1
|
Kadam R, Palkar M, Pingili RB. Mechanisms involved in the valproic acid-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2025:1-16. [PMID: 39871487 DOI: 10.1080/15376516.2025.2459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. An anticonvulsant medicine which is frequently used in treatment of epilepsy and other neurological conditions is valproic acid (VPA), is frequently associated with hepatotoxicity, a severe ADR that complicates its clinical use, which can take two different forms: Type I, which is defined by dose-dependent and reversible liver damage, and Type II, an idiosyncratic reaction that can result in severe liver failure, frequently complicates its clinical application. Oxidative stress, the creation of reactive metabolites, mitochondrial dysfunction, carnitine shortage, immune-mediated reactions, glutathione depletion, and blockage of the bile salt export pump (BSEP) are some of the numerous underlying mechanisms of VA-induced hepatic damage. The production of reactive oxygen species and the liver's antioxidant protection are out of balance as a cause of oxidative stress, which is a significant factor in VPA intoxication. VPA can also accelerate the build-up of fatty acids, which increases the risk of steatosis, due to its interaction with the metabolism of carnitine. Immune-mediated processes have been shown to increase liver injury, implying that the immunity system may possibly be involved in VPA hepatotoxicity. Hepatocyte injury and cholestasis are caused by BSEP inhibition, which impairs bile flow. The complex interaction between biochemical and cellular mechanisms that underlie valproic acid's hepatotoxic potential calls for additional research to clarify the precise pathways implicated and create mitigation techniques for this ADR.
Collapse
Affiliation(s)
- Rohan Kadam
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| |
Collapse
|
2
|
Correia AC, Costa I, Silva R, Sampaio P, Moreira JN, Sousa Lobo JM, Silva AC. Design of experiment (DoE) of mucoadhesive valproic acid-loaded nanostructured lipid carriers (NLC) for potential nose-to-brain application. Int J Pharm 2024; 664:124631. [PMID: 39182742 DOI: 10.1016/j.ijpharm.2024.124631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Epilepsy is a highly prevalent neurological disease and valproic acid (VPA) is used as a first-line chronic treatment. However, this drug has poor oral bioavailability, which requires the administration of high doses, resulting in adverse effects. Alternative routes of VPA administration have therefore been investigated, such as the nose-to-brain route, which allows the drug to be transported directly from the nasal cavity to the brain. Here, the use of nanostructured lipid carriers (NLC) to encapsulate drugs administered in the nasal cavity has proved advantageous. The aim of this work was to optimise a mucoadhesive formulation of VPA-loaded NLC for intranasal administration to improve the treatment of epilepsy. The Design of Experiment (DoE) was used to optimise the formulation, starting with component optimisation using Mixture Design (MD), followed by optimisation of the manufacturing process parameters using Central Composite Design (CCD). The optimised VPA-loaded NLC had a particle size of 76.1 ± 2.8 nm, a polydispersity index of 0.190 ± 0.027, a zeta potential of 28.1 ± 2.0 mV and an encapsulation efficiency of 85.4 ± 0.8%. The in vitro release study showed VPA release from the NLC of 50 % after 6 h and 100 % after 24 h. The in vitro biocompatibility experiments in various cell lines have shown that the optimised VPA-loaded NLC formulation is safe up to 75 µg/mL, in neuronal (SH-SY5Y), nasal (RPMI 2650) and hepatic (HepG2) cells. Finally, the interaction of the optimised VPA-loaded NLC formulation with nasal mucus was investigated and mucoadhesive properties were observed. The results of this study suggest that the use of intranasal VPA-loaded NLC may be a promising alternative to promote VPA targeting to the brain, thereby improving bioavailability and minimising adverse effects.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - I Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - P Sampaio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IBMC-Instituto de Biologia Celular e Molecular, Porto 4200-135, Portugal
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, Coimbra 3004-531, Portugal; Faculty of Pharmacy, Univ Coimbra - University of Coimbra, CIBB, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - J M Sousa Lobo
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - A C Silva
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, Porto 4249 004, Portugal.
| |
Collapse
|
3
|
Cansız D, Özokan G, Bilginer A, Işıkoğlu S, Mızrak Z, Ünal İ, Beler M, Alturfan AA, Emekli-Alturfan E. Effects of benzoic acid synthesized from Cinnamomum cassia by green chemistry on valproic acid-induced neurotoxicity in zebrafish embryos. Toxicol Mech Methods 2024; 34:833-843. [PMID: 38888055 DOI: 10.1080/15376516.2024.2364899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Benzoic acid, the most basic aromatic carboxylic acid, is produced industrially and used in cosmetic, hygiene, and pharmaceutical items as a flavoring ingredient and/or preservative. The significance of sodium benzoate, a metabolite of cinnamon, used as a food preservative and FDA-approved medication to treat urea cycle abnormalities in humans, has been shown to raise the levels of neurotrophic factors. Valproic acid (VPA), a commonly used anti-epileptic and mood-stabilizing medication, causes behavioral and intellectual problems and is a commonly used agent to induce animal model for autism. Aim of this study is to determine the effects of benzoic acid synthesized from Cinnamomum Cassia by green chemistry method on gene expressions related to autism development in case of VPA toxicity. Zebrafish embryos were exposed to low and high doses of benzoic acid for 72 h post-fertilization. Locomotor activities were determined. Acetylcholinesterase (AchE), lipid peroxidation, nitric oxide (NO), sialic acid (SA), glutathione (GSH)-S-transferase, catalase (CAT), and superoxide dismutase (SOD) activities were determined spectrophotometrically. eif4b, adsl, and shank3a expressions were determined by RT-PCR as autism-related genes. Although high-dose benzoic acid inhibited locomotor activity, benzoic acid at both doses ameliorated VPA-induced disruption in oxidant-antioxidant balance and inflammation in zebrafish embryos and was effective in improving the impaired expression of autism-related genes.
Collapse
Affiliation(s)
- Derya Cansız
- Istanbul Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Türkiye
| | - Gökhan Özokan
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Türkiye
| | - Abdulkerim Bilginer
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Türkiye
| | - Semanur Işıkoğlu
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Zülal Mızrak
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Türkiye
| |
Collapse
|
4
|
Turkyilmaz IB, Sancar S, Bolkent S, Yanardag R. Beta vulgaris L. var cicla Decreases Liver Injury Induced by Antiarrhytmic Agent, Amiodarone. Chem Biodivers 2024; 21:e202301944. [PMID: 38848049 DOI: 10.1002/cbdv.202301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
Amiodarone (AMD) is an effective antiarrhythmic drug, but its long-term usage strongly forms liver toxicity due to its accumulation tendency. The chard (Beta vulgaris L. var. cicla) is a unique plant which has a blood sugar-lowering effect and powerful antioxidant activity. The aim of the current study was to investigate the possible protective effects of chard on AMD-induced liver injury. Male Sprague-Dawley rats were divided into four groups. Control group, aqueous chard extract given group 500 mg/kg/day for one week, AMD given group 100 mg/kg/day for one week, AMD+Chard given group (at the same doses and times). They were sacrificed on the 8th day. The blood and liver samples were taken. The serum and liver biochemical parameters were found to be changed in AMD treated group. Chard administration reversed these parameters in serum and liver. In histological experiments, necrotic areas, mononuclear cell infiltration, the endothelial rupture in central vein, sinusoidal dilatation, hyperemia, dark eosinophilic cells and picnotic nucleus were observed in liver tissues of AMD treated group. Chard treatment reduced liver tissue damage. Considering results, we can suggest that chard prevented AMD induced liver injury biochemically and histologically.
Collapse
Affiliation(s)
- Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
| | - Serap Sancar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
| | - Sehnaz Bolkent
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
| |
Collapse
|
5
|
Kopan DT, Özçelik AA, Kopan MA, Taysi S. Assessment of oxidative/nitrosative stress and antioxidant capacity in children with epilepsy. Int J Neurosci 2024; 134:652-657. [PMID: 36287826 DOI: 10.1080/00207454.2022.2140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Background: The underlying pathophysiological mechanisms in epilepsy, one of the most common neurological diseases, are still unknown. Oxidative/nitrosative stress is considered a possible mechanism involved in epileptogenesis. The production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is involved in the pathogenesis of signal regulation, cellular damage and central nervous system conditions in living organisms. In this study, we aimed to compare peoxynitrite (ONOO-), a marker of nitrosative stress, total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI) and 8-hydroxy-2-deoxyguanosine (8-OHdG), DNA damage marker, levels in epileptic patients receiving monotherapy and polytherapy with the healthy control group.Methods: The study included 120 patients with diagnosis of epilepsy and 40 healthy volunteers as controls. The TOS, TAS, OSI, ONOO- and 8-OHdG were studied in all groups.Results: The study group included 30 girls (50%) and 30 boys (50%) receiving monotherapy and 31 girls (51.7%) and boys 49.3%) receiving polytherapy while control group included 19 girls (47.5%) and 21 boys (52.5%). The TOS and OSI values were found to be significantly higher in polytherapy group when compared to monotherapy and control groups). The ONOO- values were found to be significantly lower in polytherapy group when compared to monotherapy and control groups. In addition, ONOO- values were found to be higher in monotherapy group than controls. There was no significant difference in 8-OHdG values between the groups.Conclusions: Significant increases were observed in TOS and OSI parameters in polytherapy group when compared to monotherapy and control groups, suggesting that antiepileptic treatment enhances oxidative stress. Lack of significant difference in 8-OHdG suggested that the treatment is effective in patients and that no DNA damage occurred yet.
Collapse
Affiliation(s)
- Dila Tuğçe Kopan
- Department of Pediatrics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Ayşe Aysima Özçelik
- Department of Pediatric Neurology, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Mehmet Ali Kopan
- Department of Pediatrics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Medical Biochemistry, Gaziantep University School of Medicine, Gaziantep, Turkey
| |
Collapse
|
6
|
Song W, Yan X, Zhai Y, Ren J, Wu T, Guo H, Song Y, Li X, Guo Y. Probiotics attenuate valproate-induced liver steatosis and oxidative stress in mice. PLoS One 2023; 18:e0294363. [PMID: 37971986 PMCID: PMC10653412 DOI: 10.1371/journal.pone.0294363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Valproate (valproic acid, VPA), a drug for the treatment of epilepsy and bipolar disorder, causes liver steatosis with enhanced oxidative stress. Accumulating evidences exhibite that gut microbiota plays an important role in progression of nonalcoholic fatty liver disease (NAFLD). However, whether gut microbiota contributes to VPA-caused hepatic steatosis needs to be elucidated. A mixture of five probiotics was selected to investigate their effects on liver steatosis and oxidative stress in mice orally administered VPA for 30 days. Probiotics treatment significantly attenuated the hepatic lipid accumulation in VPA-treated mice via inhibiting the expression of cluster of differentiation 36 (CD36) and distinct diacylglycerol acyltransferase 2 (DGAT2). Meanwhile, probiotics exerted a protective effect against VPA-induced oxidative stress by decreasing the pro-oxidant cytochrome P450 2E1 (CYP2E1) level and activating the Nrf2/antioxidant enzyme pathway. Moreover, VPA treatment altered the relative abundance of gut microbiota at the phylum, family and genera levels, while probiotics partially restored these changes. Spearman's correlation analysis showed that several specific genera and family were significantly correlated with liver steatosis and oxidative stress-related indicators. These results suggest that probiotics exert their health benefits in the abrogation of liver steatosis and oxidative stress in VPA-treated mice by manipulating the microbial homeostasis.
Collapse
Affiliation(s)
- Wenfang Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinrui Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zhai
- School of Life Sciences, Jilin University, Changchun, China
| | - Jing Ren
- School of Life Sciences, Jilin University, Changchun, China
| | - Ting Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Han Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Song
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
7
|
de Freitas RN, da Silva LGL, Fiais GA, Ferreira DSDB, Veras ASC, Teixeira GR, Oliveira SHP, Dornelles RCM, Nakamune ACDMS, Fakhouri WD, Chaves-Neto AH. Alterations in salivary biochemical composition and redox state disruption induced by the anticonvulsant valproic acid in male rat salivary glands. Arch Oral Biol 2023; 155:105805. [PMID: 37741048 DOI: 10.1016/j.archoralbio.2023.105805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE To investigate the effects of the anticonvulsant valproic acid (VPA) on salivary glands in male rat using biochemical, functional, histomorphometric, and redox state parameters. MATERIALS AND METHODS Twenty-four male Wistar rats were randomly distributed into three groups (n = 8 per group): Control (0.9% saline solution), VPA100 (100 mg/kg), and VPA400 (400 mg/kg). After 21 consecutive days of treatment with by intragastric gavage. Pilocarpine-induced saliva was collected to determine salivary flow rate, pH, buffering capacity, and biochemical composition. Analyses of histomorphometric parameters and redox balance markers were performed on the parotid and submandibular glands. RESULTS Salivary flow rate, pH, buffering capacity, total protein, potassium, sodium, and chloride were similar between groups. However, phosphate and calcium were reduced in VPA400, while amylase was increased in both VPA100 and VPA400. We did not detect significant differences in the areas of acini, ducts, and connective tissue in the salivary glands between the groups. There were no significant changes in the redox status of the submandibular glands. In turn, in the parotid glands we detected reduced total oxidizing capacity and lipid peroxidation, measured as thiobarbituric acid reactive substances (TBARs) and higher uric acid concentration in both the VPA100 and VPA400 groups, and increased superoxide dismutase (SOD) in the VPA400 group. CONCLUSION Chronic treatment with VPA modified the salivary biochemical composition and caused disruption in the redox state of the parotid gland in rats.
Collapse
Affiliation(s)
- Rayara Nogueira de Freitas
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciências - Saúde Bucal da Criança, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Allice Santos Cruz Veras
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciências - Saúde Bucal da Criança, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Correa Basurto AM, Tamay Cach F, Jarillo Luna RA, Cabrera Pérez LC, Correa Basurto J, García Dolores F, Mendieta Wejebe JE. Hepatotoxic Evaluation of N-(2-Hydroxyphenyl)-2-Propylpentanamide: A Novel Derivative of Valproic Acid for the Treatment of Cancer. Molecules 2023; 28:6282. [PMID: 37687111 PMCID: PMC10488843 DOI: 10.3390/molecules28176282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Valproic acid (VPA) is a drug that has various therapeutic applications; however, it has been associated with liver damage. Furthermore, it is interesting to propose new compounds derived from VPA as N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA has better antiproliferative activity than the VPA in different cancer cell lines. The purpose of this study was to evaluate the liver injury of HO-AAVPA by acute treatment (once administration) and repeated doses for 7 days under intraperitoneal administration. The median lethal dose value (LD50) was determined in rats and mice (females and males) using OECD Guideline 425. In the study, male rats were randomly divided into 4 groups (n = 7), G1: control (without treatment), G2: vehicle, G3: VPA (500 mg/kg), and G4: HO-AAVPA (708 mg/kg, in equimolar ratio to VPA). Some biomarkers related to hepatotoxicity were evaluated. In addition, macroscopic and histological studies were performed. The LD50 value of HO-AAVPA was greater than 2000 mg/kg. Regarding macroscopy and biochemistry, the HO-AAVPA does not induce liver injury according to the measures of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutathione peroxidase, glutathione reductase, and catalase activities. Comparing the treatment with HO-AAVPA and VPA did not show a significant difference with the control group, while malondialdehyde and glutathione-reduced levels in the group treated with HO-AAVPA were close to those of the control (p ≤ 0.05). The histological study shows that liver lesions caused by HO-AAVPA were less severe compared with VPA. Therefore, it is suggested that HO-AAVPA does not induce hepatotoxicity at therapeutic doses, considering that in the future it could be proposed as an antineoplastic drug.
Collapse
Affiliation(s)
- Ana María Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| | - Feliciano Tamay Cach
- Laboratorio de Investigación de Bioquímica Aplicada, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Rosa Adriana Jarillo Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Laura Cristina Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Farmacología, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, La Laguna Ticoman, Ciudad de México 07340, Mexico
| | - José Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Fernando García Dolores
- Laboratorio de Patología, Instituto de Ciencias Forenses de la Ciudad de México, Av. Niños Héroes 130. Col. Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| |
Collapse
|
9
|
Alam T, Naseem S, Shahabuddin F, Abidi S, Parwez I, Khan F. Oral administration of Nigella sativa oil attenuates arsenic-induced redox imbalance, DNA damage, metabolic distress, and histopathological alterations in rat intestine. J Trace Elem Med Biol 2023; 79:127238. [PMID: 37343449 DOI: 10.1016/j.jtemb.2023.127238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Exposure to arsenic, a widespread environmental toxin, produces multiple organ toxicity, including gastrointestinal toxicity. Nigella sativa (NS) has long been revered for its numerous health benefits under normal and pathological states. In view of this, the present study attempts to evaluate the protective efficacy of orally administered Nigella sativa oil (NSO) against arsenic-induced cytotoxic and genotoxic alterations in rat intestine and elucidate the underlying mechanism of its action. METHODS Rats were categorized into the control, NaAs, NSO, and NaAs+NSO groups. After pre-treatment of rats in the NaAs+NSO and NSO groups daily with NSO (2 ml/kg bwt, orally) for 14 days, NSO treatment was further continued for 30 days, with and without NaAs treatment (5 mg/kg bwt, orally), respectively. Various biochemical parameters, such as enzymatic and non-enzymatic antioxidants, carbohydrate metabolic and brush border membrane marker enzyme activities were evaluated in the mucosal homogenates of all the groups. Intestinal brush border membrane vesicles (BBMV) were isolated, and the activities of membrane marker enzyme viz. ALP, GGTase, LAP, and sucrase were determined. Further, the effect on kinetic parameters viz KM (Michaelis-Menten constant) and Vmax of these enzymes was assessed. Integrity of enterocyte DNA was examined using the comet assay. Histopathology of the intestines was performed to evaluate the histoarchitectural alterations induced by chronic arsenic exposure and/or NSO supplementation. Arsenic accumulation in the intestine was studied by inductively coupled plasma-mass spectroscopy (ICP-MS). RESULTS NaAs treatment caused substantial changes in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in the intestinal mucosal homogenates. The isolated BBM vesicles (BBMV) also showed marked suppression in the marker enzyme activities. Severe DNA damage and mucosal arsenic accumulation were observed in rats treated with NaAs alone. In contrast, oral NSO supplementation significantly alleviated all the adverse alterations induced by NaAs treatment. Histopathological examination supported the biochemical findings. CONCLUSION NSO, by improving the antioxidant status and energy metabolism, could significantly alter the ability of the intestine to protect against free radical-mediated arsenic toxicity in intestine. Thus, NSO may have an excellent scope in managing gastrointestinal distress in arsenic intoxication.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Samina Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farha Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
10
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
11
|
Chaudhary S, Parvez S. Neuroprotective Effects of Natural Antioxidants Against Branched-Chain Fatty Acid-Induced Oxidative Stress in Cerebral Cortex and Cerebellum Regions of the Rat Brain. ACS OMEGA 2022; 7:38269-38276. [PMID: 36340064 PMCID: PMC9631910 DOI: 10.1021/acsomega.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Valproic acid (VPA) is short branched-chain fatty acid (BCFA) derived from valeric acids which are naturally produced by Valeriana officinalis (flowering plant). Neurotoxicity caused by BCFA-like VPA may be mediated by oxidative stress, according to research involving the cerebral cortex and cerebellum. In the present study, we explored the possible protective effect of different antioxidants such as melatonin, quercetin, and piperine on VPA exposure by using a supernatant preparation of the cerebral cortex and cerebellum regions of the rat brain. The present study revealed that melatonin, quercetin, and piperine significantly prevented VPA-induced oxidative stress in the cerebral cortex and cerebellum regions. VPA was also observed to lower the level of reduced glutathione, and this effect was significantly mitigated by these antioxidants. Melatonin, quercetin, and piperine also ameliorated and altered the activities of AChE, Na+, K+ATPase, and MAO in the cerebral cortex and cerebellum. Results of this study also suggest that prior treatment of antioxidants like melatonin, quercetin, and piperine helps in combating the oxidative stress induced by VPA in the cerebral cortex and cerebellum region of the rat brain. Thus, sufficient dietary intake of these antioxidants by individuals at high risk of VPA exposure could prove beneficial in combating the adverse effect of VPA.
Collapse
Affiliation(s)
| | - Suhel Parvez
- . Phone: +91 11 26059688x5573. Fax: +91 11 26059663
| |
Collapse
|
12
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
13
|
Gheena S, Ezhilarasan D, Shree Harini K, Rajeshkumar S. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2143-2152. [PMID: 35543257 DOI: 10.1002/tox.23557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Sodium valproate (SV) is a well-known anti-epileptic drug, also used to control convulsions, bipolar disorders and migraines. SV has been shown to induce liver toxicity in clinical subjects. Syringic acid (SA), a natural polyphenolic compound has potential antioxidant, anti-inflammatory and several beneficial effects. Therefore, in this study, we evaluated hepatoprotective effect of SA against SV-induced liver injury in rats. Wistar rats were treated with SV orally at a dose of 500 mg/kg, once daily, for 14 days. Another three groups of rats were administered with SV and concurrently treated with SA (40 and 80 mg/kg) and silymarin (SIL) (100 mg/kg) for 14 days. SV administration for 14 days caused significant (p < .001) elevation of liver transaminases and ALP in serum. Liver MDA level was significantly (p < .001) increased with a concomitant decrease (p < .001) in enzymic antioxidants activities in SV administered rats. SV administration also caused the upregulation of proinflammatory markers such as tumor necrosis factor α, c-Jun N-terminal kinase, nuclear factor kappa B, cyclooxygenase-2 and Interleukin 6 expressions in liver tissue. Histopathological studies also revealed the presence of inflammatory cell infiltration and hepatocellular necrosis upon SV administration. At both doses, concurrent administration of SA and SIL significantly (p < .001) inhibited the liver transaminase activities in serum, oxidative stress, and proinflammatory markers expression in liver tissue. Our current results suggest that SA can be a promising herbal drug that can inhibit SV-induced hepatotoxicity when administered together due its potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Sukumaran Gheena
- Department of Oral Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Brotzmann K, Escher SE, Walker P, Braunbeck T. Potential of the zebrafish (Danio rerio) embryo test to discriminate between chemicals of similar molecular structure-a study with valproic acid and 14 of its analogues. Arch Toxicol 2022; 96:3033-3051. [PMID: 35920856 PMCID: PMC9525359 DOI: 10.1007/s00204-022-03340-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Valproic acid is a frequently used antiepileptic drug and known pediatric hepatotoxic agent. In search of pharmaceuticals with increased effectiveness and reduced toxicity, analogue chemicals came into focus. So far, toxicity and teratogenicity data of drugs and metabolites have usually been collected from mammalian model systems such as mice and rats. However, in an attempt to reduce mammalian testing while maintaining the reliability of toxicity testing of new industrial chemicals and drugs, alternative test methods are being developed. To this end, the potential of the zebrafish (Danio rerio) embryo to discriminate between valproic acid and 14 analogues was investigated by exposing zebrafish embryos for 120 h post fertilization in the extended version of the fish embryo acute toxicity test (FET; OECD TG 236), and analyzing liver histology to evaluate the correlation of liver effects and the molecular structure of each compound. Although histological evaluation of zebrafish liver did not identify steatosis as the prominent adverse effect typical in human and mice, the structure–activity relationship (SAR) derived was comparable not only to human HepG2 cells, but also to available in vivo mouse and rat data. Thus, there is evidence that zebrafish embryos might serve as a tool to bridge the gap between subcellular, cell-based systems and vertebrate models.
Collapse
Affiliation(s)
- Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Paul Walker
- Cyprotex Discovery, No. 24 Mereside, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Gao Y, Jiang D, Wang C, An G, Zhu L, Cui C. Comprehensive Analysis of Metabolic Changes in Male Mice Exposed to Sodium Valproate Based on GC-MS Analysis. Drug Des Devel Ther 2022; 16:1915-1930. [PMID: 35747443 PMCID: PMC9211130 DOI: 10.2147/dddt.s357530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sodium valproate (VPA) is the most widely used broad-spectrum antiepileptic first-line drug in clinical practice and is effective against various types of epilepsy. However, VPA can induce severe cardiotoxicity, nephrotoxicity, hepatotoxicity, and neurotoxicity, which limits its use. Metabolomic studies of VPA-induced toxicity have focused primarily on changes in serum and urine metabolites but have not evaluated changes in major organs or tissues. Methods Central target tissues (intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart, and serum) were analyzed using gas chromatography mass spectrometry to comprehensively evaluate VPA toxicity in mouse models. Results Multivariate analyses, including orthogonal projections of the latent structure and Student’s t test, indicated that depending on the matrix used in the study (the intestine, lung, liver, hippocampus, cerebral cortex, inner ear, spleen, kidney, heart or serum) the number of metabolites differed, the lung being the poorest and the kidney the richest in number. Conclusion These metabolites were closely related and were found to participate in 12 key pathways related to amino acid, fatty acid, and energy metabolism, revealing that the toxic mechanism of VPA may involve oxidative stress, inflammation, amino acid metabolism, lipid metabolism, and energy disorder.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Li Zhu
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, Shandong, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
- Correspondence: Changmeng Cui, Department of Neurosurgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272000, People’s Republic of China, Tel +8617805378911, Email
| |
Collapse
|
16
|
Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep 2022; 49:6063-6074. [DOI: 10.1007/s11033-022-07395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
|
17
|
Yıldız A, Vardı N, Parlakpınar H, Ateş B, Çolakoğlu N. Effects of Low- and High-Dose Valproic Acid and Lamotrigine on the Heart in Female Rats. Cardiovasc Toxicol 2022; 22:326-340. [DOI: 10.1007/s12012-021-09714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
18
|
Escher SE, Aguayo-Orozco A, Benfenati E, Bitsch A, Braunbeck T, Brotzmann K, Bois F, van der Burg B, Castel J, Exner T, Gadaleta D, Gardner I, Goldmann D, Hatley O, Golbamaki N, Graepel R, Jennings P, Limonciel A, Long A, Maclennan R, Mombelli E, Norinder U, Jain S, Capinha LS, Taboureau OT, Tolosa L, Vrijenhoek NG, van Vugt-Lussenburg BMA, Walker P, van de Water B, Wehr M, White A, Zdrazil B, Fisher C. A read-across case study on chronic toxicity of branched carboxylic acids (1): Integration of mechanistic evidence from new approach methodologies (NAMs) to explore a common mode of action. Toxicol In Vitro 2021; 79:105269. [PMID: 34757180 DOI: 10.1016/j.tiv.2021.105269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 02/04/2023]
Abstract
This read-across case study characterises thirteen, structurally similar carboxylic acids demonstrating the application of in vitro and in silico human-based new approach methods, to determine biological similarity. Based on data from in vivo animal studies, the read-across hypothesis is that all analogues are steatotic and so should be considered hazardous. Transcriptomic analysis to determine differentially expressed genes (DEGs) in hepatocytes served as first tier testing to confirm a common mode-of-action and identify differences in the potency of the analogues. An adverse outcome pathway (AOP) network for hepatic steatosis, informed the design of an in vitro testing battery, targeting AOP relevant MIEs and KEs, and Dempster-Shafer decision theory was used to systematically quantify uncertainty and to define the minimal testing scope. The case study shows that the read-across hypothesis is the critical core to designing a robust, NAM-based testing strategy. By summarising the current mechanistic understanding, an AOP enables the selection of NAMs covering MIEs, early KEs, and late KEs. Experimental coverage of the AOP in this way is vital since MIEs and early KEs alone are not confirmatory of progression to the AO. This strategy exemplifies the workflow previously published by the EUTOXRISK project driving a paradigm shift towards NAM-based NGRA.
Collapse
Affiliation(s)
- Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany.
| | | | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Frederic Bois
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Jose Castel
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Domenico Gadaleta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Iain Gardner
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | - Daria Goldmann
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| | | | - Rabea Graepel
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Paul Jennings
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Sankalp Jain
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | | | | | - Laia Tolosa
- Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Nanette G Vrijenhoek
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | | | - Bob van de Water
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Matthias Wehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Germany
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Barbara Zdrazil
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Vienna, Austria
| | - Ciarán Fisher
- Certara UK Ltd, Simcyp Division, Sheffield, United Kingdom
| |
Collapse
|
19
|
Riahi-Zanjani B, Delirrad M, Fazeli-Bakhtiyari R, Sadeghi M, Zare-Zardini H, Jafari A, Ghorani-Azam A. Hematological Consequences of Valproic Acid in Pediatric Patients: A Systematic Review with a Mechanistic Approach. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:316-325. [PMID: 34382515 DOI: 10.2174/1871527320666210811162345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Although valproate (VPA) has several advantages in controlling seizures, it may cause serious hematological consequences. Hematotoxicity of VPA is particularly important in pediatrics because patients at this age are at a growing risk of leukemia. For a conclusive agreement about the toxicity of VPA, in this study, we systematically reviewed the literature in which the hematological consequences of VPA had been emphasized. <P> Methods: A systematic literature search was performed in June 2021 on electronic databases to find original research on the association between VPA therapy and hematotoxicity in pediatric patients. For this purpose, the following search terms "hematotoxicity", "valproic acid" and "pediatrics" with different spellings and similar terms, were searched in the title, keywords, and abstracts of articles. The data were collected and used for qualitative data description. <P> Results: A total of 36 relevant articles with an overall 1381 study population were included. The results showed that VPA could cause severe hematotoxicity in children even at therapeutic doses. Neutropenia, thrombocytopenia, and bone marrow depression are the most common complications associated with VPA therapy. Also, findings showed that after discontinuation of VPA and starting other antiepileptic drugs or reducing the administered VPA dose, hematologic damages were entirely resolved, and all the hematological parameters improved during two weeks. <P> Conclusions: This review showed that VPA therapy could cause hematotoxicity in children; hence, it is recommended to monitor hematological indices during VPA therapy. Also, according to the suggested mechanistic pathways of VPA side effects, a combination of VPA with antioxidants may reduce hematological side effects.
Collapse
Affiliation(s)
- Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohammad Delirrad
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia. Iran
| | - Rana Fazeli-Bakhtiyari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mahood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand. Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Abbas Jafari
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia. Iran
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia. Iran
| |
Collapse
|
20
|
Hussein AM, Awadalla A, Abbas KM, Sakr HF, Elghaba R, Othman G, Mokhtar N, Helal GM. Chronic valproic acid administration enhances oxidative stress, upregulates IL6 and downregulates Nrf2, Glut1 and Glut4 in rat's liver and brain. Neuroreport 2021; 32:840-850. [PMID: 34050116 DOI: 10.1097/wnr.0000000000001663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Valproic acid (VPA) is a powerful antiepileptic drug that was associated with several neurological and hepatic problems especially with increasing its dose and duration. These problems may be metabolic in origin and related to glucose homeostasis. So, the present study investigated the effect of different doses and durations of VPA on the expression of glucose transporters (Glut1 and Glut4), oxidative stress and inflammatory cytokine (IL-6) in the liver and specific brain regions. Seventy-two male Sprague-Dawley rats were randomly allocated into three equal groups: (1) saline group, (2) 200 mg VPA group and (3) 400 mg VPA group. By the end of experiments, the expressions of Glut1, Glut4 nuclear factor erythroid-like 2 related factor (Nrf2), IL-6 and oxidative stress markers [malondialdehyde (MDA) and glutathione (GSH)] in the liver, corpus striatum, prefrontal cortex (PFC) and cerebellum were assessed. We found that administration of VPA (200 mg and 400 mg) caused a significant decrease in the Glut1 and Glut4 expression in different tissues in a dose- and time-dependent manner (P < 0.01). Also, VPA (200 and 400 mg) caused a significant increase in MDA with a decrease in GSH in tissues at different times. Moreover, VPA (200 and 400 mg) caused significant upregulation in IL-6 expression and downregulation in Nrf2 expression (P < 0.01). The results suggest that increasing the dose and time of VPA therapy downregulates Glut1 and Glut4 in the liver and brain which may impair glucose uptake in these tissues. This effect was associated with enhanced oxidative stress, downregulation of nrf2 and upregulation of IL-6 in liver and brain tissues.
Collapse
Affiliation(s)
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center
| | - Khaled M Abbas
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Egypt
| | - Hussein F Sakr
- Department of Medical Physiology, Faculty of Medicine
- Department of Physiology, College of Medicine and Health sciences, Sultan Qaboos University, Muscat, Oman
| | - Rasha Elghaba
- Department of Medical Physiology, Faculty of Medicine
| | - Gamal Othman
- Department of Physiology, College of Medicine and Health sciences, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, Faculty of Medicine, Al Maarefa University
| | - Naglaa Mokhtar
- Department of Physiology, College of Medicine and Health sciences, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, Faculty of Medicine, Al Maarefa University
| | - Ghada M Helal
- Department of Physiology, College of Medicine and Health sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
21
|
Adewole KE, Attah AF, Osawe SO. Exploring phytotherapeutic approach in the management of valproic acid-induced toxicity. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00575-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Khodayar MJ, Kalantari H, Khorsandi L, Ahangar N, Samimi A, Alidadi H. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice. Mol Biol Rep 2021; 48:4153-4162. [PMID: 34032977 DOI: 10.1007/s11033-021-06428-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
Valproic acid (VPA) is known as a common drug in seizure and bipolar disorders treatment. Hepatotoxicity is the most important complication of VPA. Taurine (Tau), an amino acid, has antioxidant effects. The present research was conducted to evaluate the protective mechanisms of Tau on VPA-induced liver injury, especially focusing on the necroptosis signaling pathway. The sixty-four male NMRI mice were divided into eight groups with eight animals per each. The experiment groups pretreated with Tau (250, 500, 1000 mg/kg) and necrostatine-1 (Nec-1, 1.8 mg/kg) and then VPA (500 mg/kg) was administered for 14 consecutive days. The extent of VPA-induced hepatotoxicity was confirmed by elevated ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase) levels, and histological changes as steatosis, accumulation of erythrocytes, and inflammation. Additionally, VPA significantly induced oxidative stress in the hepatic tissue by increasing ROS (reactive oxygen species) production and lipid peroxidation level along with decreasing GSH (glutathione). Hepatic TNF-α (tumor necrosis factor) level, mRNA and protein expression of RIPK1 (receptor-interacting protein kinase 1), RIPK3, and MLKL (mixed lineage kinase domain-like pseudokinase) were upregulated. Also, the phosphorylation of MLKL and RIPK3 increased in the VPA group. Tau could effectively reverse these events. Our data suggest which necroptosis has a key role in the toxicity of VPA through TNF-α-mediated RIPK1/RIPK3/MLKL signaling and oxidative stress. Our findings suggest that Tau protects the liver tissue against VPA toxicity via inhibiting necroptosis signaling pathway mediated by RIPK1/RIPK3/MLKL and suppressing oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Samimi
- Legal Medicine Research Center, Legal Medicine Organization, Legal Medicine Office of Khuzestan, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Mohammed MA, Gharib DM, Reyad HR, Mohamed AA, Elroby FA, Mahmoud HS. Antioxidant and anti-inflammatory properties of alpha-lipoic acid protect against valproic acid-induced liver injury. Can J Physiol Pharmacol 2021; 99:499-505. [PMID: 33275538 DOI: 10.1139/cjpp-2019-0456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valproic acid (VPA) is one of the most used antiepileptic drugs despite of its many adverse effects such as anemia, leucopenia, thrombocytopenia, and liver toxicity. The hepatoprotective effect of alpha-lipoic acid (ALA) was confirmed. The aim of this study was to detect the protective effect of ALA against the adverse effects of VPA. To study this, 30 white albino Wistar male rats were divided into four groups. Group I was the control group; Group II included rats that received ALA (100 mg·kg-1·day-1) orally for 14 days; Group III and Group IV included rats that received VPA (500 mg·kg-1·day-1) for 15 days intraperitoneally, but Group IV rats received ALA (100 mg·kg-1·day-1) orally for 14 days prior to VPA. Blood samples were collected and livers were excised from rats for colorimetric analysis and quantitative real-time PCR. The rats that received VPA showed leucopenia, thrombocytopenia, a significant decrease of superoxide dismutase, glutathione, nuclear factor erythroid 2-related factor 2, and sirtuin 1, besides a significant increase of malondialdehyde and tumor necrosis factor α. Prior treatment with ALA prevented all these results; ALA protected against VPA-induced liver damage and hematological disturbance via antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Hoda Ramadan Reyad
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Alaa Aboud Mohamed
- Department of Biochemistry, Faculty of Medicine, Beni-Suef University, Egypt
| | - Fadwa A Elroby
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
24
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
Affiliation(s)
- Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Chiara Resnati
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School of Naples, Naples, Italy.
| |
Collapse
|
25
|
Chaudhary S, Sahu U, Parvez S. Melatonin attenuates branch chain fatty acid induced apoptosis mediated neurodegeneration. ENVIRONMENTAL TOXICOLOGY 2021; 36:491-505. [PMID: 33219756 DOI: 10.1002/tox.23055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Valproic acid (VPA)-a short branched chain fatty acid (BCFA), is widely recognized as an anticonvulsant and a mood-stabilizing drug, but various adverse effects of VPA have also been investigated. However, the impact of BCFAs aggregation on brain cells, in the pathogenesis of neurodegeneration remains elusive. The objective of this study is to understand the cellular mechanisms underlying VPA-induced neuronal cell death mediated by oxidative stress, and the neuroprotective role of exogenous melatonin treatment on VPA-induced cell death. Neurotoxicity of VPA and protective role exerted by melatonin were assessed in vitro in SH-SY5Y cells and in vivo in the cerebral cortex and cerebellum regions of Wistar rat brain. The results show that melatonin pre-treatment protects the cells from VPA-induced toxicity by exerting an anti-apoptotic and anti-inflammatory effect by regulating apoptotic proteins and pro-inflammatory cytokines. The findings of the present study emphasize novel insights of melatonin as a supplement for the prevention and treatment of neuronal dysfunction induced by VPA.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Upasana Sahu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
26
|
Protective Effect of Thyme Honey against Valproic Acid Hepatotoxicity in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8839898. [PMID: 33688502 PMCID: PMC7920727 DOI: 10.1155/2021/8839898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Introduction Valproic acid is a medication most commonly used in the treatment of emotional and neurological depression, psychological imbalances, epilepsy, and bipolar disorder. Dark honey, like thyme honey, contains more antioxidant compounds than other samples. The purpose of this study was to evaluate the effect of thyme honey on the potential hepatic effects of valproic acid. Methods In this study, 48 male rats were randomly divided into 8 groups (n = 6): G1 (control): healthy rats (normal saline 0.9%), G2: thyme honey (1 g/kg), G3: thyme honey (2 g/kg dose), G4: thyme honey (3 g/kg dose), G5: VPA (500 mg/kg), G6: VPA (500 mg/kg) and thyme honey (1 g/kg), G7: VPA (500 mg/kg) and thyme honey (2 g/kg dose), and G8: VPA (500 mg/kg) and thyme honey (3 g/kg dose). Groups G1 to G5 received the drug for 28 days. On day 14, administration of thyme honey for G6 to G8 groups was carried out using gavage until day 28. VPA was administered one hour after honey. To carry out the biochemical evaluation, blood samples were collected from all the groups and their serums were used for MDA, TAC, and liver enzymes (AST, ALT, and GGT). Tissue samples of each rat were also removed for histological studies with hematoxylin-eosin and Masson's trichrome staining. Results The use of thyme honey significantly improved the histopathological parameters of the liver tissue, including hypertrophic degeneration and nucleus alteration, expansion of sinusoids, fibrosis and hepatic necrosis, and inflammation as well as hypertrophy of Kupffer cells. In the groups receiving VPA, the rate of lipid peroxidation increased, which indicates the destruction of the liver cell membrane due to drug consumption. TAC levels also increased following increase in thyme honey dosage (p ≤ 0.05). The results of liver enzyme analysis showed a decrease in AST and ALT levels in the G6 group and a decrease in GGT level in the G8 group (p ≤ 0.05). Conclusion Based on the results of this study, it seems that high percentage of antioxidants in thyme honey enabled it to improve hepatic complications and reduce the rate of hepatocellular destruction.
Collapse
|
27
|
Mekky G, Seeds M, Diab AEAA, Shehata AM, Ahmed-Farid OAH, Alzebdeh D, Bishop C, Atala A. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. J Biochem Mol Toxicol 2020; 35:e22676. [PMID: 33315275 DOI: 10.1002/jbt.22676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023]
Abstract
The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.
Collapse
Affiliation(s)
- Gehad Mekky
- Zoology Department, Faculty of Science, Zagazige, Egypt.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Michael Seeds
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | - Ahmed M Shehata
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar A-H Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Dalia Alzebdeh
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
28
|
Impact of Age and Genotype on Serum Concentrations of Valproic Acid and Its Hepatotoxic Metabolites in Chinese Pediatric Patients With Epilepsy. Ther Drug Monit 2020; 42:760-765. [DOI: 10.1097/ftd.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ma L, Wang Y, Chen X, Zhao L, Guo Y. Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro. Toxicology 2020; 445:152585. [PMID: 33007364 DOI: 10.1016/j.tox.2020.152585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Valproic acid (VPA) is a widely prescribed antiepileptic drug, which may cause steatosis in the liver. Oxidative stress is associated with the progression of VPA-induced hepatic steatosis. However, the potential mechanisms are not fully understood. In this study, we demonstrated the involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vitro and in vivo. First, VPA treatment (500 mg/kg in mice, 5 mM in LO2 cells) induced hepatic steatosis and enhanced reactive oxidative stress (ROS) level, and ROS scavenger, N-acetyl-L-cysteine (NAC, 200 mg/kg in mice, 1 mM in LO2 cells) reversed the changes. Next, we observed the enhanced expression and enzymatic activity of cytochrome P450 2E1 (CYP2E1) in VPA-treated mice and LO2 cells. Importantly, VPA-induced ROS accumulation and hepatic steatosis were attenuated when CYP2E1 was inhibited using CYP2E1 inhibitor, diallyl sulfide (DAS, 100 mg/kg in mice, 1 mM in LO2 cells) or in CYP2E1-knockdown cell line, suggesting that CYP2E1 plays a potential role in ROS production following hepatic steatosis. Furthermore, gene expression analysis showed that the mRNA levels of cluster of differentiation 36 (CD36), a fatty acid translocase protein and distinct diacylglycerol acyltransferase 2 (DGAT2) were significantly upregulated in mice and LO2 cells after VPA treatment, while the change was alleviated by NAC and DAS. Meanwhile, time course experiments demonstrated that the increase of CYP2E1 level occurred earlier than that of ROS, CD36 and DGAT2, and ROS generation preceded the onset of hepatic steatosis. Taken together, VPA treatment enhances the expression and enzymatic activity of CYP2E1, which promotes ROS production and then causes CD36 and DGAT2 overproduction and hepatic steatosis in mice and LO2 cells, which provides a novel insight into VPA-induced hepatic steatosis.
Collapse
Affiliation(s)
- Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Yani Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xue Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Hisaki T, Kaneko MAN, Hirota M, Matsuoka M, Kouzuki H. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid. J Toxicol Sci 2020; 45:95-108. [PMID: 32062621 DOI: 10.2131/jts.45.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a systematic, comprehensive and reproducible weight-of-evidence approach for predicting the no-observed-adverse-effect level (NOAEL) for systemic toxicity by using read-across and quantitative structure-activity relationship (QSAR) models to fill gaps in rat repeated-dose and developmental toxicity data. As a case study, we chose valproic acid, a developmental toxicant in humans and animals. High-quality in vivo oral rat repeated-dose and developmental toxicity data were available for five and nine analogues, respectively, and showed qualitative consistency, especially for developmental toxicity. Similarity between the target and analogues is readily defined computationally, and data uncertainties associated with the similarities in structural, physico-chemical and toxicological properties, including toxicophores, were low. Uncertainty associated with metabolic similarity is low-to-moderate, largely because the approach was limited to in silico prediction to enable systematic and objective data collection. Uncertainty associated with completeness of read-across was reduced by including in vitro and in silico metabolic data and expanding the experimental animal database. Taking the "worst-case" approach, the smallest NOAEL values among the analogs (i.e., 200 and 100 mg/kg/day for repeated-dose and developmental toxicity, respectively) were read-across to valproic acid. Our previous QSAR models predict repeated-dose NOAEL of 148 (males) and 228 (females) mg/kg/day, and developmental toxicity NOAEL of 390 mg/kg/day for valproic acid. Based on read-across and QSAR, the conservatively predicted NOAEL is 148 mg/kg/day for repeated-dose toxicity, and 100 mg/kg/day for developmental toxicity. Experimental values are 341 mg/kg/day and 100 mg/kg/day, respectively. The present approach appears promising for quantitative and qualitative in silico systemic toxicity prediction of untested chemicals.
Collapse
Affiliation(s)
- Tomoka Hisaki
- Shiseido Global Innovation Center.,Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | | | | - Masato Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| | | |
Collapse
|
31
|
Oztay F, Tunali S, Kayalar O, Yanardag R. The protective effect of vitamin U on valproic acid‐induced lung toxicity in rats via amelioration of oxidative stress. J Biochem Mol Toxicol 2020; 34:e22602. [DOI: 10.1002/jbt.22602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Fusun Oztay
- Department of Biology, Faculty of Science Istanbul University Vezneciler Istanbul Turkey
| | - Sevim Tunali
- Department of Chemistry, Faculty of Engineering Istanbul University—Cerrahpasa Avcilar Turkey
| | - Ozgecan Kayalar
- Department of Biology, Faculty of Science Istanbul University Vezneciler Istanbul Turkey
- Koc University School of Medicine Koc University Research Center for Translational Medicine (KUTTAM) Istanbul Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering Istanbul University—Cerrahpasa Avcilar Turkey
| |
Collapse
|
32
|
Ardianto C, Wardani HA, Nurrahmi N, Rahmadi M, Khotib J. Alpha-lipoic acid ameliorates sodium valproate-induced liver injury in mice. Vet World 2020; 13:963-966. [PMID: 32636594 PMCID: PMC7311888 DOI: 10.14202/vetworld.2020.963-966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Aim: This study examines the effect of alpha-lipoic acid (ALA) on sodium valproate-induced liver injury through histological features of mice liver tissue. Materials and Methods: Mice were divided into three groups; (1) vehicle group, (2) sodium valproate group, and (3) sodium valproate-ALA group. The vehicle group was injected with saline intraperitoneal (i.p.) for 28 days. The sodium valproate group was injected with sodium valproate 300 mg/kg, i.p. daily for 2 weeks, after which the vehicle was administered daily until day 28. The sodium valproate-ALA group was injected with sodium valproate 300 mg/kg daily for 2 weeks before the administration of ALA 100 mg/kg i.p. until day 28. The mice were euthanized, and the liver was extracted for histopathological examination. Results: Histopathological examination of the liver section of the vehicle group showed a normal structure of the liver. Two weeks after the administration of sodium valproate, histopathological examination showed an abnormal structure of the liver, with necrotic appearance and inflammatory cells. Moreover, treatment with ALA after the administration of sodium valproate notably ameliorated hepatic histopathological lesions and the liver structure corresponded to a normal liver structure. Conclusion: ALA ameliorates sodium valproate-induced liver injury in mice.
Collapse
Affiliation(s)
- Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hijrawati Ayu Wardani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nurrahmi Nurrahmi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
33
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
34
|
Gai Z, Krajnc E, Samodelov SL, Visentin M, Kullak-Ublick GA. Obeticholic Acid Ameliorates Valproic Acid-Induced Hepatic Steatosis and Oxidative Stress. Mol Pharmacol 2020; 97:314-323. [PMID: 32098797 DOI: 10.1124/mol.119.118646] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Farnesoid X receptor (FXR), or NR1H4, protects the liver from insults of various etiologies. A role of FXR in drug-induced liver injury has also been hypothesized yet only marginally investigated. The aim of this study was to assess the effect of FXR activation on gene expression and phenotype of the liver of mice treated with valproic acid (VPA), or 2-propylpentanoic acid, a prototypical hepatotoxic drug. Obeticholic acid (OCA) was used to activate FXR both in mice and in human hepatocellular carcinoma (Huh-7) cells. Next-generation sequencing of mouse liver tissues was performed from control, VPA, and VPA + OCA-treated mice. Pathway analysis validation was performed using real-time reverse-transcription polymerase chain reaction, Western blotting, immunohistochemistry, and fluorometric assays. FXR activation induced antioxidative pathways, which was confirmed by a marked reduction in VPA-induced lipid peroxidation and endoplasmic reticulum stress. In vitro, VPA-induced oxidative stress was independent of lipid accumulation, stemmed from the cytoplasm, and was mitigated by OCA. In the liver of the mice treated with OCA, the levels of cytochrome P450 potentially involved in VPA metabolism were increased. The hepatic lipid-lowering effect observed in animals cotreated with VPA and OCA in comparison with that of animals treated with VPA was associated with regulation of the genes involved in the steatogenic nuclear receptor peroxisome proliferator-activated γ (PPARγ) pathway. In conclusion, pronounced antioxidant activity, repression of the PPARγ pathway, and higher expression of P450 enzymes involved in VPA metabolism may underlie the hepatoprotective of FXR activation during VPA treatment. SIGNIFICANCE STATEMENT: Valproic acid-induced oxidative stress occurs in absence of lipid accumulation and is not of mitochondrial origin. Valproic acid exposure induces the expression of the steatogenic nuclear receptor peroxisome proliferator-activated γ (PPARγ) and its downstream target genes. Constitutive activation of the farnesoid X receptor (FXR) reduces PPARγ hepatic expression and induces hepatic antioxidant activity. The variability in FXR expression level/activity, for instance in individuals carrying loss-of-function genetic variants of the FXR gene, could contribute to valproic acid pharmacokinetic and toxicokinetic profile.
Collapse
Affiliation(s)
- Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (Z.G., E.K., S.L.S., M.V., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Evelin Krajnc
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (Z.G., E.K., S.L.S., M.V., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Sophia L Samodelov
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (Z.G., E.K., S.L.S., M.V., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (Z.G., E.K., S.L.S., M.V., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (Z.G., E.K., S.L.S., M.V., G.A.K.-U.); Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland (E.K.); and Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland (G.A.K.-U.)
| |
Collapse
|
35
|
Guo HL, Jing X, Sun JY, Hu YH, Xu ZJ, Ni MM, Chen F, Lu XP, Qiu JC, Wang T. Valproic Acid and the Liver Injury in Patients with Epilepsy: An Update. Curr Pharm Des 2020; 25:343-351. [PMID: 30931853 DOI: 10.2174/1381612825666190329145428] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Valproic acid (VPA) as a widely used primary medication in the treatment of epilepsy is associated with reversible or irreversible hepatotoxicity. Long-term VPA therapy is also related to increased risk for the development of non-alcoholic fatty liver disease (NAFLD). In this review, metabolic elimination pathways of VPA in the liver and underlying mechanisms of VPA-induced hepatotoxicity are discussed. METHODS We searched in PubMed for manuscripts published in English, combining terms such as "Valproic acid", "hepatotoxicity", "liver injury", and "mechanisms". The data of screened papers were analyzed and summarized. RESULTS The formation of VPA reactive metabolites, inhibition of fatty acid β-oxidation, excessive oxidative stress and genetic variants of some enzymes, such as CPS1, POLG, GSTs, SOD2, UGTs and CYPs genes, have been reported to be associated with VPA hepatotoxicity. Furthermore, carnitine supplementation and antioxidants administration proved to be positive treatment strategies for VPA-induced hepatotoxicity. CONCLUSION Therapeutic drug monitoring (TDM) and routine liver biochemistry monitoring during VPA-therapy, as well as genotype screening for certain patients before VPA administration, could improve the safety profile of this antiepileptic drug.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Jun Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
36
|
Pirozzi C, Lama A, Annunziata C, Cavaliere G, De Caro C, Citraro R, Russo E, Tallarico M, Iannone M, Ferrante MC, Mollica MP, Mattace Raso G, De Sarro G, Calignano A, Meli R. Butyrate prevents valproate-induced liver injury: In vitro and in vivo evidence. FASEB J 2019; 34:676-690. [PMID: 31914696 DOI: 10.1096/fj.201900927rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
Sodium valproate (VPA), an antiepileptic drug, may cause dose- and time-dependent hepatotoxicity. However, its iatrogenic molecular mechanism and the rescue therapy are disregarded. Recently, it has been demonstrated that sodium butyrate (NaB) reduces hepatic steatosis, improving respiratory capacity and mitochondrial dysfunction in obese mice. Here, we investigated the protective effect of NaB in counteracting VPA-induced hepatotoxicity using in vitro and in vivo models. Human HepG2 cells and primary rat hepatocytes were exposed to high VPA concentration and treated with NaB. Mitochondrial function, lipid metabolism, and oxidative stress were evaluated, using Seahorse analyzer, spectrophotometric, and biochemical determinations. Liver protection by NaB was also evaluated in VPA-treated epileptic WAG/Rij rats, receiving NaB for 6 months. NaB prevented VPA toxicity, limiting cell oxidative and mitochondrial damage (ROS, malondialdehyde, SOD activity, mitochondrial bioenergetics), and restoring fatty acid oxidation (peroxisome proliferator-activated receptor α expression and carnitine palmitoyl-transferase activity) in HepG2 cells, primary hepatocytes, and isolated mitochondria. In vivo, NaB confirmed its activity normalizing hepatic biomarkers, fatty acid metabolism, and reducing inflammation and fibrosis induced by VPA. These data support the protective potential of NaB on VPA-induced liver injury, indicating it as valid therapeutic approach in counteracting this common side effect due to VPA chronic treatment.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmen De Caro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Martina Tallarico
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | | | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Oztopuz O, Turkon H, Buyuk B, Coskun O, Sehitoglu MH, Ovali MA, Uzun M. Melatonin ameliorates sodium valproate-induced hepatotoxicity in rats. Mol Biol Rep 2019; 47:317-325. [DOI: 10.1007/s11033-019-05134-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023]
|
38
|
Xu S, Chen Y, Ma Y, Liu T, Zhao M, Wang Z, Zhao L. Lipidomic Profiling Reveals Disruption of Lipid Metabolism in Valproic Acid-Induced Hepatotoxicity. Front Pharmacol 2019; 10:819. [PMID: 31379584 PMCID: PMC6659130 DOI: 10.3389/fphar.2019.00819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs, as VPA-induced hepatotoxicity is one of the most severe adverse reaction that can lead to death. The objective of this study was to gain an understanding of dysregulated lipid metabolism in mechanism of hepatotoxicity. Nontargeted lipidomics analysis with liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF/MS) was performed to explore differential lipids from the patient serum and L02 cells. Lipidomics data interpretation was augmented by gene expression analyses for the key enzymes in lipid metabolism pathways. From patient serum lipidomics, pronouncedly changed lipid species between abnormal liver function (ALF) patients and normal liver function (NLF) patients were identified. Among these lipid species, LPCs, Cers, and SMs were markedly reduced in the ALF group and showed negative relationships with liver injury severity [alanine aminotransferase (ALT) levels], while significantly increased triacylglycerols (TAG) with higher summed carbon numbers demonstrated a positive relationship with ALT levels. Regarding lipidomics in hepatic L02 cells, TAG was markedly elevated after VPA exposure, especially in TAGs with more than 53 summed carbons. Besides, gene expression analysis revealed dysregulated lipid metabolism in VPA-treated L02 cells. Peroxime proliferators-activated receptor (PPARγ) pathway played an important role in VPA-induced lipid disruption through inducing long-chain fatty acid uptake and TAG synthesis, which was also regulated by Akt pathway. Our findings present that VPA-induced lipid metabolism disruption might lead to lipotoxicity in the liver. This approach is expected to be applicable for other drug-induced toxicity assessments.
Collapse
Affiliation(s)
- Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiyi Ma
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Liu
- Shanghai AB Sciex Analytical Instrument Trading Co. Ltd., Shanghai, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Hackett MJ, Kinderknecht KD, Niemuth NA, Taylor JA, Gibbs ST, Novak J, Harbo SJ. A Factorial Analysis of Drug and Bleeding Effects in Toxicokinetic Studies. Toxicol Sci 2019; 170:234-246. [PMID: 30985877 DOI: 10.1093/toxsci/kfz092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ICH revised the S3A guidance allowing blood to be microsampled for toxicokinetic analysis from the main study cohorts of rats in general toxicology studies. The resulting changes in the hemogram have been examined in healthy animals but the ability to read through the data when there are toxicological changes has not been thoroughly examined in the literature. To address this, a toxicology study in Sprague Dawley rats was conducted where animals received repeated doses of saline or valproic acid by IP injection daily for 7 days. Animals in both treatment groups were unbled, serially bled (6 bleeds/animal at 0.1 ml/bleed) or compositely bled (2 bleeds/animal at 0.6 ml/bleed) on days 1 and 7 for TK analysis. No statistically significant changes in the clinical pathology were observed for either the serial bleed or composite bleed animals when compared with their respective unbled control; however, a 4%-7% decrease in erythrocyte counts following serial bleeding and a 5%-19% decrease following composite bleeding was observed. When all the clinical pathology and organ weight data were equivalence tested, both the serial bleed and composite bleed results were equivalent to their unbled controls except for the erythroid parameters in the composite bleed group. Toxicokinetic analysis of the blood samples resulted in comparable concentration-time curves, regardless of the method of blood collection. Under these study conditions, the results show blood microsamples can be collected from the core or recovery cohort of animals in a toxicology study without impacting the toxicological interpretation in rats.
Collapse
Affiliation(s)
- Michael J Hackett
- Clinical and Nonclinical Research, Battelle Memorial Institute, West Jefferson, Ohio 43162
| | | | | | - John A Taylor
- Clinical and Nonclinical Research, Battelle Memorial Institute, Columbus, Ohio 43201
| | - Seth T Gibbs
- Clinical and Nonclinical Research, Battelle Memorial Institute, West Jefferson, Ohio 43162
| | - Joseph Novak
- Clinical and Nonclinical Research, Battelle Memorial Institute, West Jefferson, Ohio 43162
| | - Sam J Harbo
- Clinical and Nonclinical Research, Battelle Memorial Institute, West Jefferson, Ohio 43162
| |
Collapse
|
40
|
Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283824. [PMID: 31119149 PMCID: PMC6500714 DOI: 10.1155/2019/1283824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.
Collapse
|
41
|
Gad AM. Study on the influence of caffeic acid against sodium valproate-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2018; 32:e22175. [PMID: 29968957 DOI: 10.1002/jbt.22175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Abstract
Renal injury is a hallmark adverse reaction to sodium valproate (SVP), and caffeic acid (CAFF) is a phenolic compound that has anti-inflammatory and antioxsidant properties. So, this investigation was assessed to evaluate the nephrotoxic potential of SVP and the defensive impact of CAFF against SVP nephrotoxicity. SVP was given at a dose of 500 mg/kg (i.p.) once daily for 2 weeks, while CAFF was given at a dose of 50 mg/kg (orally), simultaneously with SVP. Concurrent treatment with CAFF reduced urea and creatinine, lipid peroxidation (malondialdehyde), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-κB/p65), and transforming growth factor β (TGF-β) levels. However, with increased glutathione content, CAFF also halted the activated Notch signaling cascade. Furthermore, CAFF suppressed caspase-3 and inducible nitric oxide synthase expressions. To conclude, on the basis of the results obtained, CAFF proved to protect against SVP-induced nephrotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
42
|
Zhao M, Zhang T, Li G, Qiu F, Sun Y, Zhao L. Simultaneous Determination of Valproic Acid and Its Major Metabolites by UHPLC-MS/MS in Chinese Patients: Application to Therapeutic Drug Monitoring. J Chromatogr Sci 2018; 55:436-444. [PMID: 27993840 DOI: 10.1093/chromsci/bmw199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022]
Abstract
A specific and sensitive Ultra-high Performance Liquid Chromatography-tandem Mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of the concentrations of valproic acid (VPA) and its clinically relevant metabolites (4-ene-VPA, 2,4-diene-VPA and 2-ene-VPA) in human serum. After solid-phase extraction, VPA, its metabolites and the internal standard were subjected to chromatographic separation by gradient elution of acetonitrile and 10 mM ammonium acetate as mobile phase at a flow rate of 0.6 mL/min on an EC-C18 column. The method was validated over the concentration ranges of 1-200 μg/mL for VPA, 0.5-10 μg/mL for 2-ene-VPA, 10-500 ng/mL for 4-ene-VPA and 25-500 ng/mL for 2,4-diene-VPA. The inter-day and intra-day accuracy and precision were within the acceptable limits of <15 %. The recoveries and matrix effects met the requirement for the analysis of biological samples. No obvious degradation was observed under various storage conditions including room temperature for 12 h, three freeze-thaw cycles and -80°C for 1 month. The assay method was successfully applied to monitor the concentration of VPA and its three metabolites in epileptic patients. The UHPLC-MS/MS method demonstrated a good analytical performance essential for therapeutic drug monitoring, which would potentially lead to clinically relevant improvements in VPA dosage and patient management.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| | - Ti Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| | - Guofei Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| | - Feng Qiu
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| | - Yaxin Sun
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, Liaoning Province, P.R. China
| |
Collapse
|
43
|
Hanfer M, Cheriet T, Menad A, Seghiri R, Benayache S, Benayache F, Ameddah S. Modulation of Liver Glutathione-Dependent Enzymes and Steatosis by Linaria tingitana in Sodium Valproate-Treated Rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/10496475.2018.1423597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mourad Hanfer
- Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
- Department of Biology of Organisims, Faculty of Nature and Life Sciences, Unversity of Batna 2 -Mostefa Ben Boulaid-, Batna, Algeria
| | - Thamere Cheriet
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), University of Mentouri Brothers-, Constantine, Algeria
| | - Ahmed Menad
- Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
| | - Ramdane Seghiri
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), University of Mentouri Brothers-, Constantine, Algeria
| | - Samir Benayache
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), University of Mentouri Brothers-, Constantine, Algeria
| | - Fadila Benayache
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), University of Mentouri Brothers-, Constantine, Algeria
| | - Souad Ameddah
- Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
| |
Collapse
|
44
|
Ahangar N, Naderi M, Noroozi A, Ghasemi M, Zamani E, Shaki F. Zinc Deficiency and Oxidative Stress Involved in Valproic Acid Induced Hepatotoxicity: Protection by Zinc and Selenium Supplementation. Biol Trace Elem Res 2017; 179:102-109. [PMID: 28124216 DOI: 10.1007/s12011-017-0944-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Valproic acid (VPA) is an antiepileptic drug, which its usage is limited due to its hepatotoxicity. The present study was conducted to investigate the efficacy of zinc (Zn) and selenium (Se), necessary trace elements, against VPA-induced hepatotoxicity in Wistar rats. The animals were divided into five groups: control, VPA 200 mg/kg, VPA + Zn (100 mg/kg), VPA + Se (100 mg/kg), and VPA + Zn + Se. The administration of VPA for four consecutive weeks resulted in decrease in serum level of Zn in rats. Also, an increase in liver marker enzymes (ALT and AST) and also histological changes in liver tissue were shown after VPA administration. Oxidative stress was evident in VPA group by increased lipid peroxidation (LPO), protein carbonyl (PCO), glutathione (GSH) oxidation, and reducing total antioxidant capacity. Zn and Se (100 mg/kg) administration was able to protect against deterioration in liver enzyme, abrogated the histological change in liver tissue, and suppressed the increase in oxidative stress markers. Zn and combination of Zn plus Se treatment showed more protective effects than Se alone. These results imply that Zn and Se should be suggested as effective supplement products for the prevention of VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nematollah Ahangar
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maloos Naderi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolali Noroozi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zamani
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
45
|
Shaaban AA, El-Agamy DS. Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy. Naunyn Schmiedebergs Arch Pharmacol 2017. [PMID: 28646254 DOI: 10.1007/s00210-017-1393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sodium valproate (VP) is an important antiepileptic drug, although it can produce deleterious hepatotoxic reactions. Diallyl trisulfide (DATS) is the principle component of garlic oil that possesses antioxidant properties. This study explored the potential hepatoprotective activity of DATS against VP-induced hepatic damage and its underlying mechanisms. In addition, the study assessed the effect of DATS on VP antiepileptic activity. Rats were given DATS once daily at two different doses along with VP for 2 weeks. Results have shown the ability of DATS to counteract VP-induced hepatic damage as it decreased elevated serum transaminases (aspartate aminotransferase and alanine aminotransferase) and alkaline phosphatase. Liver histopathology indicated that DATS preserved the hepatic structural integrity and protected against VP-induced hepatic steatosis and necro-inflammation injury. DATS ameliorated VP-induced oxidative stress and increased the antioxidant capacity of the liver. Immunohistochemical analysis showed activation of nuclear factor kappa-B along with high expression of cyclo-oxygenase-2 (COX-2) upon VP administration. This was accompanied by overproduction of proinflammatory mediators (TNF-α, IL-1β, IL-6). Tracing the apoptotic pathway, VP administration induced marked apoptosis using TUNEL staining. Furthermore, VP-treated animals exhibited high immunoexpression of Bax protein and increased levels of Bax and caspase-3 while level of Bcl2 was significantly decreased in hepatic tissue. However, DATS simultaneous treatment counteracted all of these molecular pathological changes. Using pentylenetetrazole (PTZ)-induced seizures model in mice, the effect of DATS on the anticonvulsant activity of VP was found to be positive, meaning that combination of DATS with VP can confer protection against VP-induced hepatic injurious effects through its antioxidant, antiinflammatory, and antiapoptotic properties without affecting VP antiepileptic activity.
Collapse
Affiliation(s)
- Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
46
|
Zhao M, Zhang T, Li G, Qiu F, Sun Y, Zhao L. Associations of CYP2C9 and CYP2A6 Polymorphisms with the Concentrations of Valproate and its Hepatotoxin Metabolites and Valproate-Induced Hepatotoxicity. Basic Clin Pharmacol Toxicol 2017; 121:138-143. [PMID: 28273397 DOI: 10.1111/bcpt.12776] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Mingming Zhao
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| | - Ti Zhang
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| | - Guofei Li
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| | - Feng Qiu
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| | - Yaxin Sun
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| | - Limei Zhao
- Department of pharmacy; Shengjing Hospital of China Medical University; Shenyang Liaoning Province China
| |
Collapse
|
47
|
Napierala M, Merritt TA, Mazela J, Jablecka K, Miechowicz I, Marszalek A, Florek E. The effect of tobacco smoke on oxytocin concentrations and selected oxidative stress parameters in plasma during pregnancy and post-partum - an experimental model. Hum Exp Toxicol 2017; 36:135-145. [PMID: 27009111 DOI: 10.1177/0960327116639363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
BACKGROUND Tobacco smoking is a serious threat to life and health of society. Among the most vulnerable to the toxic effects of tobacco smoke are foetuses and newborns. The objective of the research was to assess the impact of tobacco smoke exposure on oxytocin levels and biochemical oxidative stress parameters during pregnancy and after birth in an experimental model. METHODS In the experiment, exposure to tobacco smoke of gravid and non-gravid rats was monitored. A reliable biomarker of exposure - cotinine - was used in the process and it was determined by means of high-performance liquid chromatography with diode array detection, which ensured high analytical accuracy and precision. Determination of oxytocin was performed by means of enzyme-linked immunosorbent assay. The levels of selected oxidative stress parameters: total protein concentration, uric acid, trolox equivalent antioxidant capacity, protein S-nitrosylation and lipid peroxidation (thiobarbituric acid reactive substances) were measured by spectrophotometric methods. RESULTS AND CONCLUSIONS The effect of prenatal and postnatal exposure to tobacco smoke was a lower medium body mass of rat foetuses and pups. Oxidative stress during pregnancy, additionally intensified by tobacco smoke exposure, led to adaptive changes in properties of plasmatic antioxidant barriers. Moreover, the disturbance of oxidoreductive balance by tobacco smoke affects oxytocin fluctuations, what was observed in this study during lactation period. Therefore, women who smoke may breastfeed their children less frequently and for a shorter period.
Collapse
Affiliation(s)
- M Napierala
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - T A Merritt
- 2 School of Medicine, Children's Hospital, Loma Linda University, Loma Linda, California, USA
| | - J Mazela
- 3 Department of Neonatal Infection, Poznan University of Medical Sciences, Poznan, Poland
| | - K Jablecka
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - I Miechowicz
- 4 Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - A Marszalek
- 5 Department of Clinical Pathology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- 6 Department of Oncologic Pathology and Epidemiology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - E Florek
- 1 Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
48
|
Sedky AA, El Serafy OMH, Hassan OA, Abdel-Kawy HS, Hasanin AH, Raafat MH. Trimetazidine potentiates the antiepileptic activity and ameliorates the metabolic changes associated with pentylenetetrazole kindling in rats treated with valproic acid. Can J Physiol Pharmacol 2017; 95:686-696. [PMID: 28177664 DOI: 10.1139/cjpp-2016-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is implicated in epileptogenesis as well as in the metabolic changes associated with increased risk of atherosclerotic vascular disease in epilepsy. The present work investigated the impact of the antioxidant trimetazidine (TMZ) on the antiepileptic activity of valproic acid (VPA) and on the metabolic and histological changes in hippocampal, aortic, and hepatic tissues associated with epilepsy and (or) VPA. Rats were divided into non-pentylenetetrazole (non-PTZ) group subdivided into control and VPA-treated groups, and PTZ-treated group subdivided into PTZ, PTZ/VPA, PTZ/TMZ, and PTZ/VPA + TMZ groups. VPA treatment in PTZ rats resulted in an antioxidant effect with improvement in oxidative stress, metabolic and histopathological changes induced by PTZ in hippocampus, aortic, and hepatic tissues. TMZ exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. Combination of TMZ with VPA induced a greater reduction in oxidative stress, improvement in the metabolic and histopathological changes compared to VPA treatment. In contrast, VPA administration in non-PTZ-treated rats induced a pro-oxidative effect, associated with metabolic and histopathological changes in aortic and hepatic tissues. These findings suggest that co-administration of TMZ with VPA in epilepsy might antagonize not only the oxidative stress associated with epilepsy but might also counteract a potential pro-oxidative effect of VPA.
Collapse
Affiliation(s)
- Amina Ahmed Sedky
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Olfat Ahmed Hassan
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Salah Abdel-Kawy
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- a Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Hussein Raafat
- b Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Stanevičiūtė J, Urbonienė D, Valančiūtė A, Balnytė I, Vitkauskienė A, Grigalevičienė B, Stakišaitis D. The effect of dichloroacetate on male rat thymus and on thymocyte cell cycle. Int J Immunopathol Pharmacol 2016; 29:818-822. [PMID: 27742881 DOI: 10.1177/0394632016674019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022] Open
Abstract
The study aim was to investigate the effect of dichloroacetate (DCA) on thymus and the thymocyte cycle in rats. Wistar male gonad-intact and castrated rats (4-5 weeks) were investigated in the following groups: (1) control; (2) treated with DCA; and (3) treated with the DCA and sodium valproate (NaVP) combination. Rats were treated for 4 weeks with DCA 200 mg/kg/day alone and 300 mg/kg/day of NaVP plus 200 mg/kg/day of DCA (every second week, beginning with NaVP). After the experiment, the thymus was weighted, and the thymus lobe was taken for thymocyte flow cytometry. In gonad-intact rats, the thymus weight of the control was higher than in rats treated with DCA (P <0.001) or with the NaVP-DCA combination (P <0.04); a comparison of thymus weight between DCA- and NaVP-DCA-treated groups revealed a higher thymus weight loss in the DCA-treated group (P <0.03). Flow cytometry shows that DCA treatment increased the percentage of cells in the G2-M phase (P <0.03) and reduced in G1-G0 (P <0.02). The DCA treatment effect was determined only in gonad-intact but not in castrated rats. The authors discuss the possible DCA and NaVP interaction mechanisms.
Collapse
Affiliation(s)
- Jurate Stanevičiūtė
- Lithuanian University of Health Sciences, Department of Histology and Embryology, Medical Academy, Kaunas, Lithuania
| | - Daiva Urbonienė
- Lithuanian University of Health Sciences, Department of Laboratory Medicine, Medical Academy, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Lithuanian University of Health Sciences, Department of Histology and Embryology, Medical Academy, Kaunas, Lithuania
| | - Ingrida Balnytė
- Lithuanian University of Health Sciences, Department of Histology and Embryology, Medical Academy, Kaunas, Lithuania
| | - Astra Vitkauskienė
- Lithuanian University of Health Sciences, Department of Laboratory Medicine, Medical Academy, Kaunas, Lithuania
| | - Brigita Grigalevičienė
- Lithuanian University of Health Sciences, Department of Non-Infectious Diseases, Faculty of Veterinary Medicine, Veterinary Academy, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Lithuanian University of Health Sciences, Department of Histology and Embryology, Medical Academy, Kaunas, Lithuania .,Laboratory of Cancer Epidemiology, National Cancer Institute, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
50
|
El-Shenawy NS, Hamza RZ. Nephrotoxicity of sodium valproate and protective role of L-cysteine in rats at biochemical and histological levels. J Basic Clin Physiol Pharmacol 2016; 27:497-504. [PMID: 27124675 DOI: 10.1515/jbcpp-2015-0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND This study investigated whether the combination of sodium valproate (SV) with L-cysteine (LC) can decrease the SV toxicity of kidneys. SV caused alternation in oxidative/antioxidant balance. METHODS Biochemical estimations included the determination of oxidative stress markers like thiobarbituric acid-reactive substances in kidney tissue, and enzymatic antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase as well as total antioxidant capacity were evaluated in renal tissues. Creatinine and uric acid levels in the serum were also determined to assess kidney function. Pathological examination of the kidney was also performed. RESULTS Increasing the levels of lipid peroxidation and decreasing the enzymatic activity (SOD, CAT, and GPx) as well as total antioxidant capacity of rats was shown with different doses of SV. Impairment in renal function tests suggests a decreased glomerular filtration rate, as serum creatinine was elevated. Histopathological changes of kidney tissue treated with SV reveal the proximal and the distal convoluted tubules that show hydropic changes (small white vacuoles within the cytoplasm and the glomeruli show hypercellularity). CONCLUSIONS The concurrent administration of LC with SV significantly had beneficial effects on the kidney and all the above parameters have been improved.
Collapse
|