1
|
Bounaama A, Djerdjouri B. Matrix metalloproteinase 9 implication during colorectal carcinogenesis. Effect of doxycycline. Fundam Clin Pharmacol 2025; 39:e70012. [PMID: 40273927 DOI: 10.1111/fcp.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), including MMP9, play a significant role in colorectal cancer (CRC) progression, mainly by extracellular matrix remodeling. However, little is known about MMP9 role in aberrant crypt foci (ACF) cluster formation, the earliest colon preneoplastic lesions. AIMS AND METHODS We conducted a bioinformatics analysis of MMPs expression in CRC using Gene Expression Profiling Interactive Analysis2 (GEPIA2). Subsequently, we investigated MMP9 expression during the early stage of colon carcinogenesis in mice and assessed the effect of doxycycline (DOX), a global inhibitor of MMPs, on ACF cluster formation. Thus, NMRI mice received two weekly injections of 1,2-Dimethylhydrazine (DMH, 20 mg/kg, subcutaneously), followed or not by DOX (100 mg/kg, orally, from the 4th to the 6th week). RESULTS GEPIA2 analysis indicated that among the 28 identified MMPs with collagenase and doxycycline-sensitive activities, MMPs 1, 3, 7, 9, and 13 were overexpressed in CRC tissues. Moreover, only MMP1 and MMP9 correlated well with collagen expression in colorectal tumors. In vivo, methylene blue-stained DMH-treated colons revealed multiple ACF clusters at week 6, associated with mucosa remodeling and sustained nitrosative stress as attested by enhanced collagen fibers, malondialdehyde level, and nitrotyrosine deposits. Pyrosequencing showed increased methylation at the tenth CpG site of the MMP9 promoter, which was associated with increased MMP9 expression. Interestingly, DOX attenuated the number and size of ACF clusters and mucosa remodeling without rebalancing nitrosative stress. CONCLUSION Overexpression of MMP9 occurs early during colorectal carcinogenesis, and doxycycline may control the pathological remodeling of colon mucosa into ACF clusters by attenuating MMP9 activity.
Collapse
Affiliation(s)
- Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
2
|
Santerre A, Huizar-López MDR, Coronilla-Martínez J, Ortiz-Lazareno PC, Casas-Solís J. Lacticaseibacillus casei 393 modulates KRAS and APC expression and cytokine levels in colitis-associated colon cancer. J Gastrointest Oncol 2025; 16:568-579. [PMID: 40386603 PMCID: PMC12078812 DOI: 10.21037/jgo-24-667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/26/2025] [Indexed: 05/20/2025] Open
Abstract
Background Colitis-associated colon cancer (CAC) is a specific subset of colorectal cancer (CRC) affecting patients with inflammatory bowel diseases (IBDs). Chronic colon inflammation orchestrates immune surveillance or escape and may drive neoplastic initiation and progression. Lacticaseibacillus casei 393 (L. casei 393) is a lactic acid microorganism that, beyond its nutritional value, provides health benefits. To explore the therapeutic potential of this probiotic against CAC, we evaluated colon histopathology, circulating cytokines, and the expression of the Kristen rat viral sarcoma oncogene homolog (KRAS) and the adenomatosis polyposis coli (APC) tumor-suppressing gene in the murine model of CAC induced with azoxymethane (AOM) and dextran sodium sulfate (DSS). Methods BALB/c mice (n=7/group) received two doses of AOM (10 mg/kg body weight) followed by three 5-day cycles of 2% DSS. L. casei 393 was administered orally [1×106 colony forming units (CFU)/100 µL/mouse/twice a week/6 months] either alone, before AOM-DSS, or starting at the same time as AOM-DSS. Colon histopathology was assessed by hematoxylin-eosin staining, circulating cytokines by flow cytometry, and the expression of colonic KRAS and APC by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results AOM-DSS induced CAC in BALB/c mice, which presented severe colon damage, high cytokine levels, and altered KRAS and APC expression. Conversely, L. casei 393 ingestions, starting at the same time as CAC induction, restored colon architecture and modulated cytokine levels and gene expression. Conclusions The present experimental work supports the therapeutic potential of L. casei 393 against CAC, as it shows that its ingestion restored the damaging effect of AOM-DSS through its anti-inflammatory properties that helped modulate KRAS and APC mRNA expression.
Collapse
Affiliation(s)
- Anne Santerre
- Cellular and Molecular Biology Department, University of Guadalajara, Zapopan, Mexico
| | | | | | - Pablo Cesar Ortiz-Lazareno
- Immunology Unit, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Mexico
| | - Josefina Casas-Solís
- Cellular and Molecular Biology Department, University of Guadalajara, Zapopan, Mexico
| |
Collapse
|
3
|
Mahmoud MO, Al-Hamid HA, Hassan NF, El-Ansary MR, Gomaa SB. Linagliptin Mitigates DMH-Induced Colorectal Cancer in Rats: Crosstalk Between NFAT and IL-6/JAK2/STAT3/NF-κB Signaling Hubs. J Biochem Mol Toxicol 2025; 39:e70206. [PMID: 40070168 DOI: 10.1002/jbt.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/30/2025] [Accepted: 03/02/2025] [Indexed: 05/13/2025]
Abstract
Colorectal cancer (CRC) is a multicomponent disease and the second most frequent root of cancer-related deaths globally. Linagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor. It has been repurposed in recent experimental studies due to its marked anti-inflammatory activities. This study aimed to evaluate the ameliorative role of linagliptin in 1,2-dimethylhydrazine (DMH)-induced CRC via modulation of NFAT-mediated IL-6 and JAK2/STAT3/NF-κB signaling pathways. CRC model has been successfully established via a dose equal 40 mg/kg two times a week of DMH for 8-week duration. Twenty-four Wistar rats were segregated into three groups of eight rats each; normal control, DMH-induced CRC and DMH + linagliptin (10 mg/kg; p.o). Linagliptin attenuated DMH-induced oxidative stress by restoring the declined levels of some antioxidant enzymes. Linagliptin suppressed the elevated nuclear factor kappa B (NF-κB) induced by DMH which is highlighted using immunohistochemistry analysis. The anti-inflammatory role of linagliptin has been fortified by the decline in nuclear factor of activated T-cells (NFAT) mRNA expression level along with the reduction in vascular endothelial growth factor (VEGF), interlukin-6 (IL-6) and cyclooxygenase-2 (COX-2) levels. Linagliptin mitigate the protein expression of DMH-activated oncogenic janus-activated kinase/signal transducers and activators of transcription (JAK2/STAT3). Linagliptin exerted a proapoptotic effect to tumor cells manifested by a remarkable decline in B-cell lymphoma 2 (Bcl-2) and a significant elevation in Bcl-2-associated X protein (Bax) expression levels. The histopathological analysis revealed that linagliptin has inhibitory potential against the DMH induced dysplastic aberrant crypt foci (ACF) and adenocarcinoma. Linagliptin ameliorated CRC by modulating NFAT-mediated IL-6 with JAK2/STAT3/NF-κB signaling cascades.
Collapse
Affiliation(s)
- Mohamed O Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hager Abd Al-Hamid
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Safaa B Gomaa
- Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Fomenko I, Denysenko N, Lozynska I, Kuryk M, Yushyn I, Myhal O, Pinyazhko R, Lozynskyi A, Lesyk R. Efficacy of thiazole derivatives against colorectal cancer induced by dimethylhydrazine in male Wistar rats. Biochem Biophys Res Commun 2025; 750:151424. [PMID: 39892058 DOI: 10.1016/j.bbrc.2025.151424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Identifying novel biological activities in hit compounds remains a significant challenge in cancer research. In this study, we evaluated the anticancer and safety profiles of two previously studied thiazole-based derivatives, Les-5303 and Les-6485, in a colorectal cancer (CRC) model induced by dimethylhydrazine (DMH) in male Wistar rats. CRC was induced through subcutaneous DMH administration at a 20 mg/kg dose for 20 weeks. Les-5303 and Les-6485 were then administered intrarectally at a 6 mg/kg dose for 5 days. The effects of these compounds on oxidative stress, the antioxidant system, inflammation, NO-synthase activity in the colonic mucosa and blood plasma, and hepatotoxicity markers, were thoroughly assessed. Both compounds demonstrated significant anticancer activity and antioxidant properties. Les-5303, however, exhibited increased hepatotoxicity, as evidenced by elevated AST activity and reduced urea concentration in the blood, indicating its potential for liver damage. In contrast, Les-6485 showed no significant hepatotoxic effects, maintaining normal hepatic enzyme activities and urea levels, suggesting a better safety profile. These findings highlight the distinct biological effects of Les-5303 and Les-6485, with Les-6485 showing promising anticancer activity coupled with minimal toxicity, making it a more favorable candidate for further development in CRC treatment.
Collapse
Affiliation(s)
- Iryna Fomenko
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Nataliia Denysenko
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Mariana Kuryk
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Ostap Myhal
- Department of Therapeutic Stomatology, Periodontology and Stomatology FPGE, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Pinyazhko
- Department of Normal Physiology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine; Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| |
Collapse
|
5
|
Hassani S, Malekinejad H, Khadem-Ansari MH, Abbasi A, Kheradmand F. Dietary silymarin supplementation enhances chemotherapy efficacy of capecitabine and irinotecan and mitigates hepatotoxicity in a mouse model of colon cancer. Res Pharm Sci 2025; 20:77-94. [PMID: 40190825 PMCID: PMC11972028 DOI: 10.4103/rps.rps_204_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background and purpose The flavonoid silymarin (SMN) has shown promise due to its antioxidant, anti-inflammatory, and anticancer properties. SMN has been widely used in preclinical and clinical studies to treat various types of cancer, alone and with chemotherapy agents. Recent research suggests that SMN may increase conventional chemotherapy efficacy and reduce adverse effects. Herein, we investigated the therapeutic efficacy of SMN and its combination with capecitabine (CAP) and irinotecan (IRI) in a mouse model of colon cancer. Experimental approach Following 1,2 dimethylhydrazine-induced colon cancer, a modified diet supplemented with SMN (2500 ppm) and mono- and combined therapy of CAP and IRI was used. Serum samples were analyzed for lipid profile, liver function, and inflammatory cytokines. Oxidative stress and inflammation markers, including malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in colonic, hepatic, and circulatory samples. Colonic BAX and Bcl-2 levels were examined via western blotting and histopathological analysis of colon sections was conducted. Findings/Results SMN alone and combined with chemotherapeutic agents significantly mitigated the elevated inflammatory cytokines liver function enzyme levels, and hyperlipidemia. Furthermore, SMN supplementation with chemotherapy agents enhanced antioxidant activity and reduced lipid peroxidation and inflammatory markers. Significant upregulation of BAX and downregulation of Bcl-2 were observed. In addition, treatment regimens ameliorated carcinogen-induced polyp multiplicity, adenoma formation, dysplastic changes, and lymphocytic aggregation. Conclusion and implications Our results demonstrated that the potential anticancer properties of SMN could enhance chemotherapy efficacy and reduce carcinogen- and chemotherapy-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ata Abbasi
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Saad MFS, Abdullah MNH, Lim V, Bahari H, Khoo BY, Tan JJ, Yong YK. Exploring the role of Bisphenol A in obesity-driven colorectal cancer progression: network toxicology and multi-organ pathology in animal models. Toxicol Appl Pharmacol 2025; 495:117227. [PMID: 39788208 DOI: 10.1016/j.taap.2025.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity. Thirty male rats were grouped (n = 6) as follows: N (normal diet), NC (normal diet + CRC), HC (high-fat diet + CRC), NCB (normal diet + CRC + BPA), and HCB (high-fat diet + CRC + BPA). CRC was induced with 1,2-dimethylhydrazine (40 mg/kg), and BPA (25 mg/kg) was administered for 19 weeks. Although BPA exposure did not affect body weight or biochemical parameters, the HCB group exhibited significant histopathological changes in the colon, including lymphoid hyperplasia, liver damage, and increased IL-1β levels. Furthermore, diet influenced adipocyte size, exacerbating BPA's effects on CRC progression. Findings suggest BPA may worsen CRC progression in obese rats through identified pathways, promoting multi-organ pathology and underscoring the need for stricter regulations, especially for vulnerable populations. ENVIRONMENTAL IMPLICATION: Bisphenol A (BPA), a widespread environmental contaminant, is increasingly linked to serious health issues, including cancer, in susceptible populations. Our study highlights BPA's role in promoting obesity-driven colorectal cancer (CRC) progression, demonstrating its carcinogenic potential in high-risk contexts. These findings emphasize the urgent need for regulatory scrutiny of BPA exposure, particularly in obese individuals, and support the development of safer alternatives. Addressing BPA's impact can contribute to preventive health strategies and inform policies aimed at reducing environmental and public health risks associated with endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Muhamad Fikri Shazlan Saad
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Penang, Malaysia.
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Gomathinayagam S, Srinivasan R, Gomathi A, Jayaraj R, Vasconcelos V, Sudhakaran R, Easwaran N, Meivelu Moovendhan, Kodiveri Muthukaliannan G. Oral Administration of Carotenoid-Rich Dunaliella salina Powder Inhibits Colon Carcinogenesis via Modulation of Wnt/β-catenin Signaling Cascades in a Rat Model. Appl Biochem Biotechnol 2025; 197:159-178. [PMID: 39106028 DOI: 10.1007/s12010-024-05024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
The present study aims to investigate the oral therapeutic and molecular role of carotenoid-rich Dunaliella salina powder (DSP) against 1,2-dimethylhydrazine (DMH)-triggered colon carcinogenesis. In this study, thirty six male Wistar rats were categorized into six distinct groups (G1-G6): G1 group with no intervention, G2 group received only DSP (1000 mg/kg), G3 group received only DMH carcinogen (20 mg/kg), and G4-G6 group received both DMH and DSP at various phases (pre-initiation, post-initiation and entire phases) for 32 weeks. Body weight, tumor incidence, tumor volume, histopathological examination, antioxidants, and detoxification enzymes activities were analyzed in the experimental rats. In addition, the protein expression profile of components involved in the Wnt/β-catenin signaling pathway was determined by western blot analysis. Matrix metalloproteinases (MMP-7 and MMP-9), proliferation marker (PCNA), and pro-apoptotic (Bcl-2 and Bax) proteins were analyzed using immunohistochemistry. Colorimetric assay was used to determine the levels of anti-inflammatory (iNOS and COX-2) and apoptotic proteins (Caspase-3 and Caspase-9). Results showed that concomitant administration of DSP with DMH significantly reduced tumor progression and prevented colon carcinogenesis in rats. However, treatment with DSP before or after DMH exposure did not significantly prevent colon carcinogenesis. DMH and DSP treatment group showed increased activities of antioxidant enzymes with significant reduction in the oxidative stress. Additionally, the detoxification enzymes and colonic histopathology of those rats were restored to that of control rats. The administration of DSP to rats exposed to DMH exhibited antitumor effects via inhibition of the Wnt/β-catenin signaling pathway with induced apoptosis through the Bcl-2/Bax/caspases signaling cascades. Moreover, the same group also showed significant anti-inflammatory activity via regulating iNOS and COX-2 biomarkers. Our findings revealed molecular chemopreventive activity of carotenoid-rich DSP through regulating Wnt/beta-catenin and intrinsic apoptotic pathways. Thus, DSP is propound to function as a potent antioxidant, anti-proliferative, and anti-inflammatory therapeutic agent against colon carcinogenesis.
Collapse
Affiliation(s)
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Ajitha Gomathi
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences, Jindal Global Institution of Eminence Deemed to Be University, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007, Porto, Portugal
| | - Raja Sudhakaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nalini Easwaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India
| | | |
Collapse
|
8
|
Aboulthana WM, El-Nasser A. Madboli A, Hussien AG, Seif M. Exploring the protective effect of silver Croton tiglium nano-extract against azoxymethane induced toxicity in female reproductive organs in rats. Heliyon 2024; 10:e38820. [PMID: 39524721 PMCID: PMC11550675 DOI: 10.1016/j.heliyon.2024.e38820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Reproductive toxicity from food and environmental contaminants has greatly affected human life. Plants are a fundamental source of bioactive components for relieving the harmful effects of pollutants. Hydrazine metabolites pose health threats when they enter the food chain. Croton tiglium (C. tiglium) exhibits anti-inflammatory and anti-tumor properties. Silver nanoparticles enhance the chemical stability of C. tiglium. Reproductive toxicity of Azoxymethane (AOM) and anticancer effects of silver C. tiglium were evaluated. Thirty-six adult female rats were divided into six groups (n = 6) and treated with AOM with or without silver C. tiglium nano-extract as pre- and post-treatment. Sexual hormones and proteins were assessed under silver C. tiglium nano-extract and AOM. Histopathologically, AOM caused metaplastic myometrial endometriotic cysts and endometrial metaplasia. Silver C. tiglium in pre- and post-treated rats mitigated the carcinogenic effects of AOM. Immunohistochemically, AOM carcinogenicity was evident through moderate detection of the CK-7 tumor marker in the ovaries and uterus of the AOM-, simultaneous-, and post-treated groups. C. tiglium ameliorated this, with CK-7 slightly expressed in the pre-treated group. Furthermore, C. tiglium alleviated the negative impact on FSH, LH, and 17-β estradiol hormones. In conclusion, Silver C. tiglium nano-extract successfully prevented tumors in the ovaries and uterus of AOM-treated rats.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. Dokki, 12622, Giza, Egypt
| | - Abd El-Nasser A. Madboli
- Animal Reproduction and Artificial Insemination Department, Veterinary Research Institute, National Research Centre, 33 El-Buhouth St., Dokki, 12622, Giza, Egypt
| | - Amal Gouda Hussien
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. Dokki, 12622, Giza, Egypt
| | - Mohamed Seif
- Food Toxicology and Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El-bohouth St., Dokki, Giza, P.O. Box.12622, Egypt
| |
Collapse
|
9
|
Abduljabbar MH, Althobaiti YS, Alnemari RM, Almutairi FM, Aldhafeeri MM, Serag A, Almalki AH. GC-MS and multivariate analysis reveal partial serum metabolome restoration by bevacizumab in a colon cancer rat model: An untargeted metabolomics investigation. J Pharm Biomed Anal 2024; 253:116562. [PMID: 39520809 DOI: 10.1016/j.jpba.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Bevacizumab is an anti-angiogenic therapeutic agent that targets vascular endothelial growth factor (VEGF) and has been approved for the treatment of several types of cancer, including colon cancer. Herein, a GC-MS based metabolomics approach was employed to investigate the impact of bevacizumab on the serum metabolome of colon cancer rats. Multivariate chemometric analysis models such as PCA and PLS-DA showed a clear separation between the control, cancer and bevacizumab-treated groups, suggesting that bevacizumab administration induced significant metabolic alterations. Furthermore, pairwise comparisons between the studied groups using the OPLS-DA model in addition to univariate analysis identified several discriminatory metabolites belonged to various chemical classes including amino acids, organic acids and fatty acids that were perturbed between the studied groups. Interestingly, bevacizumab treatment was able to partially restore some of the cancer-induced metabolic disturbances, indicating its potential therapeutic efficacy via improving the tumor vasculature and nutrient delivery. Besides, pathway analysis of the differential metabolites identified key metabolic pathways affected by bevacizumab, which included valine, leucine and isoleucine metabolism, pyruvate metabolism and butanoate metabolism. However, little effects were observed on lipid metabolites such as palmitic acid and stearic acid and consequently their related metabolic pathways such as fatty acid biosynthesis metabolism suggesting that bevacizumab has more prominent effect on energy and amino acid metabolisms as compared to fatty acid metabolism in colon cancer rats. Overall, our study provided novel insights into the metabolic mechanisms underlying the therapeutic effects of bevacizumab in colon cancer rats via the use of a comprehensive GC-MS metabolomics approach.
Collapse
Affiliation(s)
- Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reem M Alnemari
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Farooq M Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Saudi Arabia
| | - Muneef M Aldhafeeri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Saudi Arabia
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11751, Egypt.
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
10
|
Squarisi IS, Ribeiro VP, Ribeiro AB, de Souza LTM, Junqueira MDM, de Oliveira KM, Hayot G, Dickmeis T, Bastos JK, Veneziani RCS, Ambrósio SR, Tavares DC. Development of a Benzophenone-Free Red Propolis Extract and Evaluation of Its Efficacy against Colon Carcinogenesis. Pharmaceuticals (Basel) 2024; 17:1340. [PMID: 39458981 PMCID: PMC11510570 DOI: 10.3390/ph17101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Brazilian red propolis has attracted attention for its pharmacological properties. However, signs of toxicity were recently observed in long-term studies using the hydroalcoholic extract of red propolis (RPHE), likely due to polyprenylated benzophenones. This study aimed to develop a benzophenone-free red propolis extract (BFRP) and validate an HPLC-PDA method to quantify its main constituents: isoliquiritigenin, vestitol, neovestitol, medicarpine, and 7-O-methylvestitol. METHODS BFRP's toxicity was assessed in zebrafish larvae through a vibrational startle response assay (VSRA) and morphological analysis. Genotoxicity was evaluated using the micronucleus test in rodents, and the extract's effects on chemically induced preneoplastic lesions in rat colon were studied. An HPLC-PDA method was used to quantify BFRP's main compounds. RESULTS BFRP primarily contained vestitol (128.24 ± 1.01 μg/mL) along with isoliquiritigenin, medicarpin, neovestitol, and 7-O-methylvestitol. Zebrafish larvae exposed to 40 µg/mL of BFRP exhibited toxicity, higher than the 10 µg/mL for RPHE, though no morphological differences were found. Fluorescent staining in the notochord, branchial arches, and mouth was observed in larvae treated with both BFRP and RPHE. No genotoxic or cytotoxic effects were observed up to 2000 mg/kg in rodents, with no impact on hepatotoxicity or nephrotoxicity markers. Chemoprevention studies showed a 41.6% reduction in preneoplastic lesions in rats treated with 6 mg/kg of BFRP. CONCLUSIONS These findings indicate that BFRP is a safe, effective propolis-based extract with potential applications for human health, demonstrating reduced toxicity and chemopreventive properties.
Collapse
Affiliation(s)
- Iara Silva Squarisi
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Victor Pena Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Arthur Barcelos Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Letícia Teixeira Marcos de Souza
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Marcela de Melo Junqueira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Kátia Mara de Oliveira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Gaelle Hayot
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil;
| | - Rodrigo Cassio Sola Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Sérgio Ricardo Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Denise Crispim Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| |
Collapse
|
11
|
El-Fakharany EM, El-Gendi H, Abdel-Wahhab K, Abu-Serie MM, El-Sahra DG, Ashry M. Therapeutic efficacy of α-lactalbumin coated oleic acid based liposomes against colorectal carcinoma in Caco-2 cells and DMH-treated albino rats. J Biomol Struct Dyn 2024; 42:9220-9234. [PMID: 37624964 DOI: 10.1080/07391102.2023.2250452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor recognized as a major cause of morbidity and mortality throughout the world. Therefore, novel liposomes of oleic acid coated with camel α-lactalbumin (α-LA coated liposomes) were developed for their potential antitumor activity against CRC, both in vitro and in DMH-induced CRC-modeled animal. In vitro results indicated the high safety of α-LA coated liposomes towards normal human cells with potent antitumor activity against Caco-2 cells at an IC50 value of 57.01 ± 3.55 µM with selectivity index of 6.92 ± 0.48. This antitumor activity has been attributed to induction of the apoptotic mechanism, as demonstrated by nuclear condensation and arrest of Caco-2 cells in sub-G1 populations. α-LA coated liposomes also revealed a significant up-regulation of the p53 gene combined with a down-regulation of the Bcl2 gene. Moreover, in vivo results revealed that treatment of induced-CRC modeled animals with α-LA coated liposomes for six weeks markedly improved the CRC-disorders; this was achieved from the significant reduction in the values of AFP, CEA, CA19.9, TNF-α, IL-1β, MDA, and NO coupled with remarkable rise in SOD, GPx, GSH, CAT, and CD4+ levels. The histopathological findings asserted the therapeutic potential of α-LA coated liposomes in the treatment of CRC. Therefore, the present results proved the antitumor activity of α-LA coated liposomes against CRC through the restoration of impaired oxidative stress, improved immune response, and reduced inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, GEBRI, SRTA-City, Alexandria, Egypt
| | | | - Marwa M Abu-Serie
- Medical Biotechnology Department, GEBRI, SRTA-City, Alexandria, Egypt
| | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
12
|
Dos Santos Lima A, de Oliveira Pedreira FR, Bento NA, Novaes RD, Dos Santos EG, de Almeida Lima GD, de Almeida LA, Belo TCA, Vieira FV, Mohammadi N, Kilpeläinen P, Giusti-Paiva A, Granato D, Azevedo L. Digested galactoglucomannan mitigates oxidative stress in human cells, restores gut bacterial diversity, and provides chemopreventive protection against colon cancer in rats. Int J Biol Macromol 2024; 277:133986. [PMID: 39033896 DOI: 10.1016/j.ijbiomac.2024.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Galactoglucomannan (GGM) is the predominant hemicellulose in coniferous trees, such as Norway spruce, and has been used as a multipurpose emulsifier in the food industry. In vitro digestion with a cellular antioxidant activity assay was performed to determine the bioaccessibility and antioxidant activity of phenolic compounds, and the behaviour of GGM on in vivo experimental assay against induced colon cancer. The results showed that digestion decreased the bioaccessibility and antioxidant capacity of phenolic compounds. Cellular analysis did not support these findings once an antioxidant effect was observed in human cell lines. GGM attenuated the initiation and progression of colon cancer, by reducing the foci of aberrant crypts in rats, and modified the intestinal bacterial microbiota (disrupting the balance between Firmicutes and Bacteroidetes phyla). Thus, GGM provided chemopreventive protection against the development of colon cancer and acted as an intracellular antioxidant agent.
Collapse
Affiliation(s)
- Amanda Dos Santos Lima
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Nathália Alves Bento
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Elda Gonçalves Dos Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | | | - Fernando Vitor Vieira
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nima Mohammadi
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Alexandre Giusti-Paiva
- Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Jornada DH, Boreski D, Chiba DE, Ligeiro D, Luz MAM, Gabriel EA, Scarim CB, de Andrade CR, Chin CM. Synergistic Enhancement of 5-Fluorouracil Chemotherapeutic Efficacy by Taurine in Colon Cancer Rat Model. Nutrients 2024; 16:3047. [PMID: 39339648 PMCID: PMC11434803 DOI: 10.3390/nu16183047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) is one of the top 10 most common cancers worldwide and caused approximately 10 million deaths in 2022. CRC mortality has increased by 10% since 2020 and 52.000 deaths will occur in 2024, highlighting the limitations of current treatments due to ineffectiveness, toxicity, or non-adherence. The widely used chemotherapeutic agent, 5-fluorouracil (5-FU), is associated with several adverse effects, including renal, cardiac, and hepatic toxicity; mucositis; and resistance. Taurine (TAU), an essential β-amino acid with potent antioxidant, antimutagenic, and anti-inflammatory properties, has demonstrated protective effects against tissue toxicity from chemotherapeutic agents like doxorubicin and cisplatin. Taurine deficiency is linked to aging and cancers such as breast and colon cancer. This study hypothesized that TAU may mitigate the adverse effects of 5-fluorouracil (5-FU). Carcinogenesis was chemically induced in rats using 1,2-dimethylhydrazine (DMH). Following five months of cancer progression, taurine (100 mg/kg) was administered orally for 8 days, and colon tissues were analyzed. The results showed 80% of adenocarcinoma (AC) in DMH-induced control animals. Notably, the efficacy of 5-FU showed 70% AC and TAU 50% while, in the 5-FU + TAU group, no adenocarcinoma was observed. No differences were observed in the inflammatory infiltrate or the expression of genes such as K-ras, p53, and Ki-67 among the cancer-induced groups whereas APC/β-catenin expression was increased in the 5FU + TAU-treated group. The mitotic index and dysplasia were increased in the induced 5-FU group and when associated with TAU, the levels returned to normal. These data suggest that 5-FU exhibits a synergic anticancer effect when combined with taurine.
Collapse
Affiliation(s)
- Daniela Hartmann Jornada
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diogo Boreski
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Diego Eidy Chiba
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Denise Ligeiro
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Marcus Alexandre Mendes Luz
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Edmo Atique Gabriel
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| | - Cauê Benito Scarim
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
| | - Cleverton Roberto de Andrade
- Physiology and Pathology Department, School of Dentistry, University of São Paulo State, UNESP, Araraquara 14801-385, SP, Brazil
| | - Chung Man Chin
- Laboratory for Drug Design (LAPDESF), Drugs and Medicines Department, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara 14800-903, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
14
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
15
|
Adrianto AA, Riwanto I, Sadhana U, Setyawan H, Mahati E, Widyarini S, Wandita AAA, Paramita DK. Morphological Changes and Inflammation Preceded the Pathogenesis of 1,2-Dimethylhydrazine-Induced Colorectal Cancer. Asian Pac J Cancer Prev 2024; 25:2059-2067. [PMID: 38918668 PMCID: PMC11382862 DOI: 10.31557/apjcp.2024.25.6.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study examined the morphological changes in the colonic mucosa and the presence of inflammation in rats induced with 1,2-dimethylhydrazine (DMH) 30 mg/kg BW over 9, 11, and 13 weeks without a latency period. METHODS Hematoxylin and eosin staining was performed to assess the morphology and characteristic alteration of the epitheliocytes in the colon. Immunohistochemistry was employed to assess the expression of tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2). The difference in the severity of inflammation and COX-2 expression was examined using one-way analysis of variance. The correlation of COX-2 expression with the severity of inflammation was analyzed using Spearman's rank correlation test. RESULT Until week 13, chronic inflammation and non-hyperplastic and hyperplastic aberrant crypt foci occurred. The severity of inflammation gradually shifted from high moderate to low moderate. TNF-α expression was high in all groups; however, COX-2 expression was gradually lower with longer duration of induction, which corresponded with the severity of inflammation. CONCLUSION DMH induction until week 13 without a latency period caused chronic inflammation without the formation of adenoma or adenocarcinoma. A very strong correlation was established between COX-2 expression and inflammation.
Collapse
Affiliation(s)
- Albertus Ari Adrianto
- Doctoral Study Program of Medical and Health Science, Universitas Diponegoro, Semarang, Indonesia
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Ignatius Riwanto
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Udadi Sadhana
- Anatomical Pathology Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | - Henry Setyawan
- Faculty of Public Health Universitas Diponegoro, Semarang, Indonesia
| | - Endang Mahati
- Pharmacology and Therapeutic Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia
| | | | - Afranetta Aulya Asri Wandita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Integrated Research Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
16
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
17
|
Lin R, Lv S, Lou W, Wang X, Xie Z, Zeng S, Chen R, Gao W, Jiang T, Cheng KWE, Lam KH, Gong X. In-vivo assessment of a rat rectal tumor using optical-resolution photoacoustic endoscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:2251-2261. [PMID: 38633094 PMCID: PMC11019702 DOI: 10.1364/boe.518204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
Optical-resolution photoacoustic endoscopy (OR-PAE) has been proven to realize imaging on the vascular network in the gastrointestinal (GI) tract with high sensitivity and spatial resolution, providing morphological information. Various photoacoustic endoscopic catheters were developed to improve the resolution and adaptivity of in-vivo imaging. However, this technology has not yet been validated on in-vivo GI tumors, which generally feature angiogenesis. The tumor causes thickened mucosa and neoplasia, requiring large depth-of-field (DOF) in imaging, which contradicts to high-resolution imaging. In this work, a novel catheter was developed with a high resolution of ∼27 µm, providing a matched DOF of ∼400 µm to cover the vessels up to the submucosa layer. Optical-resolution photoacoustic endoscopic imaging was first performed on in-vivo rat rectal tumors. In addition, to further characterize the vessel morphology, tumor-suspected regions and normal regions were selected for quantification and analysis of vessel dimension distribution and tortuosity. All the results suggest that the OR-PAE has great application potential in tumor diagnosis, evaluation, and monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Riqiang Lin
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Zhihua Xie
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Silue Zeng
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Rui Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Wen Gao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ka-Wai Eric Cheng
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Kwok-Ho Lam
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
- Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| |
Collapse
|
18
|
Omadhika WA, Solikhah S, Adrianto AA, Purwestri YA, Paramita DK. M2 Macrophage Prominently Distributed in the Rat's Colon of DMH-Induced Inflammation Associated Colorectal Cancer. Asian Pac J Cancer Prev 2024; 25:1357-1362. [PMID: 38679997 PMCID: PMC11162729 DOI: 10.31557/apjcp.2024.25.4.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE The aim of this study is to examine the M1 and M2 macrophages distribution in the rat's colon of DMH-induced inflammation associated colorectal cancer. METHODS Colon tissue of three groups of 4 rats that induced using 1,2 dimethylhydrazine (DMH) at 30 mg/kg bw every week for 9, 11, and 13 weeks were used. The M1 and M2 distribution was examined by using antibody anti iNOS for M1 and anti-CD163 for M2 with immunohistochemistry method. The data was presents in figure and table in the form of percentage. RESULT M1 macrophage was found in all groups in the low distribution level (25% - 50%), while M2 macrophage was observed in all groups with 100% distribution. In the longer period of DMH induction, M2 macrophages was distributed more abundant. CONCLUSION All of the rat's colon showing chronic inflammation that led to the tumorigenesis.
Collapse
Affiliation(s)
| | | | - Albertus Ari Adrianto
- Digestive Surgery Department of Medical Faculty Universitas Diponegoro, Semarang, Indonesia.
| | - Yekti Asih Purwestri
- Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Dewi Kartikawati Paramita
- Study Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Integrated Research Laboratory, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
19
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
20
|
Panjeta A, Kaur K, Sharma R, Verma I, Preet S. Human Intestinal Defensin 5 Ameliorates the Sensitization of Colonic Cancer Cells to 5-Fluorouracil. Arch Med Res 2024; 55:102966. [PMID: 38330831 DOI: 10.1016/j.arcmed.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIM The increasing dilemma of multidrug-resistant cancer cells in response to currently available chemotherapeutic drugs and their associated side effect(s), calls for the investigation of alternative anticancer advances and molecules. Therefore, the present study aimed to elucidate the combinatorial potential against colon cancer of human defensin 5 in combination with 5-fluorouracil (5-FU), and against 5-FU resistant colon tumor cells. METHODS The in vivo combinatorial potential of HD-5 with 5-FU was elucidated in terms of tumor morphometrics, apoptosis assay, surface morphology histology of the colon(s), and transcriptional alterations. Changes in membrane dynamics with mucin expression were evaluated by fluorescence microscopy and histochemistry. The in vitro activity of the peptide/drug conjunction was explored by phase contrast microscopy, MTT, LDH assay, and AO/EtBr staining. Chemoresistance to 5-FU was determined by phase contrast microscopy, MTT assay, annexin V-FITC/PI flow cytometry, and MDR-1, Bak, and Bax expression. RESULTS In vivo decreases in tumor parameters, with a marked increase in apoptosis and neutrophil infiltrations indicated restoration of normal architecture with improved mucin content in the treated colons. This happened with substantial changes in key molecular markers of the intrinsic apoptotic cascade. Membrane dynamics revealed that peptides and chemotherapeutic drugs could bind to cancerous cells by taking advantage of altered levels of membrane fluidity. CONCLUSION Peptide treatment of drug-resistant Caco-2 cells promotes enhanced 5-FU uptake, in contrast to when cells were treated with 5-FU alone. Hence, HD-5 as an adjunct to 5-FU, exhibited strong cancer cell killing even against 5-FU-resistant tumorigenic cells.
Collapse
Affiliation(s)
- Anshul Panjeta
- Department of Biophysics, BMS Block II, South Campus, Panjab University, Chandigarh, India
| | - Khushpreet Kaur
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rinkle Sharma
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Simran Preet
- Department of Biophysics, BMS Block II, South Campus, Panjab University, Chandigarh, India.
| |
Collapse
|
21
|
Pelegrini BB, Becker AA, Ferreira CA, Machado GR, Gauer MA, Mazarin SR, Dembogurski DSDO, Kaneshima AMDS, da Silva DB, Becker TCA. Antineoplastic Activity Evaluation of Brazilian Brown Propolis and Artepillin C in Colorectal Area of Wistar Rats. Asian Pac J Cancer Prev 2024; 25:563-573. [PMID: 38415543 PMCID: PMC11077124 DOI: 10.31557/apjcp.2024.25.2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE The study's aim was to evaluate Brazilian Brown Propolis (BBP) and Artepillin C (ARC) chemopreventive action in Wistar rats' colons. METHODS Fifty male Wistar rats were divided into ten experimental groups, including control groups, groups with and without 1,2-dimethylhydrazine (DMH) induction, and BBP, ARC, and ARC enriched fraction (EFR) treatments, for sixteen weeks. Aberrant crypt foci (ACF) were classified as hyperplastic or dysplastic, and proliferating cell nuclear antigen (PCNA) expression was quantified. RESULT ACF amounts in experimental groups (induced or not) decreased in both colon portions, while the isolated Aberrant Crypt (AC) number increased. Experimental groups of animals showed higher hyperplasia and dysplasia amounts compared with control groups. The ACF dysplastic amount present in groups induced and treated, in both colon portions, had similar values to IDMH (DMH induction group without treatment). In addition, DMH was effective in ACF inducing and there was positive staining for PCNA in basal and upper dysplastic foci portions in all experimental groups, in the mitotic index (MI) evaluation. To conclude, considering all the experimental groups, the one treated with EFR (fraction enriched with ARC) had the lowest rates of cell proliferation. CONCLUSION BBP and its derivatives prevented crypt cell clonal expansion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Denise Brentan da Silva
- Department of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande, Brazil.
| | | |
Collapse
|
22
|
Felix Ávila P, Pereira Todescato A, de Melo Carolo Dos Santos M, Fernando Ramos L, Caroline Menon I, Oliveira Carvalho M, do Vale-Oliveira M, Beatriz Custódio F, Beatriz Abreu Gloria M, Martins Dala-Paula B, Francielli de Oliveira P. Anonna crassiflora suppresses colonic carcinogenesis through its antioxidant effects, bioactive amines, and phenol content in rats. Food Res Int 2024; 175:113666. [PMID: 38129019 DOI: 10.1016/j.foodres.2023.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Marolo (Annona crassiflora) is an underutilized Brazilian Cerrado fruit with few reports in the literature about its bioactive compounds and functional properties. In this context, the chemoprevention against the carcinogen 1,2-dimethylhydrazine (DMH)-induced pre-neoplastic lesions in Wistar rat colon was investigated and correlated with marolo's antioxidant activity and the contents of phenolic compounds and bioactive amines. Total phenolic compounds (TPC) and total flavonoids compounds (TFC) were determined in the marolo pulp extract by spectrophotometric and Ultra-Performance Liquid Chromatography and diode array detection (UPLC-DAD) analysis. Free bioactive amines were determined by High Performance Liquid Chromatography and fluorescence detection (HPLC-FLD) after post column derivatization with o-phthalaldehyde. In addition, the in vitro antioxidant activity was determined by DPPH, and ABTS. Wistar rats were treated orally with marolo pulp at 0.7, 1.4 and 2.8 g/kg body weight (bw)/day added to a standard ration. Four subcutaneous injections of DMH (40 mg/kg bw) were used to induce a pre-neoplastic lesion that was assessed by the aberrant crypt foci (ACF) assay. The marolo pulp (fresh weigh) showed high content of total phenolic compounds (9.16 mg GAE/g), with predominance of chlorogenic acid (1.86 µg/g) and epicatechin (0.99 µg/g), and total flavonoids (7.26 mg CE/g), ∼85 % of the TPC. The marolo pulp had significant contents of tyramine (31.97 mg/kg), putrescine (20.65 mg/kg), and spermidine (6.32 mg/kg). The marolo pulp inhibited (p < 0.05) pre-neoplastic lesions induced by DMH administration at the all concentrations tested. These findings indicate that marolo pulp has a colon carcinogenesis chemopreventive effect, which could be due to, at least in parts, its antioxidant action associated with its phenolics and flavonoids content as well of spermidine.
Collapse
Affiliation(s)
- Patrícia Felix Ávila
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Angélica Pereira Todescato
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Mylena de Melo Carolo Dos Santos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas - UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Luiz Fernando Ramos
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas - UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Isabella Caroline Menon
- Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas - UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Michele Oliveira Carvalho
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil; Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas - UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Maysa do Vale-Oliveira
- Universidade Federal do Espírito Santo (UFES) campus São Mateus, BR-101, km 60 - Litorâneo, São Mateus, ES 29932-540, Brazil; BioTox - Laboratório de Bioquímica e Toxicologia de Alimentos, Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais - UFMG, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Flávia Beatriz Custódio
- BioTox - Laboratório de Bioquímica e Toxicologia de Alimentos, Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais - UFMG, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Maria Beatriz Abreu Gloria
- Laboratório de Controle de Qualidade (LCQ), Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais - UFMG, Av. Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Martins Dala-Paula
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil
| | - Pollyanna Francielli de Oliveira
- Programa de Pós-graduação em Nutrição e Longevidade, Universidade Federal de Alfenas, Alfenas, UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil; Laboratório de Genética Humana, Instituto de Ciências da Natureza, Universidade Federal de Alfenas - UNIFAL, Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
23
|
Dzhalilova D, Zolotova N, Fokichev N, Makarova O. Murine models of colorectal cancer: the azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colitis-associated cancer. PeerJ 2023; 11:e16159. [PMID: 37927787 PMCID: PMC10624171 DOI: 10.7717/peerj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer. It is a heterogeneous disease, including both hereditary and sporadic types of tumors. CRC results from complex interactions between various genetic and environmental factors. Inflammatory bowel disease is an important risk factor for developing CRC. Despite growing understanding of the CRC biology, preclinical models are still needed to investigate the etiology and pathogenesis of the disease, as well as to find new methods of treatment and prevention. Objectives The purpose of this review is to describe existing murine models of CRC with a focus on the models of colitis-associated CRC. This manuscript could be relevant for experimental biologists and oncologists. Methodology We checked PubMed and Google from 01/2018 to 05/2023 for reviews of CRC models. In addition, we searched PubMed from 01/2022 to 01/2023 for articles using the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC model. Results Existing murine models of CRC include spontaneous, genetically engineered, transplantation, and chemically induced models. For the study of colitis-associated cancer (CAC), the AOM/DSS model is predominantly used. This model is very similar in histological and molecular characteristics to the human CAC, and is highly reproducible, inexpensive, and easy to use. Despite its popularity, the AOM/DSS model is not standardized, which makes it difficult to analyze and compare data from different studies. Conclusions Each model demonstrates particular advantages and disadvantages, and allows to reproduce different subtypes or aspects of the pathogenesis of CRC.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
24
|
Wulandari F, Ikawati M, Widyarini S, Kirihata M, Novitasari D, Kato JY, Meiyanto E. Tumour-suppressive effects of curcumin analogs CCA-1.1 and Pentagamavunone-1 in colon cancer: In vivo and in vitro studies. J Adv Pharm Technol Res 2023; 14:317-324. [PMID: 38107450 PMCID: PMC10723174 DOI: 10.4103/japtr.japtr_315_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to evaluate the efficacy of Chemoprevention Curcumin Analog-1.1 (CCA-1.1) and Pentagamavunone-1 (PGV-1) in vivo and in vitro in colorectal cancer model. CCA-1.1 or PGV-1 was administered orally to 1,2-dimethylhydrazine (DMH)-induced rats for 16 weeks. The cytotoxicity of both compounds was tested on Caco-2, CT26, and NIH/3T3 cells using the MTT method. The cell cycle, apoptosis, and reactive oxygen species (ROS) levels were analyzed through flow cytometry. X-gal staining was used to examine the compound's effect on senescence. Oral co-administration of CCA-1.1 or PGV-1 significantly suppressed the carcinogenic characteristics and symptoms of premalignant colon cancer relative to DMH-only and untreated groups. CCA-1.1 and PGV-1 administration did not affect the blood profile. CCA-1.1 and PGV-1 demonstrated great cytotoxicity on Caco-2 and CT26 cells, with 50% inhibition concentration (IC50) values of 4.3 ± 0.2 and 3.1 ± 0.1 µM for CCA-1.1 and 11.2 ± 1.1 and 4.8 ± 0.1 µM for PGV-1, respectively, while not toxic against fibroblast cells. Both compounds instigated G2/M arrest and efficiently induced cell senescence and apoptosis. Moreover, these analogs selectively elevated oxidative stress in colon cancer cells without inducing noticeable changes in fibroblasts. In conclusion, PGV-1 and CCA-1.1 suppressed colorectal tumor formation and induced mitotic arrest.
Collapse
Affiliation(s)
- Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| | - Muthi Ikawati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| | - Sitarina Widyarini
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta
| | - Mitsunori Kirihata
- Research Center for Boron Neutron Capture Therapy, Osaka Metropolitan University, Osaka, Japan
| | - Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| |
Collapse
|
25
|
Melo NDOR, De Sousa Silva M, Ribeiro JPN, Lima WP, Francisco Vagnaldo FV, Cavalcanti BC, De Sousa Silva AA, Dornelas CA. Synergistic Antigenotoxic and Antioxidant Action of Gum Arabic and Eugenol in Rat Liver Following Induction of Colorectal Carcinogenesis. Asian Pac J Cancer Prev 2023; 24:3447-3457. [PMID: 37898850 PMCID: PMC10770658 DOI: 10.31557/apjcp.2023.24.10.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Much research has been conducted to identify natural antioxidant and antimutagenic compounds capable of preventing, reverting or treating conditions caused by oxidative stress and genotoxicity. In this study we evaluated the effects of 10% gum arabic (GA) and eugenol (EUG) on hepatic oxidative stress and genotoxicity induced by dimethylhydrazine (DMH) in rats. METHODS The prevention arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA , EUG or 10% GA + EUG by gavage. The treatment arm of the study included 4 control groups and 4 experimental groups. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. Finally, the livers were harvested for histopathological study with HE, measurement of genotoxicity and oxidative stress. RESULT Genotoxicity and oxidative stress were found to be significantly lower in Group XII (animals treated concomitantly with GA and EUG). This is the first study to observe the synergistic action of GA and EUG administered concomitantly in this scenario. CONCLUSION Indicating a synergistic antigenotoxic and antioxidant effect on liver cells in rats with DMH-induced colorectal carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Vagnaldo Francisco Vagnaldo
- Researcher at NRDM (Nucleus of Research and Development of Medicines), Laboratory of Pharmacology and Preclinical Research, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Bruno Coêlho Cavalcanti
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Antônio Adailson De Sousa Silva
- Nucleus for Research and Development of Medicines (NPDM), National Laboratory of Experimental Oncology, Federal University of Ceará, Fortaleza, Brazill.
| | - Conceição Aparecida Dornelas
- Permanent Professor of the Postgraduate Program stricto sensu in Pathology and Medical-Surgical Sciences, School of Medicine, Federal University of Ceara Fortaleza, Brazil.
| |
Collapse
|
26
|
Dos Santos Lima A, Novaes RD, Pinheiro LC, de Almeida LA, Martino HSD, Giusti-Paiva A, Pap N, Granato D, Azevedo L. From waste to the gut: Can blackcurrant press cake be a new functional ingredient? Insights on in vivo microbiota modulation, oxidative stress, and inflammation. Food Res Int 2023; 170:112917. [PMID: 37316039 DOI: 10.1016/j.foodres.2023.112917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Lucas Cezar Pinheiro
- Department of Pharmacology, Federal University Santa Catarina, Santa Catarina, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nora Pap
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Lehmane H, Kohonou AN, Tchogou AP, Ba R, Dah-Nouvlessounon D, Didagbé O, Sina H, Senou M, Adjanohoun A, Baba-Moussa L. Antioxidant, Anti-Inflammatory, and Anti-Cancer Properties of Amygdalin Extracted from Three Cassava Varieties Cultivated in Benin. Molecules 2023; 28:4548. [PMID: 37299029 PMCID: PMC10254302 DOI: 10.3390/molecules28114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Given that cancer is a disease that is rampant in the world and especially in Africa, where the population has enormous difficulty treating it, plants are a safer and less expensive alternative. Cassava is a plant species valued in Benin because of its numerous medicinal and nutritional virtues. This study evaluated the biological activities of amygdalin from the organs of three cassava varieties most commonly produced in Benin (BEN, RB, and MJ). HPLC analysis was used to quantify amygdalin in cassava organs and derivatives. Phytochemical screening was performed to determine secondary metabolite groups. DPPH and FRAP methods were used to assess antioxidant activity. Cytotoxicity of the extracts was tested on Artemia salina larvae. The anti-inflammatory activity was evaluated in vivo in an albino mouse paw edema model induced by 5% formalin. The anticancer activity was evaluated in vivo on Wistar rats rendered cancerous by 1,2-dimethylhydrazine (DMH) using 5-fluorouracil as a reference molecule. The results showed that the organs of all three-cassava varieties contained glycosides, flavonoids, saponosides, steroids, tannins, coumarins, and cyanogenic derivatives. Young stems and fresh cassava leaves had the highest amygdalin concentrations, with 11,142.99 µg 10 g-1 and 9251.14 µg 10 g-1, respectively. The Agbeli derivative was more concentrated in amygdalin, with a content of 401.56 µg 10 g-1 than the other derivatives. The antioxidant activity results showed that the amygdalin extracts were DPPH radical scavengers with IC50 values ranging from 0.18 mg mL-1 to 2.35 mg mL-1. The cytotoxicity test showed no toxicity of the extracts toward shrimp larvae. Administration of amygdalin extracts from the leaves of BEN and MJ varieties prevents inflammatory edema. The percentages of edema inhibition varied between 21.77% and 27.89%. These values are similar (p > 0.05) to those of acetylsalicylic acid (25.20%). Amygdalin extract of the BEN variety significantly (p < 0.0001) reduces edema. Both BEN extracts inhibited cancer induction with DMH. In preventive and curative treatments, rats fed with amygdalin extracts showed low anti-cancer activity under the effect of DMH and a significant difference in biochemical results. Thus, the organs of all three cassava varieties studied have secondary metabolites and good antioxidant activity. The leaves contain high levels of amygdalin and can be used as anti-inflammatory and anticancer agents.
Collapse
Affiliation(s)
- Halfane Lehmane
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| | - Arnaud N. Kohonou
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou 01 BP 2009, Benin;
| | - Atchadé Pascal Tchogou
- Experimental and Clinical Biology Laboratory, National School of Applied Biosciences and Biotechnologies, National University of Science, Technology, Engineering and Mathematics (UNSTIM), Dassa-Zoumé 01 BP 1471, Benin; (A.P.T.); (M.S.)
| | - Radiate Ba
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| | - Durand Dah-Nouvlessounon
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| | - Oscar Didagbé
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| | - Maximin Senou
- Experimental and Clinical Biology Laboratory, National School of Applied Biosciences and Biotechnologies, National University of Science, Technology, Engineering and Mathematics (UNSTIM), Dassa-Zoumé 01 BP 1471, Benin; (A.P.T.); (M.S.)
| | - Adolphe Adjanohoun
- Institut National des Recherches Agricoles du Bénin, Cotonou 01 BP 884, Benin;
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.L.); (R.B.); (D.D.-N.); (O.D.); (H.S.)
| |
Collapse
|
28
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
29
|
Pocasap P, Weerapreeyakul N, Wongpoomchai R. Thai Rat-Tailed Radish Prevents Hepatocarcinogenesis in Rats by Blocking Mutagenicity, Inducing Hepatic Phase II Enzyme, and Decreasing Hepatic Pro-Inflammatory Cytokine Gene Expression. Cancers (Basel) 2023; 15:cancers15061906. [PMID: 36980792 PMCID: PMC10047847 DOI: 10.3390/cancers15061906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Raphanus sativus L. var. caudatus Alef (RS) is an indigenous Thai plant with nutritional and medicinal values such as anticancer activity, but only in vitro. The chemopreventive effects of RS were, therefore, investigated in the initial stage of hepatocarcinogenesis in rats. Diethylnitrosamine (DEN), a carcinogen, was intraperitoneally injected into rats to induce liver cancer. Along with the DEN injection, either aqueous (RS-H2O) or dichloromethane (RS-DCM) extract was administered orally. Immunohistochemistry was used to detect glutathione S-transferase placental (GST-P) positive foci and apoptotic cells in rat livers as indicators of initial-stage carcinogenesis. The underlying mechanisms of chemoprevention were investigated with (a) antimutagenic activity, (b) hepatic phase II enzyme induction, and (c) hepatic pro-inflammatory cytokine gene expression. The results showed that RS-DCM was more potent than RS-H2O in decreasing GST-P positive foci and apoptotic cells induced by DEN. The mechanisms of RS-DCM (phenolics and sulforaphene contents) against liver carcinogenesis (1) block the activity of carcinogens; (2) elevate phase II detoxifying enzymes; and (3) suppress the pro-inflammatory gene expression. RS-H2O (phenolics contents), in contrast, only decreases pro-inflammatory gene expression. In conclusion, the RS extract consisting of phenolics and isothiocyanates exerted significant chemopreventive activity against DEN-induced liver carcinogenesis.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Subarmaniam T, Mahmad Rusli RN, Perumal KV, Yong YK, Hadizah S, Othman F, Salem K, Shafie NH, Hasham R, Yin KB, Abdul Kadir KK, Bahari H, Zakaria ZA. The Potential Chemopreventive Effect of Andrographis paniculata on 1,2-Dimethylhydrazine and High-Fat-Diet-Induced Colorectal Cancer in Sprague Dawley Rats. Int J Mol Sci 2023; 24:ijms24065224. [PMID: 36982300 PMCID: PMC10049149 DOI: 10.3390/ijms24065224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer (CRC) is responsible for a notable rise in the overall mortality rate. Obesity is found to be one of the main factors behind CRC development. Andrographis paniculata is a herbaceous plant famous for its medicinal properties, particularly in Southeast Asia for its anti-cancer properties. This study examines the chemopreventive impact of A. paniculata ethanolic extract (APEE) against a high-fat diet and 1,2-dimethylhydrazine-induced colon cancer in Sprague Dawley rats. Sprague Dawley rats were administered 1,2-dimethylhydrazine (40 mg/kg, i.p. once a week for 10 weeks) and a high-fat diet (HFD) for 20 weeks to induce colorectal cancer. APEE was administered at 125 mg/kg, 250 mg/kg, and 500 mg/kg for 20 weeks. At the end of the experiment, blood serum and organs were collected. DMH/HFD-induced rats had abnormal crypts and more aberrant crypt foci (ACF). APEE at a dose of 500 mg/kg improved the dysplastic state of the colon tissue and caused a 32% reduction in the total ACF. HFD increased adipocyte cell size, while 500 mg/kg APEE reduced it. HFD and DMH/HFD rats had elevated serum insulin and leptin levels. Moreover, UHPLC-QTOF-MS analysis revealed that APEE was rich in anti-cancer phytochemicals. This finding suggests that APEE has anti-cancer potential against HFD/DMH-induced CRC and anti-adipogenic and anti-obesity properties.
Collapse
Affiliation(s)
- Tharani Subarmaniam
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia (Z.A.Z.)
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Kokila Vani Perumal
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Hadizah
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fezah Othman
- Department Biomedical Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khaled Salem
- Department Biomedical Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosnani Hasham
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
| | - Khairul Kamilah Abdul Kadir
- Department of Innovation and Commercialization, Forest Research Institution Malaysia, Kepong 52109, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (H.B.); (Z.A.Z.)
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia (Z.A.Z.)
- Correspondence: (H.B.); (Z.A.Z.)
| |
Collapse
|
31
|
Arthrospira (Spirulina) platensis feeding reduces the early stage of chemically induced rat colon carcinogenesis. Br J Nutr 2023; 129:395-405. [PMID: 35506448 DOI: 10.1017/s0007114522001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colorectal cancer is the third most diagnosed cancer worldwide and linked to dietary/lifestyle factors. Arthrospira (Spirulina) platensis (AP) contains bioactive compounds with beneficial effects in vivo/in vitro. We evaluated the effects of AP feeding against 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Male Sprague Dawley rats were given subcutaneous injections of DMH (4 × 40 mg/kg body weight) (G1-G3) or vehicle (G4-G5) twice a week (weeks 3-4). During weeks 1-4, animals were fed a diet containing 1 % (G2) or 2 % (G3-G4) AP powder (w/w). After this period, all groups received a balanced diet until week 12. Some animals were euthanised after the last DMH injection (week 4) for histological, immunohistochemical (Ki-67, γ-H2AX and caspase-3) and molecular analyses (real time-PCR for 91 genes), while other animals were euthanised at week 12 for preneoplastic aberrant crypt foci (ACF) analysis. Both AP treatments (G2-G3) significantly decreased the DMH-induced increase in γ-H2AX (DNA damage) and caspase 3 (DNA damage-induced cell death) in colonic crypts at week 4. In addition, Cyp2e1 (Drug metabolism), Notch1, Notch2 and Jag1 genes (Notch pathway) and Atm, Wee1, Chek2, Mgmt, Ogg1 and Xrcc6 genes (DNA repair) were also down-regulated by 2 % AP feeding (G3) at week 4. A significant reduction in ACF development was observed in both AP-treated groups (G2-G3) at week 12. In conclusion, findings indicate that AP feeding reduced acute colonic damage after DMH, resulting in fewer preneoplastic lesions. Our study provided mechanistic insights on dietary AP-preventive effects against early colon carcinogenesis.
Collapse
|
32
|
Bernardes AL, Moraes LFDS, Cruz BCDS, da Conceição LL, de Oliveira LL, Sarandy MM, Gonçalves RV, Peluzio MDCG. Hibiscus ( Hibiscus sabdariffa L.) supplementation increases butyrate synthesis and reduces inflammatory cells, attenuating the formation of aberrant crypt foci in BALB/c mice induced to pre-neoplastic lesions. Br J Nutr 2023; 129:352-363. [PMID: 35437128 DOI: 10.1017/s0007114522001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of colorectal cancer involves some morphological changes, and in the initial stage, pre-neoplastic lesions called aberrant crypt foci (ACF) appear. Thus, an intervention with sources of bioactive compounds such as Hibiscus sabdariffa L., rich in phenolic compounds and anthocyanins, could attenuate the risk of developing these lesions due to its antioxidant, anti-inflammatory and anti-proliferative properties. Therefore, the aim of this study was to evaluate the effects of 5 % and 10 % supplementation of dehydrated H. sabdariffa calyces (DHSC) during the development of 1,2-dimethylhydrazine-induced pre-neoplastic lesions in male BALB/c mice. The characterisation of DHSC was carried out. The in vivo experiment lasted 12 weeks, and the animals were randomly divided into three experimental groups: the control group (CON) and the supplemented groups with 5 % DHSC and 10 % DHSC. The activities of liver enzymes catalase (CAT) and superoxide dismutase were determined. In addition, ACF, SCFA, presence of inflammatory infiltrates, goblet cells and leucocytes in the colonic mucosa were quantified. There was a significant reduction in ACF and the presence of inflammatory infiltrates in the colon of animals in groups 5DHSC and 10DHSC. In addition, the 10DHSC group showed an increase in the activity of the CAT enzyme, in the production of butyrate and in the presence of natural killer cells in the colon, in addition to more hypertrophied goblet cells. Based on these findings, it is suggested that DHSC supplementation may be recommended to attenuate cellular responses in the early stage of pre-neoplastic lesions.
Collapse
|
33
|
Selective Role of TNFα and IL10 in Regulation of Barrier Properties of the Colon in DMH-Induced Tumor and Healthy Rats. Int J Mol Sci 2022; 23:ijms232415610. [PMID: 36555251 PMCID: PMC9779473 DOI: 10.3390/ijms232415610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Recently it has been reported that the tumor adjacent colon tissues of 1,2-dymethylhydrazine induced (DMH)-rats revealed a high paracellular permeability. We hypothesized that the changes might be induced by cytokines. Colorectal cancer is accompanied by an increase in tumor necrosis factor alpha (TNFα) and interleukin 10 (IL10) that exert opposite regulatory effects on barrier properties of the colon, which is characterized by morphological and functional segmental heterogeneity. The aim of this study was to analyze the level of TNFα and IL10 in the colon segments of DMH-rats and to investigate their effects on barrier properties of the proximal and distal parts of the colon in healthy rats. Enzyme immunoassay analysis showed decreased TNFα in tumors in the distal part of the colon and increased IL10 in proximal tumors and in non-tumor tissues. Four-hour intraluminal exposure of the colon of healthy rats with cytokines showed reduced colon barrier function dependent on the cytokine: TNFα decreased it mainly in the distal part of the colon, whereas IL10 decreased it only in the proximal part. Western blot analysis revealed a more pronounced influence of IL10 on tight junction (TJ) proteins expression by down-regulation of the TJ proteins claudin-1, -2 and -4, and up-regulation of occludin only in the proximal part of the colon. These data may indicate a selective role of the cytokines in regulation of the barrier properties of the colon and a prominent role of IL10 in carcinogenesis in its proximal part.
Collapse
|
34
|
Mahmoud GA, Ali HE, Radwan RR. Design of pH-responsive polymeric nanocarrier for targeted delivery of pyrogallol with enhanced antitumor potential in colon cancer. Arch Biochem Biophys 2022; 731:109431. [DOI: 10.1016/j.abb.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022]
|
35
|
Kwak AW, Park JW, Lee SO, Lee JY, Seo JH, Yoon G, Lee MH, Choi JS, Shim JH. Isolinderalactone sensitizes oxaliplatin-resistance colorectal cancer cells through JNK/p38 MAPK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154383. [PMID: 35987016 DOI: 10.1016/j.phymed.2022.154383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Isolinderalactone (ILL), a sesquiterpene lactone compound, can be extracted from the root of Lindera aggregate. Physiological activities of ILL, including anti-inflammatory and anti-proliferative effects, have been investigated in multiple diseases. Nevertheless, little is known regarding its anti-cancer activities and the mechanism of action of ILL in targeting human CRC cells. PURPOSE To determine ILL-mediated anti-proliferative effects on oxaliplatin (Ox)-sensitive and resistant colorectal cancer (CRC) cells and underlying mechanisms involved in its effects focusing on signal transduction. METHODS Inhibitory effect of ILL on CRC cells was evaluated by analyzing mitochondrial membrane potential (MMP) dysfunction and multi-caspase activity. Apoptosis-regulating proteins and JNK/p38 signaling molecules were monitored by Western blotting. ROS-dependent physiological modifications by ILL were confirmed by pretreatment with N-acetylcysteine (NAC). Moreover, the involvement of JNK/p38 signaling in ROS-mediated apoptosis was verified by treatment with SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor). RESULTS ILL decreased cell viability and colony formation in both CRC Ox-sensitive (HCT116 and HT29) and Ox-resistant (OxR) (HCT116-OxR and HT29-OxR) cells. ILL induced G2/M phase cell cycle arrest, ROS generation, phosphorylated (p)JNK/p38 MAPK activation, mitochondrial membrane potential (MMP) depolarization, and multi-caspase activation, which eventually triggered apoptotic cell death of CRC cells. In addition, combined treatment with ILL and SP600125, SB203580, or pan-caspase inhibitor (Z-VAD-FMK) prevented decreases in cell viability seen after treatment with ILL alone. Pretreatment with NAC attenuated ILL-mediated apoptosis, ROS production, and p-JNK/p38 expression. CONCLUSION Taken together, our results suggest that ILL can exert its anticancer effect in CRC Ox-sensitive and OxR cells by inducing ROS-mediated apoptosis through JNK/p38 MAPK signaling pathways. This is the first study demonstrating that ILL has a potential to improve drug efficacy against resistance mechanisms, providing a new insight into therapeutic strategies targeting drug-resistant CRC.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanam 58245, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea; The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, PR China.
| |
Collapse
|
36
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
37
|
Binmama S, Dang CP, Visitchanakun P, Hiengrach P, Somboonna N, Cheibchalard T, Pisitkun P, Chindamporn A, Leelahavanichkul A. Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy. Int J Mol Sci 2022; 23:10951. [PMID: 36142859 PMCID: PMC9505986 DOI: 10.3390/ijms231810951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae) attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/- mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages, including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM; using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent intensity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities (fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1β and iNOS), and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite the upregulated IL-1β. In conclusion, S. cerevisiae inhibited the growth of colon cancers through dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our data support the use of S. cerevisiae for colon cancer protection.
Collapse
Affiliation(s)
- Sulaiman Binmama
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Cong Phi Dang
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naraporn Somboonna
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10330, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
38
|
Salehi A, Hosseini SM, Kazemi S. Antioxidant and Anticarcinogenic Potentials of Propolis for Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8497562. [PMID: 35782078 PMCID: PMC9246617 DOI: 10.1155/2022/8497562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
Propolis is a natural compound with anticarcinogenic properties. The present study aimed to compare the inhibitory effect of ethanolic extract of propolis (EEP) and vitamin E on dimethylhydrazine-induced colon lesions in rats. In this study, 60 rats were randomly categorized into six 10-member groups. After 13 weeks, blood and colon tissue were sampled to examine some factors. The parameters included red (RBC) and white (WBC) blood cell profile, lactate dehydrogenase (LDH), C-reactive protein (CRP), total protein (TP), creatine kinase (CPK), and albumin, as well as the extent of colon histological lesions, protein expression (adenomatous polyposis coli (APC), proliferating cell nuclear antigen (PCNA), carcinoembryonic antigen (CEA), and platelet-derived growth factor (PDGF)), and oxidative stress markers (total antioxidant capacity (TAC), malondialdehyde (MDA), and superoxide dismutase (SOD)) in colon tissue. A significant decrease was observed in congestion, mitotic index, inflammation, and cell destruction in colon tissue in dimethylhydrazine group in comparison with the control group (P < 0.05). The EEP exposed rats exhibited a significant lower oxidative stress than the DMH group (P < 0.05). Furthermore, the extract significantly affected TAC level (P < 0.05). While the expression level of APC rose substantially in the EEP-treated group compared to the DMH group, the level of PCNA, CEA, and PDGF proteins significantly reduced. It seems that the EEP can efficiently prevent DMH-induced colonic lesions. Furthermore, its effectiveness is more than the vitamin E, which is a strong antioxidant.
Collapse
Affiliation(s)
- Alireza Salehi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
39
|
Bartolomeu AR, Romualdo GR, Lisón CG, Besharat ZM, Corrales JAM, Chaves MÁG, Barbisan LF. Caffeine and Chlorogenic Acid Combination Attenuate Early-Stage Chemically Induced Colon Carcinogenesis in Mice: Involvement of oncomiR miR-21a-5p. Int J Mol Sci 2022; 23:ijms23116292. [PMID: 35682971 PMCID: PMC9181067 DOI: 10.3390/ijms23116292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of most common cancers worldwide, with high rates of mortality. Epidemiological findings demonstrate that coffee consumption reduces the risk of developing CRC by ~13%. In general, in vivo and in vitro findings demonstrate the antiproliferative, antioxidant and proapoptotic effects of brewed coffee or major bioavailable coffee compounds. Thus, it was assessed whether caffeine (CAF) and/or chlorogenic acid (CGA) attenuates the early-stage of chemically induced mouse colon carcinogenesis. Male Swiss mice were submitted to a 1,2-dimethylhydrazine/deoxycholic acid (DMH/DCA)-induced colon carcinogenesis model. These animals received CAF (50 mg/kg), CGA (25 mg/kg) or CAF+CGA (50 + 25 mg/kg) intragastrically for five times/week for ten weeks. CAF+CGA had the most pronounced effects on decreasing epithelial cell proliferation (Ki-67) and increasing apoptosis (cleaved caspase-3) in colonic crypts. This treatment also decreased the levels of proinflammatory cytokines IL-6, IL-17 and TNF-α, and downregulated the oncomiR miR-21a-5p in the colon. Accordingly, the analysis of miR-21a-5p targets demonstrated the genes involved in the negative regulation of proliferation and inflammation, and the positive regulation of apoptosis. Ultimately, CAF+CGA attenuated preneoplastic aberrant crypt foci (ACF) development. Our findings suggest that a combination of coffee compounds reduces early-stage colon carcinogenesis by the modulation of miR-21a-5p expression, highlighting the importance of coffee intake to prevent CRC.
Collapse
Affiliation(s)
- Ariane Rocha Bartolomeu
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (A.R.B.); (G.R.R.)
| | - Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (A.R.B.); (G.R.R.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Carmen Griñán Lisón
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (C.G.L.); (J.A.M.C.); (M.Á.G.C.)
- GENYO (Centre for Genomics and Oncological Research), Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Juan Antonio Marchal Corrales
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (C.G.L.); (J.A.M.C.); (M.Á.G.C.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Maria Ángel García Chaves
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (C.G.L.); (J.A.M.C.); (M.Á.G.C.)
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Correspondence:
| |
Collapse
|
40
|
da Silva LHD, Squarisi IS, de Freitas KS, Barcelos Ribeiro A, Ozelin SD, Aldana-Mejía JA, de Oliveira LTS, Rodrigues TE, de Melo MRS, Nicolella HD, Alves BS, de Andrade Melo AL, Ccana-Ccapatinta GV, Bastos JK, Tavares DC. Toxicological and chemoprevention studies of Dalbergia ecastaphyllum (L.) Taub. stem, the botanical source of Brazilian red propolis. J Pharm Pharmacol 2022; 74:740-749. [PMID: 35299250 DOI: 10.1093/jpp/rgac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Dalbergia ecastaphyllum (L.) Taub. is a semi-prostrate species associated with estuaries, mangroves and dunes. This plant species has great ecological and economic importance, especially concerning apiculture pasture and Brazilian red propolis production. In this study, non-clinical toxicological evaluations of the hydroalcoholic extract of D. ecastaphyllum stems (DEHE), the resin production source, were conducted. In addition, the action of DEHE on genomic instability and colon carcinogenesis was investigated. METHODS AND RESULTS The extract's chemical profile was analysed by HPLC, and medicarpin, vestitol and neovestitol were found as major compounds. DEHE showed an IC50 equivalent to 373.2 µg/ml and LC50 equal 24.4 mg/L, when evaluated using the XTT colorimetric test and the zebrafish acute toxicity assay, respectively. DEHE was neither genotoxic nor cytotoxic at the highest dose, 2000 mg/kg, by peripheral blood micronucleus test. The treatments DEHE (6 and 24 mg/kg) led to the reduction of micronuclei induced by doxorubicin (DXR) in mice. Furthermore, significantly higher serum levels of reduced glutathione were observed in animals treated with DEHE plus DXR, revealing an antioxidant effect. Treatments with DEHE (48 mg/kg) led to a significant reduction in pre-neoplastic lesions induced by the 1,2-dimethylhydrazine (DMH) carcinogen in the rat colon. Immunohistochemical analysis revealed significantly lower levels of expression of COX-2 (86%) and PCNA (83%) in the colon of rats treated with DEHE plus DMH, concerning those treated with the carcinogen. CONCLUSIONS These results indicate the involvement of anti-inflammatory and antiproliferative pathways in the protective effect of DEHE.
Collapse
Affiliation(s)
| | - Iara Silva Squarisi
- Postgraduate Program in Science, University of Franca, Franca, São Paulo, Brazil
| | | | | | - Saulo Duarte Ozelin
- Postgraduate Program in Science, University of Franca, Franca, São Paulo, Brazil
| | - Jennyfer Andrea Aldana-Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | - Bianca Silva Alves
- Postgraduate Program in Science, University of Franca, Franca, São Paulo, Brazil
| | | | - Gari Vidal Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
41
|
Silva-Reis R, Castro-Ribeiro C, Gonçalves M, Ferreira T, Pires MJ, Iglesias-Aguirre CE, Cortés-Martín A, Selma MV, Espín JC, Nascimento-Gonçalves E, Moreira-Pais A, Neuparth MJ, Peixoto F, Rosa E, Gama A, Ferreira R, Oliveira PA, Faustino-Rocha AI. An Integrative Approach to Characterize the Early Phases of Dimethylhydrazine-Induced Colorectal Carcinogenesis in the Rat. Biomedicines 2022; 10:biomedicines10020409. [PMID: 35203618 PMCID: PMC8962270 DOI: 10.3390/biomedicines10020409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to characterize an animal model of colorectal cancer (CRC) in the early stages of disease development. Twenty-nine male Wistar rats were divided into two control groups (CTRL1 and CTRL2), receiving EDTA–saline injections and two induced groups (CRC1 and CRC2), receiving 1,2-dimethylhydrazine (DMH) injections for seven consecutive weeks. CRC1 and CTRL1 were euthanized at the 11th week, while CRC2 and CTRL2 were euthanized at the 17th week. DMH treatment decreased microhematocrit values and IL-6, ghrelin, and myostatin serum levels. Histopathological analysis of intestinal sections showed that DMH-treated rats were characterized by moderate to severe epithelial dysplasia. An adenoma was observed in one animal (CRC2 group), and the presence of inflammatory infiltrate at the intestinal level was primarily observed in DMH-treated animals. DMH also induced Ki-67 immunoexpression. The gut microbiota analysis showed a higher abundance of Firmicutes, Clostridia, Clostridiales, Peptostreptococcaceae, Blautia, Romboutsia, and Clostridium sensu stricto in CRC than CTRL rats, whereas Prevotellaceae, Prevotella, Akkermansia, and Lactobacillus levels were more prevalent in CTRL animals. Our results suggest that this model could be helpful to investigate chemoprevention in the early stages of CRC.
Collapse
Affiliation(s)
- Rita Silva-Reis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Catarina Castro-Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Mariana Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Carlos E. Iglesias-Aguirre
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Adrián Cortés-Martín
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - María V. Selma
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Juan Carlos Espín
- Laboratory Food & Health, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (C.E.I.-A.); (A.C.-M.); (M.V.S.); (J.C.E.)
| | - Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Alexandra Moreira-Pais
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.-P.); (R.F.)
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
| | - Francisco Peixoto
- Chemistry Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
| | - Adelina Gama
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.-P.); (R.F.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.-R.); (C.C.-R.); (M.G.); (T.F.); (M.J.P.); (E.N.-G.); (E.R.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center, 7004-516 Évora, Portugal
- Correspondence:
| |
Collapse
|
42
|
The pro-apoptotic and cytotoxic efficacy of polydatin encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Wang Q, Huang Y, Jia M, Lu D, Zhang HW, Huang D, Liu SH, Lv C. Safflower Polysaccharide Inhibits AOM/DSS-Induced Mice Colorectal Cancer Through the Regulation of Macrophage Polarization. Front Pharmacol 2021; 12:761641. [PMID: 34744741 PMCID: PMC8569377 DOI: 10.3389/fphar.2021.761641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Safflower polysaccharide (SPS) is one of the active fractions extracted from safflower petals (Carthamus tinctorius L.) which has been reported to possess antitumor and immune control roles. However, its antitumor mechanisms by regulating the immune pathway remain barely understood. In this study, a mouse model was established by azoxymethane (AOM)/dextran sodium sulfate (DSS) to evaluate the antitumor effect of SPS on colorectal cancer (CRC). The results showed that 50 mg/kg SPS-1, an active fraction isolated from SPS, could significantly inhibit CRC induced by AOM/DSS and changed the polarization of macrophages to the M1 phenotype. Meanwhile, SPS-1 treatment significantly alleviated the characteristic AOM/DSS-induced pathological symptoms, in terms of decreasing the nucleoplasmic ratio, nuclear polarity extinction, and gland hyperplasia. However, the results in vitro showed that SPS-1 did not directly inhibit the growth of CRC cells but could upregulate the NF-κB signal and trigger M1 macrophage transformation. Thus, the condition medium (CM) of Mφ pretreated with SPS-1 was used against CRC cells. As expected, SPS-1–activated Raw 264.7 markedly exhibited antitumor effects by inhibiting cell proliferation and suppressing cell colony formation. In addition, SPS-1–activated Raw 264.7 could also induce CRC cell apoptosis by upregulating the levels of tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further results suggested that SPS-1–induced transition of the macrophage phenotype could be suppressed by an NF-κB inhibitor, PDTC. Moreover, SPS-1–activated Raw 264.7 inhibiting CRC cell proliferation and inducing apoptosis were also rescued by PDTC. Taken together, all results suggested that SPS-1 could be a therapeutic option for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Qun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Jia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Wei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Ferreira NH, Cunha NL, de Melo MRS, Fernandes FS, de Freitas KS, do Nascimento S, Ribeiro AB, de A E Silva ML, Cunha WR, Tavares DC. Betulinic acid exerts antigenotoxic and anticarcinogenic activities via inhibition of COX-2 and PCNA in rodents. J Biochem Mol Toxicol 2021; 35:e22917. [PMID: 34541749 DOI: 10.1002/jbt.22917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Phytochemicals have been suggested as an effective strategy for cancer prevention. Within this context, triterpene betulinic acid (BA) exhibits several biological properties but its chemopreventive effect has not been fully demonstrated. The present study investigated the antigenotoxic potential of BA against doxorubicin (DXR)-induced genotoxicity using the mouse peripheral blood micronucleus assay, as well as its anticarcinogenic activity against 1,2dimethylhydrazine (DMH)-induced colorectal lesions in rats. Micronuclei (MN) assay and aberrant crypt foci assay were used to assess the antigenotoxic and the anticarcinogenic potential, respectively. The molecular mechanisms underlying the anticarcinogenic activity of BA were evaluated by assessing anti-inflammatory (COX-2) and antiproliferative (PCNA) pathways. The results demonstrated that BA at the dose of 0.5 mg/kg bodyweight exerted antigenotoxic effects against DXR, with a reduction of 70.2% in the frequencies of chromosomal damage. Animals treated with BA showed a 64% reduction in the number of preneoplastic lesions when compared to those treated with the carcinogen alone. The levels of COX-2 and PCNA expression in the colon were significantly lower in animals treated with BA and DMH compared to those treated with the carcinogen alone. The chemopreventive effect of BA is related, at least in part, to its antiproliferative and anti-inflammatory activity, indicating a promising potential of this triterpene in anticancer therapies, especially for colorectal cancer.
Collapse
Affiliation(s)
- Natália H Ferreira
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Nayanne L Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Matheus R S de Melo
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Fernanda S Fernandes
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Karoline S de Freitas
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Samuel do Nascimento
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Arthur B Ribeiro
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Márcio L de A E Silva
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Wilson R Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Denise C Tavares
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
45
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
46
|
Francielli De Oliveira P, Leandro LF, Furtado RA, Ferreira NH, Pauletti PM, Barbosa Araújo AR, Uyemura SA, Tavares DC. Styrax camporum, a typical species of the Brazilian cerrado, attenuates DNA damage, preneoplastic lesions and oxidative stress in experimental rat colon carcinogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:582-592. [PMID: 33825664 DOI: 10.1080/15287394.2021.1910090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Styrax camporum Pohl, a typical species from the Brazilian cerrado, commonly known as "benjoeiro", is used to treat gastroduodenal diseases. In previous studies carried out by our research group, hydroalcoholic extract of S. camporum stems (SCHE) exhibited antigenotoxic and antiproliferative effects. For a comparative analysis of the chemopreventive effect of SCHE, the aim of this study was to investigate the influence of SCHE against carcinogen 1,2-dimethylhydrazine (DMH)-induced DNA damage and pre-neoplastic lesions in Wistar rat colon. Animals were treated orally with SCHE at 250, 500 or 1000 mg/kg body weight in conjunction with a subcutaneous injection of DMH. DNA damage was assessed using the comet assay while tpre-neoplastic lesions by aberrant crypt foci (ACF) assay. The following hepatic oxidative stress markers were determined including activities of catalase (CAT) and glutathione S-transferase (GST) as well as levels of reduced glutathione (GSH) and malondialdehyde (MDA). Treatment with SCHE was not genotoxic or carcinogenic at the highest dose tested (1000 mg/kg b.w.). The extract effectively inhibited DNA damage and pre-neoplastic lesions induced by DMH administration at all concentrations tested. Measurement of CAT, and GST activities and levels of GSH showed that SCHE did not reduce oxidative processes. In contrast, treatment with SCHE (1000 mg/kg b.w.) decreased liver MDA levels. Taken together, these findings suggested the chemopreventive effect attributed to SCHE in colon carcinogenesis, may be related to its capacity to inhibit DNA damage as well as an antioxidant action associated with its chemical constituents egonol and homoegonol.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sérgio Akira Uyemura
- Faculdade de Ciências Farmacêuticas De Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
47
|
Eskandrani AA. Effect of supplementing fava bean ( Vicia faba L.) on ulcerative colitis and colonic mucosal DNA content in rats fed a high-sucrose diet. Saudi J Biol Sci 2021; 28:3497-3504. [PMID: 34121890 PMCID: PMC8176050 DOI: 10.1016/j.sjbs.2021.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with high morbidity. Acetic acid-induced damage of colonic mucosa in rats is a commonly used experimental animal model of UC. This research aimed to explore for the first time the ameliorative effect of dietary supplementation with fava bean on the incidence of UC in rats fed with sucrose containing diet. Rats were divided into five groups as follows: G1, control healthy rats; G2, colitic rats; G3, colitic rats fed diets containing 30% sucrose, G4, healthy rats fed diets containing 30% sucrose and G5, colitic rats fed diets containing 30% sucrose supplemented with dried ground fava bean. Colonic injury and inflammation were evaluated through a disturbance of oxidative biomarkers, a significant increase in inflammatory biomarkers and inflammatory cytokines, and histological abnormalities in colonic tissues accompanied by colonic mucosal DNA damage. Colitic rats fed on sucrose containing diet demonstrated additional histological, biochemical, and DNA alterations in colonic mucosa of rats. Dietary supplementation with dried ground fava bean significantly corrected the impaired oxidative and inflammatory biomarker levels and modulated histological features and DNA alterations. Finally, fava bean attenuated the oxidative damage and colonic injury induced by acetic acid, which confirmed its high anti-oxidant and anti-incendiary properties.
Collapse
Affiliation(s)
- Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| |
Collapse
|
48
|
Afzal SM, Vafa A, Rashid S, Shree A, Islam J, Ali N, Sultana S. Amelioration of N,N'-dimethylhydrazine induced colon toxicity by epigallocatechin gallate in Wistar rats. Hum Exp Toxicol 2021; 40:1558-1571. [PMID: 33754881 DOI: 10.1177/09603271211002884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colon cancer is a life-threatening disease all over the world and is linked to constant oxidative stress and inflammation. Epigallocatechin gallate (EGCG), is a naturally occurring flavone possessing health benefiting pharmacological properties including antioxidant, anti-inflammatory and free radical scavenging properties. Our study investigates the role of EGCG on N,N'-dimethylhydrazine (DMH), a toxic environmental pollutant, induced colon toxicity. To investigate the effect of EGCG, Wistar rats were given EGCG for 7 days at the two doses of 10 and 20 mg/kg body weight and DMH was injected on the seventh day in all the group rats except the control. Our results indicate that DMH administration increased the oxidative stress (MDA) and depleted the glutathione and antioxidant enzyme activities (SOD, CAT, GR, GST and GPx) which was significantly ameliorated by EGCG treatment. Additionally DMH treatment upregulated inflammatory markers expression (NF-κB, COX-2 and IL-6) and enhanced mucosal damage in the colon. EGCG treatment significantly reduced inflammation and restored the normal histoarchitecture of the colon. We can conclude from the present study findings that EGCG protects the colon from DMH toxicity through its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- S M Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - A Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - S Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, 204568Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - A Shree
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - J Islam
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - N Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India.,Department of Pharmacology and Toxicology, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| |
Collapse
|
49
|
Mishra R, Rajsiglová L, Lukáč P, Tenti P, Šima P, Čaja F, Vannucci L. Spontaneous and Induced Tumors in Germ-Free Animals: A General Review. ACTA ACUST UNITED AC 2021; 57:medicina57030260. [PMID: 33799911 PMCID: PMC8002107 DOI: 10.3390/medicina57030260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome’s importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.
Collapse
Affiliation(s)
- Rajbardhan Mishra
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Lenka Rajsiglová
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Pavol Lukáč
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Paolo Tenti
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Peter Šima
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Fabián Čaja
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Correspondence: ; Tel.: +42-024-106-2394
| |
Collapse
|
50
|
A. Attia M, Enan ET, Hashish AA, M. H. El-kannishy S, Gardouh AR, K. Tawfik M, Faisal S, El-Mistekawy A, Salama A, Alomar SY, H. Eltrawy A, Yagub Aloyouni S, Zaitone SA. Chemopreventive Effect of 5-Flurouracil Polymeric Hybrid PLGA-Lecithin Nanoparticles against Colon Dysplasia Model in Mice and Impact on p53 Apoptosis. Biomolecules 2021; 11:biom11010109. [PMID: 33467560 PMCID: PMC7830948 DOI: 10.3390/biom11010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The use of 5-fluorouracil (5FU) is associated with multifaceted challenges and poor pharmacokinetics. Poly(lactic-co-glycolic acid)-lipid hybrid nanoparticles (PLNs)-based therapy has received attention as efficient carriers for a diversity of drugs. This study evaluated the in vivo chemotherapeutic and anti-proliferative efficacy of 5FU-loaded PLNs against 1,2-dimethylhydrazine (Di-MH) prompted colon dysplasia in mice compared to free 5FU. 5FU PLNs were prepared. Male Swiss albino mice were distributed to six experimental groups. Group 1: Saline group. All the other groups were injected weekly with Di-MH [20 mg/kg, s.c.]. Group 2: Di-MH induced colon dysplasia control group. Groups 3 and 4: Di-MH + free 5FU treated group [2.5 and 5 mg/kg]. Groups 5 and 6: Di-MH + 5FU-PLNs treated group [2.5 and 5 mg/kg]. Free 5FU and 5FU-PLNs doses were administered orally, twice weekly. Treatment with 5FU-PLNs induced a higher cytoprotective effect compared to free 5FU as indicated by lower mucosal histopathologic score and reduction in number of Ki-67 immunpositive proliferating nuclei. Additionally, there was significant upregulation of p53 and caspase 3 genes in colon specimens. Our results support the validity of utilizing the PLNs technique to improve the chemopreventive action of 5FU in treating colon cancer.
Collapse
Affiliation(s)
- Mohammed A. Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Abdullah A. Hashish
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif M. H. El-kannishy
- Department of Toxicology, Mansoura Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Mona K. Tawfik
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Salwa Faisal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr El-Mistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Amira H. Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria 22785, Egypt;
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| |
Collapse
|