435. The highest molecular weight can reach up to 39.5 × 103 g/mol (Mw, Đ = 1.64). Moreover, the slow-reacting d-Asp diesters were also successfully polymerized by modifying the substrate structure to create a "nonchiral" condensation environment artificially. These enantiocomplementary chiral polyesters are thermally stable and have specific helical structures, which was confirmed by circular dichroism (CD) spectra, scanning electron microscope (SEM), and molecular calculation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bo Xia
- Jiyang College of Zhejiang A&F University, Zhuji 311800, People's Republic of China
| | - Yanyan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
4
|
Deng Y, Wang J, Zhang Z, Wu Y. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1897-1907. [PMID: 32004404 PMCID: PMC7415785 DOI: 10.1111/pbi.13349] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 05/22/2023]
Abstract
The endosperm-specific transcription factor Opaque2 (O2) acts as a central regulator for endosperm filling, but its functions have not been fully defined. Regular o2 mutants exhibit a non-vitreous phenotype, so we used its vitreous variety Quality Protein Maize to create EMS-mutagenesis mutants for screening o2 enhancers (oen). A mutant (oen1) restored non-vitreousness and produced a large cavity in the seed due to severely depleted endosperm filling. When oen1 was introgressed into inbred W64A with a normal O2 gene, the seeds appeared vitreous but had a shrunken crown. oen1 was determined to encode Shrunken1 (Sh1), a sucrose synthase (SUS, EC 2.4.1.13). Maize contains three SUS-encoding genes (Sh1, Sus1, and Sus2) with Sh1 contributing predominantly to the endosperm. We determined SUS activity and found a major and minor reduction in oen1 and o2, respectively. In o2;oen1-1, SUS activity was further decreased. We found all Sus gene promoters contain at least one O2 binding element that can be specifically recognized and be transactivated by O2. Sus1 and Sus2 promoters had a much stronger O2 transactivation than Sh1, consistent with their transcript reduction in o2 endosperm. Although sus1 and sus2 alone or in combination had no perceptible phenotype, either of them could dramatically enhance seed opacity and cavity in sh1, indicating that transactivation of Sus1 and Sus2 by O2 supplements SUS-mediated endosperm filling in maize. Our findings demonstrate that O2 transcriptionally regulates the metabolic source entry for protein and starch synthesis during endosperm filling.
Collapse
Affiliation(s)
- Yiting Deng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Zhiyong Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
5
|
Xu X, Yang Y, Liu C, Sun Y, Zhang T, Hou M, Huang S, Yuan H. The evolutionary history of the sucrose synthase gene family in higher plants. BMC PLANT BIOLOGY 2019; 19:566. [PMID: 31852440 PMCID: PMC6921546 DOI: 10.1186/s12870-019-2181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/02/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sucrose synthase (SUS) is widely considered a key enzyme participating in sucrose metabolism in higher plants and regarded as a biochemical marker for sink strength in crops. However, despite significant progress in characterizing the physiological functions of the SUS gene family, knowledge of the trajectory of evolutionary processes and significance of the family in higher plants remains incomplete. RESULTS In this study, we identified over 100 SUS genes in 19 plant species and reconstructed their phylogenies, presenting a potential framework of SUS gene family evolution in higher plants. Three anciently diverged SUS gene subfamilies (SUS I, II and III) were distinguished based on their phylogenetic relationships and unique intron/exon structures in angiosperms, and they were found to have evolved independently in monocots and dicots. Each subfamily of SUS genes exhibited distinct expression patterns in a wide range of plants, implying that their functional differentiation occurred before the divergence of monocots and dicots. Furthermore, SUS III genes evolved under relaxed purifying selection in dicots and displayed narrowed expression profiles. In addition, for all three subfamilies of SUS genes, the GT-B domain was more conserved than the "regulatory" domain. CONCLUSIONS The present study reveals the evolution of the SUS gene family in higher plants and provides new insights into the evolutionary conservation and functional divergence of angiosperm SUS genes.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chunxiao Liu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Menglan Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Suzhen Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
6
|
Galibina NA, Novitskaya LL, Nikerova KM, Moshchenskaya YL, Borodina MN, Sofronova IN. Apoplastic Invertase Activity Regulation in the Cambial Zone of Karelian Birch. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
O’Leary BM, Plaxton WC. Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Li L, Sheen J. Dynamic and diverse sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:116-125. [PMID: 27423125 PMCID: PMC5050104 DOI: 10.1016/j.pbi.2016.06.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar 'perception and signal transduction' in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
10
|
The calcium-dependent protein kinase RcCDPK2 phosphorylates sucrose synthase at Ser11 in developing castor oil seeds. Biochem J 2016; 473:3667-3682. [PMID: 27512054 DOI: 10.1042/bcj20160531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Imported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca2+-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser11 in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS. Purified RcSUS1-K (-kinase) and heterologously expressed RcCDPK2 catalyzed Ca2+-dependent Ser11 phosphorylation of RcSUS1 and its corresponding dephosphopeptide, while exhibiting a high affinity for free Ca2+ ions [K0.5(Ca2+) < 0.4 µM]. RcSUS1-K activity, RcCDPK2 expression, and RcSUS1 Ser11 phosphorylation peaked during early COS development and then declined in parallel. The elimination of sucrose import via fruit excision triggered RcSUS1 dephosphorylation but did not alter RcSUS1-K activity, suggesting a link between sucrose signaling and posttranslational RcCDPK2 control. Both RcCDPK2-mCherry and RcSUS1-EYFP co-localized throughout the cytosol when transiently co-expressed in tobacco suspension cells, although RcCDPK2-mCherry was also partially localized to the nucleus. Subcellular fractionation revealed that ∼20% of RcSUS1-K activity associates with microsomal membranes in developing COS, as does RcSUS1. In contrast with RcCDPK1, which catalyzes inhibitory phosphorylation of COS bacterial-type phosphoenolpyruvate carboxylase at Ser451, RcCDPK2 exhibited broad substrate specificity, a wide pH-activity profile centered at pH 8.5, and insensitivity to metabolite effectors or thiol redox status. Our combined results indicate a possible link between cytosolic Ca2+-signaling and the control of photosynthate partitioning during COS development.
Collapse
|
11
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. PLANTA 2016; 243:43-63. [PMID: 26335855 DOI: 10.1007/s00425-015-2394-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/25/2015] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Heat stress changes isoform content and distribution of cytoskeletal subunits in pollen tubes affecting accumulation of secretory vesicles and distribution of sucrose synthase, an enzyme involved in cell wall synthesis. Plants are sessile organisms and are therefore exposed to damages caused by the predictable increase in temperature. We have analyzed the effects of temperatures on the development of pollen tubes by focusing on the cytoskeleton and related processes, such as vesicular transport and cell wall synthesis. First, we show that heat stress affects pollen germination and, to a lesser extent, pollen tube growth. Both, microtubules and actin filaments, are damaged by heat treatment and changes of actin and tubulin isoforms were observed in both cases. Damages to actin filaments mainly concern the actin array present in the subapex, a region critical for determining organelle and vesicle content in the pollen tube apex. In support of this, green fluorescent protein-labeled vesicles are arranged differently between heat-stressed and control samples. In addition, newly secreted cell wall material (labeled by propidium iodide) shows an altered distribution. Damage induced by heat stress also extends to proteins that bind actin and participate in cell wall synthesis, such as sucrose synthase. Ultimately, heat stress affects the cytoskeleton thereby causing alterations in the process of vesicular transport and cell wall deposition.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Mauro Cresti
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy.
| |
Collapse
|
13
|
Volpicella M, Fanizza I, Leoni C, Gadaleta A, Nigro D, Gattulli B, Mangini G, Blanco A, Ceci LR. Identification and Characterization of the Sucrose Synthase 2 Gene (Sus2) in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:266. [PMID: 27014292 PMCID: PMC4785679 DOI: 10.3389/fpls.2016.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/19/2016] [Indexed: 05/14/2023]
Abstract
Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wheat (cultivars Ciccio and Svevo) is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur, and 5-BIL42). The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modeling approaches. The combined results of sucrose synthase 2 expression and activity levels were then considered in the light of their possible involvement in starch yield.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
- *Correspondence: Mariateresa Volpicella,
| | - Immacolata Fanizza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
| | - Claudia Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro”Bari, Italy
| | - Agata Gadaleta
- Department of Agricultural and Environmental Sciences, University of Bari “A. Moro”Bari, Italy
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Bruno Gattulli
- Institute of Biomembranes and Bioenergetics – National Research CouncilBari, Italy
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences Section Genetics and Plant Breeding, University of Bari “A. Moro”Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes and Bioenergetics – National Research CouncilBari, Italy
| |
Collapse
|
14
|
The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes. J Bacteriol 2015; 197:2734-46. [PMID: 26013491 DOI: 10.1128/jb.00110-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In this paper we report the first crystal structure of a prokaryotic sucrose synthase from the nonphotosynthetic bacterium Nitrosomonas europaea. The obtained structure was in an open form, whereas the only other available structure, from the plant Arabidopsis thaliana, was in a closed conformation. Comparative structural analysis revealed a "hinge-latch" combination, which is critical to transition between the open and closed forms of the enzyme. The N. europaea sucrose synthase shares the same fold as the GT-B family of the retaining glycosyltransferases. In addition, a triad of conserved homologous catalytic residues in the family was shown to be functionally critical in the N. europaea sucrose synthase (Arg567, Lys572, and Glu663). This implies that sucrose synthase shares not only a common origin with the GT-B family but also a similar catalytic mechanism. The enzyme preferred transferring glucose from ADP-glucose rather than UDP-glucose like the eukaryotic counterparts. This predicts that these prokaryotic organisms have a different sucrose metabolic scenario from plants. Nucleotide preference determines where the glucose moiety is targeted after sucrose is degraded. IMPORTANCE We obtained biochemical and structural evidence of sucrose metabolism in nonphotosynthetic bacteria. Until now, only sucrose synthases from photosynthetic organisms have been characterized. Here, we provide the crystal structure of the sucrose synthase from the chemolithoautotroph N. europaea. The structure supported that the enzyme functions with an open/close induced fit mechanism. The enzyme prefers as the substrate adenine-based nucleotides rather than uridine-based like the eukaryotic counterparts, implying a strong connection between sucrose and glycogen metabolism in these bacteria. Mutagenesis data showed that the catalytic mechanism must be conserved not only in sucrose synthases but also in all other retaining GT-B glycosyltransferases.
Collapse
|
15
|
Norris V, Ripoll C, Thellier M. The theater management model of plant memory. PLANT SIGNALING & BEHAVIOR 2015; 10:e976157. [PMID: 25482789 PMCID: PMC4622483 DOI: 10.4161/15592324.2014.976157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 06/04/2023]
Abstract
The existence of a memory in plants raises several fundamental questions. What might be the function of a plant memory? How might it work? Which molecular mechanisms might be responsible? Here, we sketch out the landscape of plant memory with particular reference to the concepts of functioning-dependent structures and competitive coherence. We illustrate how these concepts might be relevant with reference to the metaphor of a traveling, avant-garde theater company and we suggest how using a program that simulates competitive coherence might help answer some of the questions about plant memory.
Collapse
Affiliation(s)
- Vic Norris
- Department of Biology; University of Rouen; Aignan, France
| | - Camille Ripoll
- Department of Biology; University of Rouen; Aignan, France
| | | |
Collapse
|
16
|
Kleczkowski LA, Decker D. Sugar Activation for Production of Nucleotide Sugars as Substrates for Glycosyltransferases in Plants. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University
| |
Collapse
|
17
|
Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC. Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylated in vivo at serine 11 in developing castor oil seeds. J Biol Chem 2014; 289:33412-24. [PMID: 25313400 PMCID: PMC4246097 DOI: 10.1074/jbc.m114.585554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/06/2014] [Indexed: 11/06/2022] Open
Abstract
Sucrose synthase (SUS) catalyzes the UDP-dependent cleavage of sucrose into UDP-glucose and fructose and has become an important target for improving seed crops via metabolic engineering. A UDP-specific SUS homotetramer composed of 93-kDa subunits was purified to homogeneity from the triacylglyceride-rich endosperm of developing castor oil seeds (COS) and identified as RcSUS1 by mass spectrometry. RcSUS1 transcripts peaked during early development, whereas levels of SUS activity and immunoreactive 93-kDa SUS polypeptides maximized during mid-development, becoming undetectable in fully mature COS. The cytosolic location of the enzyme was established following transient expression of RcSUS1-enhanced YFP in tobacco suspension cells and fluorescence microscopy. Immunological studies using anti-phosphosite-specific antibodies revealed dynamic and high stoichiometric in vivo phosphorylation of RcSUS1 at its conserved Ser-11 residue during COS development. Incorporation of (32)P(i) from [γ-(32)P]ATP into a RcSUS1 peptide substrate, alongside a phosphosite-specific ELISA assay, established the presence of calcium-dependent RcSUS1 (Ser-11) kinase activity. Approximately 10% of RcSUS1 was associated with COS microsomal membranes and was hypophosphorylated relative to the remainder of RcSUS1 that partitioned into the soluble, cytosolic fraction. Elimination of sucrose supply caused by excision of intact pods of developing COS abolished RcSUS1 transcription while triggering the progressive dephosphorylation of RcSUS1 in planta. This did not influence the proportion of RcSUS1 associated with microsomal membranes but instead correlated with a subsequent marked decline in SUS activity and immunoreactive RcSUS1 polypeptides. Phosphorylation at Ser-11 appears to protect RcSUS1 from proteolysis, rather than influence its kinetic properties or partitioning between the soluble cytosol and microsomal membranes.
Collapse
Affiliation(s)
| | | | - Joonho Park
- the Department of Fine Chemistry, Seoul National University of Science and Technology, Nowon-Gu, Seoul 139-743, Korea
| | - Erin M Anderson
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and
| | - Robert T Mullen
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and
| | - Yi-Min She
- the Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - William C Plaxton
- From the Departments of Biology and Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada,
| |
Collapse
|
18
|
Qazi HA, Srinivasa Rao P, Kashikar A, Suprasanna P, Bhargava S. Alterations in stem sugar content and metabolism in sorghum genotypes subjected to drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:954-962. [PMID: 32481048 DOI: 10.1071/fp13299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/06/2014] [Indexed: 06/11/2023]
Abstract
Changes in stem sugar concentrations due to drought stress at the early reproductive stage were studied in seven sorghum (Sorghum bicolor (L.) Moench) genotypes that differ in their stem sugar storage ability. Total sap sugar concentration increased in most genotypes. ANOVA showed a significant contribution of genotype and treatment to the variation in sugar levels. Two genotypes showed little variation in total sugar levels at the fifth internode from the peduncle and five genotypes showed significant increases in total sugar levels under drought; these groups were used to compare sugar metabolism. Drought led to a decrease in catabolic sucrose synthase activity in both groups. Invertase activities increased significantly in two genotypes and correlated with the increase in reducing sugar concentrations under drought. Stem sugar hydrolysis probably had a role in osmotic adjustment under drought and correlated with retention of sap volume. However, the activities of sugar-metabolising enzymes did not correlate with their gene expression levels. After resuming irrigation, grain yields, stalk yields and juice volume at physiological maturity were lower in plants recovering from drought stress compared with the controls. In some genotypes, there were similar losses in grain yields and stem sugars due to drought, indicating photoassimilate source limitation; in other genotypes, grain yield losses were less than stem sugar losses in drought-exposed plants compared with the controls, suggesting mobilisation of sugars from the storage internodes to the developing panicle. Accumulation of stem sugars appears to be an adaptive strategy against drought stress in some sorghum genotypes.
Collapse
Affiliation(s)
- Hilal A Qazi
- Department of Botany, University of Pune, Pune 411007, India
| | - Pinnamaneni Srinivasa Rao
- Research program on Dryland Cereals, International Crops Research Institute for Semiarid Tropics, Patancheru 502324, India
| | | | - Penna Suprasanna
- Functional Plant Biology Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sujata Bhargava
- Department of Botany, University of Pune, Pune 411007, India
| |
Collapse
|
19
|
Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:33-67. [PMID: 24579990 DOI: 10.1146/annurev-arplant-050213-040251] [Citation(s) in RCA: 795] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose metabolism plays pivotal roles in development, stress response, and yield formation, mainly by generating a range of sugars as metabolites to fuel growth and synthesize essential compounds (including protein, cellulose, and starch) and as signals to regulate expression of microRNAs, transcription factors, and other genes and for crosstalk with hormonal, oxidative, and defense signaling. This review aims to capture the most exciting developments in this area by evaluating (a) the roles of key sucrose metabolic enzymes in development, abiotic stress responses, and plant-microbe interactions; (b) the coupling between sucrose metabolism and sugar signaling from extra- to intracellular spaces; (c) the different mechanisms by which sucrose metabolic enzymes could perform their signaling roles; and (d) progress on engineering sugar metabolism and transport for high yield and disease resistance. Finally, the review outlines future directions for research on sugar metabolism and signaling to better understand and improve plant performance.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environment and Life Sciences and Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan 2308, Australia;
| |
Collapse
|
20
|
Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovádi J. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC BIOCHEMISTRY 2013; 14:3. [PMID: 23398642 PMCID: PMC3577492 DOI: 10.1186/1471-2091-14-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022]
Abstract
Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined.
Collapse
Affiliation(s)
- Vic Norris
- EA 3829, Faculté des Sciences de l'Université de Rouen, 76821, Mont Saint Aignan Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
Polit JT, Ciereszko I. Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1597-1606. [PMID: 22770419 DOI: 10.1016/j.jplph.2012.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 06/01/2023]
Abstract
Carbohydrate starvation of Vicia faba root meristems leads to readjustment of carbohydrate metabolism and blocks the cell cycle in two principal control points (PCP1/2). The cell cycle reactivation is possible after sucrose provision, although with a delay of about 12h. During this period, the cells are sensitive to 6-dimethylaminopurine (6-DMAP) and okadaic acid (OA), inhibitors of protein kinases and phosphatases, respectively. The aim of the present study was to investigate whether those inhibitors are involved in inhibition of cell cycle revival through interference with the activities of two sucrose-cleaving enzymes: sucrose synthase (SuSy; EC 2.4.1.13) and invertase (INV; EC 3.2.1.26). In sugar-starved cells, the in situ activity of both enzymes decreased significantly. Following supplementation of root meristems with sugar, INV remained inactive, but SuSy activity increased. Despite the lack of INV activity, glucose was present in meristem cells, but its content was low in cells treated with OA. In the latter case, the size of plastids was reduced, they had less starch, and Golgi structures were affected. In sugar-starved cells, SuSy activity was induced more by exogenous sucrose than by glucose. The sucrose-induced activity was strongly inhibited by OA (less by 6-DMAP) at early stages of regeneration, but not at the stages preceding DNA replication or mitotic activities. The results indicate that prolongation of regeneration and a marked decrease in the number of cells resuming proliferation (observed in previous studies) and resulting from the action of inhibitors, are correlated with the process of SuSy activation at the beginning of regeneration from sugar starvation.
Collapse
Affiliation(s)
- Justyna Teresa Polit
- Department of Cytophysiology, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland.
| | | |
Collapse
|
22
|
Zheng Y, Anderson S, Zhang Y, Garavito RM. The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem 2011; 286:36108-36118. [PMID: 21865170 PMCID: PMC3195635 DOI: 10.1074/jbc.m111.275974] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/11/2011] [Indexed: 11/06/2022] Open
Abstract
Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-Å resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Spencer Anderson
- Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - Yanfeng Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.
| |
Collapse
|
23
|
Cho JI, Kim HB, Kim CY, Hahn TR, Jeon JS. Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. Mol Cells 2011; 31:553-61. [PMID: 21533550 PMCID: PMC3887615 DOI: 10.1007/s10059-011-1038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5' upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.
Collapse
Affiliation(s)
| | | | | | | | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
24
|
Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. PLANT PHYSIOLOGY 2011; 155:1169-90. [PMID: 21205616 PMCID: PMC3046577 DOI: 10.1104/pp.110.171371] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 12/27/2010] [Indexed: 05/18/2023]
Abstract
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
25
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. PLANT SIGNALING & BEHAVIOR 2010; 5:1638-1641. [PMID: 21150257 PMCID: PMC3115121 DOI: 10.4161/psb.5.12.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 05/29/2023]
Abstract
We have recently found that microbial species ranging from Gram-negative and Gram-positive bacteria to different fungi emit volatiles that strongly promote starch accumulation in leaves of both mono- and di-cotyledonous plants. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch over-accumulation was accompanied by enhanced 3-phosphoglycerate to Pi ratio, and changes in functions involved in both central carbohydrate and amino acid metabolism. Exposure to microbial volatiles also promoted changes in the expression of genes that code for enzymes involved in endocytic uptake and traffic of solutes. With the overall data we propose a metabolic model wherein important determinants of accumulation of exceptionally high levels of starch include (a) upregulation of ADPglucose-producing SuSy, starch synthase III and IV, proteins involved in the endocytic uptake and traffic of sucrose, (b) down-regulation of acid invertase, starch breakdown enzymes and proteins involved in internal amino acid provision, and (c) 3-phosphoglycerate-mediated allosteric activation of ADPglucose pyrophosphorylase.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Institute of Botany; Slovak Academy of Sciences; Bratislava, Slovakia
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | | | - Maite Hidalgo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - María Teresa Sesma
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Iden Biotechnology S.L.; Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida; IFAS; Citrus Research and Education Center; Lake Alfred, FL USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| |
Collapse
|
26
|
Aidemark M, Andersson CJ, Rasmusson AG, Widell S. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC PLANT BIOLOGY 2009; 9:27. [PMID: 19284621 PMCID: PMC2667179 DOI: 10.1186/1471-2229-9-27] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/12/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND The cell wall component callose is mainly synthesized at certain developmental stages and after wounding or pathogen attack. Callose synthases are membrane-bound enzymes that have been relatively well characterized in vitro using isolated membrane fractions or purified enzyme. However, little is known about their functional properties in situ, under conditions when the cell wall is intact. To allow in situ investigations of the regulation of callose synthesis, cell suspensions of Arabidopsis thaliana (Col-0), and tobacco (BY-2), were permeabilized with the channel-forming peptide alamethicin. RESULTS Nucleic acid-binding dyes and marker enzymes demonstrated alamethicin permeabilization of plasma membrane, mitochondria and plastids, also allowing callose synthase measurements. In the presence of alamethicin, Ca2+ addition was required for callose synthase activity, and the activity was further stimulated by Mg2+ Cells pretreated with oryzalin to destabilize the microtubules prior to alamethicin permeabilization showed significantly lower callose synthase activity as compared to non-treated cells. As judged by aniline blue staining, the callose formed was deposited both at the cell walls joining adjacent cells and at discrete punctate locations earlier described as half plasmodesmata on the outer walls. This pattern was unaffected by oryzalin pretreatment, showing a quantitative rather than a qualitative effect of polymerized tubulin on callose synthase activity. No callose was deposited unless alamethicin, Ca2+ and UDP-glucose were present. Tubulin and callose synthase were furthermore part of the same plasma membrane protein complex, as judged by two-dimensional blue native SDS-PAGE. CONCLUSION Alamethicin permeabilization allowed determination of callose synthase regulation and tubulin interaction in the natural crowded cellular environment and under conditions where contacts between the cell wall, the plasma membrane and cytoskeletal macromolecules remained. The results also suggest that alamethicin permeabilization induces a defense response mimicking the natural physical separation of cells (for example when intercellulars are formed), during which plasmodesmata are transiently left open.
Collapse
Affiliation(s)
- Mari Aidemark
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Carl-Johan Andersson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Allan G Rasmusson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Susanne Widell
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| |
Collapse
|
27
|
Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M. Sucrose synthase is associated with the cell wall of tobacco pollen tubes. PLANT PHYSIOLOGY 2008; 147:1603-18. [PMID: 18344420 PMCID: PMC2492599 DOI: 10.1104/pp.108.115956] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/09/2008] [Indexed: 05/20/2023]
Abstract
Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for defining the relationships between nutrients, growth, and cell morphogenesis. We used the pollen tube of tobacco (Nicotiana tabacum) as a cell model to characterize the main features of Sus with regard to cell growth and cell wall synthesis. Apart from its role during sexual reproduction, the pollen tube is a typical tip-growing cell, and the proper construction of its cell wall is essential for correct shaping and direction of growth. The outer cell wall layer of pollen tubes consists of pectins, but the inner layer is composed of cellulose and callose; both polymers require metabolic precursors in the form of UDP-glucose, which is synthesized by Sus. We identified an 88-kD polypeptide in the soluble, plasma membrane and Golgi fraction of pollen tubes. The protein was also found in association with the cell wall. After purification, the protein showed an enzyme activity similar to that of maize (Zea mays) Sus. Distribution of Sus was affected by brefeldin A and depended on the nutrition status of the pollen tube, because an absence of metabolic sugars in the growth medium caused Sus to distribute differently during tube elongation. Analysis by bidimensional electrophoresis indicated that Sus exists as two isoforms, one of which is phosphorylated and more abundant in the cytoplasm and cell wall and the other of which is not phosphorylated and is specific to the plasma membrane. Results indicate that the protein has a role in the construction of the extracellular matrix and thus in the morphogenesis of pollen tubes.
Collapse
Affiliation(s)
- Diana Persia
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Marino D, Hohnjec N, Küster H, Moran JF, González EM, Arrese-Igor C. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:622-30. [PMID: 18393622 DOI: 10.1094/mpmi-21-5-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nitrogen fixation (NF) in legume nodules is very sensitive to environmental constraints. Nodule sucrose synthase (SS; EC 2.4.1.13) has been suggested to play a crucial role in those circumstances because its downregulation leads to an impaired glycolytic carbon flux and, therefore, a depletion of carbon substrates for bacteroids. In the present study, the likelihood of SS being regulated by oxidative signaling has been addressed by the in vivo supply of paraquat (PQ) to nodulated pea plants and the in vitro effects of oxidizing and reducing agents on nodule SS. PQ produced cellular redox imbalance leading to an inhibition of NF. This was preceded by the downregulation of SS gene expression, protein content, and activity. In vitro, oxidizing agents were able to inhibit SS activity and this inhibition was completely reversed by the addition of dithiothreitol. The overall results are consistent with a regulation model of nodule SS exerted by the cellular redox state at both the transcriptional and post-translational levels. The importance of such mechanisms for the regulation of NF in response to environmental stresses are discussed.
Collapse
Affiliation(s)
- Daniel Marino
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Wienkoop S, Larrainzar E, Glinski M, González EM, Arrese-Igor C, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3307-15. [PMID: 18772307 PMCID: PMC2529246 DOI: 10.1093/jxb/ern182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 05/20/2023]
Abstract
Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence--de novo sequencing--can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula 'Jemalong A17' root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO(2)-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Institute of Biochemistry and Biology, University of Potsdam, c/o MPI-MP, D-14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|