1
|
Xu R, Kiarie EG, Yiannikouris A, Sun L, Karrow NA. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J Anim Sci Biotechnol 2022; 13:69. [PMID: 35672806 PMCID: PMC9175326 DOI: 10.1186/s40104-022-00714-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous fungi that are commonly detected as natural contaminants in agricultural commodities worldwide. Mycotoxin exposure can lead to mycotoxicosis in both animals and humans when found in animal feeds and food products, and at lower concentrations can affect animal performance by disrupting nutrient digestion, absorption, metabolism, and animal physiology. Thus, mycotoxin contamination of animal feeds represents a significant issue to the livestock industry and is a health threat to food animals. Since prevention of mycotoxin formation is difficult to undertake to avoid contamination, mitigation strategies are needed. This review explores how the mycotoxins aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A impose nutritional and metabolic effects on food animals and summarizes mitigation strategies to reduce the risk of mycotoxicity.
Collapse
|
2
|
Ruhnau D, Hess C, Grenier B, Doupovec B, Schatzmayr D, Hess M, Awad WA. The Mycotoxin Deoxynivalenol (DON) Promotes Campylobacter jejuni Multiplication in the Intestine of Broiler Chickens With Consequences on Bacterial Translocation and Gut Integrity. Front Vet Sci 2020; 7:573894. [PMID: 33363229 PMCID: PMC7756001 DOI: 10.3389/fvets.2020.573894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Deoxynivalenol (DON) is one of the major health concern in poultry production as it targets epithelial cells of the gastrointestinal tract and contributes to the loss of the epithelial barrier function. It is well-documented that DON severely compromises various important intestinal functions in coincidence with aggravated clinical symptoms in livestock. In addition, a prolonged persistence of intestinal pathogens (e.g., Salmonella, Clostridium) in the gut has also been reported in pigs and chickens, respectively. Similar to DON, recent studies demonstrated that an experimental Campylobacter infection has severe consequences on gut health. Through experimental infection, it was found that Campylobacter (C.) jejuni negatively affects the integrity of the intestine and promotes the translocation of bacteria from the gut to inner organs. So far, no data are available investigating the simultaneous exposure of DON and C. jejuni in broilers albeit both are widely distributed. Thus, the aim of the present study was to explore the interaction between DON and C. jejuni which is of a significant public and animal health concern as it may affect the prevalence and the ability to control this pathogen. Following oral infection of birds at 14 days of age with C. jejuni NCTC 12744, we show that the co-exposure to DON and C. jejuni has a considerable consequence on C. jejuni loads in chicken gut as well as on gut permeability of the birds. A reduced growth performance was found for DON and/or C. jejuni exposed birds. Furthermore, it was found that the co-exposure of DON and C. jejuni aggravated the negative effect on paracellular permeability of the intestine already noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain times or intestinal segments. Furthermore, the increased paracellular permeability promotes the translocation of C. jejuni and E. coli to inner organs, namely liver and spleen. Interestingly, C. jejuni loads in the intestine were higher in DON-fed groups indicating a supportive growth effect of the mycotoxin. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni has not only considerable consequences on gut integrity but also on bacterial balance. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni could have a significant impact on gut health and bacteria translocation leading to an increased risk for public health.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Tahir SK, Yousaf MS, Ahmad S, Shahzad MK, Khan AF, Raza M, Majeed KA, Khalid A, Zaneb H, Rabbani I, Rehman H. Effects of Chromium-Loaded Chitosan Nanoparticles on the Intestinal Electrophysiological Indices and Glucose Transporters in Broilers. Animals (Basel) 2019; 9:ani9100819. [PMID: 31627287 PMCID: PMC6826477 DOI: 10.3390/ani9100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate the effect of chromium-loaded chitosan nanoparticles (Cr-CNPs) on the electrophysiological indices, gene expression of glucose transporters, and tissue glycogen in broilers. A total of 200 one-day-old broilers were randomly divided into five groups, with each having five replicates (n = 8). Group A was fed a corn-soybean meal diet, while the diets of groups B, C, D, and E were supplemented with 200, 400, 800, and 1200 µg/kg of Cr as Cr-CNPs, respectively. On day 35, the jejunum was collected for electrophysiological study, gene expression of glucose transporters, and tissues glycogen determination. The basal short-circuit current and tissue conductance before the addition of glucose was the same in all groups. Following the addition of glucose, the change in short-circuit current decreased (p < 0.05) in the jejunal tissues of birds supplemented with 400 and 1200 µg Cr-CNPs compared with the control group. Gene expression of SGLT-1 and GLUT-2 remained unaffected with supplementation. The serum glucose and liver glycogen concentration decreased (p < 0.05) linearly with supplementation, while no effect was observed on muscle glycogen. In conclusion, Cr-CNPs supplementation decreases the glucose absorption and liver glycogen content, without affecting the gene expression of glucose transporters.
Collapse
Affiliation(s)
- Sajid Khan Tahir
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sohrab Ahmad
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | | | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 45550, Pakistan.
| | - Mohsin Raza
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Abia Khalid
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Rabbani
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| |
Collapse
|
4
|
|
5
|
Lee JY, Lim W, Park S, Kim J, You S, Song G. Deoxynivalenol induces apoptosis and disrupts cellular homeostasis through MAPK signaling pathways in bovine mammary epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:879-887. [PMID: 31203115 DOI: 10.1016/j.envpol.2019.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON), a fungus-derived mycotoxin, also known as vomitoxin, is found in a wide range of cereal grains and grain-based food products. The biological toxicity of DON has been described in various species, but its toxicity and functional effects in mammary epithelial cells are unclear. In this study, we investigated the effect of DON on bovine mammary epithelial (MAC-T) cells using mechanistic approaches. We detected DON-induced cell cycle abrogation and calcium deficiency, leading to apoptotic cell death via MAPK signaling pathways. Moreover, we studied the transcriptional activation of blood and milk junctional regulators as well as inflammatory cytokines in response to DON. The results of this study contribute to a comprehensive understanding of DON-associated toxicity mechanisms in bovine mammary epithelial cells, which may facilitate the enhancement of milk stabilization in parallel with the establishment of safety profiles to protect against DON contamination in livestock farms and in the food industry.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Feeding of deoxynivalenol increases the intestinal paracellular permeability of broiler chickens. Arch Toxicol 2019; 93:2057-2064. [PMID: 31030221 DOI: 10.1007/s00204-019-02460-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
In recent years, the deleterious effects attributed to mycotoxins, in particular on the intestine, faced increased attention and it was shown that deoxynivalenol (DON) causes adverse effects on gut health. In this context, it has been repeatedly reported that DON can alter the intestinal morphology, disrupt the intestinal barrier and reduce nutrient absorption. The underlying mechanism of a compromised intestinal barrier caused by DON in chickens has yet to be illustrated. Although, DON is rapidly absorbed from the upper parts of the small intestine, the effects on the large intestine cannot be excluded. Additionally, a damaging effect of DON on the gut epithelium might decrease the resistance of the gut against infectious agents. Consequently, the objectives of the present studies were: (1) to investigate the impact of DON on the epithelial paracellular permeability by demonstrating the mucosal to serosal flux of 14C-mannitol in the small and large intestine applying Ussing chambers and (2) to delineate the effects of DON on the colonization and translocation of Escherichia coli. Both parameters are well suited as potential indicators for gut barrier failure. For this, a total of 75 one-day-old Ross 308 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were randomly allocated to three different groups (n = 25 with 5 replicates/group) and were fed for 5 weeks with either contaminated diets (5 or 10 mg DON/kg feed) or basal diets (control). Body weight (BW) and BW gain of birds in the group fed with 10 mg/kg DON were significantly lower than in group with 5 mg/kg DON and the control group. Moreover, the mannitol flux in jejunum and cecum was significantly (P < 0.05) higher in DON-fed groups compared to control birds. Consistent with this, DON enhanced the translocation of E. coli with a higher number of bacteria encountered in the spleen and liver. Altogether, the actual results verified that DON can alter the intestinal paracellular permeability in broiler chickens and facilitates the translocation of enteric microorganisms such as E. coli to extra-intestinal organs. Considering that moderate levels of DON are present in feed, the consumption of DON-contaminated feed can induce an intestinal breakdown with negative consequences on broiler health.
Collapse
|
7
|
Abstract
The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.
Collapse
|
8
|
Kautzman M, Hogan N, Gomis S, Brown K, Wickstrom M. Using Near Infrared Transmittance (NIT) to generate sorted fractions of Fusarium infected wheat and their immunological impact on broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1139/cjas-2016-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Michael Kautzman
- University of Saskatchewan, 7235, Animal and Poultry Science, 55 Campus Drive, Saskatoon, Saskatchewan, Canada, S7N 5A2
| | - Natacha Hogan
- University of Saskatchewan, 7235, Animal and Poultry Science, Saskatoon, Saskatchewan, Canada
| | - Susantha Gomis
- University of Saskatchewan, Veterinary Pathology, Saskatchewan, Saskatchewan, Canada
| | - Kaitlyn Brown
- University of Saskatchewan, 7235, College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Mark Wickstrom
- University of Saskatchewan, 7235, Toxicology Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci 2015; 94:1298-315. [PMID: 25840963 PMCID: PMC4988553 DOI: 10.3382/ps/pev075] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above mentioned aspects.
Collapse
Affiliation(s)
| | - D R Ledoux
- Department of Animal Sciences, University of Missouri-Columbia, MO, USA
| | - K Naehrer
- BIOMIN Research Center, Tulln, Austria
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - B Grenier
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | | | | |
Collapse
|
10
|
Antonissen G, Devreese M, Van Immerseel F, De Baere S, Hessenberger S, Martel A, Croubels S. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. Toxins (Basel) 2015; 7:560-71. [PMID: 25690690 PMCID: PMC4344641 DOI: 10.3390/toxins7020560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
11
|
Duan J, Yin J, Wu M, Liao P, Deng D, Liu G, Wen Q, Wang Y, Qiu W, Liu Y, Wu X, Ren W, Tan B, Chen M, Xiao H, Wu L, Li T, Nyachoti CM, Adeola O, Yin Y. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS One 2014; 9:e112357. [PMID: 25405987 PMCID: PMC4236086 DOI: 10.1371/journal.pone.0112357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins.
Collapse
Affiliation(s)
- Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Peng Liao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Dun Deng
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Qingqi Wen
- Department of Animal Nutrition, Fujian Aonong biotechnology corporation, Xiamen, Fujian 361007, China
| | - Yongfei Wang
- Department of Animal Nutrition, Fujian Aonong biotechnology corporation, Xiamen, Fujian 361007, China
| | - Wei Qiu
- Research and Development Center, Twins Group Co., Ltd, Nanchang, Jiangxi 330096, China
| | - Yan Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingli Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Minghong Chen
- Hunan New Wellful Co., LTD, Changsha, Hunan, 410001, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Li Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Charles M. Nyachoti
- Department of Animal science, University of Manitoba, Winnipeg, Man, R3T 2N2 Canada
| | - Olayiwola Adeola
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, United States of America
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Southwest Collaborative Innovation center of swine for quality & safety, 211#211Huiming Road, Wenjiang district, Chengdu, China
| |
Collapse
|
12
|
Ghareeb K, Awad WA, Böhm J, Zebeli Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl Toxicol 2014; 35:327-37. [PMID: 25352520 DOI: 10.1002/jat.3083] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Deoxynivalenol (DON) is one of the most prevalent cereal contaminants with major public health concerns owing to its high toxigenic potentials. Once ingested, DON first and foremost targets epithelial cells of the gastrointestinal tract, whose proper functioning, as the first line of defence, is of paramount importance for the host's health. Emerging evidences, summarized in this article, suggest that DON produces its toxicity primarily via activation of the mitogen-activated protein kinases (MAPKs) signalling pathway and alteration in the expression of genes responsible for key physiological and immunological functions of the intestinal tissue of chickens and pigs. The activation of MAPKs signalling cascade results in disruption of the gut barrier function and an increase in the permeability by reducing expression of the tight junction proteins. Exposure to DON also down-regulates the expression of multiple transporter systems in the enterocytes with subsequent impairment of the absorption of key nutrients. Other major intestinal cytotoxic effects of DON described herein are modulation of mucosal immune responses, leading to immunosupression or stimulation of local immune cells and cytokine release, and also facilitation of the persistence of intestinal pathogens in the gut. Both of the last events potentiate enteric infections and local inflammation in pigs and poultry, rendering enterocytes and the host more vulnerable to luminal toxic compounds. This review highlights the cytotoxic risks associated with the intake of even low levels of DON and also identifies gaps of knowledge that need to be addressed by future research.
Collapse
Affiliation(s)
- Khaled Ghareeb
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria; Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt
| | | | | | | |
Collapse
|
13
|
Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F, Timbermont L, Verlinden M, Janssens GPJ, Eeckhaut V, Eeckhout M, De Saeger S, Hessenberger S, Martel A, Croubels S. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS One 2014; 9:e108775. [PMID: 25268498 PMCID: PMC4182565 DOI: 10.1371/journal.pone.0108775] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Timbermont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marc Verlinden
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Paul Jules Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mia Eeckhout
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis. Arch Toxicol 2014; 89:961-5. [PMID: 24888376 DOI: 10.1007/s00204-014-1284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis.
Collapse
|
15
|
Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 2014; 6:1615-43. [PMID: 24859243 PMCID: PMC4052256 DOI: 10.3390/toxins6051615] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/28/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
The natural food contaminants, mycotoxins, are regarded as an important risk factor for human and animal health, as up to 25% of the world's crop production may be contaminated. The Fusarium genus produces large quantities of fusariotoxins, among which the trichothecenes are considered as a ubiquitous problem worldwide. The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants. An increasing number of studies suggest that intestinal epithelial cells are targets for deoxynivalenol (DON) and other Type B trichothecenes (TCTB). In humans, various adverse digestive symptoms are observed on acute exposure, and in animals, these toxins induce pathological lesions, including necrosis of the intestinal epithelium. They affect the integrity of the intestinal epithelium through alterations in cell morphology and differentiation and in the barrier function. Moreover, DON and TCTB modulate the activity of intestinal epithelium in its role in immune responsiveness. TCTB affect cytokine production by intestinal or immune cells and are supposed to interfere with the cross-talk between epithelial cells and other intestinal immune cells. This review summarizes our current knowledge of the effects of DON and other TCTB on the intestine.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| | - Isabelle P Oswald
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| |
Collapse
|
16
|
Ghareeb K, Awad WA, Soodoi C, Sasgary S, Strasser A, Böhm J. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS One 2013; 8:e71492. [PMID: 23977054 PMCID: PMC3748120 DOI: 10.1371/journal.pone.0071492] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 01/07/2023] Open
Abstract
An experiment was conducted to investigate the individual and combined effects of dietary deoxynivalenol (DON) and a microbial feed additive on plasma cytokine level and on the expression of immune relevant genes in jejunal tissues of broilers. A total of 40 broiler chicks were obtained from a commercial hatchery and divided randomly into four groups (10 birds per group). Birds were reared in battery cages from one day old for 5 weeks. The dietary groups were 1) control birds fed basal diet; 2) DON group fed basal diet contaminated with 10 mg DON/ kg feed; 3) DON + Mycofix group fed basal diet contaminated with 10 mg DON/ kg feed and supplemented with a commercial feed additive, Mycofix® Select (MS) (2.5 kg/ton of feed); 4) Mycofix group fed basal diet supplemented with MS (2.5 kg/ton of feed). At 35 days, the plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) were quantified by ELISA test kits. Furthermore, the mRNA expression of TNF-α, IL-8, IL-1β, interferon gamma (IFNγ), transforming growth factor beta receptor I (TGFBR1) and nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κβ1) in jejunum were quantified by qRT-PCR. The results showed that the plasma TNF-α decreased in response to DON, while in combination with MS, the effect of DON was reduced. DON down-regulated the relative gene expression of IL-1β, TGFBR1 and IFN-γ, and addition of MS to the DON contaminated diet compensates these effects on IL-1β, TGFBR1 but not for IFN-γ. Furthermore, supplementation of MS to either DON contaminated or control diet up-regulated the mRNA expression of NF-κβ1. In conclusion, DON has the potential to provoke and modulate immunological reactions of broilers and subsequently could increase their susceptibility to disease. The additive seemed to have almost as much of an effect as DON, albeit on different genes.
Collapse
Affiliation(s)
- Khaled Ghareeb
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- * E-mail:
| | - Wageha A. Awad
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Chimidtseren Soodoi
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Soleman Sasgary
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Alois Strasser
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Josef Böhm
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res Vet Sci 2013; 95:249-54. [DOI: 10.1016/j.rvsc.2013.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/28/2012] [Accepted: 02/22/2013] [Indexed: 01/13/2023]
|
18
|
The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins (Basel) 2013; 5:912-25. [PMID: 23628787 PMCID: PMC3709269 DOI: 10.3390/toxins5050912] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/18/2023] Open
Abstract
Deoxynivalenol (DON) is a common Fusarium toxin in poultry feed. Chickens are more resistant to the adverse impacts of deoxynivalenol (DON) compared to other species. In general, the acute form of DON mycotoxicosis rarely occurs in poultry flocks under normal conditions. However, if diets contain low levels of DON (less than 5 mg DON/kg diet), lower productivity, impaired immunity and higher susceptibility to infectious diseases can occur. The molecular mechanism of action of DON has not been completely understood. A significant influence of DON in chickens is the impairment of immunological functions. It was known that low doses of DON elevated the serum IgA levels and affected both cell-mediated and humoral immunity in animals. DON is shown to suppress the antibody response to infectious bronchitis vaccine (IBV) and to Newcastle disease virus (NDV) in broilers (10 mg DON/kg feed) and laying hens (3.5 to 14 mg of DON/kg feed), respectively. Moreover, DON (10 mg DON/kg feed) decreased tumor necrosis factor alpha (TNF-α) in the plasma of broilers. DON can severely affect the immune system and, due to its negative impact on performance and productivity, can eventually result in high economic losses to poultry producers. The present review highlights the impacts of DON intoxication on cell mediated immunity, humoral immunity, gut immunity, immune organs and pro-inflammatory cytokines in chickens.
Collapse
|
19
|
Ruhnke I, Röhe I, Meyer W, Kröger S, Neumann K, Zentek J. Method for the preparation of mucosal flaps from the jejunum of laying hens for transporter studies in Ussing chambers. Arch Anim Nutr 2013; 67:161-8. [DOI: 10.1080/1745039x.2013.776328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins (Basel) 2013; 5:396-430. [PMID: 23430606 PMCID: PMC3640542 DOI: 10.3390/toxins5020396] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi that can cause serious health problems in animals, and may result in severe economic losses. Deleterious effects of these feed contaminants in animals are well documented, ranging from growth impairment, decreased resistance to pathogens, hepato- and nephrotoxicity to death. By contrast, data with regard to their impact on intestinal functions are more limited. However, intestinal cells are the first cells to be exposed to mycotoxins, and often at higher concentrations than other tissues. In addition, mycotoxins specifically target high protein turnover- and activated-cells, which are predominant in gut epithelium. Therefore, intestinal investigations have gained significant interest over the last decade, and some publications have demonstrated that mycotoxins are able to compromise several key functions of the gastrointestinal tract, including decreased surface area available for nutrient absorption, modulation of nutrient transporters, or loss of barrier function. In addition some mycotoxins facilitate persistence of intestinal pathogens and potentiate intestinal inflammation. By contrast, the effect of these fungal metabolites on the intestinal microbiota is largely unknown. This review focuses on mycotoxins which are of concern in terms of occurrence and toxicity, namely: aflatoxins, ochratoxin A and Fusarium toxins. Results from nearly 100 published experiments (in vitro, ex vivo and in vivo) were analyzed with a special attention to the doses used.
Collapse
|
21
|
Effects of deoxynivalenol and lipopolysaccharide on electrophysiological parameters in growing pigs. Mycotoxin Res 2012; 28:243-52. [PMID: 23606196 DOI: 10.1007/s12550-012-0135-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Deoxynivalenol (DON) is a major B-trichothecene that draws importance from its natural occurrence in cereals worldwide. It has many effects on rapidly dividing cells. Lipopolysaccharide (LPS) is an endotoxin released from most Gram-negative bacteria, which plays a major role in induction of inflammation and sepsis under certain conditions. In our experiments we aimed to study the effects of different concentrations of DON (up to 8,000 ng/ml) on the electrogenic transport of nutrients and on tissue conductances in growing pigs using the Ussing chamber technique. The effect of DON-contaminated feed (2.9 mg/kg feed) on the respective parameters, as well as the interactions between DON and intraperitoneal (i.p.) LPS were assessed using porcine jejunal tissues. In vitro DON inhibited the absorption of alanine and glucose across the pig jejunum at concentrations of 4,000 and 8,000 ng/ml, suggesting that DON had an inhibitory effect on the electrogenic transport of nutrients across porcine small intestines. Electrogenic transport of alanine and glucose across porcine small intestines varied regionally among intestinal segments with higher response in ileal tissues. A synergistic effect was observed between DON in feed and injected LPS on tissue conductance. In response, glucose with higher short circuit currents was observed across porcine jejunal mucosa in nutrient stimulated conditions.
Collapse
|
22
|
Awad WA, Hess M, Twarużek M, Grajewski J, Kosicki R, Böhm J, Zentek J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int J Mol Sci 2011; 12:7996-8012. [PMID: 22174646 PMCID: PMC3233452 DOI: 10.3390/ijms12117996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022] Open
Abstract
The aim of the present experiment was to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on morphometric indices of jejunum and to follow the passage of deoxynivalenol (DON) through subsequent segments of the digestive tract of broilers. A total of 45 1-d-old broiler chickens (Ross 308 males) were randomly allotted to three dietary treatments (15 birds/treatment): (1) control diet; (2) diet contaminated with 1 mg DON/kg feed; (3) diet contaminated with 5 mg DON/kg feed for five weeks. None of the zootechnical traits (body weight, body weight gain, feed intake, and feed conversion) responded to increased DON levels in the diet. However, DON at both dietary levels (1 mg and 5 mg DON/kg feed) significantly altered the small intestinal morphology. In the jejunum, the villi were significantly (P < 0.01) shorter in both DON treated groups compared with the controls. Furthermore, the dietary inclusion of DON decreased (P < 0.05) the villus surface area in both DON treated groups. The absolute or relative organ weights (liver, heart, proventriculus, gizzard, small intestine, spleen, pancreas, colon, cecum, bursa of Fabricius and thymus) were not altered (P > 0.05) in broilers fed the diet containing DON compared with controls. DON and de-epoxy-DON (DOM-1) were analyzed in serum, bile, liver, feces and digesta from consecutive segments of the digestive tract (gizzard, cecum, and rectum). Concentrations of DON and its metabolite DOM-1 in serum, bile, and liver were lower than the detection limits of the applied liquid chromatography coupled with mass spectrometry (LC-MS/MS) method. Only about 10 to 12% and 6% of the ingested DON was recovered in gizzard and feces, irrespective of the dietary DON-concentration. However, the DON recovery in the cecum as percentage of DON-intake varied between 18 to 22% and was not influenced by dietary DON-concentration. Interestingly, in the present trial, DOM-1 did not appear in the large intestine and in feces. The results indicate that deepoxydation in the present study hardly occurred in the distal segments of the digestive tract, assuming that the complete de-epoxydation occurs in the proximal small intestine where the majority of the parent toxin is absorbed. In conclusion, diets with DON contamination below levels that induce a negative impact on performance could alter small intestinal morphology in broilers. Additionally, the results confirm that the majority of the ingested DON quickly disappears through the gastrointestinal tract.
Collapse
Affiliation(s)
- Wageha A. Awad
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, 14195 Berlin, Germany; E-Mail:
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, A-1210 Vienna, Austria; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-1-25077-4506; Fax: +43-1-25077-4590
| | - Michael Hess
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, A-1210 Vienna, Austria; E-Mail:
| | - Magdalena Twarużek
- Division of Physiology and Toxicology, Institute of Experimental Biology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; E-Mails: (M.T.); (J.G.); (R.K.)
| | - Jan Grajewski
- Division of Physiology and Toxicology, Institute of Experimental Biology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; E-Mails: (M.T.); (J.G.); (R.K.)
| | - Robert Kosicki
- Division of Physiology and Toxicology, Institute of Experimental Biology, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; E-Mails: (M.T.); (J.G.); (R.K.)
| | - Josef Böhm
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition, University of Veterinary Medicine, A-1210 Vienna, Austria; E-Mail:
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, 14195 Berlin, Germany; E-Mail:
| |
Collapse
|
23
|
Awad WA, Ghareeb K, Böhm J. Evaluation of the chicory inulin efficacy on ameliorating the intestinal morphology and modulating the intestinal electrophysiological properties in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2011; 95:65-72. [PMID: 20579180 DOI: 10.1111/j.1439-0396.2010.00999.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chicory (Cichorium intybus) belongs to plants of the Compositae family accumulating energy in the form of inulin fructan. Chicory, a prebiotic, is a fermentable oligosaccharide and oligofructose that may affect the intestinal mucosal architecture and the electrophysiological parameters. Therefore, this study was conducted to evaluate the effectiveness of adding chicory fructans in feed on the intestinal morphology and electrogenic transport of glucose in broilers. Four hundred, 1-day-old broiler chicks were randomly divided into two groups (200 birds per group) for 5 weeks. The dietary treatments were (i) control, (ii) basal diets supplemented with the dried, ground chicory pulp containing inulin (1 kg of chicory/ton of the starter and grower diets). In duodenum, dietary chicory increased the villus height and villus width and villus height to crypt depth ratio (p< 0.05), but the duodenal crypt depth remained unaffected (p > 0.05). However, in jejunum, the villus height, crypt depth and villus height to crypt depth ratio were decreased by dietary chicory compared with control birds (p < 0.05). In ileum, the villus height and villus crypt depth was decreased by dietary chicory supplementation compared with control (p< 0.05), but, the villus height to crypt depth ratio was increased (p< 0.05). Moreover, dietary chicory relatively affected the electrophysiological parameters of the intestine but did not reach significance. The amount of ΔIsc after d-glucose addition to the jejunal mucosa was numerically higher for chicory fed birds (19 μA/cm(2) ) than control birds (10 μA/cm(2) ). The percentage of increase in the Isc after d-glucose addition (ΔIsc %) was higher for chicory group upto (90%) of the control group. In colon, the actual Isc value and Isc after d-glucose addition was numerically higher for chicory fed birds than control birds (p> 0.05). Moreover, the conductance of jejunal and colonic tissues after d-glucose addition remained unaffected by the dietary chicory. In conclusion, addition of chicory to broilers diet increased the duodenal villus height, villus width and villus height to crypt depth ratio and decreased the villus height and crypt depth in both jejenum and ileum. Furthermore, dietary chicory relatively modified the small intestinal electrogenic transport of glucose in broilers.
Collapse
Affiliation(s)
- W A Awad
- Department of Veterinary Public Health and Food Science, Institute of Nutrition, University of Veterinary Medicine, Veterinärplatz 1, Vienna, Austria.
| | | | | |
Collapse
|
24
|
Awad W, Ghareeb K, Böhm J, Zentek J. A nutritional approach for the management of deoxynivalenol (DON) toxicity in the gastrointestinal tract of growing chickens. Int J Mol Sci 2008; 9:2505-2514. [PMID: 19330089 PMCID: PMC2635658 DOI: 10.3390/ijms9122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 12/03/2008] [Indexed: 11/17/2022] Open
Abstract
It has been shown that DON has negative effects on the active transport of some nutrients in the small intestine of chickens. The plausible interactions between food contaminants and natural components could be high. The present study investigated the effects of DON on the presence or absence of dietary inulin on the electrophysiological response of the gut to glucose. Ussing chamber studies were conducted with isolated jejunal epithelia at the age of 35 days. Electrophysiology of the epithelia was recorded and the changes of the short-circuit current (Isc) were determined. The addition of d-glucose on the luminal side of the isolated mucosa increased (P < 0.05) the Isc in the control group and inulin supplemented group. The oligosaccharides did not increase glucose absorption in young healthy chickens compared with the controls. In the second experiment, after preincubation of tissues with DON, the addition of glucose did not increase the Isc in jejunum and colon in the control group (P > 0.05). However, in the dietary inulin supplemented group in both jejunum and colon, the addition of glucose after preincubation of tissues with DON increased the Isc, suggesting that the dietary inulin supplementation of the broilers regulated and improved the glucose absorption in the presence of DON and kept it at normal levels.
Collapse
Affiliation(s)
- Wageha Awad
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Khaled Ghareeb
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
- Department of animal Behaviour and Management, Faculty of Veterinary Medicine, South Valley University Qena, Egypt
| | - Josef Böhm
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie University of Berlin, Brümmerstr. 34, D-14195 Berlin, Germany
| |
Collapse
|
25
|
Girish CK, Smith TK. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on small intestinal morphology of turkeys. Poult Sci 2008; 87:1075-82. [PMID: 18492994 DOI: 10.3382/ps.2007-00379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on morphometric indices of duodenum, jejunum, and ileum in turkeys. The possible preventative effect of a polymeric glucomannan mycotoxin adsorbent (GMA) was also determined. Three hundred 1-d-old male turkey poults were fed wheat, corn, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with control grains, contaminated grains, and contaminated grains + 0.2% GMA. Morphometric indices were measured at the end of each growth phase and included villus height (VH), crypt depth, villus width, thicknesses of submucosa and muscularis, villus-to-crypt ratio, and apparent villus surface area (AVSA). At the end of the starter phase, feedborne mycotoxins significantly decreased the VH in the duodenum, and supplementation of the contaminated diet with GMA prevented this effect. The feeding of contaminated grains also reduced (P < 0.05) VH and AVSA in jejunum, whereas none of the variables were affected in the ileum. Villus width and AVSA of duodenum, VH, and AVSA of jejunum and submucosa thickness of ileum were significantly reduced when birds were fed contaminated grains at the end of the grower phase, and supplementation with GMA prevented these effects in jejunum and ileum. No effects of diets were seen on morphometric variables at the end of the developer and finisher phases. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins results in adverse effects on intestinal morphology during early growth phases of turkeys, and GMA can prevent many of these effects.
Collapse
Affiliation(s)
- C K Girish
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
26
|
Awad WA, Razzazi-Fazeli E, Böhm J, Zentek J. Effects of B-trichothecenes on luminal glucose transport across the isolated jejunal epithelium of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2008; 92:225-30. [PMID: 18477301 DOI: 10.1111/j.1439-0396.2007.00709.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Trichothecenes are closely-related sesquiterpenoids (ring structure) with a 12, 13 epoxy ring and a variable number of hydroxyl, acetyl or other substituents. In chickens, D-glucose and amino acid absorption occurs via carrier-mediated transport. Recently, it has been observed that deoxynivalenol (DON) alters the gut function and impairs glucose and amino acid transport in chickens. The purpose of this work was to determine the effects of different B-trichothecenes [DON, Nivalenol (NIV), 15-Ac-DON and Fusarenon X (FUS X)] on intestinal carrier-mediated sodium co-transport of D-glucose in the small intestine of broiler chickens. Intestinal transport was determined by changes in the short-circuit current (Isc), proportional to ion transmembrane flux, in the middle segment of the jejunum of broilers with the Ussing chamber technique. D-glucose produced an increase of the Isc, and this effect was reverted by different B-trichothecene mycotoxins, indicating that the glucose induced Isc was altered by B-trichothecenes. The addition of glucose after pre-incubation of the tissues with B-trichothecenes had no effect (p > 0.05) on the Isc, suggesting that B-trichothecenes afflicted the Na(+)-D-glucose co-transport. However, FUX had no obvious effect on the measured parameters. It could be concluded from the present study that the glucose co-transporter activity appears to be more sensitive to DON, NIV and 15-Ac-DON suppression than by FUS X in the jejunum of broilers.
Collapse
Affiliation(s)
- W A Awad
- Department of Veterinary Public Health and Food Science, Institute of Nutrition, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | |
Collapse
|
27
|
Girish C, Smith T. Impact of feed-borne mycotoxins on avian cell-mediated and humoral immune responses. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.1015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins of economic importance in poultry production are mainly produced by Aspergillus, Penicillium and Fusarium fungi. The important mycotoxins in poultry production are aflatoxins, ochratoxins, trichothecenes, zearalenone and fumonisins. Mycotoxins exert their immunotoxic effects through various mechanisms which are manifested as reduced response of the immune system. Mycotoxin-induced immunosuppression in poultry may be manifested as decreased antibody production to antigens (e.g. sheep red blood cells) and impaired delayed hypersensitivity response (e.g. dinitrochlorobenzene), reduction in systemic bacterial clearance (e.g. Salmonella, Brucella, Listeria and Escherichia), lymphocyte proliferation (response to mitogens), macrophage phagocytotic ability, and alterations in CD4+/CD8+ ratio, immune organ weights (spleen, thymus and bursa of Fabricius), and histological changes (lymphocyte depletion, degeneration and necrosis). Mycotoxins, especially fumonisin B1 have been shown to down regulate proinflammatory cytokine levels including those of interferon (IFN)-γ, IFN-α, interleukin (IL)-1β, and IL-2 in broiler chickens. Fusarium mycotoxins exert part of their toxic effects by altering cytokine production in poultry. Mycotoxins adversely affect intestinal barrier functions by reducing the intestinal epithelial integrity and removing tight junction proteins. Apoptosis, increased colonisation of pathogenic microorganisms, cytotoxicity and oxidative stress, inhibition of protein synthesis and lipid peroxidation are characteristic of the toxic effects of mycotoxins on intestinal epithelium. These directly or indirectly affect host immune responses. Such immunotoxic effects of mycotoxins render poultry susceptible to many infectious diseases. The avian immune system is sensitive to most mycotoxins. Both cell-mediated and humoral immunity may be adversely affected after feeding mycotoxins to poultry. The avian immune system may be more sensitive to naturally contaminated feedstuffs because of the presence of multiple mycotoxins and the complex interactions between them which can cause severe adverse effects. Adverse effects of mycotoxins on the immune system reduce production and performance resulting in economic losses to poultry industries. Caution must be exercised while feeding grains contaminated with mycotoxins.
Collapse
Affiliation(s)
- C. Girish
- Department of Animal and Poultry Science, University of Guelph, Guelph N1G 2W1, Canada
| | - T. Smith
- Department of Animal and Poultry Science, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
28
|
Awad WA, Razzazi-Fazeli E, Böhm J, Zentek J. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens. J Anim Physiol Anim Nutr (Berl) 2007; 91:175-80. [PMID: 17516937 DOI: 10.1111/j.1439-0396.2007.00689.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Deoxynivalenol (DON) decreases glucose absorption in the proximal jejunum of laying hens in vitro and this effect is apparently mediated by the inhibition of the sodium D-glucose co-transporter. DON could modulate the sugar transport of other intestinal regions of chickens. For this purpose, we have measured the effects of DON on the Na(+) D-glucose co-transporter, by addition of DON after and before a glucose addition in the isolated epithelium from chicken duodenum, jejunum, ileum, caecum and colon by using the Ussing chamber technique in the voltage clamp technique. The data showed in all segments of the gut that the addition of D-glucose on the mucosal side produced an increase in the current (Isc) compared with the basal values, the Isc after glucose addition to the small intestine was greater than the Isc of the large intestine compared with the basal values, specially of the jejunum (p < 0.002), indicating that the jejunum is the segment that is the best prepared for Na(+)-D-glucose co-transport. Further addition of 10 microg DON/ml to the mucosal solution decreased the Isc in all segments and the Isc returned to the basal value, especially in the duodenum and mid jejunum (p < 0.05). In contrast, the addition of 5 mmol D-glucose/l on the mucosal side after incubation of the tissues with DON in all segments had no effect on the Isc (p > 0.05), suggesting that DON previously inhibited the Na(+)D-glucose co-transport. The blocking effects of DON in duodenum and jejunum were greater than the other regions of the gut. It can be concluded that the small intestine of laying hens has the most relevant role in the carrier mediated glucose transport and the large intestine, having non-significant capacity to transport sugars, appears to offer a minor contribution to glucose transport because the surface area is small. The effect of D-glucose on the Isc was reversed by DON in all segments, especially in the duodenum and jejunum, suggesting that DON entirely inhibited Na(+)-D-glucose co-transport. This finding indicates that the inhibition of Na(+) co-transport system in all segments could be an important mode of action for DON toxicity of hens.
Collapse
Affiliation(s)
- W A Awad
- Department of Veterinary Public Health and Food Science, Institute of Animal Nutrition, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | |
Collapse
|
29
|
Awad WA, Aschenbach JR, Setyabudi FMCS, Razzazi-Fazeli E, Böhm J, Zentek J. In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens. Poult Sci 2007; 86:15-20. [PMID: 17179409 DOI: 10.1093/ps/86.1.15] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxin contaminant in feedstuffs. It has been shown to cause diverse toxic effects in animals. The aim of the present study was to evaluate the effects of DON on the glucose transport capacity in chickens' jejunum and to investigate the permeation of DON itself by the Ussing chamber technique. Glucose uptake into chicken jejunal epithelia was measured after the addition of 200 mumol/L of (14)C-labeled glucose to the mucosal solution. Glucose uptake under control condition was 3.28 +/- 0.53 nmol/cm(2) x min. The contribution of sodium glucose-linked transporter 1 (SGLT-1) to total glucose uptake was estimated by inhibiting SGLT-1 with phlorizin (100 micromol/L). In the presence of phlorizin, glucose uptake was reduced (P < 0.05) to 1.21 +/- 0.19 nmol/cm(2) x min. Deoxynivalenol decreased (P < 0.05) the glucose uptake in the absence of phlorizin to 1.81 +/- 0.24 nmol/cm(2) x min but had no additional effect on the glucose uptake in the presence of phlorizin (0.97 +/- 0.17 nmol/cm(2) x min). Mucosal-to-serosal permeation of DON was proportional to the initial DON concentration over a concentration range from 1 to 10 mug/mL on the mucosal side. Apparent permeability at 10 microg/mL of DON measured 60 to 90 min after DON application was 1.7 x 10(-05) cm/s. It can be concluded that DON (10 mg/L) decreases glucose uptake almost as efficiently as phlorizin. The similarity between the effects of phlorizin and DON on glucose uptake evidences their common ability to inhibit Na(+)-D-glucose cotransport. In addition to local effects, DON can be absorbed from the jejunum. A predominant part of DON passes across the chicken intestinal epithelium by passive diffusion, which is likely on the paracellular pathway. The results imply that the exposure to DON-contaminated feeds may negatively affect animal health and performance by local (i.e., inhibition of intestinal SGLT-1) and systemic effects.
Collapse
Affiliation(s)
- W A Awad
- Department of Veterinary Public Health and Food Science, Institute of Animal Nutrition, University of Veterinary Medicine, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Rehman H, Rosenkranz C, Böhm J, Zentek J. Dietary Inulin Affects the Morphology but not the Sodium-Dependent Glucose and Glutamine Transport in the Jejunum of Broilers. Poult Sci 2007; 86:118-22. [PMID: 17179425 DOI: 10.1093/ps/86.1.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inulin, a prebiotic, is a fermentable oligosaccharide that may affect the intestinal mucosal architecture and the electrophysiological parameters. The effects of a diet with added inulin were tested on the jejunal morphology and electrogenic transport of Glc and Gln from the jejunal mucosa in broilers. Short-circuit current and transmucosal tissue resistance of jejunal flaps were measured in Ussing chambers. The feeding experiment was carried out in broilers (n = 40) using 1% inulin with an application period of 5 wk. The inulin-containing diet resulted in longer jejunal villi (P < 0.05) and deeper crypts (P < 0.01) than in control birds without affecting villus:crypt depth. Basal short-circuit current value remained unaffected by dietary treatment. Inulin supplementation did not modify the electrogenic transport of Glc and Gln in the jejunal mucosa. The basal value of transmucosal tissue resistance was significantly lower (P < 0.001) in the inulin-fed group compared with the control group. In conclusion, inulin supplementation affected the jejunal mucosal architecture but did not modify the electrogenic transport of Glc and amino acid under present experimental condition.
Collapse
Affiliation(s)
- H Rehman
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Rehman H, Awad WA, Lindner I, Hess M, Zentek J. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci 2006; 85:1298-302. [PMID: 16830872 DOI: 10.1093/ps/85.7.1298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria that colonize the intestinal tract can invade epithelial cells or produce toxins that cause diarrhoeal diseases. Proliferation of Clostridium perfringens and production of alpha-toxin, a phospholipase C, is the major factor for necrotic enteritis in poultry. However, little is known about the functional importance of luminal alpha-toxin during intestinal infection. The purpose of this study was to investigate the effects of purified alpha toxin of Clostridium perfringens on the electrophysiology of the laying hen's stripped jejunum in Ussing chambers. The effects were investigated in Experiment 1 after toxin addition to the mucosal and serosal side of the tissue, and a second experiment was performed to study the effect of the toxin on sodium-dependent glucose transport. Mucosal exposure of jejunal tissue sheets to 100 units of alpha toxin/L did not elicit electrophysiologic changes. The addition of purified alpha toxin to the serosal side induced a biphasic increase in short-circuit current (ISC) after 15 and 100 min. The magnitude of the increase of ISC of both peaks was similar, but the second phase response lasted longer. The tissue conductivity tended (P = 0.07) to be lower after 2 h of toxin addition compared with basal value when no toxin was added. In the second experiment, adding D-glucose on the mucosal side of the jejunum increased (P < 0.05) the ISC from a baseline value of 42 +/- 28 microA/cm2 to a maximal value of 103 +/- 27 microA/cm2. Preincubation with alpha-toxin almost fully inhibited this stimulation of ISC by D-glucose. The conductance of the tissues was not affected by the toxin addition. These findings indicate that alpha toxin not only causes electrogenic secretion of anions, probably due to the stimulation of chloride secretion, but also diminishes electrogenic Na+/glucose cotransport from the mucosal to serosal side in the small intestine of poultry.
Collapse
Affiliation(s)
- H Rehman
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|