1
|
Furuta Y, Yamamoto H, Hirakawa T, Uemura A, Pelayo MA, Iimura H, Katagiri N, Takeda-Kamiya N, Kumaishi K, Shirakawa M, Ishiguro S, Ichihashi Y, Suzuki T, Goh T, Toyooka K, Ito T, Yamaguchi N. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases. Nat Commun 2024; 15:1098. [PMID: 38321030 PMCID: PMC10847506 DOI: 10.1038/s41467-024-45371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.
Collapse
Affiliation(s)
- Yuki Furuta
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Haruka Yamamoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akira Uemura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Smurfit Institute of Genetics, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
2
|
Casey M, Marchioni I, Lear B, Cort AP, Baldwin A, Rogers HJ, Stead AD. Senescence in dahlia flowers is regulated by a complex interplay between flower age and floret position. FRONTIERS IN PLANT SCIENCE 2023; 13:1085933. [PMID: 36714770 PMCID: PMC9880482 DOI: 10.3389/fpls.2022.1085933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Mechanisms regulating flower senescence are not fully understood in any species and are particularly complex in composite flowers. Dahlia (Dahlia pinnata Cav.) florets develop sequentially, hence each composite flower head includes florets of different developmental stages as the whole flower head ages. Moreover, the wide range of available cultivars enables assessment of intraspecific variation. Transcriptomes were compared amongst inner (younger) and outer (older) florets of two flower head ages to assess the effect of floret vs. flower head ageing. More gene expression, including ethylene and cytokinin pathway expression changed between inner and outer florets of older flower heads than between inner florets of younger and older flower heads. Additionally, based on Arabidopsis network analysis, different patterns of co-expressed ethylene response genes were elicited. This suggests that changes occur in young inner florets as the whole flower head ages that are different to ageing florets within a flower head. In some species floral senescence is orchestrated by the plant growth regulator ethylene. However, there is both inter and intra-species variation in its importance. There is a lack of conclusive data regarding ethylene sensitivity in dahlia. Speed of senescence progression, effects of ethylene signalling perturbation, and patterns of ethylene biosynthesis gene expression differed across three dahlia cultivars ('Sylvia', 'Karma Prospero' and 'Onesta') suggesting differences in the role of ethylene in their floral senescence, while effects of exogenous cytokinin were less cultivar-specific.
Collapse
Affiliation(s)
- Matthew Casey
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ilaria Marchioni
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Pisa, Italy
| | - Bianca Lear
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ashley Baldwin
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony D. Stead
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
3
|
Dong Y, Feng ZQ, Ye F, Li T, Li GL, Li ZS, Hao YC, Zhang XH, Liu WX, Xue JQ, Xu ST. Genome-wide association analysis for grain moisture content and dehydration rate on maize hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:5. [PMID: 37312866 PMCID: PMC10248682 DOI: 10.1007/s11032-022-01349-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 06/15/2023]
Abstract
For mechanized maize production, a low grain water content (GWC) at harvest is necessary. However, as a complex quantitative trait, understand the genetic mechanism of GWC remains a large gap, especially in hybrids. In this study, a hybrid population through two environments including 442 F1 was used for genome-wide association analysis of GWC and the grain dehydration rate (GDR), using the area under the dry down curve (AUDDC) as the index. Then, we identified 19 and 17 associated SNPs for GWC and AUDDC, including 10 co-localized SNPs, along with 64 and 77 pairs of epistatic SNPs for GWC and AUDDC, respectively. These loci could explain 11.39-68.2% of the total phenotypic variation for GWC and 41.07-67.02% for AUDDC at different stages, whose major effect was the additive and epistatic effect. By exploring the candidate genes around the significant sites, a total of 398 and 457 possible protein-coding genes were screened, including autophagy pathway and auxin regulation-related genes, and five inbred lines with the potential to reduce GWC in the combined F1 hybrid were identified. Our research not only provides a certain reference for the genetic mechanism analysis of GWC in hybrids but also provides an added reference for breeding low-GWC materials. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01349-x.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Zhi-qian Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Guo-liang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhou-Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yin-chuan Hao
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Xing-hua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wen-xin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Ji-quan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Shu-tu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
4
|
Lin Y, Jones ML. CRISPR/Cas9-Mediated Editing of Autophagy Gene 6 in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:840218. [PMID: 35557714 PMCID: PMC9088004 DOI: 10.3389/fpls.2022.840218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, Autophagy Gene 6 (ATG6) was previously shown as a negative regulator of petal senescence. To better understand the role of autophagy in ethylene biosynthesis and nutrient remobilization during petal senescence, we generated and characterized the knockout (KO) mutants of PhATG6 using CRISPR/Cas9 in Petunia × hybrida 'Mitchell Diploid.' PhATG6-KO lines exhibited decreased flower longevity when compared to the flowers of the wild-type or a non-mutated regenerative line (controls), confirming the negative regulatory role of ATG6 in petal senescence. Smaller capsules and fewer seeds per capsule were produced in the KO plants, indicating the crucial function of autophagy in seed production. Ethylene production and ethylene biosynthesis genes were upregulated earlier in the KO lines than the controls, indicating that autophagy affects flower longevity through ethylene. The transcript levels of petal PCD-related genes, including PhATG6, PhATG8d, PhPI3K (Phosphatidylinositol 3-Kinase), and a metacaspase gene PhMC1, were upregulated earlier in the corollas of PhATG6-KO lines, which supported the accelerated PCD in the KO plants. The remobilization of phosphorus was reduced in the KO lines, showing that nutrient recycling was compromised. Our study demonstrated the important role of autophagy in flower lifespan and seed production and supported the interactions between autophagy and various regulatory factors during developmental petal senescence.
Collapse
|
5
|
Shen X, Tang Z, Bai Y, Wan M, Yu M, Chen J, Li G, Zhang R, Ge M. Astragalus Polysaccharide Protects Against Cadmium-Induced Autophagy Injury Through Reactive Oxygen Species (ROS) Pathway in Chicken Embryo Fibroblast. Biol Trace Elem Res 2022; 200:318-329. [PMID: 33704669 DOI: 10.1007/s12011-021-02628-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal pollutant, which can cause oxidative stress in the body and induce cell damage. Reactive oxygen species (ROS) is a general term for substances that contain oxygen and are active in the body. However, excessive ROS can damage the body. Cadmium poisoning can cause a large amount of ROS in cells and autophagy. Astragalus polysaccharide (APS) is a plant polysaccharide with biological functions, such as antioxidant and anti-stress activities. In this study, chicken embryo fibroblasts (CEF) were used to determine the relationship between ROS and autophagy damage of Cd-infected cells and the mechanism of APS on cadmium-induced autophagy damage. The results showed that a 10-μL dose of 10 μmol/L cadmium chloride (CdCl2) can induce CEF autophagy and damage when CEF was added for 36 h. Cadmium induced CEF autophagy damage by increasing ROS production. APS could significantly reduce ROS production and LC3-II and Beclin-1 protein expression, increase the expression of mTOR and the level of antioxidation, and restore the viability and morphological damage of CEF exposed to Cd. Our study suggests that APS can alleviate Cd-induced CEF autophagy damage by reducing the production of ROS.
Collapse
Affiliation(s)
- Xudong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zequn Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Bai
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meishuo Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyi Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang, for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
6
|
Transcriptome analysis of Rafflesia cantleyi flower stages reveals insights into the regulation of senescence. Sci Rep 2021; 11:23661. [PMID: 34880337 PMCID: PMC8654902 DOI: 10.1038/s41598-021-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022] Open
Abstract
Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.
Collapse
|
7
|
Dong S, Sang L, Xie H, Chai M, Wang ZY. Comparative Transcriptome Analysis of Salt Stress-Induced Leaf Senescence in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:666660. [PMID: 34305965 PMCID: PMC8299074 DOI: 10.3389/fpls.2021.666660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Leaves are the most critical portion of forage crops such as alfalfa (Medicago sativa). Leaf senescence caused by environmental stresses significantly impacts the biomass and quality of forages. To understand the molecular mechanisms and identify the key regulator of the salt stress-induced leaf senescence process, we conducted a simple and effective salt stress-induced leaf senescence assay in Medicago truncatula, which was followed by RNA-Seq analysis coupled with physiological and biochemical characterization. By comparing the observed expression data with that derived from dark-induced leaf senescence at different time points, we identified 3,001, 3,787, and 4,419 senescence-associated genes (SAGs) for salt stress-induced leaf senescence on day 2, 4, and 6, respectively. There were 1546 SAGs shared by dark and salt stress treatment across the three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the 1546 SAGs were mainly related to protein and amino acids metabolism, photosynthesis, chlorophyll metabolism, and hormone signaling during leaf senescence. Strikingly, many different transcription factors (TFs) families out of the 1546 SAGs, including NAC, bHLH, MYB, and ERF, were associated with salt stress-induced leaf senescence processes. Using the transient expression system in Nicotiana benthamiana, we verified that three functional NAC TF genes from the 1546 SAGs were related to leaf senescence. These results clarify SAGs under salt stress in M. truncatula and provide new insights and additional genetic resources for further forage crop breeding.
Collapse
Affiliation(s)
| | | | | | - Maofeng Chai
- *Correspondence: Maofeng Chai orcid.org/0000-0001-9915-0321
| | | |
Collapse
|
8
|
Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I. Vacuolar processing enzymes in the plant life cycle. THE NEW PHYTOLOGIST 2020; 226:21-31. [PMID: 31679161 DOI: 10.1111/nph.16306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the β-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.
Collapse
Affiliation(s)
- Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Arpan Kumar Basak
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | | |
Collapse
|
9
|
Lu J, Xu Y, Fan Y, Wang Y, Zhang G, Liang Y, Jiang C, Hong B, Gao J, Ma C. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int J Mol Sci 2019; 20:E6108. [PMID: 31817087 PMCID: PMC6940906 DOI: 10.3390/ijms20246108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were upregulated, and 726 were downregulated during senescence. We identified 2208 ubiquitinated sites, including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays an important role in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (Y.X.); (Y.F.); (Y.W.); (G.Z.); (Y.L.); (C.J.); (B.H.); (J.G.)
| |
Collapse
|
10
|
Autophagic Survival Precedes Programmed Cell Death in Wheat Seedlings Exposed to Drought Stress. Int J Mol Sci 2019; 20:ijms20225777. [PMID: 31744172 PMCID: PMC6888631 DOI: 10.3390/ijms20225777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Although studies have shown the concomitant occurrence of autophagic and programmed cell death (PCD) in plants, the relationship between autophagy and PCD and the factors determining this relationship remain unclear. In this study, seedlings of the wheat cultivar Jimai 22 were used to examine the occurrence of autophagy and PCD during polyethylene glycol (PEG)-8000-induced drought stress. Autophagy and PCD occurred sequentially, with autophagy at a relatively early stage and PCD at a much later stage. These findings suggest that the duration of drought stress determines the occurrence of PCD following autophagy. Furthermore, the addition of 3-methyladenine (3-MA, an autophagy inhibitor) and the knockdown of autophagy-related gene 6 (ATG6) accelerated PEG-8000-induced PCD, respectively, suggesting that inhibition of autophagy also results in PCD under drought stress. Overall, these findings confirm that wheat seedlings undergo autophagic survival under mild drought stress, with subsequent PCD only under severe drought.
Collapse
|
11
|
Khaskheli AJ, Ahmed W, Ma C, Zhang S, Liu Y, Li Y, Zhou X, Gao J. RhERF113 Functions in Ethylene-Induced Petal Senescence by Modulating Cytokinin Content in Rose. PLANT & CELL PHYSIOLOGY 2018; 59:2442-2451. [PMID: 30101287 DOI: 10.1093/pcp/pcy162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/05/2018] [Indexed: 05/21/2023]
Abstract
In rose (Rosa hybrida), flower senescence is accelerated by ethylene and delayed by cytokinins (CTKs). However, the effectors that regulate these processes are not currently understood. In this study, we identified an APETALA2/ethylene-responsive factor (AP2/ERF) gene, RhERF113, which was induced by ethylene and up-regulated during flower senescence in most floral organs, including sepal, petal, stamen and pistil. The virus-induced gene silencing (VIGS) of RhERF113 expression accelerated rose flower senescence, which was accompanied by a lower CTK content in the flowers. This accelerated senescence could be restored by exogenous CTK treatment. Moreover, the expression levels of genes related to CTK biosynthesis and signaling, including ISOPENTENYL TRANSFERASE 5 (RhIPT5), RhIPT8, HISTIDINE KINASE 2 (RhHK2), RhHK3, CYTOKININ RESPONSE REGULATOR 3 (RhCRR3), RhCRR5, RhCRR8, HOMEOBOX PROTEIN 6 (RhHB6) and PATHOGENESIS-RELATED 10.1 (RhPR10.1), were decreased in the RhERF113-silenced rose flowers. Taken together, our results demonstrate that RhERF113 delays ethylene-induced flower senescence by increasing the CTK content of the floral tissues.
Collapse
Affiliation(s)
- Allah Jurio Khaskheli
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Waqas Ahmed
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Chao Ma
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Shuai Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yanyan Liu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Yuqi Li
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, China
| |
Collapse
|
12
|
Zhang Q, Wang D, Zhang H, Wang M, Li P, Fang X, Cai X. Detection of autophagy processes during the development of nonarticulated laticifers in Euphorbia kansui Liou. PLANTA 2018; 247:845-861. [PMID: 29260395 DOI: 10.1007/s00425-017-2835-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Autophagy is involved in cytoplasmic degradation through directly engulfing cytosol and organelles by autophagosomes and then fusing with lysosome-like vesicles during the development of nonarticulated laticifers in Euphorbia kansui Liou. Autophagy has been reported to play an important role in a wide range of eukaryotic organisms during responses to various abiotic and biotic stresses. However, until recently, the functions of autophagy in normal plant differentiation and development were still in their infancy. Nonarticulated laticifers, a type of secretory tissue in plants, undergo the degradation of cytosol and organelles during their development. However, little evidence of autophagy in laticifer differentiation has been provided. In the present study, using anti-ATG8 antibody-Alexa Fluor 488, Lyso-Tracker Red (LTR) and monodansylcadaverine (MDC) as markers for detecting autophagosomes, as well as autophagy-related structures, we observed that the green fluorescence of ATG8a largely colocalized with the red fluorescence of LTR and purple fluorescence of MDC and the quantity of autophagosomes experienced a trend from less to more to less during laticifer development. Additionally, we described the autophagy process during the development of nonarticulated laticifers in Euphorbia kansui Liou at the ultrastructural level in detail. In addition, further immunogold TEM studies also verified the presence of autophagosomes, autolysosomes and lysosome-like structures in laticifers. Taken together, these results suggest that autophagy contributes to the development of the nonarticulated laticifers in E. kansui Liou and that autophagosomes fuse with lysosome-like structures for degradation. These results will lay an important foundation for further studies on laticifer regulation.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Dou Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|
13
|
Ambastha V, Sopory SK, Tiwari BS, Tripathy BC. Photo-modulation of programmed cell death in rice leaves triggered by salinity. Apoptosis 2018; 22:41-56. [PMID: 27747443 DOI: 10.1007/s10495-016-1305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper we provide evidence for involvement of chloroplast as alternate organelle for initiating PCD in plants under light and abiotic stress. In animals, mitochondria are the major source of reactive oxygen species (ROS) and key executioner of programmed cell death (PCD). In plants, however, the primary site of generation of ROS is chloroplast and yet its involvement in PCD has not been worked out in details. We found by Evans blue staining that salt (150 mM NaCl)-treated protoplasts obtained from green seedlings had higher rate of cell death than protoplasts obtained from etiolated seedlings. This indicated that cell death induced by NaCl is accentuated by light. Imposition of salt-stress to green protoplasts generated H2O2. Known hallmarks of PCD i.e., blebbing of cell membrane, loabing in nucleus, nick in DNA were observed in light-exposed salt-treated protoplasts and seedlings. TUNEL-FACS assay demonstrate several DNA nicks in the salt-treated green protoplasts exposed to light. Conversely, salt-treated etiolated protoplasts kept in dark had only a few TUNEL-positive nuclei. Similarly, a substantial numbers of TUNEL positive nuclei were observed in green seedlings due to salt treatment in light. However, salt-treated etiolated seedlings kept in dark had very few TUNEL positive nuclei. Addition of Caspase 3 inhibitor (DAVD-CHO) rescued (~50 %) green protoplasts from salt-stress induced cell death suggesting an involvement of apoptosis like PCD (AL-PCD). Ultra structure studies of chloroplast, mitochondria and nucleus from the leaves obtained from salt treated seedlings at the time point that showed PCD signature, resulted to severe granal de-stacking in chloroplasts while structural integrity of mitochondria was maintained. These studies demonstrate the photo-modulation of salinity-induced PCD in photosynthetic tissues is mainly executed by chloroplasts.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Budhi Sagar Tiwari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Trivellini A, Cocetta G, Hunter DA, Vernieri P, Ferrante A. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5919-5931. [PMID: 27591432 PMCID: PMC5091337 DOI: 10.1093/jxb/erw295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues.
Collapse
Affiliation(s)
- Alice Trivellini
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, Università degli Studi di Pisa, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| |
Collapse
|
15
|
Shibuya K, Yamada T, Ichimura K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5909-5918. [PMID: 27625416 DOI: 10.1093/jxb/erw337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Petal senescence, or programmed cell death (PCD) in petals, is a developmentally regulated and genetically programmed process. During petal senescence, petal cells show morphological changes associated with PCD: tonoplast rupture and rapid destruction of the cytoplasm. This type of PCD is classified as vacuolar cell death or autolytic PCD based on morphological criteria. In PCD of petal cells, characteristic morphological features including an autophagy-like process, chromatin condensation, and nuclear fragmentation are also observed. While the phytohormone ethylene is known to play a crucial role in petal senescence in some plant species, little is known about the early regulation of ethylene-independent petal senescence. Recently, a NAC (NAM/ATAF1,2/CUC2) transcription factor was reported to control the progression of PCD during petal senescence in Japanese morning glory, which shows ethylene-independent petal senescence. In ethylene-dependent petal senescence, functional analyses of transcription factor genes have revealed the involvement of a basic helix-loop-helix protein and a homeodomain-leucine zipper protein in the transcriptional regulation of the ethylene biosynthesis pathway. Here we review the recent advances in our knowledge of petal senescence, mostly focusing on the morphology of senescing petal cells and the regulatory mechanisms of PCD by senescence-associated transcription factors during petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| | - Tetsuya Yamada
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuo Ichimura
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| |
Collapse
|
16
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
17
|
Liu J, Ji Y, Zhou J, Xing D. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence. PLANT PHYSIOLOGY 2016; 170:1714-31. [PMID: 26739232 PMCID: PMC4775102 DOI: 10.1104/pp.15.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.
Collapse
Affiliation(s)
- Jian Liu
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Yingbin Ji
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Da Xing
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.).
| |
Collapse
|
18
|
Mochizuki-Kawai H, Niki T, Shibuya K, Ichimura K. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals. PLoS One 2015; 10:e0143502. [PMID: 26605547 PMCID: PMC4659684 DOI: 10.1371/journal.pone.0143502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023] Open
Abstract
In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.
Collapse
Affiliation(s)
| | - Tomoko Niki
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kazuo Ichimura
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| |
Collapse
|
19
|
Zhang H, Gu Z, Wu Q, Yang L, Liu C, Ma H, Xia Y, Ge X. Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl)ation. Sci Rep 2015; 5:15892. [PMID: 26516022 PMCID: PMC4626836 DOI: 10.1038/srep15892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification of proteins, characterized by the addition of poly(ADP-ribose) (PAR) to proteins by poly(ADP-ribose) polymerase (PARP), and removal of PAR by poly(ADP-ribose) glycohydrolase (PARG). Three PARPs and two PARGs have been found in Arabidopsis, but their respective roles are not fully understood. In this study, the functions of each PARP and PARG in DNA repair were analyzed based on their mutant phenotypes under genotoxic stresses. Double or triple mutant analysis revealed that PARP1 and PARP2, but not PARP3, play a similar but not critical role in DNA repair in Arabidopsis seedlings. PARG1 and PARG2 play an essential and a minor role, respectively under the same conditions. Mutation of PARG1 results in increased DNA damage level and enhanced cell death in plants after bleomycin treatment. PARG1 expression is induced primarily in root and shoot meristems by bleomycin and induction of PARG1 is dependent on ATM and ATR kinases. PARG1 also antagonistically modulates the DNA repair process by preventing the over-induction of DNA repair genes. Our study determined the contribution of each PARP and PARG member in DNA repair and indicated that PARG1 plays a critical role in this process.
Collapse
Affiliation(s)
- Hailei Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zongying Gu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lifeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifeng Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Shibuya K, Shimizu K, Niki T, Ichimura K. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1044-51. [PMID: 24961791 DOI: 10.1111/tpj.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, floral longevity is species-specific and is closely linked to reproductive strategy; petal senescence, a type of programmed cell death (PCD), is a highly regulated developmental process. However, little is known about regulatory pathways for cell death in petal senescence, which is developmentally controlled in an age-dependent manner. Here, we show that a NAC transcription factor, designated EPHEMERAL1 (EPH1), positively regulates PCD during petal senescence in the ephemeral flowers of Japanese morning glory (Ipomoea nil). EPH1 expression is induced independently of ethylene signaling, and suppression of EPH1 resulted in Japanese morning glory flowers that are in bloom until the second day. The suppressed expression of EPH1 delays progression of PCD, possibly through suppression of the expression of PCD-related genes, including genes for plant caspase and autophagy in the petals. Our data further suggest that EPH1 is involved in the regulation of ethylene-accelerated petal senescence. In this study, we identified a key regulator of PCD in petal senescence, which will facilitate further elucidation of the regulatory network of petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305-8519, Japan
| | | | | | | |
Collapse
|
21
|
Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3799-811. [PMID: 24687977 DOI: 10.1093/jxb/eru039] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Large numbers of publications have appeared over the last few years, dealing with the molecular details of the regulation and process of the autophagy machinery in animals, plants, and unicellular eukaryotic organisms. This strong interest is caused by the fact that the autophagic process is involved in the adaptation of organisms to their environment and to stressful conditions, thereby contributing to cell and organism survival and longevity. In plants, as in other eukaryotes, autophagy is associated with longevity as mutants display early and strong leaf senescence symptoms, however, the exact role of autophagy as a pro-survival or pro-death process is unclear. Recently, evidence that autophagy participates in nitrogen remobilization has been provided, but the duality of the role of autophagy in leaf longevity and/or nutrient recycling through cell component catabolism remains. This review aims to give an overview of leaf senescence-associated processes from the physiological point of view and to discuss relationships between nutrient recycling, proteolysis, and autophagy. The dual role of autophagy as a pro-survival or pro-death process is discussed.
Collapse
Affiliation(s)
- Liliana Avila-Ospina
- Institut Jean-Pierre Bourgin (IJPB), bat2, UMR 1318, INRA, RD10, 78026 Versailles Cedex AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Michael Moison
- Institut Jean-Pierre Bourgin (IJPB), bat2, UMR 1318, INRA, RD10, 78026 Versailles Cedex AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin (IJPB), bat2, UMR 1318, INRA, RD10, 78026 Versailles Cedex AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin (IJPB), bat2, UMR 1318, INRA, RD10, 78026 Versailles Cedex AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
22
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
23
|
Rogers HJ. From models to ornamentals: how is flower senescence regulated? PLANT MOLECULAR BIOLOGY 2013; 82:563-74. [PMID: 22983713 DOI: 10.1007/s11103-012-9968-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Floral senescence involves an ordered set of events coordinated at the plant, flower, organ and cellular level. This review assesses our current understanding of the input signals, signal transduction and cellular processes that regulate petal senescence and cell death. In many species a visible sign of petal senescence is wilting. This is accompanied by remobilization of nutrients from the flower to the developing ovary or to other parts of the plant. In other species, petals abscise while still turgid. Coordinating signals for floral senescence also vary across species. In some species ethylene acts as a central regulator, in others floral senescence is ethylene insensitive and other growth regulators are implicated. Due to the variability in this coordination and sequence of events across species, identifying suitable models to study petal senescence has been challenging, and the best candidates are reviewed. Transcriptomic studies provide an overview of the MAP kinases and transcription factors that are activated during petal senescence in several species including Arabidopsis. Our understanding of downstream regulators such as autophagy genes and proteases is also improving. This gives us insights into possible signalling cascades that regulate initiation of senescence and coordination of cell death processes. It also identifies the gaps in our knowledge such as the role of microRNAs. Finally future prospects for using all this information from model to non-model species to extend vase life in ornamental species is reviewed.
Collapse
Affiliation(s)
- Hilary J Rogers
- School of Biosciences, Cardiff University, Main Building Park Place, Cardiff, CF10 3TL, UK.
| |
Collapse
|
24
|
Zhou Q, Yu Q, Wang Z, Pan Y, Lv W, Zhu L, Chen R, He G. Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice. PLANT, CELL & ENVIRONMENT 2013; 36:1476-89. [PMID: 23421602 DOI: 10.1111/pce.12078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 05/21/2023]
Abstract
Glycine decarboxylase complex (GDC) is a multi-protein complex, comprising P-, H-, T- and L-protein subunits, which plays a major role in photorespiration in plants. While structural analysis has demonstrated that the H subunit of GDC (GDCH) plays a pivotal role in GDC, research on the role of GDCH in biological processes in plants is seldom reported. Here, the function of GDCH, stresses resulting from GDCH-knockdown and the interactions of these stresses with other cellular processes were studied in rice plants. Under high CO(2), the OsGDCH RNA interference (OsGDCH-RNAi) plants grew normally, but under ambient CO(2), severely suppressed OsGDCH-RNAi plants (SSPs) were non-viable, which displayed a photorespiration-deficient phenotype. Under ambient CO(2), chlorophyll loss, protein degradation, lipid peroxidation and photosynthesis decline occurred in SSPs. Electron microscopy studies showed that chloroplast breakdown and autophagy took place in these plants. Reactive oxygen species (ROS), including O2(-) and H(2)O(2), accumulated and the antioxidant enzyme activities decreased in the leaves of SSPs under ambient CO(2). The expression of transcription factors and senescence-associated genes (SAGs), which was up-regulated in SSPs after transfer to ambient CO(2), was enhanced in wild-type plants treated with H(2)O(2). Evidences demonstrate ROS induce senescence in SSPs, and transcription factors OsWRKY72 may mediate the ROS-induced senescence.
Collapse
Affiliation(s)
- Qiying Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jones ML. Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AOB PLANTS 2013; 5:plt023. [PMID: 23671789 PMCID: PMC3648795 DOI: 10.1093/aobpla/plt023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/18/2013] [Indexed: 05/20/2023]
Abstract
The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall and membrane components. A smaller subset of these genes has a putative role in remobilizing nutrients, and only a few of these have been studied in detail. During senescence, carbohydrates (primarily sucrose) are transported from petals, and the degradation of macromolecules and organelles also allows the plant to salvage mineral nutrients from the petals before cell death. The remobilization of mineral nutrients from a few species has been investigated and will be reviewed in this article. Ethylene's role in nutrient remobilization is discussed by comparing nutrient changes during the senescence of ethylene-sensitive and -insensitive flowers, and by studies in transgenic petunias (Petunia × hybrida) that are insensitive to ethylene. Gene expression studies indicate that remobilization is a key feature of senescence, but some senescence-associated genes have different expression in leaves and petals. These gene expression patterns, along with differences in the nutrient content of leaves and petals, suggest that there are differences in the mechanisms of cellular degradation and nutrient transport in vegetative and floral organs. Autophagy may be the mechanism for large-scale degradation that allows for recycling during senescence, but it is unclear if this causes cell death. Future research should focus on autophagy and the regulation of ATG genes by ethylene during both leaf and petal senescence. We must identify the mechanisms by which individual mineral nutrients are transported out of senescing corollas in both ethylene-sensitive and -insensitive species.
Collapse
Affiliation(s)
- Michelle L. Jones
- Department of Horticulture and Crop Science, The Ohio State University, OARDC, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
26
|
Yue H, Li Z, Xing D. Roles of Arabidopsis bax inhibitor-1 in delaying methyl jasmonate-induced leaf senescence. PLANT SIGNALING & BEHAVIOR 2012; 7:1488-1489. [PMID: 22960756 PMCID: PMC3548875 DOI: 10.4161/psb.21776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Previous studies have reported that methyl jasmonate (MeJA) can promote plant senescence. Arabidopsis thaliana BI1 (AtBI1) participates in leaf senescence and JA signal pathway. Our recent report has suggested that AtBI1 plays a crucial role in MeJA-induced leaf senescence. Concomitantly, cytosolic calcium ([Ca²⁺]cyt) and MPK6, a mitogen-activated protein kinase (MAPK), participate in the process of MeJA-induced leaf senescence. And AtBI1 might play its roles in delaying MeJA-induced leaf senescence by suppressing the [Ca²⁺]cyt-dependent activation of MPK6. Our study contributes to the understanding of the function and mechanism of AtBI1 in plant senescence. Though some of signaling molecules have been elucidated in this type of plant senescence, the mechanism of AtBI-1 functions in reducing the [Ca²⁺]cyt during MeJA-induced leaf senescence needs further improvement, and the source and location of Ca²⁺ are still not clear enough. By using the Arabidopsis and MeJA as the research model, the subsequent researches have been performed to investigate the upstream regulation and downstream function of Ca²⁺ in this type of plant senescence.
Collapse
|
27
|
Yue H, Nie S, Xing D. Over-expression of Arabidopsis Bax inhibitor-1 delays methyl jasmonate-induced leaf senescence by suppressing the activation of MAP kinase 6. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4463-74. [PMID: 22563118 DOI: 10.1093/jxb/ers122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Methyl jasmonate (MeJA) is an important signalling molecule that has been reported to be able to promote plant senescence. The cell death suppressor Bax inhibitor-1 (BI1) has been found to suppress stress factor-mediated cell death in yeast and Arabidopsis. However, the effect and the genetic mechanism of Arabidopsis thaliana BI1 (AtBI1) on leaf senescence remain unclear. It was found here that the AtBI1 mutant, atbi1-2 (a gene knock-out), showed accelerated progression of MeJA-induced leaf senescence, while the AtBI1 complementation lines displayed similar symptoms as the WT during the senescence process. In addition, over-expression of the AtBI1 gene delayed the onset of MeJA-induced leaf senescence. Further analyses showed that during the process of MeJA-induced senescence, the activity of MPK6, a mitogen-activated protein kinase (MAPK), increased in WT plants, whereas it was significantly suppressed in AtBI1-overexpressing plants. Under the MeJA treatment, cytosolic calcium ([Ca(2+)](cyt)) functioned upstream of MPK6 activation and the elevation of [Ca(2+)](cyt) was reduced in AtBI1-overexpressing leaves. These results suggested a role of AtBI1 over-expression in delaying MeJA-induced leaf senescence by suppressing the [Ca(2+)](cyt)-dependent activation of MPK6, thus providing a new insight into the function and mechanism of AtBI1 in plant senescence.
Collapse
Affiliation(s)
- Haiyun Yue
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
28
|
|
29
|
Shibuya K, Shimizu K, Yamada T, Ichimura K. Expression of Autophagy-associated ATG8 Genes during Petal Senescence in Japanese Morning Glory. ACTA ACUST UNITED AC 2011. [DOI: 10.2503/jjshs1.80.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Hayward AP, Dinesh-Kumar SP. What can plant autophagy do for an innate immune response? ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:557-76. [PMID: 21370973 DOI: 10.1146/annurev-phyto-072910-095333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Autophagy plays an established role in the execution of senescence, starvation, and stress responses in plants. More recently, an emerging role for autophagy has been discovered during the plant innate immune response. Recent papers have shown autophagy to restrict, and conversely, to also promote programmed cell death (PCD) at the site of pathogen infection. These initial studies have piqued our excitement, but they have also revealed gaps in our understanding of plant autophagy regulation, in our ability to monitor autophagy in plant cells, and in our ability to manipulate autophagic activity. In this review, we present the most pressing questions now facing the field of plant autophagy in general, with specific focus on autophagy as it occurs during a plant-pathogen interaction. To begin to answer these questions, we place recent findings in the context of studies of autophagy and immunity in other systems, and in the context of the mammalian immune response in particular.
Collapse
Affiliation(s)
- Andrew P Hayward
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
31
|
Müller GL, Drincovich MF, Andreo CS, Lara MV. Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3675-88. [PMID: 20591899 DOI: 10.1093/jxb/erq187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the physiological and economical relevance of flowers is recognized, their primary metabolism during development has not been characterized, especially combining protein, transcript, and activity levels of the different enzymes involved. In this work, the functional characterization of the photosynthetic apparatus, pigment profiles, and the main primary metabolic pathways were analysed in tobacco sepals and petals at different developmental stages. The results indicate that the corolla photosynthetic apparatus is functional and capable of fixing CO(2); with its photosynthetic activity mainly involved in pigment biosynthesis. The particular pattern of expression, across the tobacco flower lifespan, of several proteins involved in respiration and primary metabolism, indicate that petal carbon metabolism is highest at the anthesis stage; while some enzymes are activated at the later stages, along with senescence. The first signs of corolla senescence in attached flowers are observed after anthesis; however, molecular data suggest that senescence is already onset at this stage. Feeding experiments to detached flowers at anthesis indicate that sugars, but not photosynthetic activity of the corolla, are capable of delaying the senescence process. On the other hand, photosynthetic activity and CO(2) fixation is active in sepals, where high expression levels of particular enzymes were detected. Sepals remained green and did not show signs of senescence in all the flower developmental stages analysed. Overall, the data presented contribute to an understanding of the metabolic processes operating during tobacco flower development, and identify key enzymes involved in the different stages.
Collapse
Affiliation(s)
- Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | | | | | | |
Collapse
|
32
|
|
33
|
|