1
|
Zhu Z, Ashrafian H, Tabrizi NM, Matas E, Girard L, Ma H, Nice EC. Antibody numbering schemes: advances, comparisons and tools for antibody engineering. Protein Eng Des Sel 2025; 38:gzaf005. [PMID: 40169149 PMCID: PMC11997657 DOI: 10.1093/protein/gzaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025] Open
Abstract
The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Hossein Ashrafian
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Navid Mohammadian Tabrizi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Emily Matas
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Louisa Girard
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106, United States of America
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Nguyen NM, Nakao K, Kobayashi R, Taniguchi H, Yokoyama F, Horiuchi JI, Kumada Y. Generation of rabbit single-chain variable fragments with different physicochemical and biological properties by complementary determining region-grafting technology. J Biosci Bioeng 2024; 138:439-444. [PMID: 39198103 DOI: 10.1016/j.jbiosc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
In this study, we have demonstrated a complementary-determining region (CDR) grafting technology for the generation of rabbit scFvs with different antigen recognition and physicochemical properties. The antigen-binding affinity of the CDR-grafted anti-CRP scFv, C1R/B1R (V1), which was generated by the CDR/framework region (CDR/FR) definition based on the traditional numbering rule, was insufficient when compared to that of the original clone, C1R, suggesting that the amino acid residues outside the original CDRs might significantly contribute to antigen recognition in rabbit scFvs. We redefined new CDRs and FRs to maintain antigen-binding affinities through the extension of multiple amino acid residues for CDRH1 and CDRH2, based on the amino acid sequence alignments of rabbit scFvs isolated from phage libraries. The new version successfully maintained the antigen binding affinity. CDR-grafted scFvs possessing a common CDR sequence and different FR sequences were successfully generated based on this new CDR/FR definition, and their physicochemical properties were further investigated. The antigen-binding activities of rabbit scFvs on Maxisorp varied between the tested clones in sandwich ELISA, supporting the idea that the combination of CDR with different FRs might change the physicochemical properties of scFvs on a solid material. The CDR-grafted scFvs possessing a frame sequence of anti-CRP scFv C2R maintained the ability to bind to protein L and were successfully purified. Expression titers showed improved solubility by diminishing the amount of insoluble scFvs. Thus, the method developed in this study is promising for generating alternatives with strict antigen binding recognition and different physicochemical properties.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiichi Nakao
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryo Kobayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haruka Taniguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Fuki Yokoyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
3
|
Hoerschinger V, Waibl F, Pomarici ND, Loeffler JR, Deane CM, Georges G, Kettenberger H, Fernández-Quintero ML, Liedl KR. PEP-Patch: Electrostatics in Protein-Protein Recognition, Specificity, and Antibody Developability. J Chem Inf Model 2023; 63:6964-6971. [PMID: 37934909 PMCID: PMC10685443 DOI: 10.1021/acs.jcim.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes. Here, we present PEP-Patch, a tool to visualize and quantify the electrostatic potential on the protein surface in terms of surface patches, denoting separated areas of the surface with a common physical property. We highlight its applicability to elucidate protease substrate specificity and antibody-antigen recognition and predict heparin column retention times of antibodies as an indicator of pharmacokinetics.
Collapse
Affiliation(s)
- Valentin
J. Hoerschinger
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Nancy D. Pomarici
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Charlotte M. Deane
- Department
of Statistics, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guy Georges
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Hubert Kettenberger
- Roche
Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Monica L. Fernández-Quintero
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, and Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Fernández-Quintero ML, Kokot J, Waibl F, Fischer ALM, Quoika PK, Deane CM, Liedl KR. Challenges in antibody structure prediction. MAbs 2023; 15:2175319. [PMID: 36775843 PMCID: PMC9928471 DOI: 10.1080/19420862.2023.2175319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 02/14/2023] Open
Abstract
Advances in structural biology and the exponential increase in the amount of high-quality experimental structural data available in the Protein Data Bank has motivated numerous studies to tackle the grand challenge of predicting protein structures. In 2020 AlphaFold2 revolutionized the field using a combination of artificial intelligence and the evolutionary information contained in multiple sequence alignments. Antibodies are one of the most important classes of biotherapeutic proteins. Accurate structure models are a prerequisite to advance biophysical property predictions and consequently antibody design. Specialized tools used to predict antibody structures based on different principles have profited from current advances in protein structure prediction based on artificial intelligence. Here, we emphasize the importance of reliable protein structure models and highlight the enormous advances in the field, but we also aim to increase awareness that protein structure models, and in particular antibody models, may suffer from structural inaccuracies, namely incorrect cis-amide bonds, wrong stereochemistry or clashes. We show that these inaccuracies affect biophysical property predictions such as surface hydrophobicity. Thus, we stress the importance of carefully reviewing protein structure models before investing further computing power and setting up experiments. To facilitate the assessment of model quality, we provide a tool "TopModel" to validate structure models.
Collapse
Affiliation(s)
| | - Janik Kokot
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Patrick K. Quoika
- Center for Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics, Technical University of Munich, Garching, Germany
| | | | - Klaus R. Liedl
- CONTACT Klaus R. Liedl Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Denizci Öncü M, Balcıoğlu BK, Özgür B, Öztürk HÜ, Serhatlı M, Işık Ş, Erdağ B, Dinler Doğanay G, Özdemir Bahadır A. Structure-based engineering of an antiangiogenic scFv antibody for soluble production in E. coli without loss of activity. Biotechnol Appl Biochem 2021; 69:2122-2137. [PMID: 34694021 DOI: 10.1002/bab.2273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Development of monoclonal antibody therapeutics against vascular endothelial growth factor receptor 2 (VEGFR-2) protein, which is the main regulator in angiogenesis, has been a major challenge for years. In the current study, we engineer an inclusion body forming single-chain variable fragment (scFv) against VEGFR-2 by using complementarity determining regions (CDR) grafting technique to improve its solubility and investigate the activity of the engineered molecule. CDR sequences of the target scFv were grafted into the framework of another intrinsically soluble scFv molecule. Based on the computational results, CDR grafting has increased the solubility of the grafted scFv molecule. Results confirmed that the grafting approach increased in vivo folding properties of the target scFv molecule compared with the original scFv molecule. Similar binding affinities to the VEGFR-2 were observed for the original and the grafted scFv by surface plasmon resonance assays. Biological activity assays, including human umbilical vein endothelial cells proliferation and wound healing assays, showed that grafted scFv molecule has an antiangiogenic property. This study suggests that an antiangiogenic scFv fully expressed as an inclusion body can be rescued by grafting its CDR regions to a scFv expressed in a soluble form without any loss in its binding property and its activity.
Collapse
Affiliation(s)
- Melis Denizci Öncü
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey.,Molecular Biology and Genetics Department, İstanbul Technical University, Istanbul, Turkey
| | - Bertan Koray Balcıoğlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Beytullah Özgür
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Hasan Ümit Öztürk
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Müge Serhatlı
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Şeyma Işık
- Medical Biotechnology Department, Acıbadem University, Istanbul, Turkey
| | - Berrin Erdağ
- Health Sciences Department, İstanbul Aydın University, Istanbul, Turkey
| | - Gizem Dinler Doğanay
- Molecular Biology and Genetics Department, İstanbul Technical University, Istanbul, Turkey
| | - Aylin Özdemir Bahadır
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| |
Collapse
|
6
|
Orlando M, Fortuna S, Oloketuyi S, Bajc G, Goldenzweig A, de Marco A. CDR1 Composition Can Affect Nanobody Recombinant Expression Yields. Biomolecules 2021; 11:biom11091362. [PMID: 34572576 PMCID: PMC8465892 DOI: 10.3390/biom11091362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
The isolation of nanobodies from pre-immune libraries by means of biopanning is a straightforward process. Nevertheless, the recovered candidates often require optimization to improve some of their biophysical characteristics. In principle, CDRs are not mutated because they are likely to be part of the antibody paratope, but in this work, we describe a mutagenesis strategy that specifically addresses CDR1. Its sequence was identified as an instability hot spot by the PROSS program, and the available structural information indicated that four CDR1 residues bound directly to the antigen. We therefore modified the loop flexibility with the addition of an extra glycine rather than by mutating single amino acids. This approach significantly increased the nanobody yields but traded-off with moderate affinity loss. Accurate modeling coupled with atomistic molecular dynamics simulations enabled the modifications induced by the glycine insertion and the rationale behind the engineering design to be described in detail.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy;
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Sandra Oloketuyi
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia;
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia;
| | - Adi Goldenzweig
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Rožna Dolina, 5000 Nova Gorica, Slovenia;
- Correspondence: ; Tel.: +386-(05)-3315295
| |
Collapse
|
7
|
Fernández-Quintero ML, Kroell KB, Bacher LM, Loeffler JR, Quoika PK, Georges G, Bujotzek A, Kettenberger H, Liedl KR. Germline-Dependent Antibody Paratope States and Pairing Specific V H-V L Interface Dynamics. Front Immunol 2021; 12:675655. [PMID: 34447370 PMCID: PMC8382685 DOI: 10.3389/fimmu.2021.675655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies have emerged as one of the fastest growing classes of biotherapeutic proteins. To improve the rational design of antibodies, we investigate the conformational diversity of 16 different germline combinations, which are composed of 4 different kappa light chains paired with 4 different heavy chains. In this study, we systematically show that different heavy and light chain pairings strongly influence the paratope, interdomain interaction patterns and the relative VH-VL interface orientations. We observe changes in conformational diversity and substantial population shifts of the complementarity determining region (CDR) loops, resulting in distinct dominant solution structures and differently favored canonical structures. Additionally, we identify conformational changes in the structural diversity of the CDR-H3 loop upon different heavy and light chain pairings, as well as upon changes in sequence and structure of the neighboring CDR loops, despite having an identical CDR-H3 loop amino acid sequence. These results can also be transferred to all CDR loops and to the relative VH-VL orientation, as certain paratope states favor distinct interface angle distributions. Furthermore, we directly compare the timescales of sidechain rearrangements with the well-described transition kinetics of conformational changes in the backbone of the CDR loops. We show that sidechain flexibilities are strongly affected by distinct heavy and light chain pairings and decipher germline-specific structural features co-determining stability. These findings reveal that all CDR loops are strongly correlated and that distinct heavy and light chain pairings can result in different paratope states in solution, defined by a characteristic combination of CDR loop conformations and VH-VL interface orientations. Thus, these results have broad implications in the field of antibody engineering, as they clearly show the importance of considering paired heavy and light chains to understand the antibody binding site, which is one of the key aspects in the design of therapeutics.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina B Kroell
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lisa M Bacher
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Johannes R Loeffler
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Patrick K Quoika
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Fernández-Quintero ML, Georges G, Varga JM, Liedl KR. Ensembles in solution as a new paradigm for antibody structure prediction and design. MAbs 2021; 13:1923122. [PMID: 34030577 PMCID: PMC8158028 DOI: 10.1080/19420862.2021.1923122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rise of antibodies as a promising and rapidly growing class of biotherapeutic proteins has motivated numerous studies to characterize and understand antibody structures. In the past decades, the number of antibody crystal structures increased substantially, which revolutionized the atomistic understanding of antibody functions. Even though numerous static structures are known, various biophysical properties of antibodies (i.e., specificity, hydrophobicity and stability) are governed by their dynamic character. Additionally, the importance of high-quality structures in structure–function relationship studies has substantially increased. These structure–function relationship studies have also created a demand for precise homology models of antibody structures, which allow rational antibody design and engineering when no crystal structure is available. Here, we discuss various aspects and challenges in antibody design and extend the paradigm of describing antibodies with only a single static structure to characterizing them as dynamic ensembles in solution.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Janos M Varga
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Fernández-Quintero ML, Kroell KB, Hofer F, Riccabona JR, Liedl KR. Mutation of Framework Residue H71 Results in Different Antibody Paratope States in Solution. Front Immunol 2021; 12:630034. [PMID: 33737932 PMCID: PMC7960778 DOI: 10.3389/fimmu.2021.630034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Characterizing and understanding the antibody binding interface have become a pre-requisite for rational antibody design and engineering. The antigen-binding site is formed by six hypervariable loops, known as the complementarity determining regions (CDRs) and by the relative interdomain orientation (VH-VL). Antibody CDR loops with a certain sequence have been thought to be limited to a single static canonical conformation determining their binding properties. However, it has been shown that antibodies exist as ensembles of multiple paratope states, which are defined by a characteristic combination of CDR loop conformations and interdomain orientations. In this study, we thermodynamically and kinetically characterize the prominent role of residue 71H (Chothia nomenclature), which does not only codetermine the canonical conformation of the CDR-H2 loop but also results in changes in conformational diversity and population shifts of the CDR-H1 and CDR-H3 loop. As all CDR loop movements are correlated, conformational rearrangements of the heavy chain CDR loops also induce conformational changes in the CDR-L1, CDR-L2, and CDR-L3 loop. These overall conformational changes of the CDR loops also influence the interface angle distributions, consequentially leading to different paratope states in solution. Thus, the type of residue of 71H, either an alanine or an arginine, not only influences the CDR-H2 loop ensembles, but co-determines the paratope states in solution. Characterization of the functional consequences of mutations of residue 71H on the paratope states and interface orientations has broad implications in the field of antibody engineering.
Collapse
Affiliation(s)
| | | | | | | | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm 2020; 36:109-122. [PMID: 32936001 DOI: 10.1089/cbr.2020.3941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy is a fast evolving treatment strategy to reduce unwanted damage to healthy tissues, while increasing efficacy and specificity. Driven by state-of-the-art technology, this therapeutic approach is especially true of cancer. Antibodies with their remarkable specificity have revolutionized therapeutic strategies for autoimmune conditions and cancer, particularly blood-borne cancers, but have severe limitations in treating solid tumors. This is mainly due to their large molecular size, low stability, tumor-tissue penetration difficulties, and pharmacokinetic properties. The tumor microenvironment, rich in immune-suppressing molecules is also a major barrier in targeting solid tumors by antibody-based drugs. Nanobodies have recently emerged as an alternative therapeutic agent to overcome some of the drawbacks of traditional antibody treatment. Nanobodies are the VHH domains found on the heavy-chain only antibodies of camelids and are the smallest naturally available antibody fragments with excellent antigen-binding specificity and affinity, equivalent to conventional antibodies but with molecular weights as low as 15 kDa. The compact size, high stability, enhanced hydrophilicity, particularly in framework regions, excellent epitope interactions with protruding CDR3 regions, and improved tissue penetration make nanobodies the next-generation therapeutics (Nano-BioDrugs). In this review, the authors discuss the interesting properties of nanobodies and their advantages over their conventional counterparts and provide insight into how nanobodies are being utilized as agonists and antagonists, bispecific constructs, and drug and enzyme-conjugates to combat the tumor microenvironment and treat disease.
Collapse
Affiliation(s)
- Nuthan V Bathula
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hemashree Bommadevara
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
13
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
14
|
Optimization of an Antibody Light Chain Framework Enhances Expression, Biophysical Properties and Pharmacokinetics. Antibodies (Basel) 2019; 8:antib8030046. [PMID: 31544852 PMCID: PMC6784111 DOI: 10.3390/antib8030046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022] Open
Abstract
Efficacy, safety, and manufacturability of therapeutic antibodies are influenced by their biopharmaceutical and biophysical properties. These properties can be optimized by library approaches or rationale protein design. Here, we employed a protein engineering approach to modify the variable domain of the light chain (VL) framework of an oxidized macrophage migration inhibitory factor (oxMIF)-specific antibody. The amendment of the antibody sequence was based on homology to human germline VL genes. Three regions or positions were identified in the VL domain—L1-4, L66, L79—and mutated independently or in combination to match the closest germline V gene. None of the mutations altered oxMIF specificity or affinity, but some variants improved thermal stability, aggregation propensity, and resulted in up to five-fold higher expression. Importantly, the improved biopharmaceutical properties translated into a superior pharmacokinetic profile of the antibody. Thus, optimization of the V domain framework can ameliorate the biophysical qualities of a therapeutic antibody candidate, and as result its manufacturability, and also has the potential to improve pharmacokinetics.
Collapse
|
15
|
Germinality does not necessarily define mAb expression and thermal stability. Appl Microbiol Biotechnol 2019; 103:7505-7518. [PMID: 31350616 PMCID: PMC6719414 DOI: 10.1007/s00253-019-09998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody’s germline family, highlighting the fact that mAbs should be treated individually.
Collapse
|
16
|
Abstract
Ribosome display has proven to be a powerful in vitro selection and evolution method for generating high-affinity binders from libraries of folded proteins. It works entirely in vitro, and this has two important consequences. First, since no transformation of any cells is required, libraries with much greater diversity can be handled than with most other techniques. Second, since a library does not have to be cloned and transformed, it is very convenient to introduce random errors in the library by PCR-based methods and select improved binders. Thus, a true directed evolution, an iteration between randomization and selection over several generations, can be conveniently carried out, e.g., for affinity maturation, either on a given clone or on the whole library. Ribosome display has been successfully applied to antibody single-chain Fv fragments (scFv), which can be selected not only for specificity but also for stability and catalytic activity. High-affinity binders with new target specificity can be obtained from highly diverse libraries in only a few selection rounds. In this protocol, the selection from the library and the process of affinity maturation and off-rate selection are explained in detail.
Collapse
|
17
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and Simultaneous Optimization of Monoclonal Antibody. Methods Mol Biol 2019; 1904:213-230. [PMID: 30539472 DOI: 10.1007/978-1-4939-8958-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physicochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical, Kamakura, Kanagawa, Japan
| |
Collapse
|
18
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
19
|
Kirik U, Persson H, Levander F, Greiff L, Ohlin M. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths. Front Immunol 2017; 8:1433. [PMID: 29180996 PMCID: PMC5694033 DOI: 10.3389/fimmu.2017.01433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.
Collapse
Affiliation(s)
- Ufuk Kirik
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development Platform, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.,Science for Life Laboratory, Drug Discovery and Development Platform, Human Antibody Therapeutics, Lund University, Lund, Sweden.,U-READ, Lund School of Technology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Improved scFv Anti-LOX-1 Binding Activity by Fusion with LOX-1-Binding Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8946935. [PMID: 29094051 PMCID: PMC5637825 DOI: 10.1155/2017/8946935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
The oxidized low-density lipoprotein receptor-1 (LOX-1) targeted single-chain variable fragment (scFvs) is a promising molecule for the targeted delivery of imaging and therapeutic molecules of atherosclerotic diseases; however, its applications are limited by the inherent low antigen affinity. In this study, the three-dimensional (3D) model of the anti-LOX-1 scFv was constructed and its docking with the LOX-1 protein was developed. To improve the LOX-1-binding activity, the anti-LOX-1 scFv was designed to fuse with one of three LOX-1-binding heptapeptides, LTPATAI, FQTPPQL, and LSIPPKA, at its N-terminus and C-terminus and in the linker region, which have different LOX-1-binding interfaces with the anti-LOX-1 scFv analyzed by an array of computational approaches. These scFv/peptide fusions were constructed, successfully expressed in Brevibacillus choshinensis hosts, and purified by a two-step column purification process. The antigen binding activity, structural characteristics, thermal stability, and stability in serum of these fusion proteins were examined. Results showed that the scFv with N-terminal fusing peptides proteins demonstrated increased LOX-1-binding activity without decrease in stability. These findings will help increase the application efficacy of LOX-1 targeting scFv in LOX-1-based therapy.
Collapse
|
21
|
Herold EM, John C, Weber B, Kremser S, Eras J, Berner C, Deubler S, Zacharias M, Buchner J. Determinants of the assembly and function of antibody variable domains. Sci Rep 2017; 7:12276. [PMID: 28947772 PMCID: PMC5613017 DOI: 10.1038/s41598-017-12519-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023] Open
Abstract
The antibody Fv module which binds antigen consists of the variable domains VL and VH. These exhibit a conserved ß-sheet structure and comprise highly variable loops (CDRs). Little is known about the contributions of the framework residues and CDRs to their association. We exchanged conserved interface residues as well as CDR loops and tested the effects on two Fvs interacting with moderate affinities (KDs of ~2.5 µM and ~6 µM). While for the rather instable domains, almost all mutations had a negative effect, the more stable domains tolerated a number of mutations of conserved interface residues. Of particular importance for Fv association are VLP44 and VHL45. In general, the exchange of conserved residues in the VL/VH interface did not have uniform effects on domain stability. Furthermore, the effects on association and antigen binding do not strictly correlate. In addition to the interface, the CDRs modulate the variable domain framework to a significant extent as shown by swap experiments. Our study reveals a complex interplay of domain stability, association and antigen binding including an unexpected strong mutual influence of the domain framework and the CDRs on stability/association on the one side and antigen binding on the other side.
Collapse
Affiliation(s)
- Eva Maria Herold
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.,Sanofi-Aventis GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Christine John
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Stephan Kremser
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Jonathan Eras
- ETH Zürich, Otto-Stern-Weg 5, 8093, Zuerich, Switzerland
| | - Carolin Berner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Sabrina Deubler
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.
| |
Collapse
|
22
|
Arimori T, Kitago Y, Umitsu M, Fujii Y, Asaki R, Tamura-Kawakami K, Takagi J. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 2017; 25:1611-1622.e4. [PMID: 28919443 DOI: 10.1016/j.str.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/22/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp. Finally, Fv-clasp antibodies showed superior "chaperoning" activity over conventional Fab fragments, and facilitated the structure determination of an ectodomain fragment of integrin α6β1.
Collapse
Affiliation(s)
- Takao Arimori
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Kitago
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masataka Umitsu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Fujii
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Asaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Egan TJ, Diem D, Weldon R, Neumann T, Meyer S, Urech DM. Novel multispecific heterodimeric antibody format allowing modular assembly of variable domain fragments. MAbs 2016; 9:68-84. [PMID: 27786600 PMCID: PMC5240654 DOI: 10.1080/19420862.2016.1248012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multispecific antibody formats provide a promising platform for the development of novel therapeutic concepts that could facilitate the generation of safer, more effective pharmaceuticals. However, the production and use of such antibody-based multispecifics is often made complicated by: 1) the instability of the antibody fragments of which they consist, 2) undesired inter-subunit associations, and 3) the need to include recombinant heterodimerization domains that confer distribution-impairing bulk or enhance immunogenicity. In this paper, we describe a broadly-applicable method for the stabilization of human or humanized antibody Fv fragments that entails replacing framework region IV of a Vκ1/VH3-consensus Fv framework with the corresponding germ-line sequence of a λ-type VL chain. We then used this stable Fv framework to generate a novel heterodimeric multispecific antibody format that assembles by cognate VL/VH associations between 2 split variable domains in the core of the complex. This format, termed multispecific antibody-based therapeutics by cognate heterodimerization (MATCH), can be applied to produce homogeneous and highly stable antibody-derived molecules that simultaneously bind 4 distinct antigens. The heterodimeric design of the MATCH format allows efficient in-format screening of binding domain combinations that result in maximal cooperative activity.
Collapse
Affiliation(s)
- Timothy J Egan
- a Numab AG, Wadenswil , Switzerland.,b Cartilage Engineering & Regeneration Lab, Department of Health , Science & Technology, The Swiss Federal Institute of Technology (ETH) , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St. Andre M, Svenson K, Morris C, Tchistiakova L. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. MAbs 2016; 8:1302-1318. [PMID: 27625211 PMCID: PMC5058614 DOI: 10.1080/19420862.2016.1215786] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 01/29/2023] Open
Abstract
Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.
Collapse
Affiliation(s)
| | | | | | - Susan Benard
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yijie Gao
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Mark Krebs
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Kevin Parris
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Kris Svenson
- Biomedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | |
Collapse
|
25
|
Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, Baker BM, Kranz DM. Deep Mutational Scans as a Guide to Engineering High Affinity T Cell Receptor Interactions with Peptide-bound Major Histocompatibility Complex. J Biol Chem 2016; 291:24566-24578. [PMID: 27681597 DOI: 10.1074/jbc.m116.748681] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Proteins are often engineered to have higher affinity for their ligands to achieve therapeutic benefit. For example, many studies have used phage or yeast display libraries of mutants within complementarity-determining regions to affinity mature antibodies and T cell receptors (TCRs). However, these approaches do not allow rapid assessment or evolution across the entire interface. By combining directed evolution with deep sequencing, it is now possible to generate sequence fitness landscapes that survey the impact of every amino acid substitution across the entire protein-protein interface. Here we used the results of deep mutational scans of a TCR-peptide-MHC interaction to guide mutational strategies. The approach yielded stable TCRs with affinity increases of >200-fold. The substitutions with the greatest enrichments based on the deep sequencing were validated to have higher affinity and could be combined to yield additional improvements. We also conducted in silico binding analyses for every substitution to compare them with the fitness landscape. Computational modeling did not effectively predict the impacts of mutations distal to the interface and did not account for yeast display results that depended on combinations of affinity and protein stability. However, computation accurately predicted affinity changes for mutations within or near the interface, highlighting the complementary strengths of computational modeling and yeast surface display coupled with deep mutational scanning for engineering high affinity TCRs.
Collapse
Affiliation(s)
- Daniel T Harris
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Ningyan Wang
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Timothy P Riley
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - Scott D Anderson
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Nishant K Singh
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - Erik Procko
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Brian M Baker
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - David M Kranz
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and.
| |
Collapse
|
26
|
Sato Y, Kujirai T, Arai R, Asakawa H, Ohtsuki C, Horikoshi N, Yamagata K, Ueda J, Nagase T, Haraguchi T, Hiraoka Y, Kimura A, Kurumizaka H, Kimura H. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. J Mol Biol 2016; 428:3885-3902. [PMID: 27534817 DOI: 10.1016/j.jmb.2016.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/28/2023]
Abstract
Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ritsuko Arai
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa City, Wakayama 649-6493, Japan
| | - Jun Ueda
- Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
27
|
DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A 2016; 113:E2636-45. [PMID: 27114511 PMCID: PMC4868480 DOI: 10.1073/pnas.1525510113] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Collapse
Affiliation(s)
- Brandon J DeKosky
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Oana I Lungu
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Erik L Johnson
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | | | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
28
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
29
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Lehmann A, Wixted JHF, Shapovalov MV, Roder H, Dunbrack RL, Robinson MK. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach. MAbs 2015; 7:1058-71. [PMID: 26337947 DOI: 10.1080/19420862.2015.1088618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.
Collapse
Affiliation(s)
- Andreas Lehmann
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA.,b Current address: Biogen , Cambridge MA
| | | | - Maxim V Shapovalov
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Heinrich Roder
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Roland L Dunbrack
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| | - Matthew K Robinson
- a Molecular Therapeutics Program, Fox Chase Cancer Center , Philadelphia , PA
| |
Collapse
|
31
|
Friedel T, Hanisch LJ, Muth A, Honegger A, Abken H, Plückthun A, Buchholz CJ, Schneider IC. Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Eng Des Sel 2015; 28:93-106. [PMID: 25715658 DOI: 10.1093/protein/gzv005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An increasing number of applications require the expression of single-chain variable fragments (scFv) fusion proteins in mammalian cells at the cell surface membrane. Here we assessed the CD30-specific scFv HRS3, which is used in immunotherapy, for its ability to retarget lentiviral vectors (LVs) to CD30 and to mediate selective gene transfer into CD30-positive cells. Fused to the C-terminus of the type-II transmembrane protein hemagglutinin (H) of measles virus and expressed in LV packaging cells, gene transfer mediated by the released LV particles was inefficient. A series of point mutations in the scFv framework regions addressing its biophysical properties, which substantially improved production and increased the melting temperature without impairing its kinetic binding behavior to CD30, also improved the performance of LV particles. Gene transfer into CD30-positive cells increased ∼100-fold due to improved transport of the H-scFv protein to the plasma membrane. Concomitantly, LV particle aggregation and syncytia formation in packaging cells were substantially reduced. The data suggest that syncytia formation can be triggered by trans-cellular dimerization of H-scFv proteins displayed on adjacent cells. Taken together, we show that the biophysical properties of the targeting ligand have a decisive role for the gene transfer efficiency of receptor-targeted LVs.
Collapse
Affiliation(s)
- Thorsten Friedel
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Lydia J Hanisch
- Roche Pharmaceutical Research and Early Development, Protein Engineering Group, Roche Innovation Center Zürich, Schlieren 8952, Switzerland
| | - Anke Muth
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich 8057, Switzerland
| | - Christian J Buchholz
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| | - Irene C Schneider
- Section of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen 63225, Germany
| |
Collapse
|
32
|
Gu J, Ghayur T. Rationale and development of multispecific antibody drugs. Expert Rev Clin Pharmacol 2014; 3:491-508. [DOI: 10.1586/ecp.10.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol 2014; 1060:123-137. [PMID: 24037839 DOI: 10.1007/978-1-62703-586-6_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physiochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in the light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
- T Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | | | | |
Collapse
|
34
|
Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013; 31:612-20. [DOI: 10.1016/j.tibtech.2013.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
|
35
|
McConnell AD, Spasojevich V, Macomber JL, Krapf IP, Chen A, Sheffer JC, Berkebile A, Horlick RA, Neben S, King DJ, Bowers PM. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel 2012; 26:151-64. [DOI: 10.1093/protein/gzs090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Poon GMK. Quantitative analysis of affinity enhancement by noncovalently oligomeric ligands. Anal Biochem 2012; 433:19-27. [PMID: 23068040 DOI: 10.1016/j.ab.2012.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/30/2012] [Accepted: 10/03/2012] [Indexed: 11/16/2022]
Abstract
Designed ligands that self-assemble noncovalently via an independent oligomerization domain have demonstrated enhancement in affinity for a variety of chemical and biological targets. To better understand the thermodynamic linkage between enhanced receptor binding and self-assembly, we have developed linkage models for the three commonly encountered types of noncovalently oligomeric ligands: homofunctional oligomeric ligands, heterodimeric ligands that target a single receptor, and bispecific ligands that crosslink noninteracting receptors. Expressions and numerical approaches for exact analysis as a function of total ligand concentrations are provided. We apply the linkage models to the binding data for two published noncovalently oligomeric ligands: one targeting a small molecule (phosphocholine) and the other targeting a soluble protein (tumor necrosis factor α). The linkage models provide a quantitative measure of the potential and realized enhancement in affinity that could inform and guide design optimization efforts, and they reveal physical insight that would elude model-free analysis. Incorporation of the linkage models, therefore, is expected to be valuable in the rational engineering of noncovalently oligomeric ligands.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
37
|
Ducancel F, Muller BH. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 2012; 4:445-57. [PMID: 22684311 DOI: 10.4161/mabs.20776] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Frédéric Ducancel
- CEA, iBiTec-S, Department of Pharmacology and Immunoanalysis, Laboratory of Antibody Engineering for Health, Gif-sur-Yvette, France.
| | | |
Collapse
|
38
|
Petrovskaya LE, Shingarova LN, Kryukova EA, Boldyreva EF, Yakimov SA, Guryanova SV, Novoseletsky VN, Dolgikh DA, Kirpichnikov MP. Construction of TNF-binding proteins by grafting hypervariable regions of F10 antibody on human fibronectin domain scaffold. BIOCHEMISTRY (MOSCOW) 2012; 77:62-70. [PMID: 22339634 DOI: 10.1134/s0006297912010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor (TNF) plays a key role in the pathogenesis of various diseases. To study the possibility of constructing TNF-binding proteins by grafting hypervariable regions of immunoglobulins (CDR), we have replaced amino acid sequences of loops from the tenth type III domain of human fibronectin ((10)Fn3) by amino acid sequences of CDR from the light and heavy chains of the anti-TNF antibody F10. The assessment of TNF-binding properties of the resulting proteins by ELISA has revealed the highest activity of Hd3 containing sequences CDR-H1 and CDR-H2 of the antibody F10 and of Hd2 containing sequences CDR-H1 and CDR-H3. The proteins constructed by us on the fibronectin domain scaffold specifically bound TNF during Western blotting and also weakened its cytotoxic effect on L929 line cells. The highest neutralizing activity was demonstrated by the proteins Hd2 and Hd3, which induced, respectively, 10- and 50-fold increase in the EC(50) of TNF.
Collapse
Affiliation(s)
- L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST. Identifying bottlenecks in transient and stable production of recombinant monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol Prog 2012; 28:846-55. [PMID: 22467228 DOI: 10.1002/btpr.1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Indexed: 11/06/2022]
Abstract
The increasing demand for antibody-based therapeutics has emphasized the need for technologies to improve recombinant antibody titers from mammalian cell lines. Moreover, as antibody therapeutics address an increasing spectrum of indications, interest has increased in antibody engineering to improve affinity and biological activity. However, the cellular mechanisms that dictate expression and the relationships between antibody sequence and expression level remain poorly understood. Fundamental understanding of how mammalian cells handle high levels of transgene expression and of the relationship between sequence and expression are vital to the development of new antibodies and for increasing recombinant antibody titers. In this work, we analyzed a pair of mutants that vary by a single amino acid at Kabat position 49 (heavy-chain framework), resulting in differential transient and stable titers with no apparent loss of antigen affinity. Through analysis of mRNA, gene copy number, intracellular antibody content, and secreted antibody, we found that while translational/post-translational mechanisms are limiting in transient systems, it appears that the amount of available transgenic mRNA becomes the limiting event on stable integration of the recombinant genes. We also show that amino acid substitution at residue 49 results in production of a non-secreted HC variant and postulate that stable antibody expression is maintained at a level which prevents toxic accumulation of this HC-related protein. This study highlights the need for proper sequence engineering strategies when developing therapeutic antibodies and alludes to the early analysis of transient expression systems to identify the potential for aberrant stable expression behavior.
Collapse
Affiliation(s)
- Megan Mason
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The ability of antibodies to bind to target molecules with high affinity and specificity has led to their widespread use in diagnostic and therapeutic applications. Nevertheless, a limitation of antibodies is their propensity to self-associate and aggregate at high concentrations and elevated temperatures. The large size and multidomain architecture of full-length monoclonal antibodies have frustrated systematic analysis of how antibody sequence and structure regulate antibody solubility. In contrast, analysis of single and multidomain antibody fragments that retain the binding activity of mono-clonal antibodies has provided valuable insights into the determinants of antibody aggregation. Here we review advances in engineering antibody frameworks, domain interfaces, and antigen-binding loops to prevent aggregation of natively and nonnatively folded antibody fragments. We also highlight advances and unmet challenges in developing robust strategies for engineering large, multidomain antibodies to resist aggregation.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
41
|
Cyranka-Czaja A, Wulhfard S, Neri D, Otlewski J. Selection and characterization of human antibody fragments specific for psoriasin - a cancer associated protein. Biochem Biophys Res Commun 2012; 419:250-5. [PMID: 22342672 DOI: 10.1016/j.bbrc.2012.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
S100A7 (psoriasin) is a calcium-binding protein that is upregulated in many types of cancer and often associated with poor prognosis. Its role in carcinogenesis has been associated with the stimulation of VEGF and EGF activity. The recent research showed that psoriasin directly interacts with αvβ6 integrin, a protein related to the invasive phenotype of cancer. Moreover, this interaction promotes the αvβ6-dependent invasive activity. The important function of S100A7 in carcinoma development determines a great need for valuable tools enabling its detection, quantification and also activity inhibition. Here, we show the selection of S100A7 specific antibody fragments from the human scFv phage library ETH-2 Gold. We have selected antibody fragments specific for psoriasin, purified them and analyzed by BIAcore affinity measurements. The best clone was subjected to affinity maturation procedure yielding molecule with a subnanomolar affinity towards human S100A7 protein. Selected clone was expressed in a bivalent format and applied for immunostaining analysis, which confirmed the ability of the antigen recognition in physiological conditions. We therefore propose that obtained antibody, that is the first phage display-derived human antibody against psoriasin, can serve as a useful psoriasin binding platform in research, diagnostics and therapy of cancer.
Collapse
Affiliation(s)
- Anna Cyranka-Czaja
- Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | |
Collapse
|
42
|
Quintero-Hernández V, Del Pozo-Yauner L, Pedraza-Escalona M, Juárez-González VR, Alcántara-Recillas I, Possani LD, Becerril B. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability. Immunol Lett 2012; 143:152-60. [PMID: 22306104 DOI: 10.1016/j.imlet.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ribosome display has proven to be a powerful in vitro selection and evolution method for generating high-affinity binders from libraries of folded proteins. It has been successfully applied to single-chain Fv fragments of antibodies and alternative scaffolds, such as Designed Ankyrin Repeat Proteins (DARPins). High-affinity binders with new target specificity can be obtained from highly diverse DARPin libraries in only a few selection rounds. In this protocol, the selection from the library and the process of affinity maturation and off-rate selection are explained in detail.
Collapse
Affiliation(s)
- Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
44
|
Perchiacca JM, Bhattacharya M, Tessier PM. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Proteins 2011; 79:2637-47. [PMID: 21732420 DOI: 10.1002/prot.23085] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/15/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022]
Abstract
High-affinity antibodies are critical for numerous diagnostic and therapeutic applications, yet their utility is limited by their variable propensity to aggregate either at low concentrations for antibody fragments or high concentrations for full-length antibodies. Therefore, determining the sequence and structural features that differentiate aggregation-resistant antibodies from aggregation-prone ones is critical to improving their activity. We have investigated the molecular origins of antibody aggregation for human V(H) domain antibodies that differ only in the sequence of the loops containing their complementarity determining regions (CDRs), yet such antibodies possess dramatically different aggregation propensities in a manner not correlated with their conformational stabilities. We find the propensity of these antibodies to aggregate after being transiently unfolded is not a distributed property of the CDR loops, but can be localized to aggregation hotspots within and near the first CDR (CDR1). Moreover, we have identified a triad of charged mutations within CDR1 and a single charged mutation adjacent to CDR1 that endow the poorly soluble variant with the desirable biophysical properties of the aggregation-resistant antibody. Importantly, we find that several other charged mutations in CDR1, non-CDR loops and the antibody scaffold are incapable of preventing aggregation. We expect that our identification of aggregation hotspots that govern antibody aggregation within and proximal to CDR loops will guide the design and selection of antibodies that not only possess high affinity and conformational stability, but also extreme resistance to aggregation.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
45
|
Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs 2011; 3:243-52. [PMID: 21406966 DOI: 10.4161/mabs.3.3.15234] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Since the first generation of humanized IgG1 antibodies reached the market in the late 1990s, IgG antibody molecules have been extensively engineered. The success of antibody therapeutics has introduced severe competition in developing novel therapeutic monoclonal antibodies, especially for promising or clinically validated targets. Such competition has led researchers to generate so-called second or third generation antibodies with clinical differentiation utilizing various engineering and optimization technologies. Parent IgG antibodies can be engineered to have improved antigen binding properties, effector functions, pharmacokinetics, pharmaceutical properties and safety issues. Although the primary role of the antibody variable region is to bind to the antigen, it is also the main source of antibody diversity and its sequence affects various properties important for developing antibody therapeutics. Here we review recent research activity in variable region engineering to generate superior antibody therapeutics.
Collapse
Affiliation(s)
- Tomoyuki Igawa
- Chugai Pharmaceutical Co. Ltd., Fuji-Gotemba Research Laboratories, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment. PLoS One 2011; 6:e19023. [PMID: 21552519 PMCID: PMC3084267 DOI: 10.1371/journal.pone.0019023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
Abstract
A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to VH and VL for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of VH frameworks and VH-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.
Collapse
|
47
|
Aggen DH, Chervin AS, Insaidoo FK, Piepenbrink KH, Baker BM, Kranz DM. Identification and engineering of human variable regions that allow expression of stable single-chain T cell receptors. Protein Eng Des Sel 2011; 24:361-72. [PMID: 21159619 PMCID: PMC3049343 DOI: 10.1093/protein/gzq113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 11/16/2010] [Indexed: 01/08/2023] Open
Abstract
Single-chain antibody fragments (scFv), consisting of two linked variable regions (V(H) and V(L)), are a versatile format for engineering and as potential antigen-specific therapeutics. Although the analogous format for T cell receptors (TCRs), consisting of two linked V regions (Vα and Vβ; referred to here as scTv), could provide similar opportunities, all wild-type scTv proteins examined to date are unstable. This obstacle has prevented scTv fragments from being widely used for engineering or therapeutics. To further explore whether some stable human scTv fragments could be expressed, we used a yeast system in which display of properly folded domains correlates with ability to express the folded scTv in soluble form. We discovered that, unexpectedly, scTv fragments that contained the human Vα2 region (IMGT: TRAV12 family) were displayed and properly associated with different Vβ regions. Furthermore, a single polymorphic residue (Ser(α49)) in the framework region conferred additional thermal stability. These stabilized Vα2-containing scTv fragments could be expressed at high levels in Escherichia coli, and used to stain target cells that expressed the specific pep-HLA-A2 complexes. Thus, the scTv fragments can serve as a platform for engineering TCRs with diverse specificities, and possibly for therapeutic or diagnostic applications.
Collapse
MESH Headings
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- HLA-A2 Antigen/immunology
- Humans
- Peptides/immunology
- Protein Conformation
- Protein Engineering/methods
- Protein Folding
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- David H. Aggen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Adam S. Chervin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Francis K. Insaidoo
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Kurt H. Piepenbrink
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
48
|
Edwardraja S, Sriram S, Govindan R, Budisa N, Lee SG. Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. ACTA ACUST UNITED AC 2011; 7:258-65. [DOI: 10.1039/c0mb00154f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Dreier B, Plückthun A. Ribosome display: a technology for selecting and evolving proteins from large libraries. Methods Mol Biol 2011; 687:283-306. [PMID: 20967617 DOI: 10.1007/978-1-60761-944-4_21] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The selection and concomitant affinity maturation of proteins to bind to user-defined target molecules have become a key technology in biochemical research, diagnostics, and therapy. One of the most potent selection technologies for such applications is ribosome display. It works entirely in vitro, and this has two important consequences. First, since no transformation of any cells is required, libraries with much greater diversity can be handled than with most other techniques. Second, since a library does not have to be cloned and transformed, it is very convenient to introduce random errors in the library by PCR-based methods and select improved binders. Thus, a true directed evolution, an iteration between randomization and selection over several generations, can be conveniently carried out, e.g., for affinity maturation. Ribosome display has been used successfully for the selection of antibody fragments and other binding proteins, such as Designed Ankyrin Repeat Proteins (DARPins).
Collapse
Affiliation(s)
- Birgit Dreier
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
50
|
Kvam E, Sierks MR, Shoemaker CB, Messer A. Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 2010; 23:489-98. [PMID: 20378699 PMCID: PMC2865363 DOI: 10.1093/protein/gzq022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/02/2010] [Accepted: 03/12/2010] [Indexed: 12/25/2022] Open
Abstract
Soluble antibody fragments are desirable not only as potential therapeutic and diagnostic agents for extracellular targets but also as 'intrabodies' for functional genomics, proteomics and gene therapy inside cells. However, antibody fragments are notoriously aggregation-prone when expressed intracellularly, due in part to unfavorable redox potential and macromolecular crowding in cell cytoplasm. Only a small proportion of intrabodies are soluble in cytoplasm and little is known about the sequence determinants that confer such stability. By comparing the cytoplasmic expression of several related human single-chain variable fragments and camelid V(HH)s in mammalian cells, we report that intrabody solubility is highly influenced by CDR content and is improved by an overall negative charge at cytoplasmic pH and reduced hydrophilicity. We hypothesize that ionic repulsion and weak hydrophobic interactions compensate, to different extents, for impaired disulfide bond formation in cytoplasm, thereby decreasing the risk for intrabody aggregation. As proof of principle, we demonstrate that the soluble expression of an aggregation-prone positively charged intrabody is modestly enhanced via cis or trans acidification using highly charged peptide tags (3XFLAG tag, SV40 NLS). These findings suggest that simple sequence analysis and electrostatic manipulation may aid in predicting and engineering solubility-enhanced intrabodies from antibody libraries for intracellular use.
Collapse
Affiliation(s)
- Erik Kvam
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Michael R. Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Charles B. Shoemaker
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Anne Messer
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|