1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
DeWeese K, Molano G, Calhoun S, Lipzen A, Jenkins J, Williams M, Plott C, Talag J, Grimwood J, Jannink JL, Grigoriev IV, Schmutz J, Yarish C, Nuzhdin S, Lindell S. Scaffolded and annotated nuclear and organelle genomes of the North American brown alga Saccharina latissima. Front Genet 2025; 16:1494480. [PMID: 40438323 PMCID: PMC12116465 DOI: 10.3389/fgene.2025.1494480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Increasing the genomic resources of emerging aquaculture crop targets can expedite breeding processes as seen in molecular breeding advances in agriculture. High quality annotated reference genomes are essential to implement this relatively new molecular breeding scheme and benefit research areas such as population genetics, gene discovery, and gene mechanics by providing a tool for standard comparison. The brown macroalga Saccharina latissima (sugar kelp) is an ecologically and economically important kelp that is found in both the northern Pacific and Atlantic Oceans. Cultivation of Saccharina latissima for human consumption has increased significantly this century in both North America and Europe, and its single blade morphology allows for dense seeding practices used in the cultivation of its Asian sister species, Saccharina japonica. While Saccharina latissima has potential as a human food crop, insufficient information from genetic resources has limited molecular breeding in sugar kelp aquaculture. We present scaffolded and annotated Saccharina latissima nuclear and organelle genomes from a female gametophyte collected from Black Ledge, Groton, Connecticut. This Saccharina latissima genome compares well with other published kelp genomes and contains 218 scaffolds with a scaffold N50 of 1.35 Mb, a GC content of 49.84%, and 25,012 predicted genes. We also validated this genome by comparing the synteny and completeness of this Saccharina latissima genome to other kelp genomes. Our team has successfully performed initial genomic selection trials with sugar kelp using a draft version of this genome. This Saccharina latissima genome expands the genetic toolkit for the economically and ecologically important sugar kelp and will be a fundamental resource for future foundational science, breeding, and conservation efforts.
Collapse
Affiliation(s)
- Kelly DeWeese
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Melissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Christopher Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Jean-Luc Jannink
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, United States
- Section On Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Charles Yarish
- Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, United States
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Scott Lindell
- Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, United States
| |
Collapse
|
3
|
Roose S, Peelaers I, Timmerman E, Vlaminck J, Van Haver D, Dana D, Mekonnen Z, Devos S, Levecke B, Geldhof P. Identification of immunogenic proteins of Ascaris lung stage larvae through immunoproteomics: towards recombinant-based serodiagnostic assays for humans and pigs. Int J Parasitol 2025:S0020-7519(25)00091-8. [PMID: 40320062 DOI: 10.1016/j.ijpara.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/24/2025]
Abstract
Soil-transmitted helminthiases are recognised by the World Health Organization as one of the 20 neglected tropical diseases, primarily affecting communities with socioeconomic disadvantages in tropical and subtropical regions. Of the four soil-transmitted helminths, Ascaris stands out as the most widespread, affecting more than 700 million people globally. Today, the diagnostic standard for ascariasis is based on microscopic examination of stool, which faces important limitations. Although serological diagnosis is a promising alternative, the current landscape of well-validated commercial serological diagnostics is sobering. An ELISA based on homogenate from Ascaris suum lung stage larvae (AsLungL3-ELISA) showed significant potential to inform human and veterinary prevention and control programs against ascariasis. Therefore, this study aimed to identify the immunogenic proteins in Ascaris lung stage larval homogenate and investigate the antibody response towards recombinantly expressed versions of these proteins. Given the potential of recombinant-based assays for both human and veterinary applications, the study encompasses experiments involving both humans and pigs. First, immuno-affinity purifications were coupled with liquid chromatography-tandem mass spectrometry, resulting in three lists of immunogenic proteins (for children, adults, and pigs). As a proof of concept, four promising immunogenic proteins (polyprotein ABA-1, paramyosin, apolipophorin and an S60 ribosomal protein) were recombinantly produced in Escherichia coli and the antibody response against these recombinants was evaluated using ELISA. While the results for pigs were inconclusive due to non-specific binding of antibodies, the findings for potential human serodiagnostic applications detecting IgG4 appeared promising. For both polyprotein ABA-1 and paramyosin, a notable difference in OD values was observed between children and adults who were AsLungL3-ELISA negative and positive. In conclusion, this study is a steppingstone towards the development of new serodiagnostic assays and demonstrates that recombinant protein production offers an efficient method to produce diagnostic Ascaris antigens without requiring pig studies.
Collapse
Affiliation(s)
- Sara Roose
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium.
| | - Iris Peelaers
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Evy Timmerman
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Johnny Vlaminck
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Delphi Van Haver
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Daniel Dana
- School of Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Zeleke Mekonnen
- School of Laboratory Science, Faculty of Health Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Simon Devos
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Peter Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
4
|
Sala K, Pengthaisong S, Beagbandee C, Ketudat Cairns JR. Expression and Characterization of a Rice β-Xylosidase with Xylooligosaccharide Hydrolysis and Transglycosylation Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10418-10429. [PMID: 40249644 PMCID: PMC12046590 DOI: 10.1021/acs.jafc.4c13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Plant β-xylosidases are less well characterized for hemicellulose degradation than their microbial counterparts. To address this, a broadly expressed rice (Oryza sativa) glycoside hydrolase family 3 (GH3) β-xylosidase designated OsXyl1 was expressed in heterologous Pichia pastoris. OsXyl1 showed maximal enzyme activity at pH 4.0 and 60 °C. It was relatively stable at 30-50 °C. It hydrolyzed 4NP-β-d-xylopyranoside (4NPXyl) and β-1,4-linked xylooligosaccharides (XOS) with degrees of polymerization (DP) of 2-6. OsXyl1 hydrolylsis of 4NPXyl was much more rapid and specific than that of other 4NP glycosides with an apparent kcat/Km value of 19.0 mM-1 s-1. OsXyl1 had similar specificity toward XOS having DP values of 2-5 with apparent kcat/Km values of 2.6-4.2 mM-1 s-1. OsXyl1 was also efficient at transglycosylating short alcohols with 4NPXyl and XOS xylosyl donors. Therefore, rice OsXyl1 β-xylosidase may function in recycling of xylans in plant cell wall recycling and it may be applied for transglycosylation of alcohol acceptors.
Collapse
Affiliation(s)
- Kadsada Sala
- School of Chemistry, Institute of Science
and Center for Biomolecular Structure, Function
and Application, Suranaree University of Technology, 111 University
Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science
and Center for Biomolecular Structure, Function
and Application, Suranaree University of Technology, 111 University
Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Chamaipon Beagbandee
- School of Chemistry, Institute of Science
and Center for Biomolecular Structure, Function
and Application, Suranaree University of Technology, 111 University
Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science
and Center for Biomolecular Structure, Function
and Application, Suranaree University of Technology, 111 University
Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
Schubert A, Mongkolsittisilp A, Kobitski A, Schulz M, Voloshanenko O, Schaffrinski M, Winkler N, Neßling M, Richter K, Kranz D, Nienhaus K, Jäger D, Trümper L, Büntzel J, Binder C, Nienhaus GU, Boutros M. WNT5a export onto extracellular vesicles studied at single-molecule and single-vesicle resolution. FEBS J 2025. [PMID: 40165582 DOI: 10.1111/febs.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025]
Abstract
WNT signaling governs development, homeostasis, and aging of cells and tissues, and is frequently dysregulated in pathophysiological processes such as cancer. WNT proteins are hydrophobic and traverse the intercellular space between the secreting and receiving cells on various carriers, including extracellular vesicles (EVs). Here, we address the relevance of different EV fractions and other vehicles for WNT5a protein, a non-canonical WNT ligand that signals independently of beta-catenin. Its highly context-dependent roles in cancer (either tumor-suppressive or tumor-promoting) have been attributed to two distinct isoforms, WNT5a Short (WNT5aS) and WNT5a Long (WNT5aL), resulting from different signal peptide cleavage sites. To explore possible differences in secretion and extracellular transport, we developed fusion constructs with the fluorescent proteins (FPs) mScarlet and mOxNeonGreen. Functional reporter assays revealed that both WNT5a isoforms inhibit canonical WNT signaling, and EVs produced by WNT5a-bearing tumor cells, carrying either of the WNT5a isoforms, induced invasiveness of the luminal A breast cancer cell line MCF7. We used fluorescence intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS) to characterize at single-molecule sensitivity WNT5aL-bearing entities secreted by HEK293T cells. Importantly, we found that most WNT5aL proteins remained monomeric in the supernatant after ultracentrifugation; only a minor fraction was EV-bound. We further determined the average sizes of the EV fractions and the average number of WNT5aL proteins per EV. Our detailed biophysical analysis of the physical nature of the EV populations is an important step toward understanding context-dependent WNT cargo loading and signaling in future studies.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | | | - Andrei Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Matthias Schulz
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Oksana Voloshanenko
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Meike Schaffrinski
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Nadine Winkler
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Michelle Neßling
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Kranz
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Judith Büntzel
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Claudia Binder
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Alves e Silva TL, Kanatani S, Barletta Ferreira AB, Schwartz C, Talyuli OA, Olivas J, Nagata BM, Pala ZR, Pascini T, Alves DA, Zhao M, Suzuki M, Dorner LP, Frischknecht F, Coppens I, Barillas-Mury C, Ribeiro JM, Sinnis P, Vega-Rodriguez J. High-Resolution Proteomics Unveils Salivary Gland Disruption and Saliva-Hemolymph Protein Exchange in Plasmodium-Infected Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640873. [PMID: 40060675 PMCID: PMC11888397 DOI: 10.1101/2025.02.28.640873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands (SGs) before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Sachi Kanatani
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ana Beatriz Barletta Ferreira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Cindi Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Octavio A.C. Talyuli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Bianca M. Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Sanaria Inc., 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Lilian P. Dorner
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg
| | - Isabelle Coppens
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jose M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
8
|
Ozbudak E, Carrillo-Tarazona Y, Diaz EA, Zambon FT, Rossi L, Peres NA, Raffaele S, Cano LM. Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. FRONTIERS IN PLANT SCIENCE 2025; 15:1390926. [PMID: 39925370 PMCID: PMC11803528 DOI: 10.3389/fpls.2024.1390926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025]
Abstract
Colletotrichum nymphaeae, the causal agent of anthracnose fruit rot, is globally recognized as a major pathogen of strawberries due to its economic impact. Fungal pathogens utilize secreted proteins to facilitate infection by acquiring host nutrients and suppressing plant immunity. Understanding the transcriptomic responses of C. nymphaeae during infection can provide critical insights into its pathogenic mechanisms. In this study, RNA sequencing (RNA-seq) was performed to profile the transcriptome of C. nymphaeae strain 02-179 during infection of leaf and fruit tissues of the susceptible strawberry (Fragaria x ananassa) cultivar Florida Beauty. Differential gene expression analysis identified fungal genes upregulated during these interactions. Transcriptomic profiling revealed a set of genes encoding secreted effector proteins, including NUDIX hydrolase and LysM domain-containing proteins. Additionally, genes associated with Carbohydrate-Active enzymes (CAZymes), such as multicopper oxidase, pectinesterase, pectate lyase, glycosyl hydrolase family 7, and endochitinase, were significantly upregulated. Notably, two novel tannase genes were identified among the top upregulated genes in strawberry-infected leaves and fruits. Tannase enzymes are hypothesized to degrade tannins, a group of plant secondary metabolites abundant in strawberries, known for their defensive roles against pests and pathogens. The identification of tannase genes and the other genes associated with virulence underscores the complex molecular strategies employed by C. nymphaeae to infect and colonize strawberry tissues. Genes involved in degrading plant cell walls, suppressing host defenses, and potentially overcoming chemical barriers such as tannins play critical roles in the pathogenesis of anthracnose. Further functional characterization of these genes will enhance our understanding of the disease mechanisms and could inform the development of improved management strategies for C. nymphaeae infections in strawberries.
Collapse
Affiliation(s)
- Egem Ozbudak
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Yisel Carrillo-Tarazona
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Edinson A. Diaz
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Flavia T. Zambon
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Lorenzo Rossi
- Indian River Research and Education Center, Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Natalia A. Peres
- Gulf Coast Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Wimauma, FL, United States
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université de Toulouse, Castanet-Tolosan, France
| | - Liliana M. Cano
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| |
Collapse
|
9
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Kuratani Y, Abematsu C, Ekino K, Oka T, Shin M, Iwata M, Ohta H, Ando S. Cylindracin, a Cys-rich protein expressed in the fruiting body of Cyclocybe cylindracea, inhibits growth of filamentous fungi but not yeasts or bacteria. FEBS Open Bio 2024; 14:1805-1824. [PMID: 39380157 PMCID: PMC11532979 DOI: 10.1002/2211-5463.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Mushrooms are the fruiting bodies of fungi and are important reproductive structures that produce and disseminate spores. The Pri3 gene was originally reported to be specifically expressed in the primordia (a precursor to the mature fruiting body) of the edible mushroom Cyclocybe aegerita. Here, we cloned a Pri3-related cDNA from Cyclocybe cylindracea, another species in the same genus, and showed that the gene is specifically expressed at the pileus surface of the immature fruiting body but not in the primordia. Immunohistochemistry showed that the translated protein is secreted into a polysaccharide layer of the pileus surface. The recombinant C-terminal Cys-rich domain of the protein showed antifungal activity against three filamentous fungi and inhibited hyphal growth and conidiogenesis. These results suggest that the PRI3-related protein of C. cylindracea, named cylindracin, plays an important role in the defense against pathogens.
Collapse
Affiliation(s)
- Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Chika Abematsu
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Keisuke Ekino
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Takuji Oka
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Masashi Shin
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | | | - Hiroto Ohta
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
11
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
12
|
Cooney EC, Jacobson DM, Wolfe GV, Bright KJ, Saldarriaga JF, Keeling PJ, Leander BS, Strom SL. Morphology, behavior, and phylogenomics of Oxytoxum lohmannii, Dinoflagellata. J Eukaryot Microbiol 2024; 71:e13050. [PMID: 39019843 PMCID: PMC11603288 DOI: 10.1111/jeu.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Dinoflagellates are an abundant and diverse group of protists representing a wealth of unique biology and ecology. While many dinoflagellates are photosynthetic or mixotrophic, many taxa are heterotrophs, often with complex feeding strategies. Compared to their photosynthetic counterparts, heterotrophic dinoflagellates remain understudied, as they are difficult to culture. One exception, a long-cultured isolate originally classified as Amphidinium but recently reclassified as Oxytoxum, has been the subject of a number of feeding, growth, and chemosensory studies. This lineage was recently determined to be closely related to Prorocentrum using phylogenetics of ribosomal RNA gene sequences, but the exact nature of this relationship remains unresolved. Using transcriptomes sequenced from culture and three single cells from the environment, we produce a robust phylogeny of 242 genes, revealing Oxytoxum is likely sister to the Prorocentrum clade, rather than nested within it. Molecular investigations uncover evidence of a reduced, nonphotosynthetic plastid and proteorhodopsin, a photoactive proton pump acquired horizontally from bacteria. We describe the ultrastructure of O. lohmannii, including densely packed trichocysts, and a new type of mucocyst. We observe that O. lohmannii feeds preferentially on cryptophytes using myzocytosis, but can also feed on various phytoflagellates using conventional phagocytosis. O. lohmannii is amenable to culture, providing an opportunity to better study heterotrophic dinoflagellate biology and feeding ecology.
Collapse
Affiliation(s)
- Elizabeth C. Cooney
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Gordon V. Wolfe
- Department of Biological SciencesCalifornia State University, ChicoChicoCaliforniaUSA
| | - Kelley J. Bright
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| | - Juan F. Saldarriaga
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Patrick J. Keeling
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brian S. Leander
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Suzanne L. Strom
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| |
Collapse
|
13
|
Zhou X, Jiang D, Zhang Z, Shen X, Pan J, Ouyang H, Xu D, Tian Y, Huang Y. Effect of active immunization with OPN5 on follicular development and egg production in quail under different photoperiods. Theriogenology 2024; 228:81-92. [PMID: 39116655 DOI: 10.1016/j.theriogenology.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
OPN5 is one of the main deep brain photoreceptors (DBPs), converting photoperiodic information into neuroendocrine signals to regulate reproduction in birds. This study investigated the mechanism of OPN5-mediated photoperiodic regulation of reproduction by active immunization against OPN5. 96 female quail were divided into OPN5-immunized and control group under the same photoperiod: 16 L:8 D (d 1 to d 35), 8 L:16 D (d 36 to d 70) and 12 L:12 D (d 71 to d 126). OPN5-immunized group was conducted with OPN5 protein vaccination and control group was given a blank vaccine. Samples were collected on d 1, d 30, d 60, and d 126. Results showed switching photoperiod to 8 L:16 D decreased the laying rate, GSI%, numbers of YFs and WFs, serum levels of PRL, P4 and E2, and pituitary PRL and TSHβ protein expressions in both groups (P < 0.05). Whereas the OPN5-immunized group exhibited higher laying rates than the control group (P < 0.05). The control group showed reduced GnRHR and TSHβ gene expressions in the pituitary and increased GnIH and DIO3 transcript and/or protein abundance in the hypothalamus. (P < 0.05). The OPN5-immunized group had lower DIO3 expression at both mRNA and protein levels. (P < 0.05). Switching photoperiod from 8 L:16 D to 12 L:12 D increased the laying rates, GSI%, numbers of YFs and WFs, serum levels of PRL, and PRL protein expression in both groups (P < 0.05), and the responses were more pronounced in OPN5-immunized group (P < 0.05). In contrast to the control group, quail with OPN5-immunization had higher OPN5 and DIO2 transcript and/or protein levels but lower DIO3 expressions in the hypothalamus along the transition photoperiods (P < 0.05). The results revealed that OPN5 responds to photoperiod transition, and its activation mediates related signaling to up-regulate TSH-DIO2/DIO3 pathway and VIP-PRL secretion to prime quail reproductive functions.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhuoshen Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
14
|
Fruet C, Martinez-Goikoetxea M, Merino F, Lupas AN. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Biophys J 2024; 123:3491-3499. [PMID: 39164969 PMCID: PMC11494523 DOI: 10.1016/j.bpj.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Many bacteria are protected by different types of polysaccharide capsules, structures formed of long repetitive glycan chains that are sometimes free and sometimes anchored to the outer membrane via lipid tails. One type, called group 4 capsule, results from the expression of the gfcABCDE-etp-etk operon in Escherichia coli. Of the proteins encoded in this operon, GfcE is thought to provide the export pore for free polysaccharide chains, but none of the proteins has been implicated in the export of chains carrying a lipid anchor. For this function, GfcD has been a focus of attention as the only outer membrane β-barrel encoded in the operon. AlphaFold predicts two β-barrel domains in GfcD, a canonical N-terminal one of 12 strands and an unusual C-terminal one of 13 strands, which features a large lateral aperture between strands β1 and β13. This immediately suggests a lateral exit gate for hydrophobic molecules into the membrane, analogous to the one proposed for the lipopolysaccharide export pore LptD. Here, we report an unsteered molecular dynamics study of GfcD embedded in the bacterial outer membrane, with the common polysaccharide anchor, lipid A, inserted in the pore of the C-terminal barrel. Our results show that the lateral aperture does not collapse during simulations and membrane lipids nevertheless do not penetrate the barrel but the lipid chains of the lipid A molecule readily exit into the membrane.
Collapse
Affiliation(s)
- Cecilia Fruet
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Felipe Merino
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Zeng S, Wang D, Jiang L, Xu D. Parameter-efficient fine-tuning on large protein language models improves signal peptide prediction. Genome Res 2024; 34:1445-1454. [PMID: 39060029 PMCID: PMC11529868 DOI: 10.1101/gr.279132.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Signal peptides (SPs) play a crucial role in protein translocation in cells. The development of large protein language models (PLMs) and prompt-based learning provide a new opportunity for SP prediction, especially for the categories with limited annotated data. We present a parameter-efficient fine-tuning (PEFT) framework for SP prediction, PEFT-SP, to effectively utilize pretrained PLMs. We integrated low-rank adaptation (LoRA) into ESM-2 models to better leverage the protein sequence evolutionary knowledge of PLMs. Experiments show that PEFT-SP using LoRA enhances state-of-the-art results, leading to a maximum Matthews correlation coefficient (MCC) gain of 87.3% for SPs with small training samples and an overall MCC gain of 6.1%. Furthermore, we also employed two other PEFT methods, prompt tuning and adapter tuning, in ESM-2 for SP prediction. More elaborate experiments show that PEFT-SP using adapter tuning can also improve the state-of-the-art results by up to 28.1% MCC gain for SPs with small training samples and an overall MCC gain of 3.8%. LoRA requires fewer computing resources and less memory than the adapter tuning during the training stage, making it possible to adapt larger and more powerful protein models for SP prediction.
Collapse
Affiliation(s)
- Shuai Zeng
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Lei Jiang
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
16
|
Yoshinori F, Imai K, Horton P. Prediction of mitochondrial targeting signals and their cleavage sites. Methods Enzymol 2024; 706:161-192. [PMID: 39455214 DOI: 10.1016/bs.mie.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
In this chapter we survey prediction tools and computational methods for the prediction of amino acid sequence elements which target proteins to the mitochondria. We will primarily focus on the prediction of N-terminal mitochondrial targeting signals (MTSs) and their N-terminal cleavage sites by mitochondrial peptidases. We first give practical details useful for using and installing some prediction tools. Then we describe procedures for preparing datasets of MTS containing proteins for statistical analysis or development of new prediction methods. Following that we lightly survey some of the computational techniques used by prediction tools. Finally, after discussing some caveats regarding the reliability of such methods to predict the effects of mutations on MTS function; we close with a discussion of possible future directions of computer prediction methods related to mitochondrial proteins.
Collapse
Affiliation(s)
- Fukasawa Yoshinori
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Paul Horton
- Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
17
|
Kim HS, Haley OC, Portwood Ii JL, Harding S, Proctor RH, Woodhouse MR, Sen TZ, Andorf CM. Fusarium Protein Toolkit: a web-based resource for structural and variant analysis of Fusarium species. BMC Microbiol 2024; 24:326. [PMID: 39243017 PMCID: PMC11378500 DOI: 10.1186/s12866-024-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND The genus Fusarium poses significant threats to food security and safety worldwide because numerous species of the fungus cause destructive diseases and/or mycotoxin contamination in crops. The adverse effects of climate change are exacerbating some existing threats and causing new problems. These challenges highlight the need for innovative solutions, including the development of advanced tools to identify targets for control strategies. DESCRIPTION In response to these challenges, we developed the Fusarium Protein Toolkit (FPT), a web-based tool that allows users to interrogate the structural and variant landscape within the Fusarium pan-genome. The tool displays both AlphaFold and ESMFold-generated protein structure models from six Fusarium species. The structures are accessible through a user-friendly web portal and facilitate comparative analysis, functional annotation inference, and identification of related protein structures. Using a protein language model, FPT predicts the impact of over 270 million coding variants in two of the most agriculturally important species, Fusarium graminearum and F. verticillioides. To facilitate the assessment of naturally occurring genetic variation, FPT provides variant effect scores for proteins in a Fusarium pan-genome based on 22 diverse species. The scores indicate potential functional consequences of amino acid substitutions and are displayed as intuitive heatmaps using the PanEffect framework. CONCLUSION FPT fills a knowledge gap by providing previously unavailable tools to assess structural and missense variation in proteins produced by Fusarium. FPT has the potential to deepen our understanding of pathogenic mechanisms in Fusarium, and aid the identification of genetic targets for control strategies that reduce crop diseases and mycotoxin contamination. Such targets are vital to solving the agricultural problems incited by Fusarium, particularly evolving threats resulting from climate change. Thus, FPT has the potential to contribute to improving food security and safety worldwide.
Collapse
Grants
- 5010-11420-001-000-D and 5010-42000-053-000-D USDA, Agricultural Research Service, United States
- 0201-88888-003-000D and 0201-88888-002-000D USDA, Agricultural Research Service, United States
- 5030-21000-072-00-D USDA, Agricultural Research Service, United States
- 5010-11420-001-000-D and 5010-42000-053-000-D USDA, Agricultural Research Service, United States
- 5010-11420-001-000-D and 5010-42000-053-000-D USDA, Agricultural Research Service, United States
- 5030-21000-072-00-D USDA, Agricultural Research Service, United States
- 2030-21000-056-000-D USDA, Agricultural Research Service, United States
- 5030-21000-072-00-D USDA, Agricultural Research Service, United States
Collapse
Affiliation(s)
- Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St, Peoria, IL, 61604, USA
| | - Olivia C Haley
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Rd. Ames, IA, 50011, USA
| | - John L Portwood Ii
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Rd. Ames, IA, 50011, USA
| | - Stephen Harding
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St, Peoria, IL, 61604, USA
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St, Peoria, IL, 61604, USA
| | - Margaret R Woodhouse
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Rd. Ames, IA, 50011, USA
| | - Taner Z Sen
- USDA, Agricultural Research Service, Crop Improvement and Genetics Research Unit, 800 Buchanan St. Albany, CA, 94710, USA
- Department of Bioengineering, University of California, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - Carson M Andorf
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 819 Wallace Rd. Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, 2434 Osborn Dr, Ames,, IA, 50011, USA.
| |
Collapse
|
18
|
Barbosa LN, LIanes A, Madesh S, Fayne BN, Brangulis K, Linn-Peirano SC, Rajeev S. Enhancement of clinical signs in C3H/HeJ mice vaccinated with a highly immunogenic Leptospira methyl-accepting chemotaxis protein following challenge. PLoS Negl Trop Dis 2024; 18:e0012155. [PMID: 39312584 PMCID: PMC11449317 DOI: 10.1371/journal.pntd.0012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/03/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Leptospirosis is the most widespread zoonosis and a life-threatening disease in humans and animals. Licensed killed whole-cell vaccines are available for animals; however, they do not offer heterologous protection, do not induce long-term protection, or prevent renal colonization. In this study, we characterized an immunogenic Leptospira methyl-accepting chemotaxis protein (MCP) identified through a reverse vaccinology approach, predicted its structure, and tested the protective efficacy of a recombinant MCP fragment in the C3H/HeJ mice model. The predicted structure of the full-length MCP revealed an architecture typical for topology class I MCPs. A single dose of MCP vaccine elicited a significant IgG antibody response in immunized mice compared to controls (P < 0.0001), especially the IgG1 and IgG2a subclasses. The vaccination with MCP, despite eliciting a robust immune response, did not protect mice from disease and renal colonization. However, survival curves significantly differed between groups, and the MCP-vaccinated group developed clinical signs faster than the control group. There were differences in gross and histopathological changes between the MCP-vaccinated and control groups. The factors leading to enhanced disease process in vaccinated animals need further investigation. We speculate that anti-MCP antibodies may block the MCP signaling cascade and may limit chemotaxis, preventing Leptospira from reaching its destination, but facilitating its maintenance and replication in the blood stream. Such a phenomenon may exist in endemic areas where humans are highly exposed to Leptospira antigens, and the presence of antibodies might lead to disease enhancement. The role of this protein in Leptospira pathogenesis should be further evaluated to comprehend the lack of protection and potential exacerbation of the disease process. The absence of immune correlates of protection from Leptospira infection is still a major limitation of this field and efforts to gather this knowledge are needed.
Collapse
Affiliation(s)
- Liana Nunes Barbosa
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alejandro LIanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Swetha Madesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bryanna Nicole Fayne
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | - Sarah C. Linn-Peirano
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sreekumari Rajeev
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
19
|
Yang H, Jiang J, Chen M, Song X, Yu C, Chen H, Zhao Y. Homologous Delta-12 Fatty Acid Desaturase ( FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress. J Fungi (Basel) 2024; 10:496. [PMID: 39057381 PMCID: PMC11277945 DOI: 10.3390/jof10070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Delta-12 fatty acid desaturases (FAD2s) actively regulate stress responses and cell differentiation in living organisms. In this study, six homologous FAD2 genes were identified based on the genome sequence of Lentinula edodes. Then, the six FAD2 protein sequences were analyzed using bioinformatics tools, including ExPASy ProtParam, SignalP, TMHMM, and TargetP. These analyses were performed to predict the physical and chemical properties, signal peptides, and transmembrane and conserved domains of these proteins. The polypeptide sequences were aligned, and a maximum likelihood phylogenetic tree was constructed using MEGA 7.0 software to elucidate the phylogenetic relationships between homologous FAD2 sequences. The results demonstrated that the FAD2 proteins contained three conserved histidine-rich regions (HXXXH, HXXHH, and HXXHH), which included eight histidine residues. The linoleic acid content and FAD2 enzyme activity were further analyzed, and the levels in the mutagenic heat-tolerant strain 18N44 were lower than those in the wild-type strain 18. Interestingly, the expression levels of the FAD2-2 and FAD2-3 genes under heat stress in strain 18N44 were lower than those in strain 18. These findings indicated that FAD2-2 and FAD2-3 may play major roles in the synthesis of linoleic acid during heat stress.
Collapse
Affiliation(s)
- Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| | - Jun Jiang
- Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China;
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| | - Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.Y.); (M.C.); (X.S.); (H.C.)
| |
Collapse
|
20
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparison of the Proteome of Huh7 Cells Transfected with Hepatitis B Virus Subgenotype A1, with or without G1862T. Curr Issues Mol Biol 2024; 46:7032-7047. [PMID: 39057060 PMCID: PMC11275860 DOI: 10.3390/cimb46070419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
HBeAg is a non-structural, secreted protein of hepatitis B virus (HBV). Its p25 precursor is post-translationally modified in the endoplasmic reticulum. The G1862T precore mutation leads to the accumulation of P25 in the endoplasmic reticulum and activation of unfolded protein response. Using mass spectrometry, comparative proteome profiling of Huh-7 cells transfected with wildtype (WT) or G1862T revealed significantly differentially expressed proteins resulting in 12 dysregulated pathways unique to WT-transfected cells and 7 shared between cells transfected with either WT or G1862T. Except for the p38 MAPK signalling pathway, WT showed a higher number of DEPs than G1862T-transfected cells in all remaining six shared pathways. Two signalling pathways: oxidative stress and cell cycle signalling were differentially expressed only in cells transfected with G1862T. Fifteen pathways were dysregulated in G1862T-transfected cells compared to WT. The 15 dysregulated pathways were involved in the following processes: MAPK signalling, DNA synthesis and methylation, and extracellular matrix organization. Moreover, proteins involved in DNA synthesis signalling (replication protein A (RPA) and DNA primase (PRIM2)) were significantly upregulated in G1862T compared to WT. This upregulation was confirmed by mRNA quantification of both genes and immunofluorescent confocal microscopy for RPA only. The dysregulation of the pathways involved in these processes may lead to immune evasion, persistence, and uncontrolled proliferation, which are hallmarks of cancer.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2194, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
21
|
Wang R, Zhou Z, Wu X, Jiang X, Zhuo L, Liu M, Li H, Fu X, Yao X. An Effective Plant Small Secretory Peptide Recognition Model Based on Feature Correction Strategy. J Chem Inf Model 2024; 64:2798-2806. [PMID: 37643082 DOI: 10.1021/acs.jcim.3c00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Plant small secretory peptides (SSPs) play an important role in the regulation of biological processes in plants. Accurately predicting SSPs enables efficient exploration of their functions. Traditional experimental verification methods are very reliable and accurate, but they require expensive equipment and a lot of time. The method of machine learning speeds up the prediction process of SSPs, but the instability of feature extraction will also lead to further limitations of this type of method. Therefore, this paper proposes a new feature-correction-based model for SSP recognition in plants, abbreviated as SE-SSP. The model mainly includes the following three advantages: First, the use of transformer encoders can better reveal implicit features. Second, design a feature correction module suitable for sequences, named 2-D SENET, to adaptively adjust the features to obtain a more robust feature representation. Third, stack multiple linear modules to further dig out the deep information on the sample. At the same time, the training based on a contrastive learning strategy can alleviate the problem of sparse samples. We construct experiments on publicly available data sets, and the results verify that our model shows an excellent performance. The proposed model can be used as a convenient and effective SSP prediction tool in the future. Our data and code are publicly available at https://github.com/wrab12/SE-SSP/.
Collapse
Affiliation(s)
- Rui Wang
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Zhecheng Zhou
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Xiaonan Wu
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Xin Jiang
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Linlin Zhuo
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Mingzhe Liu
- Wenzhou University of Technology, 325000 Wenzhou, China
| | - Hao Li
- Central South University, 410083 Changsha, China
| | - Xiangzheng Fu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| |
Collapse
|
22
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
23
|
Sanaboyana VR, Elcock AH. Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures. J Mol Biol 2024; 436:168393. [PMID: 38065275 PMCID: PMC10843742 DOI: 10.1016/j.jmb.2023.168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Many proteins contain cleavable signal or transit peptides that direct them to their final subcellular locations. Such peptides are usually predicted from sequence alone using methods such as TargetP 2.0 and SignalP 6.0. While these methods are usually very accurate, we show here that an analysis of a protein's AlphaFold2-predicted structure can often be used to identify false positive predictions. We start by showing that when given a protein's full-length sequence, AlphaFold2 builds experimentally annotated signal and transit peptides in orientations that point away from the main body of the protein. This indicates that AlphaFold2 correctly identifies that a signal is not destined to be part of the mature protein's structure and suggests, as a corollary, that predicted signals that AlphaFold2 folds with high confidence into the main body of the protein are likely to be false positives. To explore this idea, we analyzed predicted signal peptides in 48 proteomes made available in DeepMind's AlphaFold2 database (https://alphafold.ebi.ac.uk). Applying TargetP 2.0 and SignalP 6.0 to the 561,562 proteins in the database results in 95,236 being predicted to contain a cleavable signal or transit peptide. In 95.1% of these cases, the AlphaFold2 structure of the full-length protein is fully consistent with the prediction of TargetP 2.0 or SignalP 6.0. In the remaining 4.9% of cases where the AlphaFold2 structure does not appear consistent with the prediction, the signal is often only predicted with low confidence. The potential false positives identified here may be useful for training even more accurate signal prediction methods.
Collapse
Affiliation(s)
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, USA.
| |
Collapse
|
24
|
He J, Huang Y, Li L, Lin S, Ma M, Wang Y, Lin S. Novel Plastid Genome Characteristics in Fugacium kawagutii and the Trend of Accelerated Evolution of Plastid Proteins in Dinoflagellates. Genome Biol Evol 2024; 16:evad237. [PMID: 38155596 PMCID: PMC10781511 DOI: 10.1093/gbe/evad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023] Open
Abstract
Typical (peridinin-containing) dinoflagellates possess plastid genomes composed of small plasmids named "minicircles". Despite the ecological importance of dinoflagellate photosynthesis in corals and marine ecosystems, the structural characteristics, replication dynamics, and evolutionary forcing of dinoflagellate plastid genomes remain poorly understood. Here, we sequenced the plastid genome of the symbiodiniacean species Fugacium kawagutii and conducted comparative analyses. We identified psbT-coding minicircles, features previously not found in Symbiodiniaceae. The copy number of F. kawagutii minicircles showed a strong diel dynamics, changing between 3.89 and 34.3 copies/cell and peaking in mid-light period. We found that F. kawagutii minicircles are the shortest among all dinoflagellates examined to date. Besides, the core regions of the minicircles are highly conserved within genus in Symbiodiniaceae. Furthermore, the codon usage bias of the plastid genomes in Heterocapsaceae, Amphidiniaceae, and Prorocentraceae species are greatly influenced by selection pressure, and in Pyrocystaceae, Symbiodiniaceae, Peridiniaceae, and Ceratiaceae species are influenced by both natural selection pressure and mutation pressure, indicating a family-level distinction in codon usage evolution in dinoflagellates. Phylogenetic analysis using 12 plastid-encoded proteins and five nucleus-encoded plastid proteins revealed accelerated evolution trend of both plastid- and nucleus-encoded plastid proteins in peridinin- and fucoxanthin-dinoflagellate plastids compared to plastid proteins of nondinoflagellate algae. These findings shed new light on the structure and evolution of plastid genomes in dinoflagellates, which will facilitate further studies on the evolutionary forcing and function of the diverse dinoflagellate plastids. The accelerated evolution documented here suggests plastid-encoded sequences are potentially useful for resolving closely related dinoflagellates.
Collapse
Affiliation(s)
- Jiamin He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yulin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Sitong Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
25
|
Taheri-Anganeh M, Nezafat N, Gharibi S, Khatami SH, Vahedi F, Shabaninejad Z, Asadi M, Savardashtaki A, Movahedpour A, Ghasemi H. Designing a Secretory form of RTX-A as an Anticancer Toxin: An In Silico Approach. Recent Pat Biotechnol 2024; 18:332-343. [PMID: 38817010 DOI: 10.2174/0118722083267796231210060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.
Collapse
Affiliation(s)
- Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Gharibi
- School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
26
|
Nielsen H, Teufel F, Brunak S, von Heijne G. SignalP: The Evolution of a Web Server. Methods Mol Biol 2024; 2836:331-367. [PMID: 38995548 DOI: 10.1007/978-1-0716-4007-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
SignalP ( https://services.healthtech.dtu.dk/services/SignalP-6.0/ ) is a very popular prediction method for signal peptides, the intrinsic signals that make proteins secretory. The SignalP web server has existed since 1995 and is now in its sixth major version. In this historical account, we (three authors who have taken part in the entire journey plus the first author of the latest version) describe the differences between the versions and discuss the various decisions taken along the way.
Collapse
Affiliation(s)
- Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Felix Teufel
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Digital Science & Innovation, Novo Nordisk A/S, Malov, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
27
|
Weber E. Setup and Applications of Modular Protein Expression Toolboxes (MoPET) for Mammalian Systems. Methods Mol Biol 2024; 2774:15-29. [PMID: 38441755 DOI: 10.1007/978-1-0716-3718-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The design and generation of an optimal protein expression construct is the first and essential step in the characterization of any protein of interest. However, the exchange and modification of the coding and/or noncoding elements to analyze their effect on protein function or generating the optimal result can be a tedious and time-consuming process using standard molecular biology cloning methods. To streamline the process to generate defined expression constructs or libraries of otherwise difficult to express proteins, the Modular Protein Expression Toolbox (MoPET) has been developed (Weber E, PloS One 12(5):e0176314, 2017). The system applies Golden Gate cloning as an assembly method and follows the standardized modular cloning (MoClo) principle (Weber E, PloS One 6(2):e16765, 2011). This cloning platform allows highly efficient DNA assembly of pre-defined, standardized functional DNA modules effecting protein expression with a focus on minimizing the cloning burden in coding regions. The original MoPET system consists of 53 defined DNA modules divided into eight functional main classes and can be flexibly expanded dependent on the need of the experimenter and expression host. However, already with a limited set of only 53 modules, 792,000 different constructs can be rationally designed or used to generate combinatorial expression optimization libraries. We provide here a detailed protocol for the (1) design and generation of level 0 basic parts, (2) generation of defined expressions constructs, and (3) generation of combinatorial expression libraries.
Collapse
Affiliation(s)
- Ernst Weber
- Molecular Design & Engineering, Biologics Research, Bayer AG, Wuppertal, Germany.
| |
Collapse
|
28
|
Nielsen H. Protein Sorting Prediction. Methods Mol Biol 2024; 2715:27-63. [PMID: 37930519 DOI: 10.1007/978-1-0716-3445-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global property-based, and homology-based prediction. In this chapter, the strengths and drawbacks of each of these approaches are described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
29
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
30
|
Kang WH, Park YD, Lim JY, Park HM. LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe. J Microbiol 2024; 62:21-31. [PMID: 38180730 DOI: 10.1007/s12275-023-00097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-β-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2+ through Mbx2.
Collapse
Affiliation(s)
- Won-Hwa Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Y-Biologics Co. Ltd., Daejeon, 34013, Republic of Korea
| | - Yoon-Dong Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, 47809, USA
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
31
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
32
|
Korolkova Y, Mikov A, Lobas A, Solovyeva E, Surin A, Andreev Y, Gorshkov M, Kozlov S. Venom-gland transcriptomics and venom proteomics of the Tibellus oblongus spider. Sci Data 2023; 10:820. [PMID: 37993463 PMCID: PMC10665394 DOI: 10.1038/s41597-023-02703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
The Tibellus oblongus spider is an active hunter that does not spin webs and remains highly underinvestigated in terms of the venom composition. Here, we describe venom glands transcriptome and venom proteome analysis for unveiling the polypeptide composition of Tibellus oblongus spider venom. The resulting EST database includes 1733 records, including 1263 nucleotide sequences with ORFs, of these 942 have been identified as toxin-coding. The database of peptide sequences was built based on of the transcriptomics results. It contains 217 new toxins, 212 of them were detected in the T. oblongus venom by the proteomics.
Collapse
Affiliation(s)
- Yuliya Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklay Str., 117997, Moscow, Russia.
| | - Alexander Mikov
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, 117246, Moscow, Russia
| | - Anna Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, RAS, 38 Bld. 2, Leninsky Pr., 119334, Moscow, Russia
| | - Elizaveta Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, RAS, 38 Bld. 2, Leninsky Pr., 119334, Moscow, Russia
- Department of Molecular and Chemical Physics, Moscow Institute of Physics and Technology (National Research University), 9 Institutsky Per., 141700, Dolgoprudny, Russia
| | - Alexey Surin
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, RAS, 38 Bld. 2, Leninsky Pr., 119334, Moscow, Russia
| | - Yaroslav Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklay Str., 117997, Moscow, Russia
- Moscow Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 8 Bld. 2, Trubetskaya Str., 119991, Moscow, Russia
| | - Mikhail Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, RAS, 38 Bld. 2, Leninsky Pr., 119334, Moscow, Russia
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklay Str., 117997, Moscow, Russia
| |
Collapse
|
33
|
Bezbochina A, Stavinova E, Kovantsev A, Chunaev P. Enhancing Predictability Assessment: An Overview and Analysis of Predictability Measures for Time Series and Network Links. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1542. [PMID: 37998234 PMCID: PMC10670407 DOI: 10.3390/e25111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Driven by the variety of available measures intended to estimate predictability of diverse objects such as time series and network links, this paper presents a comprehensive overview of the existing literature in this domain. Our overview delves into predictability from two distinct perspectives: the intrinsic predictability, which represents a data property independent of the chosen forecasting model and serves as the highest achievable forecasting quality level, and the realized predictability, which represents a chosen quality metric for a specific pair of data and model. The reviewed measures are used to assess predictability across different objects, starting from time series (univariate, multivariate, and categorical) to network links. Through experiments, we establish a noticeable relationship between measures of realized and intrinsic predictability in both generated and real-world time series data (with the correlation coefficient being statistically significant at a 5% significance level). The discovered correlation in this research holds significant value for tasks related to evaluating time series complexity and their potential to be accurately predicted.
Collapse
Affiliation(s)
| | - Elizaveta Stavinova
- National Center for Cognitive Research, ITMO University, 16 Birzhevaya Lane, Saint Petersburg 199034, Russia; (A.B.); (A.K.); (P.C.)
| | | | | |
Collapse
|
34
|
Visagie CM, Magistà D, Ferrara M, Balocchi F, Duong TA, Eichmeier A, Gramaje D, Aylward J, Baker SE, Barnes I, Calhoun S, De Angelis M, Frisvad JC, Hakalova E, Hayes RD, Houbraken J, Grigoriev IV, LaButti K, Leal C, Lipzen A, Ng V, Pangilinan J, Pecenka J, Perrone G, Piso A, Savage E, Spetik M, Wingfield MJ, Zhang Y, Wingfield BD. IMA genome-F18 : The re-identification of Penicillium genomes available in NCBI and draft genomes for Penicillium species from dry cured meat, Penicillium biforme, P. brevicompactum, P. solitum, and P. cvjetkovicii, Pewenomyces kutranfy, Pew. lalenivora, Pew. tapulicola, Pew. kalosus, Teratosphaeria carnegiei, and Trichoderma atroviride SC1. IMA Fungus 2023; 14:21. [PMID: 37803441 PMCID: PMC10559472 DOI: 10.1186/s43008-023-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Felipe Balocchi
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ales Eichmeier
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/a, 70126, Bari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Eliska Hakalova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catarina Leal
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Milan Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
35
|
He L, Zhang Y, Jia Y, Li Z, Li J, Shang K, Ding K, Yu H, Sarker S. A novel pathogenic avipoxvirus infecting oriental turtle dove ( Streptopelia orientalis) in China shows a high genomic and evolutionary proximity with the pigeon avipoxviruses isolated globally. Microbiol Spectr 2023; 11:e0119323. [PMID: 37750697 PMCID: PMC10581063 DOI: 10.1128/spectrum.01193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Avipoxviruses are considered as significant viral pathogen infecting a wide range of domestic and wild bird species globally, yet the majority of avipoxviruses that infect the wild bird species remain uncharacterized and their genetic diversities remain unclear. In this study, we present a novel pathogenic avipoxvirus isolated from the cutaneous pox lesions of a wild oriental turtle dove (Streptopelia orientalis), tentatively named as turtle dovepox virus (TDPV). The avipoxvirus was isolated by using the chorioallantoic membranes of specific pathogen-free chicken embryos which showed characteristic focal pock lesions, followed by cytopathic effects in host cells infected with oriental turtle dovepox virus. An effort in sequencing the whole genome of the poxvirus using next-generation sequencing was given, and the first whole genome sequence of TDPV was obtained. The TDPV genome was 281,386 bp in length and contained 380 predicted open reading frames (ORFs). While 336 of the predicted ORFs showed homology to other characterized avipoxviruses, the other 44 ORFs were unique. Subsequent phylogenetic analyses showed that the novel TDPV shared the closest genetic evolutionary linkage with the avipoxviruses isolated from pigeon in South Africa and India, of which the TDPV genome had the highest sequence similarity (92.5%) with South African pigeonpox virus (FeP2). In conclusion, the sequenced TDPV is significantly different from any other avipoxviruses isolated from avian or other natural host species considering genomic architecture and observed sequence similarity index. Thus, it likely should be considered a separate species. IMPORTANCE Over the past few decades, avipoxviruses have been found in a number of wild bird species including the oriental turtle dove. However, there is no whole genome sequence information on avipoxviruses isolated from oriental turtle dove, leaving us unclear about the evolutionary linkage of avipoxviruses in oriental turtle dove and other wild bird species. Thus, we believe that our study makes a significant contribution because it is the first report of the whole genome sequence of TDPV isolated from a wild oriental turtle dove, which enriches the genomic information of the genus Avipoxvirus, furthermore, contributes to tracking the genetic evolution of avipoxviruses-infected oriental turtle dove species.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuhao Zhang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zedian Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Shang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Haotong Yu
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
36
|
Diesel J, Molano G, Montecinos GJ, DeWeese K, Calhoun S, Kuo A, Lipzen A, Salamov A, Grigoriev IV, Reed DC, Miller RJ, Nuzhdin SV, Alberto F. A scaffolded and annotated reference genome of giant kelp (Macrocystis pyrifera). BMC Genomics 2023; 24:543. [PMID: 37704968 PMCID: PMC10498591 DOI: 10.1186/s12864-023-09658-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.
Collapse
Affiliation(s)
- Jose Diesel
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gabriel J Montecinos
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kelly DeWeese
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sara Calhoun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Daniel C Reed
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sergey V Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
37
|
Di Donfrancesco A, Berlingieri C, Giacomello M, Frascarelli C, Magalhaes Rebelo AP, Bindoff LA, Reeval S, Renbaum P, Santorelli FM, Massaro G, Viscomi C, Zeviani M, Ghezzi D, Bottani E, Brunetti D. PPAR-gamma agonist pioglitazone recovers mitochondrial quality control in fibroblasts from PITRM1-deficient patients. Front Pharmacol 2023; 14:1220620. [PMID: 37576821 PMCID: PMC10415619 DOI: 10.3389/fphar.2023.1220620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Biallelic variants in PITRM1 are associated with a slowly progressive syndrome characterized by intellectual disability, spinocerebellar ataxia, cognitive decline and psychosis. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests diverse oligopeptides, including the mitochondrial targeting sequences (MTS) that are cleaved from proteins imported across the inner mitochondrial membrane by the mitochondrial processing peptidase (MPP). Mitochondrial peptidases also play a role in the maturation of Frataxin, the protein affected in Friedreich's ataxia. Recent studies in yeast indicated that the mitochondrial matrix protease Ste23, which is a homologue of the human insulin-degrading enzyme (IDE), cooperates with Cym1 (homologue of PITRM1) to ensure the proper functioning of the preprotein processing machinery. In humans, IDE could be upregulated by Peroxisome Proliferator-Activated Receptor Gamma (PPARG) agonists. Methods: We investigated preprotein processing, mitochondrial membrane potential and MTS degradation in control and patients' fibroblasts, and we evaluated the pharmacological effect of the PPARG agonist Pioglitazone on mitochondrial proteostasis. Results: We discovered that PITRM1 dysfunction results in the accumulation of MTS, leading to the disruption and dissipation of the mitochondrial membrane potential. This triggers a feedback inhibition of MPP activity, consequently impairing the processing and maturation of Frataxin. Furthermore, we found that the pharmacological stimulation of PPARG by Pioglitazone upregulates IDE and also PITRM1 protein levels restoring the presequence processing machinery and improving Frataxin maturation and mitochondrial function. Discussion: Our findings provide mechanistic insights and suggest a potential pharmacological strategy for this rare neurodegenerative mitochondrial disease.
Collapse
Affiliation(s)
- Alessia Di Donfrancesco
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Christian Berlingieri
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Frascarelli
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | - Segel Reeval
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Giulia Massaro
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Daniele Ghezzi
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Dario Brunetti
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Aghili SS, Zare R, Jahangirnia A. Evaluation of Paxillin Expression in Epithelial Dysplasia, Oral Squamous Cell Carcinoma, Lichen Planus with and without Dysplasia, and Hyperkeratosis: A Retrospective Cross-Sectional Study. Diagnostics (Basel) 2023; 13:2476. [PMID: 37568839 PMCID: PMC10417688 DOI: 10.3390/diagnostics13152476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Paxillin is a cytoskeletal protein involved in the pathogenesis of several types of cancers. However, the roles of paxillin in epithelial dysplasia (ED), oral squamous cell carcinoma (OSCC), oral lichen planus with dysplasia (OLPD), hyperkeratosis (HK), and oral lichen planus (OLP) have remained unnoticed in the literature. This study aimed to evaluate its attainable functions in the pathogenesis and malignant transformation of potentially malignant oral epithelium and benign lesions. METHODS In this retrospective cross-sectional study, paxillin expression was investigated in 99 tissue samples, including 18 cases of OSCC, 21 ED, 23 OLP, 21 OLPD, and 16 cases of HK. The tissue sections also underwent immunohistochemical paxillin staining using 3,3-diaminobenzidine (DAB) chromogen. The intensity, location, and percentage of staining were examined across all groups. Data were analyzed using the Shapiro-Wilk test, ANOVA, Pearson chi-square, Kruskal-Wallis, and Dunn's post hoc test. RESULTS The cytoplasmic percentage and intensity staining of Paxillin expression were evident in the central/suprabasal and basal/peripheral layers of all the obtained samples. The final staining score was significantly higher in OSCC and dysplasia compared to HK and OLP (p = 0.004). It was found that paxillin expression is associated with the grade of dysplastic samples (p < 0.001). CONCLUSION The present study provides evidence that paxillin may be involved in the pathogenesis of OSCC and the development and progression of dysplastic tissue, since the paxillin expression was higher than that of HK and OLP.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran;
| | - Razieh Zare
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-53734, Iran
| | | |
Collapse
|
39
|
Valenzuela-Leon PC, Campos Chagas A, Martin-Martin I, Williams AE, Berger M, Shrivastava G, Paige AS, Kotsyfakis M, Tirloni L, Calvo E. Guianensin, a Simulium guianense salivary protein, has broad anti-hemostatic and anti-inflammatory properties. Front Immunol 2023; 14:1163367. [PMID: 37469515 PMCID: PMC10353047 DOI: 10.3389/fimmu.2023.1163367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Background Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.
Collapse
Affiliation(s)
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S. Paige
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
41
|
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, Dani N, Grant B, Pragana A, Head JP, Gupta S, Shannon ML, Chifamba FF, Hawks-Mayer H, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Andermann ML, Kanarek N, Lipton JO, Lehtinen MK. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 2023; 14:3720. [PMID: 37349305 PMCID: PMC10287727 DOI: 10.1038/s41467-023-39326-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paul A Soden
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bradford Grant
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Vernon
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Lyterian Therapeutics, South San Francisco, 94080, CA, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan O Lipton
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Morita S, Shibata TF, Nishiyama T, Kobayashi Y, Yamaguchi K, Toga K, Ohde T, Gotoh H, Kojima T, Weber JN, Salvemini M, Bino T, Mase M, Nakata M, Mori T, Mori S, Cornette R, Sakura K, Lavine LC, Emlen DJ, Niimi T, Shigenobu S. The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation. Sci Rep 2023; 13:8735. [PMID: 37253792 DOI: 10.1038/s41598-023-35246-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.
Collapse
Grants
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- 23128505, 25128706, 16H01452, 18H04766, 20H04933, 20H05944, 17H06384, 22128008, 19K16181, 21K15135 Japan Society for the Promotion of Science
- IOS-1456133 National Science Foundation
- IOS-1456133 National Science Foundation
Collapse
Affiliation(s)
- Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomoko F Shibata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tomoaki Nishiyama
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Yuuki Kobayashi
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Japan
| | - Katsushi Yamaguchi
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Kouhei Toga
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- URA Division, Office of Research and Academia-Government-Community Collaboration, Hiroshima University, Hiroshima, Japan
| | - Takahiro Ohde
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroki Gotoh
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Jesse N Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Takahiro Bino
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Mutsuki Mase
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Moe Nakata
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shogo Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kazuki Sakura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Douglas J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT, USA
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, Japan.
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
43
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
44
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
45
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
46
|
Davies JS, Currie MJ, North RA, Scalise M, Wright JD, Copping JM, Remus DM, Gulati A, Morado DR, Jamieson SA, Newton-Vesty MC, Abeysekera GS, Ramaswamy S, Friemann R, Wakatsuki S, Allison JR, Indiveri C, Drew D, Mace PD, Dobson RCJ. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2023; 14:1120. [PMID: 36849793 PMCID: PMC9971032 DOI: 10.1038/s41467-023-36590-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Jack M Copping
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dustin R Morado
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Subramanian Ramaswamy
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University, 1203 W State St, West Lafayette, IN 47906, USA
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, S-40530, Gothenburg, Sweden
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
47
|
Rasmussen CB, Scavenius C, Thøgersen IB, Harwood SL, Larsen Ø, Bjerga GEK, Stougaard P, Enghild JJ, Thøgersen MS. Characterization of a novel cold-adapted intracellular serine protease from the extremophile Planococcus halocryophilus Or1. Front Microbiol 2023; 14:1121857. [PMID: 36910232 PMCID: PMC9995970 DOI: 10.3389/fmicb.2023.1121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The enzymes of microorganisms that live in cold environments must be able to function at ambient temperatures. Cold-adapted enzymes generally have less ordered structures that convey a higher catalytic rate, but at the cost of lower thermodynamic stability. In this study, we characterized P355, a novel intracellular subtilisin protease (ISP) derived from the genome of Planococcus halocryophilus Or1, which is a bacterium metabolically active down to -25°C. P355's stability and activity at varying pH values, temperatures, and salt concentrations, as well as its temperature-dependent kinetics, were determined and compared to an uncharacterized thermophilic ISP (T0099) from Parageobacillus thermoglucosidasius, a previously characterized ISP (T0034) from Planococcus sp. AW02J18, and Subtilisin Carlsberg (SC). The results showed that P355 was the most heat-labile of these enzymes, closely followed by T0034. P355 and T0034 exhibited catalytic constants (k cat ) that were much higher than those of T0099 and SC. Thus, both P355 and T0034 demonstrate the characteristics of the stability-activity trade-off that has been widely observed in cold-adapted proteases.
Collapse
Affiliation(s)
| | | | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Øivind Larsen
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
48
|
Misal SA, Ovhal SD, Li S, Karty JA, Tang H, Radivojac P, Reilly JP. Non-Specific Signal Peptidase Processing of Extracellular Proteins in Staphylococcus aureus N315. Proteomes 2023; 11:proteomes11010008. [PMID: 36810564 PMCID: PMC9944065 DOI: 10.3390/proteomes11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the -1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms.
Collapse
Affiliation(s)
- Santosh A. Misal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
- Correspondence: ; Tel.: +1-301-761-7277
| | - Shital D. Ovhal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Sujun Li
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Predrag Radivojac
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
- Khoury College of Computer Sciences, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - James P. Reilly
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
49
|
Ang’ang’o LM, Herren JK, Tastan Bishop Ö. Structural and Functional Annotation of Hypothetical Proteins from the Microsporidia Species Vittaforma corneae ATCC 50505 Using in silico Approaches. Int J Mol Sci 2023; 24:3507. [PMID: 36834914 PMCID: PMC9960886 DOI: 10.3390/ijms24043507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Microsporidia are spore-forming eukaryotes that are related to fungi but have unique traits that set them apart. They have compact genomes as a result of evolutionary gene loss associated with their complete dependency on hosts for survival. Despite having a relatively small number of genes, a disproportionately high percentage of the genes in microsporidia genomes code for proteins whose functions remain unknown (hypothetical proteins-HPs). Computational annotation of HPs has become a more efficient and cost-effective alternative to experimental investigation. This research developed a robust bioinformatics annotation pipeline of HPs from Vittaforma corneae, a clinically important microsporidian that causes ocular infections in immunocompromised individuals. Here, we describe various steps to retrieve sequences and homologs and to carry out physicochemical characterization, protein family classification, identification of motifs and domains, protein-protein interaction network analysis, and homology modelling using a variety of online resources. Classification of protein families produced consistent findings across platforms, demonstrating the accuracy of annotation utilizing in silico methods. A total of 162 out of 2034 HPs were fully annotated, with the bulk of them categorized as binding proteins, enzymes, or regulatory proteins. The protein functions of several HPs from Vittaforma corneae were accurately inferred. This improved our understanding of microsporidian HPs despite challenges related to the obligate nature of microsporidia, the absence of fully characterized genes, and the lack of homologous genes in other systems.
Collapse
Affiliation(s)
- Lilian Mbaisi Ang’ang’o
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Jeremy Keith Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
50
|
Lopez AJ, Narvaez-Ortiz HY, Rincon-Benavides MA, Pulido DC, Fuentes Suarez LE, Zimmermann BH. New Insights into rice pyrimidine catabolic enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1079778. [PMID: 36818891 PMCID: PMC9930899 DOI: 10.3389/fpls.2023.1079778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and β-ureidopropionase (β-UP), has emerged as a potential participant in the abiotic stress response of rice. METHODS The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. RESULTS The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. DISCUSSION OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."
Collapse
|