1
|
Chen W, Chen J, Xu Y, Gong H, Shi S, Wang S, Wang H. Applications of the Yariv reagent in polysaccharide analysis and plant physiology from theory to practice. Carbohydr Polym 2024; 329:121781. [PMID: 38286551 DOI: 10.1016/j.carbpol.2024.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Arabinogalactan (AG), a biologically active substance found abundantly in plants, is of significant interest in plant physiology due to its unique physicochemical properties. Yariv reagent, widely utilized in AG-II related applications, forms insoluble precipitates when bound to AG-II. This paper provides a comprehensive overview of the synthesis methods, physicochemical properties, and various dissociation methods of the Yariv reagent to enhance its utility in AG-II studies. Furthermore, the review explores the binding mechanisms and applications of the Yariv reagent, highlighting the advancements in studying the Yariv-AG complex in plant physiology. The aim of this review is to inspire new research ideas and foster novel applications of the Yariv reagent from synthesis to implementation.
Collapse
Affiliation(s)
- Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zheng X, Li Y, Ma C, Chen B, Sun Z, Tian Y, Wang C. A mutation in the promoter of the arabinogalactan protein 7-like gene PcAGP7-1 affects cell morphogenesis and brassinolide content in pear (Pyrus communis L.) stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:47-63. [PMID: 34695268 DOI: 10.1111/tpj.15548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Dwarfing rootstocks and dwarf cultivars are urgently needed for modern pear cultivation. However, germplasm resources for dwarfing pear are limited, and the underlying mechanisms remain unclear. We previously showed that dwarfism in pear is controlled by the single dominant gene PcDw (Dwarf). We report here that the expression of PcAGP7-1 (ARABINOGALACTAN PROTEIN 7-1), a key candidate gene for PcDw, is significantly higher in dwarf-type pear plants because of a mutation in an E-box in the promoter. Electrophoretic mobility shift assays and transient infiltration showed that the transcription factors PcBZR1 and PcBZR2 could directly bind to the E-box of the PcAGP7-1 promoter and repress transcription. Moreover, transgenic pear lines overexpressing PcAGP7-1 exhibited obvious dwarf phenotypes, whereas RNA interference pear lines for PcAGP7-1 were taller than controls. PcAGP7-1 overexpression also enhanced cell wall thickness, affected cell morphogenesis, and reduced brassinolide (BL) content, which inhibited BR signaling via a negative feedback loop, resulting in further dwarfing. Overall, we identified a dwarfing mechanism in perennial woody plants involving the BL-BZR/BES-AGP-BL regulatory module. Our findings provide insight into the molecular mechanism of plant dwarfism and suggest strategies for the molecular breeding of dwarf pear cultivars.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yuchao Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Baoyin Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
3
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
4
|
Liang R, You L, Dong F, Zhao X, Zhao J. Identification of Hydroxyproline-Containing Proteins and Hydroxylation of Proline Residues in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1207. [PMID: 32849749 PMCID: PMC7427127 DOI: 10.3389/fpls.2020.01207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The hydroxyproline-containing proteins (HCPs) among secretory and vacuolar proteins play important roles in growth and development of higher plants. Many hydroxyproline-rich glycoproteins (HRGPs), including Arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins (PRPs), are identified as HCPs by bioinformatics approaches. The experimental evidence for validation of novel proline hydroxylation sites is vital for understanding their functional roles. In this study, the 62 HCPs containing 114 hydroxyproline (O, Hyp) residues were identified, and it was found that hydroxylation of proline residues in the HCPs could either constitute attachment sites for glycans or have other biological function in rice. The glycomodules of AO, OA, OG, VO, LO, and OE were abundant in the 62 HCPs. Further analysis showed that the 22 of 62 HCPs contained both signal peptides and transmembrane domains, and the 19 HCPs only contained transmembrane domains, while 21 HCPs contained neither. This study indicated the feasibility of mass spectrometry-based proteomics combined with bioinformatics approaches for the large-scale characterization of Hyp sites from complex protein digest mixtures. Furthermore, the expression of AGPs in rice was detected by using β-GlcY reagent and JIM13 antibody. The results displayed that the AGPs were widely distributed in different tissues and organs of rice, especially expressed highly in lateral root, pollen and embryo. In conclusion, our study revealed that the HCPs and Hyp residues in rice were ubiquitous and that these Hyps could be candidates for linking to glycans, which laid the foundation for further studying the functions of HCPs and hydroxylation of proline residues in rice.
Collapse
|
5
|
Meng J, Hu B, Yi G, Li X, Chen H, Wang Y, Yuan W, Xing Y, Sheng Q, Su Z, Xu C. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2020; 39:693-708. [PMID: 32128627 DOI: 10.1007/s00299-020-02524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Thirty MaFLAs vary in their molecular features. MaFLA14/18/27/29 are likely to be involved in banana chilling tolerance by facilitating the cold signaling pathway and enhancing the cell wall biosynthesis. Although several studies have identified the molecular functions of individual fasciclin-like arabinogalactan protein (FLA) genes in plant growth and development, little information is available on their involvement in plant tolerance to low-temperature (LT) stress, and the related underlying mechanism is far from clear. In this study, the different expression of FLAs of banana (Musa acuminata) (MaFLAs) in the chilling-sensitive (CS) and chilling-tolerant (CT) banana cultivars under natural LT was investigated. Based on the latest banana genome database, a genome-wide identification of this gene family was done and the molecular features were analyzed. Thirty MaFLAs were distributed in 10 out of 11 chromosomes and these clustered into four major phylogenetic groups based on shared gene structure. Twenty-four MaFLAs contained N-terminal signal, 19 possessed predicted glycosylphosphatidylinositol (GPI), while 16 had both. Most MaFLAs were downregulated by LT stress. However, MaFLA14/18/29 were upregulated by LT in both cultivars with higher expression level recorded in the CT cultivar. Interestingly, MaFLA27 was significantly upregulated in the CT cultivar, but the opposite occurred for the CS cultivar. MaFLA27 possessed only N-terminal signal, MaFLA18 contained only GPI anchor, MaFLA29 possessed both, while MaFLA14 had neither. Thus, it was suggested that the accumulation of these FLAs in banana under LT could improve banana chilling tolerance through facilitating cold signal pathway and thereafter enhancing biosynthesis of plant cell wall components. The results provide background information of MaFLAs, suggest their involvement in plant chilling tolerance and their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bei Hu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Weina Yuan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Xing
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiming Sheng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Palacio-López K, Tinaz B, Holzinger A, Domozych DS. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business. FRONTIERS IN PLANT SCIENCE 2019; 10:447. [PMID: 31031785 PMCID: PMC6474363 DOI: 10.3389/fpls.2019.00447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Charophytes represent the group of green algae whose ancestors invaded land and ultimately gave rise to land plants 450 million years ago. While Zygnematophyceae are believed to be the direct sister lineage to embryophytes, different members of this group (Penium, Spirogyra, Zygnema) and the advanced thallus forming Coleochaete as well as the sarcinoid basal streptophyte Chlorokybus were investigated concerning their vegetative extracellular matrix (ECM) properties. Many taxa exhibit adhesion phenomena that are critical for affixing to a substrate or keeping cells together in a thallus, however, there is a great variety in possible reactions to e.g., wounding. In this study an analysis of adhesion mechanisms revealed that arabinogalactan proteins (AGPs) are most likely key adhesion molecules. Through use of monoclonal antibodies (JIM13) or the Yariv reagent, AGPs were located in cell surface sheaths and cell walls that were parts of the adhesion focal zones on substrates including wound induced rhizoid formation. JIM5, detecting highly methyl-esterfied homoglacturonan and JIM8, an antibody detecting AGP glycan and LM6 detecting arabinans were also tested and a colocalization was found in several examples (e.g., Zygnema) suggesting an interplay between these components. AGPs have been described in this study to perform both, cell to cell adhesion in algae forming thalli and cell to surface adhesion in the filamentous forms. These findings enable a broader evolutionary understanding of the function of AGPs in charophyte green algae.
Collapse
Affiliation(s)
| | - Berke Tinaz
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | | | - David S. Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|
7
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|
8
|
Han T, Dong H, Cui J, Li M, Lin S, Cao J, Huang L. Genomic, Molecular Evolution, and Expression Analysis of Genes Encoding Putative Classical AGPs, Lysine-Rich AGPs, and AG Peptides in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2017; 8:397. [PMID: 28424711 PMCID: PMC5372829 DOI: 10.3389/fpls.2017.00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/08/2017] [Indexed: 05/27/2023]
Abstract
Arabinogalactan proteins (AGPs) belong to a class of Pro/Hyp-rich glycoproteins and are some of the most complex types of macromolecules found in plants. In the economically important plant species, Brassica rapa, only chimeric AGPs have been identified to date. This has significantly limited our understanding of the functional roles of AGPs in this plant. In this study, 64 AGPs were identified in the genome of B. rapa, including 33 classical AGPs, 28 AG peptides and three lys-rich AGPs. Syntenic gene analysis between B. rapa and A. thaliana suggested that the whole genome triplication event dominated the expansion of the AGP gene family in B. rapa. This resulted in a high retained proportion of the AGP family in the B. rapa genome, especially in the least fractionated subgenome. Phylogenetic and motif analysis classified the classical AGPs into six clades and three orphan genes, and the AG peptides into three clades and five orphan genes. Classical AGPs has a faster rate of molecular evolution than AG peptides revealed by estimation of molecular evolution rates. However, no significant differences were observed between classical AGPs and lys-rich AGPs. Under control conditions and in response to phytohormones treatment, a complete expression profiling experiment has identified five anther-specific AGPs and quite a number of AGPs responding to abscisic acid, methyl jasmonate and/or gibberellin. In this study, we presented a bioinformatics approach to identify important types of AGPs. Moreover, the association between their function and their protein structure, as well as the evolution and the expression of AGP genes were investigated, which might provide fundamental information for revealing the roles of AGPs in B. rapa.
Collapse
Affiliation(s)
- Tianyu Han
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Heng Dong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Jie Cui
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Ming Li
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Sue Lin
- Institute of Vegetable Science, Wenzhou Vocational College of Science and TechnologyWenzhou, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang UniversityHangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of AgricultureHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
9
|
Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 2017; 7:44729. [PMID: 28300183 PMCID: PMC5353604 DOI: 10.1038/srep44729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ −1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.
Collapse
|
10
|
Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, Chen Q, Ma H. Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. FRONTIERS IN PLANT SCIENCE 2017; 8:66. [PMID: 28184232 PMCID: PMC5266747 DOI: 10.3389/fpls.2017.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for "classical" and "chimeric" family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many "ancient" AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm.
Collapse
Affiliation(s)
- Yuling Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Chenchao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yaxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yuqian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
11
|
Nguyen QT, Kisiala A, Andreas P, Neil Emery R, Narine S. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions. Curr Genomics 2016; 17:241-60. [PMID: 27252591 PMCID: PMC4869011 DOI: 10.2174/1389202917666160202220238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds.
Collapse
Affiliation(s)
- Quoc Thien. Nguyen
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario,Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R.J. Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Suresh Narine
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough,Ontario, Canada
| |
Collapse
|
12
|
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. ANNALS OF BOTANY 2014; 114:1069-85. [PMID: 25139429 PMCID: PMC4195563 DOI: 10.1093/aob/mcu161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. SCOPE AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. CONCLUSIONS The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Peter Varnai
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
13
|
Steinmacher DA, Saare-Surminski K, Lieberei R. Arabinogalactan proteins and the extracellular matrix surface network during peach palm somatic embryogenesis. PHYSIOLOGIA PLANTARUM 2012; 146:336-49. [PMID: 22574975 DOI: 10.1111/j.1399-3054.2012.01642.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Somatic embryogenesis has been described in peach palm as a reliable method for its in vitro multiplication and conservation. In this study, we evaluated the possible role of arabinogalactan proteins (AGPs) during this morphogenetic pathway. The presence of Yariv reagent, a synthesized chemical antibody that specifically binds AGP molecules, affected somatic embryos and callus development rate, but no effect was observed on fresh weight increment. This substance also had profound effects on embryo morphology: somatic embryos presented loose cells in the protoderm and no signs of polarization could be observed. To better evaluate the role of AGPs, analyses of specific monoclonal antibodies (MAbs) against different AGP epitopes revealed a specific pattern of distribution for each epitope. MAb JIM13 had differential expression and showed intense signal on the embryogenic sector and some immediately adjacent layers. MAb JIM7 against pectin recognized cell walls and a specific layer over the developing somatic embryo, as well as over the shoot meristem region of mature somatic embryos. This corresponds to an extracellular matrix surface network (ECMSN) associated with the development of somatic embryos and closely related to the expression of MAb JIM13. Scanning electron microscopy confirmed the presence of an ECMSN covering a specific group of cells and ultra-structural analyses revealed that the ECMSN had lipophilic substances.
Collapse
Affiliation(s)
- Douglas A Steinmacher
- Department of Crop Science and Plant Ecology, Biocentre Klein Flottbek and Botanical Garden, University Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany.
| | | | | |
Collapse
|
14
|
Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. PLANT MOLECULAR BIOLOGY 2012; 78:223-46. [PMID: 22143977 DOI: 10.1007/s11103-011-9857-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/08/2011] [Indexed: 05/06/2023]
Abstract
Cotton is an important source of natural fibre used in the textile industry and the productivity of the crop is adversely affected by drought stress. High throughput transcriptomic analyses were used to identify genes involved in fibre development. However, not much information is available on cotton genome response in developing fibres under drought stress. In the present study a genome wide transcriptome analysis was carried out to identify differentially expressed genes at various stages of fibre growth under drought stress. Our study identified a number of genes differentially expressed during fibre elongation as compared to other stages. High level up-regulation of genes encoding for enzymes involved in pectin modification and cytoskeleton proteins was observed at fibre initiation stage. While a large number of genes encoding transcription factors (AP2-EREBP, WRKY, NAC and C2H2), osmoprotectants, ion transporters and heat shock proteins and pathways involved in hormone (ABA, ethylene and JA) biosynthesis and signal transduction were up-regulated and genes involved in phenylpropanoid and flavonoid biosynthesis, pentose and glucuronate interconversions and starch and sucrose metabolism pathways were down-regulated during fibre elongation. This study showed that drought has relatively less impact on fibre initiation but has profound effect on fibre elongation by down-regulating important genes involved in cell wall loosening and expansion process. The comprehensive transcriptome analysis under drought stress has provided valuable information on differentially expressed genes and pathways during fibre development that will be useful in developing drought tolerant cotton cultivars without compromising fibre quality.
Collapse
|
15
|
Hu TX, Yu M, Zhao J. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco. PLoS One 2011; 6:e27120. [PMID: 22069495 PMCID: PMC3206072 DOI: 10.1371/journal.pone.0027120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022] Open
Abstract
Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate transcripts will provide important information for understanding asymmetric zygotic division, generation of apical-basal polarity and cell fate decisions during early embryogenesis.
Collapse
Affiliation(s)
- Tian-Xiang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Zhong J, Ren Y, Yu M, Ma T, Zhang X, Zhao J. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. PROTOPLASMA 2011; 248:551-63. [PMID: 20830495 DOI: 10.1007/s00709-010-0204-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/21/2010] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-D-Glc)(3) Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.
Collapse
Affiliation(s)
- Jing Zhong
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
17
|
Krugman T, Peleg Z, Quansah L, Chagué V, Korol AB, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Integr Genomics 2011; 11:565-83. [PMID: 21656015 DOI: 10.1007/s10142-011-0231-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 12/27/2022]
Abstract
Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.
Collapse
Affiliation(s)
- Tamar Krugman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma H, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2647-68. [PMID: 20423940 PMCID: PMC2882264 DOI: 10.1093/jxb/erq104] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early nodulin-like AGPs (eNod-like AGPs), eight non-specific lipid transfer protein-like AGPs (nsLTP-like AGPs), and 27 fasciclin-like AGPs (FLAs). The results from expressed sequence tags, microarrays, and massively parallel signature sequencing tags are used to analyse the expression of AGP-encoding genes, which is confirmed by real-time PCR. The results reveal that several rice AGP-encoding genes are predominantly expressed in anthers and display differential expression patterns in response to abscisic acid, gibberellic acid, and abiotic stresses. Based on the results obtained from this analysis, an attempt has been made to link the protein structures and expression patterns of rice AGP-encoding genes to their functions. Taken together, the genome-wide identification and expression analysis of the rice AGP gene family might facilitate further functional studies of rice AGPs.
Collapse
Affiliation(s)
| | - Jie Zhao
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1839-51. [PMID: 20335409 DOI: 10.1093/jxb/erq052] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stable RNA interference-based technology was used to silence the expression of the HvCKX1 gene in barley and the TaCKX1 gene in wheat and triticale. The silencing cassettes containing the fragments of these genes in the sense and antisense orientations were cloned into the pMCG161 binary vector and used for Agrobacterium-based transformation. Out of the five cultivars representing the three studied species, transgenic plants were obtained from one barley cultivar Golden Promise, one wheat cultivar Kontesa, and one triticale cultivar Wanad. Almost 80% of 52 regenerated lines of Golden Promise exhibited significantly decreased cytokinin oxidase/dehydrogenase (CKX) enzyme activity in bulked samples of their T(1) roots. There was a positive correlation between the enzyme activity and the plant productivity, expressed as the yield, the number of seeds per plant, and the 1000 grain weight. Additionally, these traits were associated with a greater root mass. Lower CKX activity led to a higher plant yield and root weight. This higher plant productivity and altered plant architecture were maintained in a population of segregating T(1) plants. The levels of HvCKX1 transcript accumulation were measured in various tissues of Golden Promise and Scarlett non-transgenic barley plants in order to choose the most appropriate plant organs to study the expression and/or silencing of the gene in those transgenic lines. The highest levels of the HvCKX1 transcript were detected in spikes 0 days after pollination (0 DAP), 7 DAP, and 14 DAP, and in the seedling roots. The analysis of HvCKX1 gene expression and CKX enzyme activity and the evaluation of the phenotype were performed in the progeny of seven selected transgenic T(1) lines. The relative expression of HvCKX1 measured in the spikes 0 DAP and 14 DAP, respectively, ranged from 0.52+/-0.04 to 1.15+/-0.26 and from 0.47+/-0.07 to 0.89+/-0.15. The lowest relative values were obtained for the enzyme activity in the spikes at 0 DAP, which ranged from 0.15+/-0.02 to 1.05+/-0.14 per single progeny plant. Based on these three values, the coefficient of HvCKX1 silencing in the spikes was estimated. Possible mechanisms leading to higher plant productivity via the silencing of HvCKX1 and a decrease in CKX enzyme activity are discussed.
Collapse
Affiliation(s)
- Wojciech Zalewski
- Plant Breeding and Acclimatization Institute, Radzikow, 05-870 Blonie, Poland
| | | | | | | | | |
Collapse
|
20
|
Khalil MFM, Kajiura H, Fujiyama K, Koike K, Ishida N, Tanaka N. The impact of the overexpression of human UDP-galactose transporter gene hUGT1 in tobacco plants. J Biosci Bioeng 2010; 109:159-69. [PMID: 20129101 DOI: 10.1016/j.jbiosc.2009.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022]
Abstract
When the human UDP-galactose transporter 1 gene (hUGT1) was introduced into tobacco plants, the plants displayed enhanced growth during cultivation, and axillary shoots had an altered determinate growth habit, elongating beyond the primary shoots and having a sympodial growth pattern similar to that observed in tomatoes at a late cultivation stage. The architecture and properties of tissues in hUGT1-transgenic plants were also altered. The leaves had an increase in thickness, due to an increased amount of spongy tissue, and a higher content of chlorophyll a and b; the stems had an increased number of xylem vessels and accumulated lignin and arabinogalactan proteins (AGPs). Some of these characteristics resembled a gibberellin (GA)-responsive phenotype, suggesting involvement of GA. RT-PCR-based analysis of genes involved in GA biosynthesis suggested that the GA biosynthetic pathway was not activated. However, an increase in the proportion of galactose in polysaccharide side chains of AGPs was detected. These results suggested that because of higher UDP-galactose transport from the cytosol to the Golgi apparatus, galactose incorporation into polysaccharide side chains of AGP is involved in the gibberellin response, resulting in morphological and architectural changes.
Collapse
|
21
|
Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci Biotechnol Biochem 2009; 73:2460-5. [PMID: 19897913 DOI: 10.1271/bbb.90443] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strigolactones (SLs) have recently been found to regulate shoot branching, but the functions of SLs at other stages of development and the regulation of SL-related gene expression are mostly unknown in Arabidopsis. In this study, we performed real-time reverse transcription-PCR (RT-PCR) and microarray analysis using wild-type plants and SL-deficient/insensitive mutants to understand the molecular mechanisms underlying SL biosynthesis and signaling. We found that there is responsiveness to SL in the gene expression of Arabidopsis seedlings, which includes feedback regulation of two carotenoid cleavage dioxygenase genes. Microarray analysis revealed that exogenously applied SL regulated the expression of several genes, including light signaling-related genes and auxin-inducible genes. We also found that MORE AXILLARY GROWTH (MAX)2 plays an important role in the expression of SL-regulated genes. Our data support previous studies indicating that SL might function at the seedling stage. Analysis of SL-responsive and MAX2 downstream gene candidates provides new opportunities to broaden our understanding of SL signaling.
Collapse
|
22
|
Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem 2009; 73:2452-9. [PMID: 19897921 DOI: 10.1271/bbb.90407] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Early nodulin-like proteins (ENODLs) are chimeric arabinogalactan proteins (AGPs) related to the phytocyanin family. Although they show similarities with other phytocyanins, they lack amino acid residues for copper binding. Despite the existence of other phytocyanins, information about the function of ENODLs in plants is largely lacking. In this study, we characterized ENODL genes consisting of 22 members in Arabidopsis thaliana. Structure prediction indicated that most ENODLs are glycosylphosphatidylinositol-anchored chimeric AGPs. Expression analysis by real-time reverse transcription polymerase chain reaction indicated that most ENODL genes showed spatially specific expression, mainly in the flower organs. Furthermore, we obtained and analyzed 26 homozygous T-DNA insertion lines of 15 ENODL genes, but novel biological roles were not uncovered, probably due to functional redundancy. The detailed phylogenetic and expression analyses and characterization of the available insertion lines in this study might facilitate future studies to elucidate the biological roles of ENODLs.
Collapse
|
23
|
Shibaya T, Sugawara Y. Induction of multinucleation by beta-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. PLANTA 2009; 230:581-8. [PMID: 19475420 DOI: 10.1007/s00425-009-0954-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 05/12/2009] [Indexed: 05/11/2023]
Abstract
Arabinogalactan proteins (AGPs) are abundant plant cell surface proteoglycans widely distributed in plant species. Since high concentrations of beta-glucosyl Yariv reagent (betaglcY), which binds selectively to AGPs, inhibited cell division of protoplast-regenerated cells of the liverwort Marchantia polymorpha L. (Shibaya and Sugawara in Physiol Plant 130:271-279, 2007), we investigated the mechanism underlying the inability of the cells to divide normally by staining nuclei, cell walls and beta-1,3-glucan. Microscopic observation showed that the diameter of regenerated cells cultured with betaglcY was about 2.8-fold larger than that of cells cultured without betaglcY. The cells cultured with betaglcY were remarkably multinucleated. These results indicated that betaglcY did not inhibit mitosis but induced multinucleation. In the regenerated cells cultured with low concentrations of betaglcY (5 and 1 microg ml(-1)), the cell plate was stained strongly by betaglcY, suggesting abundant AGPs in the forming cell plate. In these cell plates, beta-1,3-glucan was barely detectable or not detected. In multinucleated cells, cell plate-like fragments, which could not reach the cell wall, were frequently observed and they were also stained strongly by betaglcY. Our results indicated that AGPs might have an important role in cell plate formation, and perturbation of AGPs with betaglcY might result in remarkable multinucleation in protoplast-regenerated cells of M. polymorpha.
Collapse
Affiliation(s)
- Taeko Shibaya
- Department of Regulation-Biology, Faculty of Science, Saitama University, Saitama, 338-8570, Japan.
| | | |
Collapse
|
24
|
Casani S, Fontanini D, Capocchi A, Lombardi L, Galleschi L. Investigation on cell death in the megagametophyte of Araucaria bidwillii Hook. post-germinated seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:599-607. [PMID: 19321357 DOI: 10.1016/j.plaphy.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/08/2009] [Accepted: 02/24/2009] [Indexed: 05/27/2023]
Abstract
The megagametophyte of the Araucaria bidwillii seed is a storage tissue that surrounds and feeds the embryo. When all its reserves are mobilized, the megagametophyte degenerates as a no longer needed tissue. In this work we present a biochemical and a cytological characterization of the megagametophyte cell death. The TUNEL assay showed progressive DNA fragmentation throughout the post-germinative stages, while DNA electrophoretic analysis highlighted a smear as the predominant pattern of DNA degradation and internucleosomal DNA cleavage only for a minority of cells at late post-germinative stages. Cytological investigations at these stages detected profound changes in the size and morphology of the megagametophyte nuclei. By using in vitro assays, we were able to show a substantial increase in proteolytic activities, including caspase-like protease activities during the megagametophyte degeneration. Among the caspase-like enzymes, caspase 6- and 1-like proteases appeared to be the most active in the megagametophyte with a preference for acidic pH. On the basis of our results, we propose that the major pathway of cell death in the Araucaria bidwillii megagametophyte is necrosis; however, we do not exclude that some cells undergo developmental programmed cell death.
Collapse
Affiliation(s)
- Simone Casani
- Department of Biology, University of Pisa, Via Luca Ghini 5, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
25
|
Kodama Y, Tamura T, Hirasawa W, Nakamura K, Sano H. A novel protein phosphorylation pathway involved in osmotic-stress response in tobacco plants. Biochimie 2009; 91:533-9. [PMID: 19340923 DOI: 10.1016/j.biochi.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osmotic stress is one of the severest environmental pressures for plants, commonly occurring under natural growing condition due to drought, salinity, cold and wounding. Plants sensitively respond to these stresses by activating a set of genes, which encode proteins necessary to overcome the crises. We screened such genes from tobacco plants, and identified a particular clone, which encoded a 45 kDa protein kinase belonging to the plant receptor-like cytoplasmic protein kinase class-VII, NAK (novel Arabidopsis protein kinase) group. The clone was consequently designated as NtNAK (Nicotiana tabacum NAK, accession number: DQ447159). GFP-NtNAK fusion protein was localized in both cytoplasm and nucleus, and bacterially expressed NtNAK exhibited in vitro kinase activity. Its transcripts were clearly induced upon treatments of leaves with salt, mannitol, low temperature and also with abscisic and jasmonic acids and ethylene. These properties indicated NtNAK to be a typical osmo-stress-responsive protein kinase. Its target protein(s) were then screened by the yeast two-hybrid system, and one clone encoding a 32 kDa protein was identified. The protein resembled a potato stress-responsive protein CK251806, and designated as NtCK25 (accession number: DQ448851). Bacterially expressed NtCK25 was phosphorylated by NtNAK, and NtCK25-GFP fusion protein was exclusively localized in nucleus. The structure of NtCK25 was found to be similar to a human nuclear body protein, SP110, which is involved in DNA/protein binding regulation. This suggested that, perceiving osmo-stress signal, NtNAK phosphorylates and activates NtCK25, which might function in regulation of nucleus function. The present study thus suggests that NtNAK/NtCK25 constitutes a novel phosphorylation pathway for osmotic-stress response in plants.
Collapse
Affiliation(s)
- Yutaka Kodama
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|