1
|
Weng X, Wang S, Wang Q, Wei M, Cheng B. Melatonin inhibits salivary gland epithelial cell ferroptosis via the NRF2/HO-1/GPX4 signaling pathway in primary Sjögren's syndrome. Inflamm Res 2025; 74:84. [PMID: 40413364 DOI: 10.1007/s00011-025-02047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by xerostomia and autoimmune sialadenitis. Interferon-γ (IFN-γ) induces ferroptosis in salivary gland epithelial cells (SGECs), leading to salivary gland (SG) hypofunction. We previously demonstrated the beneficial effects of melatonin (MLT) in alleviating SG dysfunction and inflammation in a pSS animal model. However, the precise underlying mechanism remains unclear. METHODS Female NOD/ltj and ICR mice were used as the pSS mouse model and control group, respectively. MLT was administered via intraperitoneal injection to NOD/ltj mice to detect its effect on ferroptosis in SGs. Primary human SGECs and A253 cells were treated with IFN-γand ferroptosis inducers, with or without MLT. RESULTS Exogenous MLT alleviated pathological SG alterations and promoted saliva production through inhibiting SGEC ferroptosis. MLT inhibited SGEC ferroptosis induced by IFN-γ and ferroptosis inducers via nuclear factor erythroid 2-related factor 2/heme oxygenase-1/glutathione peroxidase 4 (NRF2/HO-1/GPX4) pathway activation. Moreover, MLT suppressed the nuclear factor-kappa B (NF-κB) pathway, which is triggered by ferroptosis in SGECs. Nevertheless, ML385-mediated NRF2 inhibition abrogated the antiferroptotic protective effects of MLT on SGECs. CONCLUSIONS MLT inhibits SGEC ferroptosis through NRF2/HO-1/GPX4 pathway activation and thus attenuates ferroptosis-triggered NF-κB activity. Melatonin represents a potential therapeutic approach for pSS owing to its capacity to regulate ferroptosis.
Collapse
Affiliation(s)
- Xiuhong Weng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Simin Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qing Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Mingbo Wei
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
2
|
Gehlsen U, Maass M, Stary D, Wagener-Ryczek S, Musial G, Pasparakis M, de Paiva CS, Stern ME, Steven P. Desiccation stress triggers and exacerbates experimental ocular Graft-versus-host-disease. Ocul Surf 2025; 37:236-246. [PMID: 40287060 DOI: 10.1016/j.jtos.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Chronic ocular graft-versus-host disease (oGVHD) is one of the most common complications after allogeneic hematopoietic stem cell transplantation (aHSCT). Recent studies indicate that desiccating stress by air-conditioning in transplantation wards increases the incidence of oGVHD. To test the hypothesis that experimental desiccating stress is a risk factor for oGVHD a mouse model of oGVHD was subjected to experimental desiccating stress. MATERIALS/METHODS A previously established chemo-induced minor-mismatch mouse model of oGVHD was used. One group was challenged with desiccating stress for 18 days and compared to non-desiccated GVHD animals. Clinical phenotyping was performed weekly and ocular tissue and regional lymph nodes were collected on days 7 and 28 for flow-cytometry, tear film cytokine analysis, histology for corneal lymphatics and dendritic cell counts, and corneal gene expression. RESULTS Desiccating stress leads to significant earlier and more severe systemic and oGVHD accompanied by higher numbers of activated corneal dendritic cells, higher expression of TNF in tear film and earlier corneal lymphangiogenesis. Gene expression analysis suggests that systemic GVHD severity may influence oGVHD. Different inflammatory pathways are upregulated at d28 following desiccating stress in contrast to non-desiccated GVHD. CONCLUSIONS The data presented strengthens the hypothesis, that desiccating stress during aHSCT is a risk factor for oGVHD. Together with already published clinical data, there is increasing evidence that implicates protecting patients from desiccation during the engraftment of allogeneic hematopoietic stem cells. Furthermore, specific prophylactic therapies should be developed and tested to reduce the incidence and severity of oGVHD.
Collapse
Affiliation(s)
- Uta Gehlsen
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Martina Maass
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Daniela Stary
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Svenja Wagener-Ryczek
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Gwen Musial
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Cintia S de Paiva
- Ocular Surface Center at the Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Michael E Stern
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Philipp Steven
- Competence Center for Ocular GVHD, Center of Integrated Oncology, Department I of Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Germany.
| |
Collapse
|
3
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Kang H, Jung YH, Moon J, Ryu JS, Yoon CH, Kim YH, Kim MK, Kim DH. Efficacy of RCI001 as a Therapeutic Candidate in a Primary Sjögren Syndrome Mouse Model. Cornea 2025; 44:226-233. [PMID: 39288434 PMCID: PMC11676593 DOI: 10.1097/ico.0000000000003696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE The aim of this study was to investigate the efficacy of RCI001 (RCI) in a mouse model of primary Sjögren syndrome. METHODS Eight 12-week-old NOD.B10-H2b mice were used in this study. All experimental animals were randomly divided into phosphate-buffered saline (PBS) and RCI groups in NOD.B10-H2b mice. The eyes of mice were topically treated with PBS or RCI twice a day for a week. Ocular surface staining (OSS) and tear secretion were compared between before and after treatment. The transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate oxidase (NOX) in the conjunctiva and cornea (CC) and lacrimal gland were assayed. In addition, immunofluorescence staining of the conjunctiva was assessed. RESULTS The RCI group showed significant clinical improvement in OSS and tear secretion after 1 week of treatment compared with the baseline (both P < 0.001) and showed better improvement in OSS and tear secretion than the PBS group after 1 week of treatment (both P < 0.05). The levels of IL-1β and IL-17 in CC and IL-6 in the lacrimal gland were also significantly reduced in the RCI group compared with the PBS group (each P < 0.05). Transcript levels of NOX2 and NOX4 were also significantly reduced in CC of the RCI group compared with those of the PBS group ( P < 0.05). The RCI group also resulted in lower conjunctival expression of oxidative stress markers (4-hydroxy-2-nonenal, hexanoyl-lysine, and NOX4) than the PBS group. CONCLUSIONS Topical RCI001 demonstrated excellent therapeutic efficacy in a mouse model of primary Sjögren syndrome by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Young-ho Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jayoon Moon
- Department of Ophthalmology, Saevit Eye Hospital, Goyang, Republic of Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Ho Kim
- RudaCure Co, Ltd, Incheon, Republic of Korea
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea; and
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Kim
- RudaCure Co, Ltd, Incheon, Republic of Korea
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Bhujbal S, Rupenthal ID, Steven P, Agarwal P. Inflammation in Dry Eye Disease-Pathogenesis, Preclinical Animal Models, and Treatments. J Ocul Pharmacol Ther 2024; 40:638-658. [PMID: 39358844 DOI: 10.1089/jop.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Dry eye disease (DED) is a rapidly growing ocular surface disease with a significant socioeconomic impact that affects the patients' visual function and, thus, their quality of life. It is distinguished by a loss of tear film homeostasis, leading to tear film instability, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities, with all of these playing etiological roles in the propagation of the vicious DED circle. While current treatments primarily focus on reducing tear film instability and hyperosmolarity, increasingly more attention is being placed on tackling the underlying inflammation that propagates and potentiates these factors. As such, preclinical models are crucial to further elucidate the DED pathophysiology and develop novel therapeutic strategies. This review outlines the role of inflammation in DED, highlighting related signs and diagnostic tools before focusing on relevant preclinical animal models and potential therapeutic strategies to tackle DED-associated inflammation.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Philipp Steven
- Clinic I for Internal Medicine and Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Wang S, Naderi A, Kahale F, Ortiz G, Forouzanfar K, Chen Y, Dana R. Substance P regulates memory Th17 cell generation and maintenance in chronic dry eye disease. J Leukoc Biol 2024; 116:1446-1453. [PMID: 38916986 PMCID: PMC11599119 DOI: 10.1093/jleuko/qiae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Substance P is a neuropeptide expressed by nerves and an array of cells that serves as a critical mediator of neuroinflammation. Our recent work has demonstrated that blocking the preferred receptor for substance P, neurokinin 1 receptor, effectively suppresses the induction of acute dry eye disease by preserving regulatory T-cell function, while inhibiting antigen-presenting cell maturation and subsequent generation of effector Th17 cells. Clinically, dry eye disease is a chronic disorder characterized by sustained ocular surface inflammation, which is mediated by long-lived memory Th17 cells demonstrated in our well-established chronic dry eye disease model. The present study aimed to further understand the function of substance P in the chronic phase of dry eye disease and its role in regulating the underlying pathogenic memory Th17. In vitro culture of effector T cells isolated from acute dry eye disease with substance P led to an enhanced conversion of effector Th17 to memory Th17, while culturing memory T cells isolated from chronic dry eye disease with substance P effectively preserved the memory Th17 cells. In contrast, the addition of a neurokinin 1 receptor antagonist in the cultures abolished the substance P-mediated effects. Furthermore, in vivo treatment with the neurokinin 1 receptor antagonist during the resolution phase of acute dry eye disease significantly suppressed memory Th17 generation, and treatment in the chronic phase of dry eye disease disrupted the maintenance of memory Th17. Taken together, our results demonstrate that increased expression of substance P promotes memory Th17 generation and maintenance in chronic dry eye disease, and thus blockade of substance P represents a novel promising memory Th17-targeting strategy in treating chronic ocular surface inflammation.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, Harbin, Heilongjiang Province, 150001, P.R. China
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Katayoon Forouzanfar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| |
Collapse
|
7
|
Chang S, Luo Q, Huang Z. Genetic association and causal effects between inflammatory bowel disease and conjunctivitis. Front Immunol 2024; 15:1409146. [PMID: 39295864 PMCID: PMC11408187 DOI: 10.3389/fimmu.2024.1409146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is often clinically associated with conjunctivitis, which may result from genetic associations and causal effects. Methods Genetic correlations were investigated through the genome-wide association study (GWAS) data on IBD and conjunctivitis using the linkage disequilibrium score regression (LDSC) and heritability estimated in summary statistics (HESS). The causal effect analysis was performed using four methods of Mendelian randomization (MR) and the genetic risk loci common to both diseases were identified by the statistical method of conditional/conjoint false discovery rate (cond/conjFDR), followed by genetic overlap analysis. Finally, a multi-trait GWAS analysis (MTAG) was performed to validate the identified shared loci. Results IBD (including CD and UC) and conjunctivitis showed a significant overall correlation at the genomic level; however, the local correlation of IBD and CD with conjunctivitis was significant and limited to chromosome 11. MR analysis suggested a significant positive and non-significant negative correlation between IBD (including CD and UC) and conjunctivitis. The conjFDR analysis confirmed the genetic overlap between the two diseases. Additionally, MTAG was employed to identify and validate multiple genetic risk loci. Conclusion The present study provides evidence of genetic structure and causal effects for the co-morbidity between IBD (both CD and UC) and conjunctivitis, expanding the epidemiologic understanding of the two diseases.
Collapse
Affiliation(s)
- Shuangqing Chang
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Qinghua Luo
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifang Huang
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| |
Collapse
|
8
|
Scholand KK, Galletti J, Haap W, Santos-Ferreira T, Ullmer C, de Paiva CS. Inhibition of Cathepsin S in Autoimmune CD25KO Mouse Improves Sjögren Disease-Like Lacrimal Gland Pathology. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 39017634 PMCID: PMC11262477 DOI: 10.1167/iovs.65.8.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Purpose CD25KO mice are a model of Sjögren disease (SjD) driven by autoreactive T cells. Cathepsin S (CTSS) is a protease crucial for major histocompatibility complex class II presentation that primes T cells. We investigated if a diet containing CTSS inhibitor would improve autoimmune signs in CD25KO mice. Methods Four-week female CD25KO mice were randomly chosen to receive chow containing a CTSS inhibitor (R05461111, 262.5 mg/kg chow) or standard chow for 4 weeks. Cornea sensitivity was measured. Inflammatory score was assessed in lacrimal gland (LG) histologic sections. Flow cytometry of LG and ocular draining lymph nodes (dLNs) investigated expression of Th1 and Th17 cells. Expression of inflammatory, T- and B-cell, and apoptotic markers in the LG were assessed with quantitative PCR. The life span of mice receiving CTSS inhibitor or standard chow was compared. CD4+ T cells from both groups were isolated from spleens and adoptively transferred into RAG1KO female recipients. Results Mice receiving CTSS inhibitor had better cornea sensitivity and improved LG inflammatory scores. There was a significant decrease in the frequency of CD4+ immune cells and a significant increase in the frequency of CD8+ immune cells in the dLNs of CTSS inhibitor mice. There was a significant decrease in Th1 and Th17 cells in CTSS inhibitor mice in both LGs and dLNs. Ifng, Ciita, and Casp8 mRNA in CTSS inhibitor mice decreased. Mice that received the CTSS inhibitor lived 30% longer. Adoptive transfer recipients with CTSS inhibitor-treated CD4+ T cells had improved cornea sensitivity and lower inflammation scores. Conclusions Inhibiting CTSS could be a potential venue for the treatment of SjD in the eye and LG.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | | | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| |
Collapse
|
9
|
Stern ME, Theofilopoulos AN, Steven P, Niederkorn JY, Fox R, Calonge M, Scheid C, Pflugfelder SC. Immunologic basis for development of keratoconjunctivitis sicca in systemic autoimmune diseases: Role of innate immune sensors. Ocul Surf 2024; 32:130-138. [PMID: 38395195 DOI: 10.1016/j.jtos.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The literature is filled with citations reporting an increased incidence of chronic dry eye disease, also known as keratoconjunctivitis sicca, in patients with systemic autoimmune diseases such as rheumatoid arthritis, Sjögren's Syndrome, systemic sclerosis and lupus. As the most environmentally exposed mucosal surface of the body, the conjunctiva constantly responds to environmental challenges which are typically self limited, but when persistent and unresolved may provoke pathogenic innate and adaptive immune reactions. Our understanding of the pathophysiological mechanisms by which systemic autoimmune diseases cause dry eye inducing ocular surface inflammation continues to evolve. Conjunctival immune tone responds to self or foreign danger signals (including desiccating stress) on the ocular surface with an initial non-specific innate inflammatory response. If unchecked, this can lead to activation of dendritic cells that present antigen and prime T and B cells resulting in an adaptive immune reaction. These reactions generally resolve, but dysfunctional, hyper-responsive immune cells found in systemic autoimmune diseases that are recruited to the ocular surface can amplify inflammatory stress responses in the ocular surface and glandular tissues and result in autoimmune reactions that disrupt tear stability and lead to chronic dry eye disease. We here propose that unique features of the ocular surface immune system and the impact of systemic immune dysregulation in autoimmune diseases, can predispose to development of dry eye disease, and exacerbate severity of existing dry eye.
Collapse
Affiliation(s)
- Michael E Stern
- University of Cologne, Department of Ophthalmology, Cologne, Germany; IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain.
| | | | - Philipp Steven
- University of Cologne, Department of Ophthalmology, Cologne, Germany; University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Jerry Y Niederkorn
- Southwestern School of Medicine, Department of Ophthalmology, Dallas, TX, USA
| | - Robert Fox
- Scripps Hospital, Department of Rheumatology, La Jolla, CA, USA
| | - Margarita Calonge
- IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain
| | - Christof Scheid
- University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
11
|
Kuklinski EJ, Yu Y, Ying GS, Asbell PA, for the DREAM Study Research Group. Association of Ocular Surface Immune Cells With Dry Eye Signs and Symptoms in the Dry Eye Assessment and Management (DREAM) Study. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37669063 PMCID: PMC10484021 DOI: 10.1167/iovs.64.12.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial, heterogeneous disease of the ocular surface with one etiology being ocular surface inflammation. Studies using animal models demonstrate the role of ocular surface immune cells in the inflammatory pathway leading to DED, but few have evaluated humans. This study described the white blood cell population from the ocular surface of patients with DED and assessed its association with DED signs and symptoms in participants of the Dry Eye Assessment and Management (DREAM) study. Methods Participants were assessed for symptoms using the Ocular Surface Disease Index, signs via corneal staining, conjunctival staining, tear break-up time, and Schirmer test, and Sjögren's syndrome (SS) based on the 2012 American College of Rheumatology classification criteria. Impression cytology of conjunctival cells from each eye was evaluated using flow cytometry: T cells, helper T cells (Th), regulatory T cells (Tregs), cytotoxic T cells, and dendritic cells. Results We assessed 1049 eyes from 527 participants. White blood cell subtype percentages varied widely across participants. Significant positive associations were found for Th and conjunctival staining (mean score of 2.8 for 0% Th and 3.1 for >4.0% Th; P = 0.007), and corneal staining (mean score of 3.5 for 0% Th and 4.3 for >4.0% Th; P = 0.01). SS was associated with higher percent of Tregs (median 0.1 vs. 0.0; P = 0.01). Conclusions Th were associated with more severe conjunctival and corneal staining, possibly indicating their role in inflammation leading to damage of the ocular surface. There is no consistent conclusion about Tregs in SS, but these results support that Tregs are elevated in SS.
Collapse
Affiliation(s)
- Eric J. Kuklinski
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Yinxi Yu
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - for the DREAM Study Research Group
- Rutgers New Jersey Medical School, Newark, New Jersey, United States
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States
- University of Memphis, Memphis, Tennessee, United States
| |
Collapse
|
12
|
Zhuang D, Misra SL, Mugisho OO, Rupenthal ID, Craig JP. NLRP3 Inflammasome as a Potential Therapeutic Target in Dry Eye Disease. Int J Mol Sci 2023; 24:10866. [PMID: 37446038 DOI: 10.3390/ijms241310866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder arising from numerous interrelated underlying pathologies that trigger a self-perpetuating cycle of instability, hyperosmolarity, and ocular surface damage. Associated ocular discomfort and visual disturbance contribute negatively to quality of life. Ocular surface inflammation has been increasingly recognised as playing a key role in the pathophysiology of chronic DED. Current readily available anti-inflammatory agents successfully relieve symptoms, but often without addressing the underlying pathophysiological mechanism. The NOD-like receptor protein-3 (NLRP3) inflammasome pathway has recently been implicated as a key driver of ocular surface inflammation, as reported in pre-clinical and clinical studies of DED. This review discusses the intimate relationship between DED and inflammation, highlights the involvement of the inflammasome in the development of DED, describes existing anti-inflammatory therapies and their limitations, and evaluates the potential of the inflammasome in the context of the existing anti-inflammatory therapeutic landscape as a therapeutic target for effective treatment of the disease.
Collapse
Affiliation(s)
- Dian Zhuang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Rosso P, Fico E, Colafrancesco S, Bellizzi MG, Priori R, Cerbelli B, Leopizzi M, Giordano C, Greco A, Tirassa P, Severini C, Fusconi M. Involvement of Substance P (SP) and Its Related NK1 Receptor in Primary Sjögren's Syndrome (pSS) Pathogenesis. Cells 2023; 12:1347. [PMID: 37408182 DOI: 10.3390/cells12101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 07/07/2023] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a systemic autoimmune disease that primarily attacks the lacrimal and salivary glands, resulting in impaired secretory function characterized by xerostomia and xerophthalmia. Patients with pSS have been shown to have impaired salivary gland innervation and altered circulating levels of neuropeptides thought to be a cause of decreased salivation, including substance P (SP). Using Western blot analysis and immunofluorescence studies, we examined the expression levels of SP and its preferred G protein-coupled TK Receptor 1 (NK1R) and apoptosis markers in biopsies of the minor salivary gland (MSG) from pSS patients compared with patients with idiopathic sicca syndrome. We confirmed a quantitative decrease in the amount of SP in the MSG of pSS patients and demonstrated a significant increase in NK1R levels compared with sicca subjects, indicating the involvement of SP fibers and NK1R in the impaired salivary secretion observed in pSS patients. Moreover, the increase in apoptosis (PARP-1 cleavage) in pSS patients was shown to be related to JNK phosphorylation. Since there is no satisfactory therapy for the treatment of secretory hypofunction in pSS patients, the SP pathway may be a new potential diagnostic tool or therapeutic target.
Collapse
Affiliation(s)
- Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Serena Colafrancesco
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Mario Giuseppe Bellizzi
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Roberta Priori
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, Viale del Policlinico 155, 00185 Rome, Italy
| | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Massimo Fusconi
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| |
Collapse
|
14
|
Shan H, Liu W, Li Y, Pang K. The Autoimmune Rheumatic Disease Related Dry Eye and Its Association with Retinopathy. Biomolecules 2023; 13:724. [PMID: 37238594 PMCID: PMC10216215 DOI: 10.3390/biom13050724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Dry eye disease is a chronic disease of the ocular surface characterized by abnormal tear film composition, tear film instability, and ocular surface inflammation, affecting 5% to 50% of the population worldwide. Autoimmune rheumatic diseases (ARDs) are systemic disorders with multi-organ involvement, including the eye, and play a significant role in dry eye. To date, most studies have focused on Sjögren's syndrome (one of the ARDs) since it manifests as two of the most common symptoms-dry eyes and a dry mouth-and attracts physicians to explore the relationship between dry eye and ARDs. Many patients complained of dry eye related symptoms before they were diagnosed with ARDs, and ocular surface malaise is a sensitive indicator of the severity of ARDs. In addition, ARD related dry eye is also associated with some retinal diseases directly or indirectly, which are described in this review. This review also summarizes the incidence, epidemiological characteristics, pathogenesis, and accompanying ocular lesions of ARD's related dry eye, emphasizing the potential role of dry eye in recognition and monitoring among ARDs patients.
Collapse
Affiliation(s)
| | | | | | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
15
|
Schwend T. Wiring the ocular surface: A focus on the comparative anatomy and molecular regulation of sensory innervation of the cornea. Differentiation 2023:S0301-4681(23)00010-5. [PMID: 36997455 DOI: 10.1016/j.diff.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The cornea is richly innervated with sensory nerves that function to detect and clear harmful debris from the surface of the eye, promote growth and survival of the corneal epithelium and hasten wound healing following ocular disease or trauma. Given their importance to eye health, the neuroanatomy of the cornea has for many years been a source of intense investigation. Resultantly, complete nerve architecture maps exist for adult human and many animal models and these maps reveal few major differences across species. Interestingly, recent work has revealed considerable variation across species in how sensory nerves are acquired during developmental innervation of the cornea. Highlighting such species-distinct key differences, but also similarities, this review provides a full, comparative anatomy analysis of sensory innervation of the cornea for all species studied to date. Further, this article comprehensively describes the molecules that have been shown to guide and direct nerves toward, into and through developing corneal tissue as the final architectural pattern of the cornea's neuroanatomy is established. Such knowledge is useful for researchers and clinicians seeking to better understand the anatomical and molecular basis of corneal nerve pathologies and to hasten neuro-regeneration following infection, trauma or surgery that damage the ocular surface and its corneal nerves.
Collapse
|
16
|
Acupuncture Alleviates Corneal Inflammation in New Zealand White Rabbits with Dry Eye Diseases by Regulating α7nAChR and NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6613144. [DOI: 10.1155/2022/6613144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Purpose. The purpose of this study is to determine the mechanism of improvement in dry eye diseases (DEDs) treated by acupuncture. The inflammatory molecules and related pathways will be analyzed in our study. Methods. In order to establish the animal model for DEDs, healthy New Zealand white rabbits were treated with scopolamine (Scop) hydrobromide for 21 consecutive days. After 21 days, acupuncture, fluorometholone (Flu), and α7nAChR antagonist (α-BGT) treatments were performed, and the Scop injections were continued until day 35. The therapeutic effect of acupuncture on DED inflammation was evaluated by corneal fluorescence staining, tear film rupture time, tear flow measurement, in vivo confocal microscopy (IVCM), corneal histopathology, and cytokine protein chip technology. The influence of acupuncture on the corneal pathology and inflammatory factors ACh, α7nAChR, and NF-κB was detected by enzyme-linked immunosorbent assay (ELISA) and western blot. Results. Compared with the group Scop, acupuncture can significantly reduce corneal staining and increase the tear film rupture time and tear flow, which are accompanied by a decrease in corneal epithelial detachment and lymphocyte infiltration. Acupuncture can relieve the inflammation of corneal stroma and mitigate the expression of proinflammatory factors and chemokines. Acupuncture can upregulate the expression of ACh and α7nAChR and downregulate the expression of NF-κB. Conclusion. Our findings demonstrate that acupuncture can alleviate corneal inflammation in New Zealand white rabbits with DEDs via α7nAChR and NF-κB signaling pathway regulation. The expression indicates that α7nAChR/NF-κB signaling pathway may be active and that acupuncture is a potential therapeutic target for dry eye.
Collapse
|
17
|
Li Y, Li X, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. Cytokine Growth Factor Rev 2022; 67:66-79. [DOI: 10.1016/j.cytogfr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
18
|
Keindl M, Davies R, Bergum B, Brun JG, Hammenfors D, Jonsson R, Lyssenko V, Appel S. Impaired activation of STAT5 upon IL-2 stimulation in Tregs and elevated sIL-2R in Sjögren's syndrome. Arthritis Res Ther 2022; 24:101. [PMID: 35526080 PMCID: PMC9077945 DOI: 10.1186/s13075-022-02769-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/28/2022] [Indexed: 12/31/2022] Open
Abstract
Background Interleukin-2 (IL-2) and the high-affinity IL-2 receptor (IL-2R) are essential for the survival of regulatory T cells (Tregs) which are the main players in immune tolerance and prevention of autoimmune diseases. Sjögren’s syndrome (SS) is a chronic autoimmune disease predominantly affecting women and is characterised by sicca symptoms including oral and ocular dryness. The aim of this study was to investigate an association between IL-2R and Treg function in patients with SS of different severity defined by the salivary flow rate. Methods In a cross-sectional study, we determined plasma soluble IL-2R (sIL-2R) levels in women with SS (n=97) and healthy females (n=50) using ELISA. A subset of those (n=51) was screened for Treg function measured by the STAT5 signalling response to IL-2 using phospho-flow cytometry. Results We found that elevated plasma levels of sIL-2R were positively associated with the severity of SS reflected by a pathologically low salivary flow. Phospho-flow analysis revealed that patients with SS have a significantly lower frequency of pSTAT5+ Tregs upon IL-2 stimulation compared with healthy individuals, while the frequency of Tregs and pSTAT5 in conventional T cells remained unchanged. In addition, we observed more pSTAT5+ Tregs at baseline in patients with SS, which is significantly associated with seropositivity and elevated sIL-2R. Conclusions Our data indicates that Tregs have a weakened immunosuppressive function in patients with SS due to impaired IL-2/IL-2R signalling capacity. This could mediate lymphocytic infiltration into salivary glands inducing sicca symptoms. We believe that sIL-2R could act as a useful indicator for SS and disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02769-y.
Collapse
Affiliation(s)
- Magdalena Keindl
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brith Bergum
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Johan G Brun
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Daniel Hammenfors
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Valeriya Lyssenko
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Guo H, Ju Y, Choi M, Edman MC, Louie SG, Hamm-Alvarez SF, MacKay JA. Supra-lacrimal protein-based carriers for cyclosporine A reduce Th17-mediated autoimmunity in murine model of Sjögren's syndrome. Biomaterials 2022; 283:121441. [PMID: 35306230 PMCID: PMC8982551 DOI: 10.1016/j.biomaterials.2022.121441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023]
Abstract
Sjögren's syndrome (SS) is a multifactorial autoimmune disease with principal symptoms including inflammation and loss of function of lacrimal glands (LG) and salivary glands. While glandular infiltrates includes both B- and T-cells, CD4+ T cells are strongly implicated. Utilizing the male non-obese diabetic (NOD) mouse model of SS, this work: 1) identifies clinically-relevant elevations in cytokines (IL-17A, IL-2) in LG-derived CD4+ T cells; and 2) explores tissue-specific immunosuppression of SS using a novel protein-based drug carrier to concentrate cyclosporine A (CsA) directly in the LG. As a potent immunosuppressant, topical ophthalmic CsA is approved for dry eye disorders; however, it cannot effectively resolve inflammation due to limited accumulation in the LG. Systemic CsA has dose-limiting side effects that also limit its ability to block LG inflammation. Using elastin-like polypeptides (ELPs) fused genetically to cyclophilin, the intracellular cognate receptor of CsA, this manuscript reports a sustained-release formulation of CsA that maintains therapeutic drug concentrations in the LG and extends intervals between doses. This formulation blocked both in vitro Th17 cell differentiation and IL-17A secretion. In vivo treatment significantly decreased the abundance of Th17.1 cells, a helper cell population sharing phenotypes of both Th17 and Th1, in the LG of diseased NOD mice. Treatment with even a single dose of the sustained-release formulation was effective enough to improve basal levels of tear production. Thus, this sustained-release formulation suppressed local LG inflammation driven through IL-17 dependent pathways, while improving ocular surface function.
Collapse
Affiliation(s)
- Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - Stan G Louie
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, United States.
| |
Collapse
|
20
|
Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res 2022; 218:109007. [PMID: 35257715 PMCID: PMC9050918 DOI: 10.1016/j.exer.2022.109007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023]
Abstract
Despite constant exposure to various environmental stimuli, the ocular surface remains intact and uninflamed while maintaining the transparency of the cornea and its visual function. This 'immune privilege' of the ocular surface is not simply a result of the physical barrier function of the mucosal lining but, more importantly, is actively maintained through a variety of immunoregulatory mechanisms that prevent the disruption of immune homeostasis. In this review, we focus on essential molecular and cellular players that promote immune quiescence in steady-state conditions and suppress inflammation in disease-states. Specifically, we examine the interactions between the ocular surface and its local draining lymphoid compartment, by encompassing the corneal epithelium, corneal nerves and cornea-resident myeloid cells, conjunctival goblet cells, and regulatory T cells (Treg) in the context of ocular surface autoimmune inflammation (dry eye disease) and alloimmunity (corneal transplantation). A better understanding of the immunoregulatory mechanisms will facilitate the development of novel, targeted immunomodulatory strategies for a broad range of ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Zhu J, Inomata T, Shih KC, Okumura Y, Fujio K, Huang T, Nagino K, Akasaki Y, Fujimoto K, Yanagawa A, Miura M, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Shokirova H, Eguchi A, Morooka Y, Chen F, Murakami A. Application of Animal Models in Interpreting Dry Eye Disease. Front Med (Lausanne) 2022; 9:830592. [PMID: 35178415 PMCID: PMC8844459 DOI: 10.3389/fmed.2022.830592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Different pathophysiologic mechanisms are involved in the initiation, development, and outcome of dry eye disease (DED). Animal models have proven valuable and efficient in establishing ocular surface microenvironments that mimic humans, thus enabling better understanding of the pathogenesis. Several dry eye animal models, including lacrimal secretion insufficiency, evaporation, neuronal dysfunction, and environmental stress models, are related to different etiological factors. Other models may be categorized as having a multifactorial DED. In addition, there are variations in the methodological classification, including surgical lacrimal gland removal, drug-induced models, irradiation impairment, autoimmune antibody-induced models, and transgenic animals. The aforementioned models may manifest varying degrees of severity or specific pathophysiological mechanisms that contribute to the complexity of DED. This review aimed to summarize various dry eye animal models and evaluate their respective characteristics to improve our understanding of the underlying mechanism and identify therapeutic prospects for clinical purposes.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Morooka
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fang Chen
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
23
|
Katz EA, Sunshine S, Mun C, Sarwar M, Surenkhuu B, Pradeep A, Jain S. Combinatorial therapy with immunosuppressive, immunomodulatory and tear substitute eyedrops ("Triple Play") in Recalcitrant Immunological Ocular Surface Diseases. Ocul Surf 2021; 23:1-11. [PMID: 34768002 DOI: 10.1016/j.jtos.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The current paradigm for therapy of recalcitrant ocular surface diseases (OSD) consists of a sequential, step-up treatment approach. A combinatorial topical therapy (anti-inflammatory/immunosuppressive [steroid] with immunomodulatory [pooled human immune globulin] and tear substitute [serum]) that simultaneously targets several immunological pathways may be more efficacious. This report evaluates if the combinatorial therapy resulted in clinical benefit in patients with recalcitrant OSD. METHODS We performed a retrospective case study of patients receiving topical, preservative-free, compounded formulations of steroids, pooled human immune globulin, and serum tears. Outcome measures included visual acuity, ocular surface disease index (OSDI), ocular discomfort score, subjective global assessment (SGA), corneal staining, conjunctival redness, and slit lamp photographs. RESULTS Patients consisted of one male and 11 females ranging in age from 27 to 87 years old. Pathologies included ocular graft-versus-host disease (n = 4), Sjögren's syndrome (n = 3), ocular cicatricial pemphigoid (n = 1), pemphigus vulgaris (n = 1), peripheral ulcerative keratitis (n = 1), Stevens-Johnson syndrome (n = 1), and giant papillary conjunctivitis (n = 1). All patients were "improved" or "much improved" on SGA after combinatorial therapy. There was a clinically meaningful reduction in OSDI, ocular discomfort, corneal staining, and conjunctival injection. Additionally, three patients had improvement in their visual acuity (one from 20/400 to 20/20). Adverse effects included increased intraocular pressure in two patients, presumably due to topical steroid use. CONCLUSIONS Combinatorial therapy provides clinical benefit by reducing the symptoms and signs in recalcitrant OSD. Our study provides the rationale for performing prospective clinical trials to evaluate the efficacy of combinatorial therapy for treating recalcitrant OSD.
Collapse
Affiliation(s)
- Eitan A Katz
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Sarah Sunshine
- University of Maryland School of Medicine, Department of Ophthalmology and Visual Sciences, Baltimore, MD, USA; The Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine Mun
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Monazzah Sarwar
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Bayasgalan Surenkhuu
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Anubhav Pradeep
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Sandeep Jain
- The University of Illinois at Chicago College of Medicine - Illinois Eye and Ear Infirmary, Chicago, IL, USA.
| |
Collapse
|
24
|
Chen Y, Dana R. Autoimmunity in dry eye disease - An updated review of evidence on effector and memory Th17 cells in disease pathogenicity. Autoimmun Rev 2021; 20:102933. [PMID: 34509656 DOI: 10.1016/j.autrev.2021.102933] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
The classic Th1/Th2 dogma has been significantly reshaped since the subsequent introduction of several new T helper cell subsets, among which the most intensively investigated during the last decade is the Th17 lineage that demonstrates critical pathogenic roles in autoimmunity and chronic inflammation - including the highly prevalent dry eye disease. In this review, we summarize current concepts of Th17-mediated disruption of ocular surface immune homeostasis that leads to autoimmune inflammatory dry eye disease, by discussing the induction, activation, differentiation, migration, and function of effector Th17 cells in disease development, highlighting the phenotypic and functional plasticity of Th17 lineage throughout the disease initiation, perpetuation and sustention. Furthermore, we emphasize the most recent advance in Th17 memory formation and function in the chronic course of dry eye disease, a major area to be better understood for facilitating the development of effective treatments in a broader field of autoimmune diseases that usually present a chronic course with recurrent episodes of flare in the target tissues or organs.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Galletti JG, de Paiva CS. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology 2021; 164:43-56. [PMID: 33837534 DOI: 10.1111/imm.13338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is the part of the visual system directly exposed to the environment, and it comprises the cornea, the first refractive tissue layer and its surrounding structures. The ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable of fighting against dangerous pathogens. However, due to the potential harmful effects of uncontrolled inflammation, the ocular surface has several mechanisms to keep the immune response in check. Specifically, the ocular surface is maintained inflammation-free and functional by a particular form of peripheral tolerance known as mucosal tolerance, markedly different from the immune privilege of intraocular structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance mechanisms found in the gut and airways, respectively. And also similarly, this form of immunoregulation in the eye is affected by ageing just as it is in the digestive and respiratory tracts. With ageing comes an increased prevalence of immune-based ocular surface disorders, which could be related to an age-related impairment of conjunctival tolerance. The purpose of this review was to summarize the present knowledge of ocular mucosal tolerance and how it is affected by the ageing process in the light of the current literature on mucosal immunoregulation of the gut and airways.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Zhang R, Pandzic E, Park M, Wakefield D, Di Girolamo N. Inducing dry eye disease using a custom engineered desiccation system: Impact on the ocular surface including keratin-14-positive limbal epithelial stem cells. Ocul Surf 2021; 21:145-159. [PMID: 33930539 DOI: 10.1016/j.jtos.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Dry eye disease (DED) is characterized by loss of tear film stability that becomes self-sustaining in a vicious cycle of pathophysiological events. Currently, desiccation stress (DS) is the dominant procedure for inducing DED in mice, however its' effect on limbal epithelial stem cells (LESCs) has been overlooked. This study aimed to establish a DS model via the use of a novel hardware to investigate the impact on the ocular surface including LESCs. METHODS A mouse transporter unit was customized to generate a dehumidified environment. C57BL/6J mice were exposed to mild DS and injected with scopolamine hydrobromide (SH) or remained untreated (UT) under standard vivarium conditions for 10 consecutive days (n = 28/group). Clinical assessments included phenol red tear-thread test, fluorescein staining and optical coherence tomography assessments. Histopathological and immunofluorescence was used to evaluate tissue architecture, goblet cell (GC) status, lacrimal gland (LG) inflammation and epithelial phenotype on the ocular surface. Whole flat-mounted corneas were immunostained for keratin-14 (K14), then imaged by confocal microscopy and analyzed computationally to investigate the effect of DS on LESCs. RESULTS Custom modifications made to the animal transporter unit resulted in dehumidified cage relative humidity (RH) of 43.5 ± 4.79% compared to the vivarium 53.9 ± 1.8% (p = 0.0243). Under these conditions, aqueous tear production in mice was suppressed whilst corneal permeability and corneal irregularity significantly increased. H&E staining indicated stressed corneal basal epithelial cells and increased desquamation. DS-exposed mice had reduced GC density (41.0 ± 5.10 GC/mm vs 46.9 ± 3.88 GC/mm, p = 0.0482) and LGs from these mice exhibited elevated CD4+ cell infiltration compared to controls. DS elicited K14+ epithelial cell displacement, as indicated by increased fluorescence signal at a distance of 50-100 μm radially inwards from the limbus [0.63 ± 0.053% (DS) vs 0.54 ± 0.060% (UT), p = 0.0317]. CONCLUSIONS Application of mild DS using customized hardware and SH injections generated features of DED in mice. Following DS, ocular surface epithelial cell health decreased and LESCs appeared stressed. This suggested that potential downstream effects of DS on corneal homeostasis are present, a phenomenon that is currently under-investigated. The method used to induce DED in this study enables the development of a chronic model which more closely resembles disease seen in the clinic.
Collapse
Affiliation(s)
- Richard Zhang
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Denis Wakefield
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
27
|
Allred MG, Chimenti MS, Ciecko AE, Chen YG, Lieberman SM. Characterization of Type I Interferon-Associated Chemokines and Cytokines in Lacrimal Glands of Nonobese Diabetic Mice. Int J Mol Sci 2021; 22:3767. [PMID: 33916486 PMCID: PMC8038628 DOI: 10.3390/ijms22073767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFNs) are required for spontaneous lacrimal gland inflammation in the nonobese diabetic (NOD) mouse model of Sjögren's disease, but the consequences of type I IFN signaling are not well-defined. Here, we use RNA sequencing to define cytokine and chemokine genes upregulated in lacrimal glands of NOD mice in a type I IFN-dependent manner. Interleukin (IL)-21 was the highest differentially expressed cytokine gene, and Il21 knockout NOD mice were relatively protected from lacrimal gland inflammation. We defined a set of chemokines upregulated early in disease including Cxcl9 and Cxcl10, which share a receptor, CXCR3. CXCR3+ T cells were enriched in lacrimal glands with a dominant proportion of CXCR3+ regulatory T cells. Together these data define the early cytokine and chemokine signals associated with type I IFN-signaling in the development of lacrimal gland inflammation in NOD mice providing insight into the role of type I IFN in autoimmunity development.
Collapse
Affiliation(s)
- Merri-Grace Allred
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Ashley E. Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.E.C.); (Y.-G.C.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.E.C.); (Y.-G.C.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott M. Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Studying Sjögren's syndrome in mice: What is the best available model? J Oral Biol Craniofac Res 2021; 11:245-255. [PMID: 33665074 DOI: 10.1016/j.jobcr.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/18/2023] Open
Abstract
Sjögren's syndrome (SS) is a common autoimmune disease characterized by lymphocytic infiltration and destruction of exocrine glands. The disease manifests primarily in the salivary and lacrimal glands, but other organs are also involved, leading to dry mouth, dry eyes, and other extra-glandular manifestations. Studying the disease in humans is entailed with many limitations and restrictions; therefore, the need for a proper mouse model is mandatory. SS mouse models are categorized, depending on the disease emergence into spontaneous or experimentally manipulated models. The usefulness of each mouse model varies depending on the SS features exhibited by that model; each SS model has advanced our understanding of the disease pathogenesis. In this review article, we list all the available murine models which have been used to study SS and we comment on the characteristics exhibited by each mouse model to assist scientists to select the appropriate model for their specific studies. We also recommend a murine strain that is the most relevant to the ideal SS model, based on our experience acquired during previous and current investigations.
Collapse
|
30
|
Roszkowska AM, Oliverio GW, Aragona E, Inferrera L, Severo AA, Alessandrello F, Spinella R, Postorino EI, Aragona P. Ophthalmologic Manifestations of Primary Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12030365. [PMID: 33806489 PMCID: PMC7998625 DOI: 10.3390/genes12030365] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic, progressive, inflammatory, autoimmune disease, characterized by the lymphocyte infiltration of exocrine glands, especially the lacrimal and salivary, with their consequent destruction. The onset of primary SS (pSS) may remain misunderstood for several years. It usually presents with different types of severity, e.g., dry eye and dry mouth symptoms, due to early involvement of the lacrimal and salivary glands, which may be associated with parotid enlargement and dry eye; keratoconjunctivitis sicca (KCS) is its most common ocular manifestation. It is still doubtful if the extent ocular surface manifestations are secondary to lacrimal or meibomian gland involvement or to the targeting of corneal and conjunctival autoantigens. SS is the most representative cause of aqueous deficient dry eye, and the primary role of the inflammatory process was evidenced. Recent scientific progress in understanding the numerous factors involved in the pathogenesis of pSS was registered, but the exact mechanisms involved still need to be clarified. The unquestionable role of both the innate and adaptive immune system, participating actively in the induction and evolution of the disease, was recognized. The ocular surface inflammation is a central mechanism in pSS leading to the decrease of lacrimal secretion and keratoconjunctival alterations. However, there are controversies about whether the ocular surface involvement is a direct autoimmune target or secondary to the inflammatory process in the lacrimal gland. In this review, we aimed to present actual knowledge relative to the pathogenesis of the pSS, considering the role of innate immunity, adaptive immunity, and genetics.
Collapse
Affiliation(s)
- Anna Maria Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
- Correspondence:
| | - Giovanni William Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Leandro Inferrera
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Alice Antonella Severo
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Federica Alessandrello
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Elisa Imelde Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| |
Collapse
|
31
|
Mullins GN, Valentine KM, Al-Kuhlani M, Davini D, Jensen KDC, Hoyer KK. T cell signaling and Treg dysfunction correlate to disease kinetics in IL-2Rα-KO autoimmune mice. Sci Rep 2020; 10:21994. [PMID: 33319815 PMCID: PMC7738527 DOI: 10.1038/s41598-020-78975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.
Collapse
Affiliation(s)
- Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Kirk D C Jensen
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Katrina K Hoyer
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA.
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
32
|
Masli S, Dartt DA. Mouse Models of Sjögren's Syndrome with Ocular Surface Disease. Int J Mol Sci 2020; 21:ijms21239112. [PMID: 33266081 PMCID: PMC7730359 DOI: 10.3390/ijms21239112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis. Therapeutic management of SS requires both topical and systemic treatments. Several mouse models of SS have contributed to our current understanding of immunopathologic mechanisms underlying the disease. This information also helps develop novel therapeutic interventions. Although these models address glandular aspects of SS pathology, their impact on ocular surface tissues is addressed only in a few models such as thrombospondin (TSP)-1 deficient, C57BL/6.NOD.Aec1Aec2, NOD.H2b, NOD.Aire KO, and IL-2Rα (CD25) KO mice. While corneal and/or conjunctival damage is reported in most of these models, the characteristic SS specific autoantibodies are only reported in the TSP-1 deficient mouse model, which is also validated as a preclinical model. This review summarizes valuable insights provided by investigations on the ocular spectrum of the SS pathology in these models.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| |
Collapse
|
33
|
Lio CT, Dhanda SK, Bose T. Cluster Analysis of Dry Eye Disease Models Based on Immune Cell Parameters - New Insight Into Therapeutic Perspective. Front Immunol 2020; 11:1930. [PMID: 33133058 PMCID: PMC7550429 DOI: 10.3389/fimmu.2020.01930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Dry eye disease (DED) can be represented as a display of disease in the mucosal part of the eye. It is quite distinct from the retinal side of the eye which connects with the neurons and thus represents the neuroimmunological disease. DED can occur either by the internal damage of the T cells inside the body or by microbial infections. Here we summarize the most common animal model systems used for DED relating to immune factors. We aimed to identify the most important immune cell/cytokine among the animal models of the disease. We also show the essential immune factors which are being tested for DED treatment. In our results, both the mechanism and the treatment of its animal models indicate the involvement of Th1 cells and the pro-inflammatory cytokine (IL-1β and TNF-α) related to the Th1-cells. The study is intended to increase the knowledge of the animal models in the field of the ocular surface along with the opening of a dimension of thoughts while designing a new animal model or treatment paradigm for ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Chit Tong Lio
- Chair of Experimental Bioinformatics, Technical University of Munich, Munich, Germany
| | | | - Tanima Bose
- Institute for Clinical Neuroimmunology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
34
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
35
|
Immunohistochemical detection of IL-17 and IL-23 improves the identification of patients with a possible diagnosis of Sjogren's syndrome. Pathol Res Pract 2020; 216:153137. [PMID: 32889506 DOI: 10.1016/j.prp.2020.153137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The diagnosis of primary Sjogren's syndrome (pSS) continues to be difficult and several patients keep symptomatic for years with different diagnoses before confirmation of pSS. Since the IL-23-IL-17 axis is involved in the etiopathogenesis of pSS we evaluated by immunohistochemistry and morphometric methods the presence of IL-17 as well as IL-23 within minor salivary glands (MSG) obtained from patients with uncertain diagnosis of pSS. MATERIALS AND METHODS 42 patients, with symptoms attributable to pSS, and 8 patients used as a control, were enrolled for the study. Autoantibody detection, histological analysis for the presence of Germinal Centers (GC+), immunohistochemistry to detect IL-23 and IL-17 were performed. RESULTS The detection of GC + anti-SSA and anti-SSB antibody in parallel with the detection of IL-17 and IL-23, displays only a diagnostic reinforcement value. Instead, the detection of a positive reaction for both IL-17 and IL-23 without GC + or autoantibody within minor salivary glands, as detected in 36 % of patients with uncertain diagnosis, may be hold as a sensitive and specific marker to identify those patients who are likely to evolve into pSS. CONCLUSION we suggest to use the IL-17/ IL-23 immunohistochemical detection to improve the identification of patients with a possible diagnosis in all cases which do not fully meet the American-European criteria for pSS, in particular when the GC + are not present at histopathological analysis and anti-SSA and anti-SSB antibody are undetectable in the serum.
Collapse
|
36
|
Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, Dana R. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf 2020; 19:157-168. [PMID: 32470612 DOI: 10.1016/j.jtos.2020.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Th17 cells have been implicated in the pathogenesis of numerous inflammatory and autoimmune conditions. At the ocular surface, Th17 cells have been identified as key effector cells in chronic ocular surface disease. Evidence from murine studies indicates that following differentiation and expansion, Th17 cells migrate from the lymphoid tissues to the eye, where they release inflammatory cytokines including, but not limited to, their hallmark cytokine IL-17A. As the acute phase subsides, a population of long-lived memory Th17 cells persist, which predispose hosts both to chronic inflammation and severe exacerbations of disease; of great interest is the small subset of Th17/1 cells that secrete both IL-17A and IFN-γ in acute-on-chronic disease exacerbation. Over the past decade, substantial progress has been made in deciphering how Th17 cells interact with the immune and neuroimmune pathways that mediate chronic ocular surface disease. Here, we review (i) the evidence for Th17 immunity in chronic ocular surface disease, (ii) regulatory mechanisms that constrain the Th17 immune response, and (iii) novel therapeutic strategies targeting Th17 cells.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Matthew McSoley
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
37
|
Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf 2020; 18:326-334. [PMID: 31953222 DOI: 10.1016/j.jtos.2019.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a goblet cell rich mucosal tissue. Goblet cells are supported by tear growth factors and IL-13 produced by resident immune cells. Goblet cell secretions are essential for maintaining tear stability and ocular surface homeostasis. In addition to producing tear stabilizing mucins, they also produce cytokines and retinoic acid that condition monocyte-derived phagocytic cells in the conjunctiva. Aqueous tear deficiency from lacrimal gland disease and systemic inflammatory conditions results in goblet cell loss that amplifies dry eye severity. Reduced goblet cell density is correlated with more severe conjunctival disease, increased IFN-γ expression and antigen presenting cell maturation. Sterile Alpha Motif (SAM) pointed domain epithelial specific transcription factor (Spdef) gene deficient mice that lack goblet cells have increased infiltration of monocytes and dendritic cells with greater IL-12 expression in the conjunctiva. Similar findings were observed in the conjunctiva of aged mice. Reduced retinoic acid receptor (RXRα) signaling also increases conjunctival monocyte infiltration, IFN-γ expression and goblet cell loss. Evidence suggests that dry eye therapies that suppress IFN-γ expression preserve conjunctival goblet cell number and function and should be considered in aqueous deficiency.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
38
|
Blokland SLM, Kislat A, Homey B, Smithson GM, Kruize AA, Radstake TRDJ, van Roon JAG. Decreased circulating CXCR3 + CCR9+T helper cells are associated with elevated levels of their ligands CXCL10 and CCL25 in the salivary gland of patients with Sjögren's syndrome to facilitate their concerted migration. Scand J Immunol 2019; 91:e12852. [PMID: 31733111 PMCID: PMC7064901 DOI: 10.1111/sji.12852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
CCR9 + T helper (Th) cells can induce Sjögren-like symptoms in mice and both CCR9 + Th cells and their ligand CCL25 are increased in the salivary glands of primary Sjögren's syndrome (pSS) patients. Increased circulating CCR9 + Th cells are present in pSS patients. CCR9 + Th cells are hyperresponsive to IL-7, secrete high levels of IFN-γ, IL-21, IL-17 and IL-4 and potently stimulate B cells in both patients and healthy individuals. Our aim was to study co-expression of chemokine receptors on CCR9 + Th cells and whether in pSS this might differentially affect CCR9 + Th cell frequencies. Frequencies of circulating CCR9 + and CCR9- Th cells co-expressing CXCR3, CCR4, CCR6 and CCR10 were studied in pSS patients and healthy controls. CCL25, CXCL10, CCL17, CCL20 and CCL27 mRNA and protein expression of salivary gland tissue of pSS and non-Sjögren's sicca (non-SS) patients was assessed. Chemotaxis assays were performed to study migration induced by CXCL10 and CCL25. Higher expression of CXCR3, CCR4 and CCR6 but not CCR10 was observed on CCR9 + Th cells as compared to cells lacking CCR9. Decreased frequencies of circulating memory CCR9 + CXCR3+ Th cells were found in pSS patients, which was most pronounced in the effector memory subset. Increased salivary gland CCL25 and CXCL10 expression significantly correlated and both ligands functioned synergistically based on in vitro induced chemotaxis. Decreased memory CXCR3 + CCR9+ Th cells in blood of pSS patients may be due to a concerted action of overexpressed ligands at the site of inflammation in the salivary glands facilitating their preferential migration and positioning in the lymphocytic infiltrates.
Collapse
Affiliation(s)
- Sofie L M Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Laboratory of Translational Immunology, Utrecht University, Utrecht, The Netherlands
| | - Andreas Kislat
- Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany
| | | | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Laboratory of Translational Immunology, Utrecht University, Utrecht, The Netherlands
| | - Joel A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Laboratory of Translational Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Bjordal O, Norheim KB, Rødahl E, Jonsson R, Omdal R. Primary Sjögren's syndrome and the eye. Surv Ophthalmol 2019; 65:119-132. [PMID: 31634487 DOI: 10.1016/j.survophthal.2019.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease that mainly affects exocrine glands such as the salivary and lacrimal glands. In addition, systemic involvement is common. Primary Sjögren syndrome is of particular interest to ophthalmologists as it constitutes an important differential diagnosis in conditions with dry eye disease. In addition, ocular tests for more precisely diagnosing and monitoring primary Sjögren syndrome have become increasingly important, and new therapeutics for local and systemic treatment evolve as a result of increased understanding of immunological mechanisms and molecular pathways in the pathogenesis of primary Sjögren syndrome. We provide an update of interest to ophthalmologists regarding pathogenesis, diagnosis, investigative procedures, and treatment options.
Collapse
Affiliation(s)
| | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
40
|
Fu R, Jiang Y, Zhou J, Zhang J. Rebamipide ophthalmic solution modulates the ratio of T helper cell 17/regulatory T cells in dry eye disease mice. Mol Med Rep 2019; 19:4011-4018. [PMID: 30896815 PMCID: PMC6472194 DOI: 10.3892/mmr.2019.10068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/15/2018] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to confirm the effect of 2% rebamipide ophthalmic solution on a scopolamine‑induced dry eye (DE) mouse model, and to investigate its effect on the ratio of T helper cell 17 (Th17)/regulatory T cell (Treg) numbers. C57BL/6 mice received subcutaneous injections of scopolamine and were exposed to a low‑humidity environment in order to establish a DE model. Rebamipide eye drops (2%) administered four times daily for 2 weeks, significantly reduced the corneal staining scores and increased the tear film breakup time and tear production in the DE mice. Pathologically, the rebamipide restored the histological changes induced by DE in the cornea, conjunctiva and lacrimal gland. At a molecular level, it downregulated pro‑inflammatory and upregulated anti‑inflammatory cytokines in the conjunctiva and lacrimal gland. Furthermore, the increased Th17 and Treg levels were restored following treatment with rebamipide. In conclusion, the anti‑inflammatory and Th17/Treg balance‑preserving effects of rebamipide may contribute to the treatment of DE in mice.
Collapse
Affiliation(s)
- Rongrong Fu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Ophthalmology, Shenyang Fourth People's Hospital, Shenyang, Liaoning 110031, P.R. China
| | - Yanhua Jiang
- Department of Ophthalmology, Shenyang Fourth People's Hospital, Shenyang, Liaoning 110031, P.R. China
| | - Jing Zhou
- Department of Ophthalmology, Shenyang Fourth People's Hospital, Shenyang, Liaoning 110031, P.R. China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
41
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams AR, Pflugfelder SC, de Paiva CS. Reduced Corneal Innervation in the CD25 Null Model of Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19123821. [PMID: 30513621 PMCID: PMC6320862 DOI: 10.3390/ijms19123821] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Decreased corneal innervation is frequent in patients with Sjögren Syndrome (SS). To investigate the density and morphology of the intraepithelial corneal nerves (ICNs), corneal sensitivity, epithelial cell proliferation, and changes in mRNA expression of genes that are involved in autophagy and axon targeting and extension were assessed using the IL-2 receptor alpha chain (CD25 null) model of SS. ICN density and thickness in male and female wt and CD25 null corneas were assessed at 4, 6, 8, and 10/11 wk of age. Cell proliferation was assessed using ki67. Mechanical corneal sensitivity was measured. Quantitative PCR was performed to quantify expression of beclin 1, LC3, Lamp-1, Lamp-2, CXCL-1, BDNF, NTN1, DCC, Unc5b1, Efna4, Efna5, Rgma, and p21 in corneal epithelial mRNA. A significant reduction in corneal axon density and mechanical sensitivity were observed, which negatively correlate with epithelial cell proliferation. CD25 null mice have increased expression of genes regulating autophagy (beclin-1, LC3, LAMP-1, LAMP-2, CXCL1, and BDNF) and no change was observed in genes that were related to axonal targeting and extension. Decreased anatomic corneal innervation in the CD25 null SS model is accompanied by reduced corneal sensitivity, increased corneal epithelial cell proliferation, and increased expression of genes regulating phagocytosis and autophagy.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Alexa R Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Utine CA, Stern M, Akpek EK. Immunopathological Features of Severe Chronic Atopic Keratoconjunctivitis and Effects of Topical Cyclosporine Treatment. Ocul Immunol Inflamm 2018; 27:1184-1193. [PMID: 30189151 DOI: 10.1080/09273948.2018.1511811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To assess differential roles of inflammatory cells in pathophysiology of severe atopic keratoconjunctivitis (AKC) and evaluate immunomodulatory effects of topical cyclosporine A (CsA). METHODS A total of 10 patients with severe, steroid-dependent/resistant chronic active AKC were treated using frequent topical CsA 0.05% as monotherapy for 2 months. Conjunctival biopsy specimens before and after treatment were examined using immunohistochemistry. A total of 10 healthy age-matched adults served as the control group. RESULTS Baseline AKC samples revealed greater cluster of differentiation 4 (CD4), interferon gamma (IFNγ), human leukocyte antigen-D-related (HLA-DR) positive cell densities compared with healthy controls (P < 0.05), as well as interleukin (IL)-17 (P = 0.08). Topical CsA treatment induced a significant reduction in CD4 and IL-17 expressions (P < 0.05); post-treatment levels were same as normals (P > 0.05). Despite reduction after treatment (P = 0.06), HLA-DR expression remained higher than controls (P < 0.05). CONCLUSIONS AKC-related conjunctival inflammation appears to be mediated by delayed hypersensitivity. In this short-term trial, frequent topical CsA improved conjunctival inflammation.
Collapse
Affiliation(s)
- Canan Asli Utine
- Ocular Surface Diseases and Dry Eye Clinic, The Wilmer Eye Institute, Johns Hopkins University School of Medicine , Baltimore , Maryland , USA.,Faculty of Medicine, Department of Ophthalmology, Dokuz Eylul University , Izmir , Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University , Izmir , Turkey
| | | | - Esen Karamursel Akpek
- Ocular Surface Diseases and Dry Eye Clinic, The Wilmer Eye Institute, Johns Hopkins University School of Medicine , Baltimore , Maryland , USA
| |
Collapse
|
43
|
|
44
|
Kim CE, Kleinman HK, Sosne G, Ousler GW, Kim K, Kang S, Yang J. RGN-259 (thymosin β4) improves clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model. Sci Rep 2018; 8:10500. [PMID: 30002412 PMCID: PMC6043477 DOI: 10.1038/s41598-018-28861-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the clinical activity of RGN-259 (thymosin β4) in comparison with cyclosporine A (CsA), diquafosol (DQS), and lifitegrast (LFA) in a murine model of dry eye. The model was NOD.B10-H2b mice in a 30–40% humidified environment together with daily scopolamine hydrobromide injections for 10 days. After desiccation stress, all drugs were evaluated after 10 treatment days. RGN-259 increased tear production similar to that in the DQS- and LFA-treated mice while CsA was inactive. RGN-259 improved corneal smoothness and decreased fluorescein staining similar to that of LFA group while CsA and DQS were inactive. Corneal epithelial detachment was reduced by RGN-259, and DQS and LFA showed similar activity but the CsA was inactive. RGN-259 increased conjunctival goblet cells and mucin production comparable to that seen with CsA, while DQS and LFA were inactive. RGN-259 reduced the over-expression of inflammatory factors comparable to that with CsA and LFA, while DQS was inactive. RGN-259 increased mucin production comparable to that observed with CsA, while DQS and LFA were inactive. In conclusion, RGN-259 promoted recovery of mucins and goblet cells, improved corneal integrity, and reduced inflammation in a dry eye mouse model and was equal to or more effective than prescription treatments.
Collapse
Affiliation(s)
- Chae Eun Kim
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, 47392, Korea
| | - Hynda K Kleinman
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington D.C, USA.,ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Gabriel Sosne
- Departments of Ophthalmology and Anatomy/Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea.,ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Sinwook Kang
- ReGenTree, LLC, 116 Village Boulevard, Suite 200, Princeton, NJ, USA
| | - Jaewook Yang
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, 47392, Korea. .,T2B infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, Busan, 47392, Korea.
| |
Collapse
|
45
|
Guimaraes de Souza R, Yu Z, Stern ME, Pflugfelder SC, de Paiva CS. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J Ocul Pharmacol Ther 2018; 34:543-549. [PMID: 29958030 DOI: 10.1089/jop.2018.0047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Increased interferon gamma (IFN-γ) expression in dry eye causes ocular surface epithelial disease termed keratoconjunctivitis sicca (KCS). The purpose of this study was to investigated the effects of the LFA-1 antagonist, lifitegrast, in a mouse desiccating stress (DS) dry eye model that develops KCS similar to Sjögren syndrome. METHODS Mice were treated with vehicle or lifitegrast twice daily for 5 days and expression of Th1 family genes (IFN-γ, CXCL9, and CXCL11) was evaluated by real-time polymerase chain reaction. Cornea barrier function was assessed by Oregon Green dextran staining and goblet cell number and area were measured. RESULTS Compared to the vehicle-treated group, the lifitegrast-treated group had significantly lower expression of Th1 family genes, less corneal barrier disruption, and greater conjunctival goblet cell density/area. CONCLUSIONS These findings indicate that lifitegrast inhibits DS-induced IFN-γ expression and KCS. This suggests that ICAM-LFA-1 signaling is involved with generation of Th1 inflammation in KCS.
Collapse
Affiliation(s)
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| | - Michael E Stern
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| | | | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
46
|
Zaheer M, Wang C, Bian F, Yu Z, Hernandez H, de Souza RG, Simmons KT, Schady D, Swennes AG, Pflugfelder SC, Britton RA, de Paiva CS. Protective role of commensal bacteria in Sjögren Syndrome. J Autoimmun 2018; 93:45-56. [PMID: 29934134 DOI: 10.1016/j.jaut.2018.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
CD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4+IFN-γ+ cells than conventional mice. CD4+ T cells isolated from female germ-free CD25KO mice adoptively transferred to naive immunodeficient RAG1KO recipients caused more severe Sjögren-like disease than CD4+ T cells transferred from conventional CD25KO mice. Fecal transplant in germ-free CD25KO mice reversed the spontaneous dry eye phenotype and decreased the generation of pathogenic CD4+IFN-γ+ cells. Our studies indicate that lack of commensal bacteria accelerates the onset and severity of dacryoadenitis and generates autoreactive CD4+T cells with greater pathogenicity in the CD25KO model, suggesting that the commensal bacteria or their metabolites products have immunoregulatory properties that protect exocrine glands in the CD25KO SS model.
Collapse
Affiliation(s)
- Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Changjun Wang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ken T Simmons
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Deborah Schady
- Department of Texas Children's Hospital Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Alton G Swennes
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
47
|
Volpe EA, Henriksson JT, Wang C, Barbosa FL, Zaheer M, Zhang X, Pflugfelder SC, de Paiva CS. Interferon-gamma deficiency protects against aging-related goblet cell loss. Oncotarget 2018; 7:64605-64614. [PMID: 27623073 PMCID: PMC5323102 DOI: 10.18632/oncotarget.11872] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Aging is a well-recognized risk factor for dry eye. Interferon-gamma (IFN-γ) has been implicated in conjunctival keratinization and goblet cell loss in dry eye. We investigated the role of IFN-γ in age-related dry eye by evaluating young (8 weeks) and aged (15 months; 15M) C57BL/6 (B6) and IFN-γKO mice. Age effects on the conjunctiva and cornea epithelium were assessed with PAS staining and corneal staining, respectively. Expression of T cell-related cytokines (IL-17A, IFN-γ), chemokines (CXCL10 and CCL20), in the ocular surface epithelium was evaluated by real time PCR. A significant decrease in filled goblet cells was noted in 15M B6 mice and this was significantly lower than age and sex-matched IFN-γKO mice. Aged male B6 had significantly higher IFN-γ, and CXCL10 mRNA in their conjunctiva than female B6 mice. Aged IFN-γKO females had significantly higher IL-17A mRNA in conjunctiva than IFN-γKO males and B6 mice. Corneal barrier dysfunction was observed in 15M female B6 and aged IFN-γKO mice of both sexes; however it was significantly higher in IFN-γKO compared to B6 mice. While there was a significant increase in IL 17A, and CCL20 in corneas of aged female B6 and IFN-γKO mice compared to males, these changes were more evident in aged female IFN-γKO group. Partial resistance of IFN-γKO mice to aging-induced goblet cell loss indicates IFN-γ is involved in the age-related decline in conjunctival goblet cells. Increased corneal IL-17A expression paralleled corneal barrier disruption in aging female of both strains. IFN-γ appears to suppress IL-17A on the ocular surface.
Collapse
Affiliation(s)
- Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Johanna Tukler Henriksson
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Changjun Wang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.,Eye Center, Second Affiliated Hospital of Zhejiang University, School of Medicine Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, Zhejiang, China
| | - Flavia L Barbosa
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaobo Zhang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Abstract
CD25 deficiency (Interleukin-2 receptor alpha deficiency) is a rare subtype of combined B- and T-cell immunodeficiency. Recurrent infections and lymphocyte infiltration of multiple tissues are the main clinical presentations. Only four patients have been reported in whom ophthalmological findings were not described. In this article, ocular findings of CD25 deficiency in a 12-year-old child are highlighted.
Collapse
|
49
|
Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017; 124:S4-S13. [PMID: 29055361 PMCID: PMC5657523 DOI: 10.1016/j.ophtha.2017.07.010] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical and laboratory studies performed over the past few decades have discovered that dry eye is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in the ocular surface epithelium and resident immune cells. This triggers production of innate inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell recruitment, and dendritic cell maturation. These mediators, combined with exposure of autoantigens, can lead to an adaptive T cell-mediated response. Cornea barrier disruption develops by protease-mediated lysis of epithelial tight junctions, leading to accelerated cell death; desquamation; an irregular, poorly lubricated cornea surface; and exposure and sensitization of epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T helper 1 cytokine interferon gamma. These epithelial changes further destabilize the tear film, amplify inflammation, and create a vicious cycle. Cyclosporine and lifitegrast, the 2 US Food and Drug Administration-approved therapies, inhibit T-cell activation and cytokine production. Although these therapies represent a major advance in dry eye therapy, they are not effective in improving discomfort and corneal epithelial disease in all patients. Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways. These discoveries will, it is hoped, lead to further advances in diagnostic classification and treatment.
Collapse
Affiliation(s)
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
50
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1147] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|