1
|
Choudhary A, Peles D, Nayak R, Mizrahi L, Stern S. Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophr Res 2024; 273:24-38. [PMID: 36443183 DOI: 10.1016/j.schres.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Schizophrenia (SCZ) is a complex, heritable and polygenic neuropsychiatric disease, which disables the patients as well as decreases their life expectancy and quality of life. Common and rare variants studies on SCZ subjects have provided >100 genomic loci that hold importance in the context of SCZ pathophysiology. Transcriptomic studies from clinical samples have informed about the differentially expressed genes (DEGs) and non-coding RNAs in SCZ patients. Despite these advancements, no causative genes for SCZ were found and hence SCZ is difficult to recapitulate in animal models. In the last decade, induced Pluripotent Stem Cells (iPSCs)-based models have helped in understanding the neural phenotypes of SCZ by studying patient iPSC-derived 2D neuronal cultures and 3D brain organoids. Here, we have aimed to provide a simplistic overview of the current progress and advancements after synthesizing the enormous literature on SCZ genetics and SCZ iPSC-based models. Although further understanding of SCZ genetics and pathophysiological mechanisms using these technological advancements is required, the recent approaches have allowed to delineate important cellular mechanisms and biological pathways affected in SCZ.
Collapse
Affiliation(s)
- Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
2
|
Wood JA, Chaparala S, Bantang C, Chattopadhyay A, Wesesky MA, Kinchington PR, Nimgaonkar VL, Bloom DC, D'Aiuto L. RNA-Seq time-course analysis of neural precursor cell transcriptome in response to herpes simplex Virus-1 infection. J Neurovirol 2024; 30:131-145. [PMID: 38478163 PMCID: PMC11371869 DOI: 10.1007/s13365-024-01198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024]
Abstract
The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.
Collapse
Affiliation(s)
- Joel A Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Cecilia Bantang
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System / Falk Library, University of Pittsburgh, M722 Alan Magee Scaife Hall / 3550 Terrace Street, 15261, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Vishwajit L Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare system at U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - David C Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, 32610, Gainesville, FL, USA
| | - Leonardo D'Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
4
|
Zheng W, Benner EM, Bloom DC, Muralidaran V, Caldwell JK, Prabhudesai A, Piazza PA, Wood J, Kinchington PR, Nimgaonkar VL, D'Aiuto L. Variations in Aspects of Neural Precursor Cell Neurogenesis in a Human Model of HSV-1 Infection. Organogenesis 2022; 18:2055354. [PMID: 35384798 PMCID: PMC8993067 DOI: 10.1080/15476278.2022.2055354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Encephalitis, the most significant of the central nervous system (CNS) diseases caused by Herpes simplex virus 1 (HSV-1), may have long-term sequelae in survivors treated with acyclovir, the cause of which is unclear. HSV-1 exhibits a tropism toward neurogenic niches in CNS enriched with neural precursor cells (NPCs), which play a pivotal role in neurogenesis. NPCs are susceptible to HSV-1. There is a paucity of information regarding the influence of HSV-1 on neurogenesis in humans. We investigated HSV-1 infection of NPCs from two individuals. Our results show (i) HSV-1 impairs, to different extents, the proliferation, self-renewing, and, to an even greater extent, migration of NPCs from these two subjects; (ii) The protective effect of the gold-standard antiherpetic drug acyclovir (ACV) varies with viral dose and is incomplete. It is also subject to differences in terms of efficacy of the NPCs derived from these two individuals. These results suggest that the effects of HSV-1 may have on aspects of NPC neurogenesis may vary among individuals, even in the presence of acyclovir, and this may contribute to the heterogeneity of cognitive sequelae across encephalitis survivors. Further analysis of NPC cell lines from a larger number of individuals is warranted.
Collapse
Affiliation(s)
- Wenxiao Zheng
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Emily M Benner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Vaishali Muralidaran
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jill K Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuya Prabhudesai
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paolo A Piazza
- Department of Infectious Diseases and Microbiology, Pitt Graduate School Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel Wood
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
D’Aiuto L, Caldwell JK, Wallace CT, Grams TR, Wesesky MA, Wood JA, Watkins SC, Kinchington PR, Bloom DC, Nimgaonkar VL. The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids. Cells 2022; 11:3539. [PMID: 36428968 PMCID: PMC9688774 DOI: 10.3390/cells11223539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment. To allow for the long-term differentiation of ES-organoids, viral infections were performed in the presence of the antiviral drug acyclovir (ACV). Despite the antiviral treatment, HSV-1 infection caused organizational changes in neural rosettes, loss of structural integrity of infected ES-organoids, and neuronal alterations. The inability of ACV to prevent neurodegeneration was associated with the generation of ACV-resistant mutants during the interaction of HSV-1 with differentiating neural precursor cells (NPCs). This study models the effects of HSV-1 infection on the neuronal differentiation of NPCs and suggests that this environment may allow for accelerated development of ACV-resistance.
Collapse
Affiliation(s)
- Leonardo D’Aiuto
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Jill K. Caldwell
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Callen T. Wallace
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, USA
| | - Tristan R. Grams
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, Gainesville, FL 32610, USA
| | - Maribeth A. Wesesky
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Joel A. Wood
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, USA
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, University of Pittsburgh, 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - David C. Bloom
- Academic Research Building, Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, R2-231, Gainesville, FL 32610, USA
| | - Vishwajit L. Nimgaonkar
- Western Psychiatric Institute and Clinic, Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
8
|
Chailangkarn T, Tanwattana N, Jaemthaworn T, Sriswasdi S, Wanasen N, Tangphatsornruang S, Leetanasaksakul K, Jantraphakorn Y, Nawae W, Chankeeree P, Lekcharoensuk P, Lumlertdacha B, Kaewborisuth C. Establishment of Human-Induced Pluripotent Stem Cell-Derived Neurons-A Promising In Vitro Model for a Molecular Study of Rabies Virus and Host Interaction. Int J Mol Sci 2021; 22:ijms222111986. [PMID: 34769416 PMCID: PMC8584829 DOI: 10.3390/ijms222111986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| | - Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Thanakorn Jaemthaworn
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
| | - Sira Sriswasdi
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Wanapinun Nawae
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Penpicha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, 1871 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| |
Collapse
|
9
|
Bergström P, Trybala E, Eriksson CE, Johansson M, Satir TM, Widéhn S, Fruhwürth S, Michno W, Nazir FH, Hanrieder J, Paludan SR, Agholme L, Zetterberg H, Bergström T. Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons. Viruses 2021; 13:v13102072. [PMID: 34696502 PMCID: PMC8540961 DOI: 10.3390/v13102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.
Collapse
Affiliation(s)
- Petra Bergström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Charlotta E. Eriksson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Maria Johansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Tugce Munise Satir
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Sibylle Widéhn
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden;
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Faisal Hayat Nazir
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Soren Riis Paludan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
- Correspondence:
| |
Collapse
|
10
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
11
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
12
|
Patterns of Herpes Simplex Virus 1 Infection in Neural Progenitor Cells. J Virol 2020; 94:JVI.00994-20. [PMID: 32493817 PMCID: PMC7394888 DOI: 10.1128/jvi.00994-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction. Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored. We differentiated human induced pluripotent stem cells (hiPSCs) into NPCs to generate two-dimensional (2D) and three-dimensional (3D) culture models to examine the interaction of HSV-1 with NPCs. Here, we show that (i) NPCs can be efficiently infected by HSV-1, but infection does not result in cell death of most NPCs, even at high multiplicities of infection (MOIs); (ii) limited HSV-1 replication and gene expression can be detected in the infected NPCs; (iii) a viral silencing mechanism is established in NPCs exposed to the antivirals (E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU) and alpha interferon (IFN-α) and when the antivirals are removed, spontaneous reactivation can occur at low frequency; (iv) HSV-1 impairs the ability of NPCs to migrate in a dose-dependent fashion in the presence of 5BVdU plus IFN-α; and (v) 3D cultures of NPCs are less susceptible to HSV-1 infection than 2D cultures. These results suggest that NPC pools could be sites of HSV-1 reactivation in the central nervous system (CNS). Finally, our results highlight the potential value of hiPSC-derived 3D cultures to model HSV-1–NPC interaction. IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction.
Collapse
|
13
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
14
|
Lee JH, Pasquarella JR, Kalejta RF. Cell Line Models for Human Cytomegalovirus Latency Faithfully Mimic Viral Entry by Macropinocytosis and Endocytosis. J Virol 2019; 93:e01021-19. [PMID: 31391271 PMCID: PMC6803280 DOI: 10.1128/jvi.01021-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph R Pasquarella
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
16
|
Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2019; 10:10/428/eaan5861. [PMID: 29444978 DOI: 10.1126/scitranslmed.aan5861] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes recurrent mucocutaneous lesions in the eye that may advance to corneal blindness. Nucleoside analogs exemplified by acyclovir (ACV) form the primary class of antiherpetic drugs, but this class suffers limitations due to the emergence of viral resistance and other side effects. While studying the molecular basis of ocular HSV-1 infection, we observed that BX795, a commonly used inhibitor of TANK-binding kinase 1 (TBK1), strongly suppressed infection by multiple strains of HSV-1 in transformed and primary human cells, cultured human and animal corneas, and a murine model of ocular infection. Our investigations revealed that the antiviral activity of BX795 relies on targeting Akt phosphorylation in infected cells, leading to the blockage of viral protein synthesis. This small-molecule inhibitor, which was also effective against an ACV-resistant HSV-1 strain, shows promise as an alternative to existing drugs and as an effective topical therapy for ocular herpes infection. Collectively, our results obtained using multiple infection models and virus strains establish BX795 as a promising lead compound for broad-spectrum antiviral applications in humans.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | - Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Neel Thakkar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Assessment of cognitive impairment in HSV-1 positive schizophrenia and bipolar patients: Systematic review and meta-analysis. Schizophr Res 2019; 209:40-47. [PMID: 30639164 DOI: 10.1016/j.schres.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
A common characteristic among schizophrenia and bipolar disorder patients is cognitive dysfunction, especially for memory and attention. Recent evidence has suggested that cognitive impairment in schizophrenia and bipolar disorder patients could be associated with herpes simplex virus 1 (HSV-1) infection, due to the ability of HSV-1 to infect neurons in the temporal lobe, which plays a key role in the formation of memory and processing of sensory input. The objective of this review is to analyze the aggregate neuropsychological testing data from previous studies regarding the impact of HSV-1 infection on cognitive function in schizophrenia and bipolar disorder. A systematic literature search generated a total of 379 articles; 12 full-text case control and cross-sectional studies met the eligibility criteria to be included in the review. Pooled effects assessed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) total scores and the three index scores for immediate memory, delayed memory, and attention in a random effects model. The overall effect for RBANS total score was in favor of the HSV-1 positive group (z = 3.10, p = 0.002). A statistically significant overall effect of cognitive impairment for memory and attention indices was in favor of HSV positive schizophrenia patients (z = 5.95 p < 0.00001). The findings from the meta-analysis suggest that serological evidence of HSV-1 infection has a significant impact on cognitive function with small to moderate effect sizes (-0.23 to -0.49), particularly affecting memory and attention, in schizophrenia and bipolar patients.
Collapse
|
18
|
D'Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, Callio JA, Jessup M, Wood J, Chowdari K, Demers M, Abrahamson EE, Ikonomovic MD, Viggiano L, De Zio R, Watkins S, Kinchington PR, Nimgaonkar VL. Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells. J Virol 2019; 93:e00111-19. [PMID: 30787148 PMCID: PMC6475775 DOI: 10.1128/jvi.00111-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1-human-CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1-CNS interactions in a human context.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer N Naciri
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Adam Smith
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lora McClain
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Jason A Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan Jessup
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Kodavali Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Roberta De Zio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari, Bari, Italy
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Breier A, Buchanan RW, D'Souza D, Nuechterlein K, Marder S, Dunn W, Preskorn S, Macaluso M, Wurfel B, Maguire G, Kakar R, Highum D, Hoffmeyer D, Coskinas E, Litman R, Vohs JL, Radnovich A, Francis MM, Metzler E, Visco A, Mehdiyoun N, Yang Z, Zhang Y, Yolken RH, Dickerson FB. Herpes simplex virus 1 infection and valacyclovir treatment in schizophrenia: Results from the VISTA study. Schizophr Res 2019; 206:291-299. [PMID: 30478008 DOI: 10.1016/j.schres.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Several studies have implicated herpes simplex virus-type 1 (HSV-1) in the pathophysiology of schizophrenia. A recent trial demonstrated that the anti-viral medication valacylovir, which prevents replication of activated HSV-1, improved selected cognitive deficits in people with schizophrenia. In this study, we examined demographic and illness related differences between HSV-1 positive versus HSV-1 negative subjects with early phase schizophrenia and attempted to replicate the previous valacyclovir treatment results in this population. METHODS 170 subjects with schizophrenia (HSV-1 positive N = 70; HSV-1 negative N = 96) from 12 US sites participated in the HSV-1 positive versus negative comparisons, and were randomized 1:1 to valacyclovir (1.5 g BID) or placebo for a 16-week, double-blind efficacy trial. The primary endpoints were working and verbal memory. RESULTS The HSV-1 positive group, as compared to the HSV-1 negative group, were older (p < 0.001) with fewer males (p = 0.003), and had a longer duration of illness (p = 0.008), more positive symptoms (p = 0.013), poorer quality of life (p = 0.034) and more impairment on the letter-number sequencing test, which is a measure of working memory (p = 0.045). Valacyclovir failed to significantly improve any of the cognitive indices, symptom or functioning measures. CONCLUSIONS HSV-1 sero-positivity appears to be a marker of a subgroup with a more severe form of schizophrenia. Valacyclovir was not efficacious in the study, perhaps because the herpes virus was in the dormant, non-activated state and therefore non-responsive to valacyclovir effects. ClinicalTrials.gov Identifier: NCT02008773.
Collapse
Affiliation(s)
- Alan Breier
- Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, University of Maryland, Baltimore, MD, United States of America
| | - Deepak D'Souza
- Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Stephen Marder
- Semel Institute, UCLA, Los Angeles, CA, United States of America
| | - Walter Dunn
- Semel Institute, UCLA, Los Angeles, CA, United States of America
| | - Sheldon Preskorn
- Kansas University School of Medicine, Wichita, KS, United States of America
| | - Matthew Macaluso
- Kansas University School of Medicine, Wichita, KS, United States of America
| | - Brent Wurfel
- Laureate Institute for Brain Research, KS, United States of America
| | - Gerald Maguire
- University of California, Riverside, CA, United States of America
| | - Rishi Kakar
- Segal Institute for Clinical Research, United States of America
| | - Diane Highum
- CITrials, Bellflower, CA, United States of America
| | | | | | | | - Jenifer L Vohs
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Alexander Radnovich
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michael M Francis
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emmalee Metzler
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Andrew Visco
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Nicole Mehdiyoun
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Ziyi Yang
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Ying Zhang
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Robert H Yolken
- Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Faith B Dickerson
- Sheppard Pratt Health System, Baltimore, MD, United States of America
| |
Collapse
|
20
|
Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency In Vitro. J Virol 2019; 93:JVI.02210-18. [PMID: 30602607 DOI: 10.1128/jvi.02210-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Lund human mesencephalic (LUHMES) cells are human embryonic neuronal precursor cells that can be maintained as proliferating cells due to the expression of a tetracycline-regulatable (Tet-off) v-myc transgene. They can be differentiated to postmitotic neurons by the addition of tetracycline, glial cell-derived neurotrophic factor (GDNF), and dibutyryl cAMP. We demonstrate that these cells can be infected with herpes simplex virus 1 (HSV-1) at a multiplicity of infection (MOI) of 3 with the majority of cells surviving. By 6 days postinfection, there is a loss of lytic gene transcription and an increase in the numbers of neurons that express the latency-associated transcripts (LATs). Importantly, the virus can then be reactivated by the addition of a phosphoinositide 3-kinase inhibitor, which has previously been shown to reactivate HSV-1 in rat neuron cultures. While rodent primary culture neuron systems have been described, these are limited by their lack of scalability, as it is difficult to obtain more than 500,000 neurons to employ for a given experiment. Several recent papers have described a human dorsal root ganglion (DRG) neuron culture model and human induced pleuripotent stem cell (iPSC) neuron culture models that are scalable, but they require that the presence of an antiviral suppression be maintained following HSV-1 infection. The human LUHMES cell model of HSV-1 infection described here may be especially useful for studying HSV-1 latency and reactivation on account of its scalability, its amenability to maintenance of latency without the continual use of antiviral inhibitors, and its latent gene expression profile which mirrors many properties observed in vivo, importantly, the heterogeneity of cells expressing the LATs.IMPORTANCE Herpes simplex virus (HSV) is responsible for significant morbidity in humans due to its ability to cause oral and genital lesions, ocular disease, and encephalitis. While antivirals can attenuate the severity and frequency of disease, there is no vaccine or cure. Understanding the molecular details of HSV latency and reactivation is key to the development of new therapies. One of the difficulties in studying HSV latency has been the need to rely on establishment of latent infections in animal models. While rodent primary neuron culture models have shown promise, they yield relatively small numbers of latently infected neurons for biochemical and molecular analyses. Here we present the use of a human central nervous system (CNS)-derived conditionally proliferating cell line that can be differentiated into mature neurons and latently infected with HSV-1. This model shows promise as a scalable tool to study molecular and biochemical aspects of HSV-1 latency and reactivation in human neurons.
Collapse
|
21
|
Ruggieri S, Viggiano L, Annese T, Rubolino C, Gerbino A, De Zio R, Corsi P, Tamma R, Ribatti D, Errede M, Operto F, Margari L, Resta N, Di Tommaso S, Rosati J, Trojano M, Nico B. DP71 and SERCA2 alteration in human neurons of a Duchenne muscular dystrophy patient. Stem Cell Res Ther 2019; 10:29. [PMID: 30646960 PMCID: PMC6334379 DOI: 10.1186/s13287-018-1125-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/27/2018] [Accepted: 12/25/2018] [Indexed: 01/16/2023] Open
Abstract
Cognitive deficit has been identified in one third of patients affected by Duchenne Muscular Dystrophy, primarily attributed to loss of the short Dp71 dystrophin, the major brain dystrophin isoform. In this study, we investigated for the first time the Dp71 and Dp71-associated proteins cellular localization and expression in human neurons obtained by differentiation from induced pluripotent stem cell line of a patient affected by cognitive impairment. We found structural and molecular alterations in both pluripotent stem cell and derived neurons, reduced Dp71 expression, and a Ca2+ cytoplasmic overload in neurons coupled with increased expression of the SERCA2 pump in the dystrophic neurons. These results suggest that the reduction of Dp71 protein in the Duchenne muscular dystrophy neurons leads to alterations in SERCA2 and to elevated cytosolic Ca2+ concentration with consequent potential disruption of the dystrophin proteins and Dp71-associated proteins.
Collapse
Affiliation(s)
- Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | | | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | | | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Roberta De Zio
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesca Operto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Lucia Margari
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Nicoletta Resta
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Bari, Italy
| | - Silvia Di Tommaso
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Bari, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
22
|
Abstract
Acyclovir (ACV) is an effective antiviral agent for treating lytic Herpes Simplex virus, type 1 (HSV-1) infections, and it has dramatically reduced the mortality rate of herpes simplex encephalitis. However, HSV-1 resistance to ACV and its derivatives is being increasingly documented, particularly among immunocompromised individuals. The burgeoning drug resistance compels the search for a new generation of more efficacious anti-herpetic drugs. We have previously shown that trans-dihydrolycoricidine (R430), a lycorane-type alkaloid derivative, effectively inhibits HSV-1 infections in cultured cells. We now report that R430 also inhibits ACV-resistant HSV-1 strains, accompanied by global inhibition of viral gene transcription and enrichment of H3K27me3 methylation on viral gene promoters. Furthermore, we demonstrate that R430 prevents HSV-1 reactivation from latency in an ex vivo rodent model. Finally, among a panel of DNA viruses and RNA viruses, R430 inhibited Zika virus with high therapeutic index. Its therapeutic index is comparable to standard antiviral drugs, though it has greater toxicity in non-neuronal cells than in neuronal cells. Synthesis of additional derivatives could enable more efficacious antivirals and the identification of active pharmacophores.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Viruses, particularly herpes simplex virus (HSV), may be a cause of Alzheimer's disease (AD). The evidence supporting the viral hypothesis suggests that antiviral treatment trials, which have not been conducted, are warranted. RECENT FINDINGS HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid aggregation, and their DNA is common in amyloid plaques. HSV1 reactivation is associated with tau hyperphosphorylation and possibly tau propagation. Anti-HSV drugs reduce Aβ and p-tau accumulation in infected mouse brains. Clinically, after the initial oral infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and recurrent reactivation may produce neuronal damage and AD pathology. Clinical studies show cognitive impairment in HSV seropositive patients, and antiviral drugs show strong efficacy against HSV. An antiviral treatment trial in AD is clearly warranted. A phase II treatment trial with valacyclovir, an anti-HSV drug, recently began with evaluation of clinical and biomarker outcomes.
Collapse
|
24
|
D'Aiuto L, Naciri J, Radio N, Tekur S, Clayton D, Apodaca G, Di Maio R, Zhi Y, Dimitrion P, Piazza P, Demers M, Wood J, Chu C, Callio J, McClain L, Yolken R, McNulty J, Kinchington P, Bloom D, Nimgaonkar V. Generation of three-dimensional human neuronal cultures: application to modeling CNS viral infections. Stem Cell Res Ther 2018; 9:134. [PMID: 29751846 PMCID: PMC5948884 DOI: 10.1186/s13287-018-0881-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND A variety of neurological disorders including neurodegenerative diseases and infection by neurotropic viruses can cause structural and functional changes in the central nervous system (CNS), resulting in long-term neurological sequelae. An improved understanding of the pathogenesis of these disorders is important for developing efficacious interventions. Human induced pluripotent stem cells (hiPSCs) offer an extraordinary window for modeling pathogen-CNS interactions, and other cellular interactions, in three-dimensional (3D) neuronal cultures that can recapitulate several aspects of in vivo brain tissue. METHODS Herein, we describe a prototype of scaffold-free hiPSC-based adherent 3D (A-3D) human neuronal cultures in 96-well plates. To test their suitability for drug screening, A-3D neuronal cultures were infected with herpes simplex virus type 1 (HSV-1) with or without acyclovir. RESULTS The half maximal inhibitory concentration (IC50) of acyclovir was 3.14 μM and 3.12 μM determined using flow cytometry and the CX7 High Content Screening platform, respectively. CONCLUSIONS Our A-3D neuronal cultures provide an unprecedented opportunity for high-content drug screening programs to treat human CNS infections.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| | - Jennifer Naciri
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Nicholas Radio
- Thermo Fisher Scientific, Cellular Imaging and Analysis, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Sesha Tekur
- Thermo Fisher Scientific, Cellular Imaging and Analysis, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Dennis Clayton
- Department of Medicine Renal-Electrolyte Division and Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST3-7035, Pittsburgh, PA, 15260, USA
| | - Yun Zhi
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian Qu, Beijing Shi, China
| | - Peter Dimitrion
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD, 21287, USA
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Charleen Chu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST3-7035, Pittsburgh, PA, 15260, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.,Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Lora McClain
- Magee Women's Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Robert Yolken
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD, 21287, USA
| | - James McNulty
- Department of Chemistry and Chemical-Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada
| | - Paul Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - David Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
25
|
Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018; 10:48. [PMID: 29559905 PMCID: PMC5845560 DOI: 10.3389/fnagi.2018.00048] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical trials treating HSV-1-infected MCI and AD patients with antiviral medication is discussed.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, United States
| | - Elizabeth A Harris
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
26
|
Itzhaki RF. Herpes and Alzheimer's Disease: Subversion in the Central Nervous System and How It Might Be Halted. J Alzheimers Dis 2018; 54:1273-1281. [PMID: 27497484 DOI: 10.3233/jad-160607] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The last 8 or so years have seen a large increase in the number of studies supporting the concept of a major role for herpes simplex virus type 1 (HSV1) in Alzheimer's disease (AD). The main advances have been made through studies in humans and in mice, investigating the likelihood of reactivation of the latent virus in brain. Others have aimed to explain the mechanisms in cells whereby the increase in amyloid-beta (Aβ) production on HSV1 infection of cells and mouse brains occurs, and the reason that infected cells make this increase. The possibility that other herpesviruses are involved in the development of AD has been explored, and human herpesvirus type 6, Epstein-Barr virus, and cytomegalovirus, in particular, have been implicated. Epidemiological studies have further supported the role specifically of HSV1 and its reactivation in the disease. Antiviral studies have continued, comparing those acting by different mechanisms, such as restricting viral replication, or blocking viral entry into cells, to treat HSV1-infected cell cultures, and then examining the extent to which the virus-induced increases in Aβ and AD-like tau are reduced. All the studies support the usage of antiviral treatment to slow or halt the progression of AD.
Collapse
|
27
|
Dauvermann MR, Moorhead TW, Watson AR, Duff B, Romaniuk L, Hall J, Roberts N, Lee GL, Hughes ZA, Brandon NJ, Whitcher B, Blackwood DH, McIntosh AM, Lawrie SM. Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:86-96. [PMID: 29111478 DOI: 10.1016/j.pscychresns.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| | - Thomas Wj Moorhead
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Barbara Duff
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Liana Romaniuk
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Jeremy Hall
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Graham L Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA; IMED Neuroscience Unit, AstraZeneca, Waltham, MA, USA
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA
| | - Douglas Hr Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
28
|
Kuadkitkan A, Wikan N, Smith DR. Induced pluripotent stem cells: A new addition to the virologists armamentarium. J Virol Methods 2017; 235:191-195. [PMID: 27544025 DOI: 10.1016/j.jviromet.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
Abstract
A significant amount of our understanding of the molecular events occurring during viral replication has originated from studies utilizing cell lines. These cell lines are normally obtained by the culture of samples from spontaneously occurring tumors or are derived by genetic manipulation of primary cells. The genetic events inducing immortalization and/or transformation to allow continual passage in culture can have profound effects resulting in a marked loss of cell type fidelity. The development of induced pluripotent stem cells (iPSCs) has revolutionized the field of developmental biology and is ushering in an era of personalized medicine for a wide range of inherited genetic diseases. Previously, development of iPSCs required dedicated facilities as well as highly detailed technical knowledge. The pace of development in this field however has been so rapid, that iPSCs are moving into an era of "off the shelf" use, whereby the use and manipulation of these cells is well within the ability of the majority of laboratories with standard tissue culture facilities. The introduction of iPSCs to studies in the field of virology is still in its infancy, and so far has been largely confined to viruses that are difficult to propagate in other experimental systems, but it is likely that this technology will become a standard methodology in the virologists armamentarium.
Collapse
Affiliation(s)
- Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Thellman NM, Triezenberg SJ. Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency. Pathogens 2017. [PMID: 28644417 PMCID: PMC5617985 DOI: 10.3390/pathogens6030028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All herpes viruses establish lifelong infections (latency) in their host, and herpes simplex viruses (HSVs) are highly prevalent worldwide. Recurrence of HSV infections contributes to significant disease burden in people and on rare occasion can be fatal. Cell culture models that recapitulate latent infection provide valuable insight on the host processes regulating viral establishment and maintenance of latency. More robust and rapid than infections in live animal studies, advancements in neuronal culture techniques have made the systematic analysis of viral reactivation mechanisms feasible. Only recently have human neuronal cell lines been available, but models in the natural host cell are a critical addition to the currently available models.
Collapse
|
30
|
Abstract
The induced pluripotent stem cell (iPSC) was first described more than 10 years ago and is currently used in various basic science and clinical research fields. The aim of this report is to examine the trends in research using iPSCs over the last 10 years. The 2006-2016 PubMed database was searched using the MeSH term "induced pluripotent stem cells." Only original research articles were selected, with a total of 3323 articles. These were classified according to research theme into reprogramming, differentiation protocols for specific cells and/or tissues, pathophysiological research on diseases, and discovery of new drugs, and then the trends over the years were analyzed. We also focused on 232 research publications on the pathophysiological causes of diseases and drug discovery with impact factor (IF; Thomson Reuters) of six or more. The IF of each article was summed up by year, by main target disease, and by country, and the total IF score was expressed as trends of research. The trends of research activities of reprogramming and differentiation on specific cells and/or tissues reached maxima in 2013/2014. On the other hand, research on pathophysiology and drug discovery increased continuously. The 232 articles with IF ≥6 dealt with neurological, immunological/hematological, cardiovascular, and digestive tract diseases, in that order. The majority of articles were published from the United States, followed by Japan, Germany, and United Kingdom. In conclusion, iPSCs have become a general tool for pathophysiological research on disease and drug discovery.
Collapse
Affiliation(s)
- Takaharu Negoro
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hanayuki Okura
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
31
|
Association of cognitive function and liability to addiction with childhood herpesvirus infections: A prospective cohort study. Dev Psychopathol 2017; 30:143-152. [PMID: 28420448 DOI: 10.1017/s0954579417000529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liability to substance use disorder (SUD) is largely nonspecific to particular drugs and is related to behavior dysregulation, including reduced cognitive control. Recent data suggest that cognitive mechanisms may be influenced by exposure to neurotropic infections, such as human herpesviruses. In this study, serological evidence of exposure to human herpesvirus Herpes simplex virus Type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as Toxoplasma gondii was determined in childhood (age ~11 years) in 395 sons and 174 daughters of fathers with or without SUD. Its relationships with a cognitive characteristic (IQ) in childhood and with risk for SUD in adulthood were examined using correlation, regression, survival, and path analyses. Exposure to HSV-1, EBV, and T. gondii in males and females, and CMV in males, was associated with lower IQ. Independent of that relationship, EBV in females and possibly in males, and CMV and possibly HSV-1 in females were associated with elevated risk for SUD. Therefore, childhood neurotropic infections may influence cognitive development and risk for behavior disorders such as SUD. The results may point to new avenues for alleviating cognitive impairment and SUD risk.
Collapse
|
32
|
D'Aiuto L, Williamson K, Dimitrion P, McNulty J, Brown CE, Dokuburra CB, Nielsen AJ, Lin WJ, Piazza P, Schurdak ME, Wood J, Yolken RH, Kinchington PR, Bloom DC, Nimgaonkar VL. Comparison of three cell-based drug screening platforms for HSV-1 infection. Antiviral Res 2017; 142:136-140. [PMID: 28342892 DOI: 10.1016/j.antiviral.2017.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Acyclovir (ACV) and its derivatives have been highly effective for treating recurrent, lytic infections with Herpes Simplex Virus, type 1 (HSV-1), but searches for additional antiviral drugs are motivated by recent reports of resistance to ACV, particularly among immunocompromised patients. In addition, the relative neurotoxicity of ACV and its inability to prevent neurological sequelae among HSV-1 encephalitis survivors compel searches for new drugs to treat HSV-1 infections of the central nervous system (CNS). Primary drug screens for neurotropic viruses like HSV-1 typically utilize non-neuronal cell lines, but they may miss drugs that have neuron specific antiviral effects. Therefore, we compared the effects of a panel of conventional and novel anti-herpetic compounds in monkey epithelial (Vero) cells, human induced pluripotent stem cells (hiPSCs)-derived neural progenitor cells (NPCs) and hiPSC-derived neurons (N = 73 drugs). While the profiles of activity for the majority of the drugs were similar in all three tissues, Vero cells were less likely than NPCs to identify drugs with substantial inhibitory activity in hiPSC-derived neurons. We discuss the relative merits of each cell type for antiviral drug screens against neuronal infections with HSV-1.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kelly Williamson
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter Dimitrion
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Chemistry and Departments of Biological Sciences, University of Pittsburgh, PA, USA
| | - James McNulty
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | - Carla E Brown
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | | | | | - Wen Jing Lin
- Department of Chemistry and Chemical-Biology, McMaster University, Canada
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, USA
| | - Mark E Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel Wood
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert H Yolken
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Molecular Genetics & Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, USA
| |
Collapse
|
33
|
Seshadri M, Banerjee D, Viswanath B, Ramakrishnan K, Purushottam M, Venkatasubramanian G, Jain S. Cellular models to study schizophrenia: A systematic review. Asian J Psychiatr 2017; 25:46-53. [PMID: 28262173 DOI: 10.1016/j.ajp.2016.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/11/2016] [Accepted: 10/16/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Advancements in cellular reprogramming techniques have made it possible to directly study brain cells from patients with neuropsychiatric disorders. We have systematically reviewed the applications of induced pluripotent stem cells (IPSCs) and their neural derivatives in understanding the biological basis of schizophrenia. METHOD We searched the scientific literature published in MEDLINE with the following search strategy: (Pluripotent) AND (Schizophrenia OR Antipsychotic OR Psychosis). Studies written in English that used IPSCs derived from patients with schizophrenia were included. RESULTS Out of 23 articles, which had used IPSCs from patients with schizophrenia, neurons or neural stem cells had been derived from them in a majority. Several parameters had been studied; the key cellular phenotypes identified included those of synaptic pathology, neural migration/proliferation deficits, and abnormal oxidative phosphorylation. CONCLUSION Cellular modelling using IPSCs could improve the biological understanding of schizophrenia. Emerging findings are consistent with those of other study designs (post-mortem brain expression, animal studies, genome-wide association, brain imaging). Future studies should focus on refined study designs (family-based, pharmacogenomics, gene editing) and a combination of cellular studies with deep clinical phenotyping.
Collapse
Affiliation(s)
- Manasa Seshadri
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Debanjan Banerjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, India.
| | - K Ramakrishnan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
34
|
Sauerzopf U, Sacco R, Novarino G, Niello M, Weidenauer A, Praschak‐Rieder N, Sitte H, Willeit M, Bolam P. Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. Eur J Neurosci 2017; 45:45-57. [PMID: 27690184 PMCID: PMC5811827 DOI: 10.1111/ejn.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Since 2006, reprogrammed cells have increasingly been used as a biomedical research technique in addition to neuro-psychiatric methods. These rapidly evolving techniques allow for the generation of neuronal sub-populations, and have sparked interest not only in monogenetic neuro-psychiatric diseases, but also in poly-genetic and poly-aetiological disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). This review provides a summary of 19 publications on reprogrammed adult somatic cells derived from patients with SCZ, and five publications using this technique in patients with BPD. As both disorders are complex and heterogeneous, there is a plurality of hypotheses to be tested in vitro. In SCZ, data on alterations of dopaminergic transmission in vitro are sparse, despite the great explanatory power of the so-called DA hypothesis of SCZ. Some findings correspond to perturbations of cell energy metabolism, and observations in reprogrammed cells suggest neuro-developmental alterations. Some studies also report on the efficacy of medicinal compounds to revert alterations observed in cellular models. However, due to the paucity of replication studies, no comprehensive conclusions can be drawn from studies using reprogrammed cells at the present time. In the future, findings from cell culture methods need to be integrated with clinical, epidemiological, pharmacological and imaging data in order to generate a more comprehensive picture of SCZ and BPD.
Collapse
Affiliation(s)
- Ulrich Sauerzopf
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Roberto Sacco
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Gaia Novarino
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marco Niello
- Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Ana Weidenauer
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Nicole Praschak‐Rieder
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Harald Sitte
- Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Matthäus Willeit
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | | |
Collapse
|
35
|
McNulty J, D’Aiuto L, Zhi Y, McClain L, Zepeda-Velázquez C, Ler S, Jenkins HA, Yee MB, Piazza P, Yolken RH, Kinchington PR, Nimgaonkar VL. iPSC Neuronal Assay Identifies Amaryllidaceae Pharmacophore with Multiple Effects against Herpesvirus Infections. ACS Med Chem Lett 2016; 7:46-50. [PMID: 26819664 DOI: 10.1021/acsmedchemlett.5b00318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
The Amaryllidaceae alkaloid trans-dihydrolycoricidine 7 and three analogues 8-10 were produced via asymmetric chemical synthesis. Alkaloid 7 proved superior to acyclovir, the current standard for herpes simplex virus, type 1 (HSV-1) infection. Compound 7 potently inhibited lytic HSV-1 infection, significantly reduced HSV-1 reactivation, and more potently inhibited varicella zoster virus (VZV) lytic infection. A configurationally defined (3R)-secondary alcohol at C3 proved crucial for efficacious inhibition of lytic HSV-1 infection.
Collapse
Affiliation(s)
- James McNulty
- Department
of Chemistry and Chemical-Biology, McMaster University, 1280 Main
Street, West Hamilton, Ontario L8S 4M1, Canada
| | - Leonardo D’Aiuto
- Department
of Psychiatry, University of Pittsburgh, School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Yun Zhi
- Department
of Psychiatry, University of Pittsburgh, School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Lora McClain
- Department
of Psychiatry, University of Pittsburgh, School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
- Department
of Human Genetics, University of Pittsburgh, Graduate School of Public Health, 130 De Soto Street, Pittsburgh, Pennsylvania 15213, United States
| | - Carlos Zepeda-Velázquez
- Department
of Chemistry and Chemical-Biology, McMaster University, 1280 Main
Street, West Hamilton, Ontario L8S 4M1, Canada
| | - Spencer Ler
- Department
of Chemistry and Chemical-Biology, McMaster University, 1280 Main
Street, West Hamilton, Ontario L8S 4M1, Canada
| | - Hilary A. Jenkins
- Department
of Chemistry and Chemical-Biology, McMaster University, 1280 Main
Street, West Hamilton, Ontario L8S 4M1, Canada
| | - Michael B. Yee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh Pennsylvania 15213, United States
| | - Paolo Piazza
- Department
of Human Genetics, University of Pittsburgh, Graduate School of Public Health, 130 De Soto Street, Pittsburgh, Pennsylvania 15213, United States
| | - Robert H. Yolken
- Department
of Pediatrics, Johns Hopkins University School of Medicine, 600
North Wolfe Street, Baltimore, Maryland 21287, United States
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh Pennsylvania 15213, United States
| | - Vishwajit L. Nimgaonkar
- Department
of Psychiatry, University of Pittsburgh, School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
- Department
of Human Genetics, University of Pittsburgh, Graduate School of Public Health, 130 De Soto Street, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
36
|
Fruchter E, Goldberg S, Fenchel D, Grotto I, Ginat K, Weiser M. The impact of Herpes simplex virus type 1 on cognitive impairments in young, healthy individuals - A historical prospective study. Schizophr Res 2015; 168:292-6. [PMID: 26362735 DOI: 10.1016/j.schres.2015.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus (HSV) is a highly prevalent neurotropic virus. Although on the whole, chronic, latent or persistent infection is considered to be relatively benign, HSV infections can cause cognitive impairment during and after acute encephalitis. Some studies have documented cognitive impairment in exposed persons that is untraceable to encephalitis. Most studies have focused on these impairments in the mentally ill, mostly among individuals with schizophrenia, and only recently have studies begun to examine the impact of HSV infection on the cognition of healthy individuals. Subjects were a representative, random sample of 612 soldiers before active duty in the Israeli military (Israeli defense force - IDF), 62.2% HSV positive (n=381) and 38.8% HSV negative (n=231). Cognitive functioning and language abilities were compared between these groups, controlling for years of education, immigration status, and gender. Compared to soldiers who were sero-negative, soldiers who were sero-positive for HSV had significantly lower IQ scores (IQ=97.96, SD=15.19 vs IQ=103.23, SD=14.23; p≤0.001, effect size (ES)=0.2), and significantly lower Hebrew language scores (ES=0.1, p≤0.01). The results remained significant after removing subjects with mild depression, anxiety or personality disorders. Although we could not control for socio-economic status directly, our findings indicate that infection with HSV-1 is associated with reduced cognitive functioning in healthy individuals. This finding adds to the growing number of studies in the schizophrenia literature and indicates that many research findings seemingly characteristic of schizophrenia are related to the association between HSV exposure and cognitive functioning in general, and are not illness specific.
Collapse
Affiliation(s)
- Eyal Fruchter
- IDF Medical Corps, Mental Health Center, Israel; USC - School of Social Work, C.I.R. Los Angeles, CA, USA
| | - Shira Goldberg
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Daphna Fenchel
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Itamar Grotto
- Ministry of Health, Jerusalem, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Keren Ginat
- IDF Medical Corps, Mental Health Center, Israel
| | - Mark Weiser
- IDF Medical Corps, Mental Health Center, Israel; Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
37
|
Trevisan M, Sinigaglia A, Desole G, Berto A, Pacenti M, Palù G, Barzon L. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems. Viruses 2015; 7:3835-56. [PMID: 26184286 PMCID: PMC4517129 DOI: 10.3390/v7072800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022] Open
Abstract
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | | | - Giovanna Desole
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Alessandro Berto
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| |
Collapse
|
38
|
Das DK, Tapias V, D'Aiuto L, Chowdari KV, Francis L, Zhi Y, Ghosh BA, Surti U, Tischfield J, Sheldon M, Moore JC, Fish K, Nimgaonkar V. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. MOLECULAR NEUROPSYCHIATRY 2015; 1:116-123. [PMID: 26528485 DOI: 10.1159/000430916] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Copy number variation on chromosome 15q11.2 (BP1-BP2) causes deletion of CYFIP1, NIPA1, NIPA2 and TUBGCP5; it also affects brain structure and elevates risk for several neurodevelopmental disorders that are associated with dendritic spine abnormalities. In rodents, altered cyfip1 expression changes dendritic spine morphology, motivating analyses of human neuronal cells derived from iPSCs (iPSC-neurons). METHODS iPSCs were generated from a mother and her offspring, both carrying the 15q11.2 (BP1-BP2) deletion, and a non-deletion control. Gene expression in the deletion region was estimated using quantitative real-time PCR assays. Neural progenitor cells (NPCs) and iPSC-neurons were characterized using immunocytochemistry. RESULTS CYFIP1, NIPA1, NIPA2 and TUBGCP5 gene expression was lower in iPSCs, NPCs and iPSC-neurons from the mother and her offspring in relation to control cells. CYFIP1 and PSD95 protein levels were lower in iPSC-neurons derived from the CNV bearing individuals using Western blot analysis. At 10 weeks post-differentiation, iPSC-neurons appeared to show dendritic spines and qualitative analysis suggested that dendritic morphology was altered in 15q11.2 deletion subjects compared with control cells. CONCLUSIONS The 15q11.2 (BP1-BP2) deletion is associated with reduced expression of four genes in iPSC-derived neuronal cells; it may also be associated altered iPSC-neuron dendritic morphology.
Collapse
Affiliation(s)
- D K Das
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - V Tapias
- University of Pittsburgh, Dept. of Neurology
| | - L D'Aiuto
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - K V Chowdari
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - L Francis
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - Y Zhi
- University of Pittsburgh School of Medicine, Dept of Psychiatry ; Tsinghua University School of Medicine
| | | | - U Surti
- University of Pittsburgh School of Medicine, Dept. of Pathology ; University of Pittsburgh, Graduate School of Public Health, Department of Human Genetics
| | - J Tischfield
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - M Sheldon
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - J C Moore
- Dept. of Genetics and The Human Genome Institute of New Jersey, Rutgers, The State University of New Jersey
| | - K Fish
- University of Pittsburgh School of Medicine, Dept of Psychiatry
| | - V Nimgaonkar
- University of Pittsburgh School of Medicine, Dept of Psychiatry ; University of Pittsburgh, Graduate School of Public Health, Department of Human Genetics
| |
Collapse
|
39
|
McClain L, Zhi Y, Cheng H, Ghosh A, Piazza P, Yee MB, Kumar S, Milosevic J, Bloom DC, Arav-Boger R, Kinchington PR, Yolken R, Nimgaonkar V, D'Aiuto L. Broad-spectrum non-nucleoside inhibitors of human herpesviruses. Antiviral Res 2015; 121:16-23. [PMID: 26079681 DOI: 10.1016/j.antiviral.2015.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/06/2023]
Abstract
Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of 'quiescent' HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo.
Collapse
Affiliation(s)
- Lora McClain
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zhi
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hoyee Cheng
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ayantika Ghosh
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael B Yee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Santosh Kumar
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jadranka Milosevic
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Molecular Genetics & Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Yolken
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Samarasinghe RA, Kanuparthi PS, Timothy Greenamyre J, DeFranco DB, Di Maio R. Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiol Dis 2014; 70:252-61. [PMID: 25003306 DOI: 10.1016/j.nbd.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022] Open
Abstract
While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA.
| | - Prasad S Kanuparthi
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA
| | - J Timothy Greenamyre
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| | - Donald B DeFranco
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.
| | - Roberto Di Maio
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| |
Collapse
|