1
|
Agrawal I, Lee AQ, Gong Z. Identifying Universal Fish Biomarker Genes in Response to PCB126 Exposure by Comparative Transcriptomic Analyses. Curr Issues Mol Biol 2024; 46:7862-7876. [PMID: 39194683 DOI: 10.3390/cimb46080466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Water pollution remains a major environmental concern, with increased toxic by-products being released into water bodies. Many of these chemical contaminants persist in the environment and bio-accumulate in aquatic organisms. At present, toxicological tests are mostly based on laboratory tests, and effective methods for monitoring wild aquatic environments remain lacking. In the present study, we used a well-characterized toxic chemical, 3,3',4,4',5-polychlorinated biphenyl (PCB126), as an example to try to identify common biomarker genes to be used for predictive toxicity of this toxic substance. First, we used two laboratory fish models, the zebrafish (Danio rerio) and medaka (Oryzias latipes), to expose PCB126 to obtain liver transcriptomic data by RNA-seq. Comparative transcriptomic analyses indicated generally conserved and concerted changes from the two species, thus validating the transcriptomic data for biomarker gene selection. Based on the common up- and downregulated genes in the two species, we selected nine biomarker genes to further test in other fish species. The first validation experiment was carried out using the third fish species, Mozambique tilapia (Oreochromis mossambicus), and essentially, all these biomarker genes were validated for consistent responses with the two laboratory fish models. Finally, to develop universal PCR primers suitable for potentially all teleost fish species, we designed degenerate primers and tested them in the three fish species as well as in another fish species without a genomic sequence available: guppy (Poecilia reticulata). We found all the biomarker genes showed consistent response to PCB126 exposure in at least 50% of the species. Thus, our study provides a promising strategy to identify common biomarker genes to be used for teleost fish analyses. By using degenerate PCR primers and analyzing multiple biomarker genes, it is possible to develop diagnostic PCR arrays to predict water contamination from any wild fish species sampled in different water bodies.
Collapse
Affiliation(s)
- Ira Agrawal
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
2
|
Eaton DL, Simon TW, Kaminski NE, Perdew GH, Nebert DW. Species differences in specific ligand-binding affinity and activation of AHR: The biological basis for calculation of relative effective potencies and toxic equivalence factors. Regul Toxicol Pharmacol 2024; 149:105598. [PMID: 38548044 DOI: 10.1016/j.yrtph.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
In 2022 the World Health Organization (WHO) published updated 'Toxic Equivalence Factors' (TEFs) for a wide variety of chlorinated dioxins, dibenzofurans and PCBs [collectively referred to as 'dioxin-like chemicals'; DLCs) that interact with the aryl hydrocarbon receptor (AHR)]. Their update used sophisticated statistical analysis of hundreds of published studies that reported estimation of 'Relative Effective Potency' (REP) values for individual DLC congeners. The weighting scheme used in their assessment of each study favored in vivo over in vitro studies and was based largely on rodent studies. In this Commentary, we highlight the large body of published studies that demonstrate large species differences in AHR-ligand activation and provide supporting evidence for our position that the WHO 2022 TEF values intended for use in human risk assessment of DLC mixtures will provide highly misleading overestimates of 'Toxic Equivalent Quotients' (TEQs), because of well-recognized striking differences in AHR ligand affinities between rodent (rat, mouse) and human. The data reviewed in our Commentary support the position that human tissue-derived estimates of REP/TEF values for individual DLC congeners, although uncertain, will provide much better, more realistic estimates of potential activation of the human AHR, when exposure to complex DLC mixtures occurs.
Collapse
Affiliation(s)
- David L Eaton
- Department of Environmental Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | | | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary H Perdew
- The Pennsylvania State University, State College, PA, USA
| | - Daniel W Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, USA; Department of Pediatrics & Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
3
|
Eaton DL, Simon TW, Kaminski NE, Perdew GH, Nebert DW. The 2022 revised WHO TEFs for dioxins and dioxin-like chemicals: The importance of considering the use of species-specific information to determine relative effective potency for human-based risk assessment. Regul Toxicol Pharmacol 2024; 149:105599. [PMID: 38490576 DOI: 10.1016/j.yrtph.2024.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Affiliation(s)
- David L Eaton
- Dept. Environmental Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | | | - Norbert E Kaminski
- Food and Consumer Product Ingredient Safety Endowed Chair, Department of Pharmacology and Toxicology, Institute for Integrative Toxicology, Director, Center for Reseaerch on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Gary H Perdew
- H. Thomas and Dorothy Willits Hallowell Chair in Agricultural Sciences, The Pennsylvania State University, State College, PA, USA
| | - Daniel W Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Department of Pediatrics & Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
4
|
Marvanová S, Pěnčíková K, Pálková L, Ciganek M, Petráš J, Lněničková A, Vondráček J, Machala M. Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162924. [PMID: 36933742 DOI: 10.1016/j.scitotenv.2023.162924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM2.5) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM2.5 and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.
Collapse
Affiliation(s)
- Soňa Marvanová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Lenka Pálková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Miroslav Ciganek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Anna Lněničková
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
5
|
Aarts JMMJG, Alink GM, Franssen HJ, Roebroeks W. Evolution of Hominin Detoxification: Neanderthal and Modern Human Ah Receptor Respond Similarly to TCDD. Mol Biol Evol 2021; 38:1292-1305. [PMID: 33230523 PMCID: PMC8042735 DOI: 10.1093/molbev/msaa287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In studies of hominin adaptations to fire use, the role of the aryl hydrocarbon receptor (AHR) in the evolution of detoxification has been highlighted, including statements that the modern human AHR confers a significantly better capacity to deal with toxic smoke components than the Neanderthal AHR. To evaluate this, we compared the AHR-controlled induction of cytochrome P4501A1 (CYP1A1) mRNA in HeLa human cervix epithelial adenocarcinoma cells transfected with an Altai-Neanderthal or a modern human reference AHR expression construct, and exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We compared the complete AHR mRNA sequences including the untranslated regions (UTRs), maintaining the original codon usage. We observe no significant difference in CYP1A1 induction by TCDD between Neanderthal and modern human AHR, whereas a 150–1,000 times difference was previously reported in a study of the AHR coding region optimized for mammalian codon usage and expressed in rat cells. Our study exemplifies that expression in a homologous cellular background is of major importance to determine (ancient) protein activity. The Neanderthal and modern human dose–response curves almost coincide, except for a slightly higher extrapolated maximum for the Neanderthal AHR, possibly caused by a 5′-UTR G-variant known from modern humans (rs7796976). Our results are strongly at odds with a major role of the modern human AHR in the evolution of hominin detoxification of smoke components and consistent with our previous study based on 18 relevant genes in addition to AHR, which concluded that efficient detoxification alleles are more dominant in ancient hominins, chimpanzees, and gorillas than in modern humans.
Collapse
Affiliation(s)
- Jac M M J G Aarts
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands.,Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Gerrit M Alink
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Henk J Franssen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Wil Roebroeks
- Human Origins Group, Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Nøstbakken OJ, Rasinger JD, Hannisdal R, Sanden M, Frøyland L, Duinker A, Frantzen S, Dahl LM, Lundebye AK, Madsen L. Levels of omega 3 fatty acids, vitamin D, dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk-benefit assessments of oily seafood. ENVIRONMENT INTERNATIONAL 2021; 147:106322. [PMID: 33348102 DOI: 10.1016/j.envint.2020.106322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Oily seafood is an important food source which contains several key nutrients beneficial for human health. On the other hand, oily seafood also contains persistent organic pollutants (POPs), including the dioxin-like compounds (DLCs) polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like-polychlorinated biphenyls (dl-PCBs), potentially detrimental to human health. For a comprehensive comparison of the beneficial and potentially adverse health effects of seafood consumption, risk-benefit analyses are necessary. Risk-benefit analyses require reliable quantitative data and sound knowledge of uncertainties and potential biases. Our dataset comprised more than 4000 analyses of DLCs and more than 1000 analyses each of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and vitamin D in the three most important Norwegian commercial oily seafood species: Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus) and farmed Atlantic salmon (Salmo salar). The levels of several DLC congeners were below the limit of quantification (LOQ), making estimation of true levels challenging. We demonstrate that the use of upper bound substitution of censored data will overestimate, while lower bound substitution will underestimate the actual levels of DLCs. Therefore, we implement an alternative robust statistical method by combining Maximum Likelihood Estimation, Regression on Order Statistics and Kaplan-Meier analyses, which is better suited for providing estimations of levels of these contaminants in seafood. Moreover, we illustrate the impact of the toxic equivalency factor (TEF) system on estimation of the sums of DLCs by comparing the TEF system to an alternative system of relative effect potency (REP) factors (Consensus Toxicity Factors). The levels of nutrients and contaminants were related to adequate intake (AI) and tolerable weekly intake (TWI), respectively. We used AI and the TWI values established by the European Food Safety Authority (EFSA). The benefit and the risk were further viewed in the context of the Norwegian average intake of oily fish, and the Norwegian governmental official dietary recommendations of oily fish. Our results showed that both benefit and risk are met at the levels found of nutrients and DLCs in oily seafood. The comprehensive quantitative data presented here will be a key for future risk-benefit assessment of oily fish consumption. Together, our results underline that a refined formalized integrative risk-benefit assessment of oily fish in the diet is warranted, and that the data and methodology presented in this study are highly relevant for future integrated and multidisciplinary assessment of both risks and benefits of seafood consumption for human health.
Collapse
Affiliation(s)
| | | | - R Hannisdal
- Institute of Marine Research, Bergen, Norway
| | - M Sanden
- Institute of Marine Research, Bergen, Norway
| | - L Frøyland
- Institute of Marine Research, Bergen, Norway
| | - A Duinker
- Institute of Marine Research, Bergen, Norway
| | - S Frantzen
- Institute of Marine Research, Bergen, Norway
| | - L M Dahl
- Institute of Marine Research, Bergen, Norway
| | | | - L Madsen
- Institute of Marine Research, Bergen, Norway; Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Sun S, Cao R, Lu X, Zhang Y, Gao Y, Chen J, Zhang H. Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:116344. [PMID: 33453698 DOI: 10.1016/j.envpol.2020.116344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The concentrations and distribution profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were measured in representative animal origin foodstuffs randomly collected from markets located in five regions of the Chinese mainland during 2018-2019. The collected foodstuffs were classified into 11 pools consisting of pork, beef, mutton, poultry meat, chicken eggs, pure milk, mixed animal fat, fish, shrimp, shellfish, and cephalopods. The levels of tri-to octa-CDD/Fs (∑PCDD/Fs), tri-to deca-CBs (∑PCBs), and WHO-TEQ in the collected animal foods were found to be in the ranges of 0.4-14.3 pg/g, 0.04-2.8 ng/g, and 0.013-0.75 pg/g on a fresh weight basis, respectively. The concentrations of PCDD/Fs and PCBs in most of the animal food groups from coastal regions were obviously higher than those from inland regions. Remarkable differences in the homologue and congener distribution of PCDD/Fs and PCBs were observed between terrestrial and aquatic animal foods. The dietary intakes of WHO-TEQ via consumption of animal foods by a standard adult in the five regions were estimated to be in the range of 3.57-19.63 pg WHO-TEQ/kg body weight/month. Consumption of the aquatic animal food and pork categories contributed most of the estimated dietary intakes of WHO-TEQ in the coastal regions, whereas consumption of beef, mutton, and milk made up the primary contributions in Northwest region.
Collapse
Affiliation(s)
- Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
8
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
9
|
Gouukon Y, Yasuda MT, Yasukawa H, Terasaki M. Occurrence and AhR activity of brominated parabens in the Kitakami River, North Japan. CHEMOSPHERE 2020; 249:126152. [PMID: 32062214 DOI: 10.1016/j.chemosphere.2020.126152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 05/06/2023]
Abstract
Parabens are used as preservatives in pharmaceuticals and personal care products (PPCPs). Parabens react with aqueous chlorine, which is used in disinfection processes, leading to the formation of halogenated parabens. In the presence of Br-, parabens and HOBr (formed via oxidation of Br-) can react to form brominated parabens. Brominated parabens may result in pollution of river water through effluent discharge from sewage treatment plants. The present study involved measuring brominated paraben concentrations in the Kitakami River, northern Japan, which flows through urban and agricultural areas. Aryl hydrocarbon receptor (AhR) agonist activity was also assessed using a yeast (YCM3) reporter gene and HepG2 ethoxyresorufin O-deethylase (EROD) assays. Dibrominated methylparaben (Br2MP), ethylparaben (Br2EP), propylparaben (Br2PP), butylparaben (Br2BP), and benzylparaben (Br2BnP), and monobrominated benzylparaben (Br1BnP) were detected in 25-100% of river samples during the sampling period from 2017 to 2018 at median concentrations of 8.1-28 ng/L; the highest concentrations were measured during the low flow season (November) in urban areas (P < 0.01). In the yeast assay, 12 compounds exhibited AhR activity (activity relative to β-naphthoflavone; 4.4 × 10-4-7.1 × 10-1). All monobrominated parabens exhibited higher activity than their parent parabens, however, further bromination reduced or eliminated their activity. In the EROD assay, five compounds caused significant induction of CYP1A-dependent activity at 100 μM (P < 0.05). Monobrominated i-butylparaben (Br1iBP) and s-butylparaben (Br1sBP), Br1BnP, and Br2BP exhibited activity in both yeast and EROD assays. We found novel aspects of brominated parabens originating from PPCPs.
Collapse
Affiliation(s)
| | - Michiko T Yasuda
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Japan
| | - Hiro Yasukawa
- Graduate School of Arts and Sciences, Iwate University, Japan
| | | |
Collapse
|
10
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
11
|
van den Brand AD, Rubinstein E, de Jong PC, van den Berg M, van Duursen MBM. Primary endometrial 3D co-cultures: A comparison between human and rat endometrium. J Steroid Biochem Mol Biol 2019; 194:105458. [PMID: 31465845 DOI: 10.1016/j.jsbmb.2019.105458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Human and rat reproductive systems differ significantly with respect to hormonal cyclicity and endometrial cell behavior. However, species-differences in endometrial cell responses upon hormonal stimulation and exposure to potentially toxic compounds are poorly characterized. In this study, human and rat endometrial hormonal responses were assessed in vitro using a 3D co-culture model of primary human and rat endometrial cells. The models were exposed to the aryl hydrocarbon receptor (AHR) ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), laquinimod, and its AHR active metabolite DELAQ. In both the human and rat endometrial models, estrogen receptor and progesterone receptor gene expression was modulated by the hormonal treatments, comparable to the in vivo situation. AHR gene expression in the human endometrial model did not change when exposed to hormones. In contrast, AHR expression decreased 2-fold in the rat model when exposed to predominantly progesterone, which resulted in a 2.8-fold attenuation of gene expression induction of cytochrome P450 1A1 (CYP1A1) by TCDD. TCDD and DELAQ, but not laquinimod, concentration-dependently induced CYP1A1 gene expression in both human and rat endometrial models. Interestingly, the relative degree of DELAQ to induce CYP1A1 was higher than that of TCDD in the human model, while it was lower in the rat model. These data clearly show species-differences in response to hormones and AHR ligands between human and rat endometrial cells in vitro, which might greatly affect the applicability of the rat as translational model for human endometrial effects. This warrants further development of human relevant, endometrium-specific test methods for risk assessment purposes.
Collapse
Affiliation(s)
- A D van den Brand
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands.
| | - E Rubinstein
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - P C de Jong
- St. Antonius Hospital, Nieuwegein, the Netherlands
| | - M van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| | - M B M van Duursen
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands; Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Liu X, Zhang L, Li J, Wang J, Meng G, Chi M, Zhao Y, Wu Y. Relative Effect Potency Estimates for Dioxin-Like Compounds in Pregnant Women with Gestational Diabetes Mellitus and Blood Glucose Outcomes Based on a Nested Case-control Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7792-7802. [PMID: 31149810 DOI: 10.1021/acs.est.9b00988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To improve the applicability of the toxic equivalents principle for human health risk assessment, systemic relative effect potencies (REPs) for dioxin-like compounds (DLCs) deriving from human in vivo data are required. A prospective nested case-control study was performed to determine REPs from the human serum concentration of DLCs using gestational diabetes mellitus (GDM) and fasting blood glucose (FBG) as the end points of concern. Serum concentration of 29 DLCs from 77 cases and 154 controls were measured. Logistic and linear regression were used to estimate the effects of individual congeners on GDM and FBG, respectively. The REPs based on GDM and FBG were calculated from the ratios of regression coefficients, βi (DLCs)/βTCDD. Two sets of consistent human serum-based REPs, that is, GDM-REP and FBG-REP, were established and largely agree with REPs from other human studies. These human-serum REPs show much smaller variation compared to the 4 to 5 orders of magnitude span in REPs database for the present WHO-TEF determination. Moreover, the established REPs fitted well with WHO-TEFs, especially for polychlorinated dibenzo- p-dioxins, furans. These REPs reflecting real human exposure scenarios exhibited validity and could be used to improve health risk assessment of human body burden of DLCs.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control , Shenzhen 518020 , China
| | - Guimin Meng
- Beijing Fengtai Hospital obstetrics and gynecology , Beijing 100071 , China
| | - Min Chi
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- Taiyuan Center for Disease Control and Prevention , Taiyuan 030000 , China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment , China National Center for Food Safety Risk Assessment , Beijing 100021 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
13
|
Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:353-362. [PMID: 30849655 DOI: 10.1016/j.ecoenv.2019.02.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 05/25/2023]
Abstract
The liver is one of the major targets of hormones, including thyroid hormones (THs), and many industrial chemicals, such as endocrine-disrupting chemicals. Those compounds may permeate the placenta barrier and pose a risk for embryonic development. Therefore, it is necessary to assess the toxic effects of those kind of industrial chemicals during liver development. In this study, to mimic liver specification in vitro, we differentiated human embryonic stem cells (ESCs) into functional hepatocyte-like cells. We performed this differentiation process in presence of two THs, triiodothyronine (T3) and thyroxine (T4), with the purpose of identifying biomarkers for toxicity screening. TH exposure (3, 30 and 300 nM) yielded to hepatocytes with impaired glycogen storage ability and abnormal lipid droplets' accumulation. Global gene expression analysis by RNA-seq identified a number of genes responsible for hepatic differentiation and function which were affected by 30 nM T3 and T4. Those differentially expressed genes were used to assess the potential developmental liver toxicity of two famous environmental pollutants, 2, 2, 4, 4-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209), at 10 nM to 1 μM treatments. Our findings demonstrate that BDE-47 and BDE-209, dysregulated pathways such as "chemical carcinogenesis", "steroid hormone biosynthesis" and "drug metabolism-cytochrome P450". Moreover, we were able to identify a set of 17 biomarkers, very useful to predict the potential developmental hepatotoxicity of industrial chemicals.
Collapse
Affiliation(s)
- Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Shi H, Hardesty JE, Jin J, Head KZ, Falkner KC, Cave MC, Prough RA. Concentration dependence of human and mouse aryl hydrocarbon receptor responsiveness to polychlorinated biphenyl exposures: Implications for aroclor mixtures. Xenobiotica 2019; 49:1414-1422. [PMID: 30991879 DOI: 10.1080/00498254.2019.1566582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Aryl hydrocarbon receptor (AhR) ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs), are endocrine disrupting chemicals associated with nonalcoholic fatty liver disease. This study documents the species-specific differences between mouse (high affinity mAhR) and human AhR (hAhR) activation by PCB congeners and Aroclor mixtures. 2. AhR activation by TCDD or PCBs 77, 81, 114, 114, 126, and 169 was measured using luciferase reporter constructs transfected into either Hepa1c1c7 mouse or HepG2 human liver cell lines. The EC50 values were lower in Hepa1c1c7 cells than HepG2 cells for all compounds tested except PCB 81. The results for TCDD and PCB 126 were validated in primary human and mouse hepatocytes by measuring CYP1A1 gene transcript levels. 3. Because humans are exposed to PCB mixtures, several mixtures (Aroclors 1254; 1260; and 1260 + 0.1% PCB126 each at 10 µg/ml) were then tested. Neither Aroclor 1254 nor Aroclor 1260 increased luciferase activity by the transfected AhR reporter construct. The Aroclor 1260 + 0.1% PCB 126 mixture induced mAhR-mediated transactivation, but not hAhR activation in cell lines. 4. In summary, significant concentration-dependent differences exist between human and mouse AhR activation by PCBs. Relative effect potencies differed, in some cases, from published toxic equivalency factors.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Josiah E Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville , KY , USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Kimberly Z Head
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville , KY , USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, University of Louisville School of Medicine , Louisville , KY , USA
| | - Russell Allen Prough
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine , Louisville , KY , USA
| |
Collapse
|
15
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
16
|
Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica 2018; 49:863-876. [DOI: 10.1080/00498254.2018.1503360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Pan
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Jin Yu Chieng
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
17
|
Brown MR, Garside H, Thompson E, Atwal S, Bean C, Goodall T, Sullivan M, Graham MJ. From the Cover: Development and Application of a Dual Rat and Human AHR Activation Assay. Toxicol Sci 2018; 160:408-419. [PMID: 29029351 DOI: 10.1093/toxsci/kfx188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Significant prolonged aryl hydrocarbon receptor (AHR) activation, classically exhibited following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin, can cause a variety of undesirable toxicological effects. Novel pharmaceutical chemistries also have the potential to cause activation of AHR and consequent toxicities in pre-clinical species and man. Previous methods either employed relatively expensive and low-throughput primary hepatocyte dosing with PCR endpoint, or low resolution overexpressing reporter gene assays. We have developed, validated and applied an in vitro microtitre plate imaging-based medium throughput screening assay for the assessment of endogenous species-specific AHR activation potential via detection of induction of the surrogate transcriptional target Cytochrome P450 CYP1A1. Routine testing of pharmaceutical drug development candidate chemistries using this assay can influence the chemical design process and highlight AHR liabilities. This assay should be introduced such that human AHR activation liability is flagged early for confirmatory testing.
Collapse
Affiliation(s)
- Martin R Brown
- Discovery Sciences, AstraZeneca R&D Darwin, Cambridge CB4 0WG, UK
| | - Helen Garside
- Discovery Safety & Metabolism, AstraZeneca R&D, Macclesfield, Cheshire SK10 4TG, UK
| | - Emma Thompson
- Discovery Safety & Metabolism, AstraZeneca R&D, Macclesfield, Cheshire SK10 4TG, UK
| | - Saseela Atwal
- Discovery Safety & Metabolism, AstraZeneca R&D, Macclesfield, Cheshire SK10 4TG, UK
| | - Chloe Bean
- AstraZeneca R&D Charnwood, Loughborough, Leics LE11 5RH, UK
| | - Tony Goodall
- AstraZeneca R&D Charnwood, Loughborough, Leics LE11 5RH, UK
| | | | - Mark J Graham
- AstraZeneca R&D Charnwood, Loughborough, Leics LE11 5RH, UK
| |
Collapse
|
18
|
You YA, Mohamed EA, Rahman MS, Kwon WS, Song WH, Ryu BY, Pang MG. 2,3,7,8-Tetrachlorodibenzo-p-dioxin can alter the sex ratio of embryos with decreased viability of Y spermatozoa in mice. Reprod Toxicol 2018; 77:130-136. [PMID: 29505796 DOI: 10.1016/j.reprotox.2018.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a reproductive and developmental toxicant that can alter the sex ratio of offspring (proportion of male offspring). We hypothesized that the alteration of sex ratio is associated with sex chromosome ratio of live spermatozoa affected by exposure to TCDD. After exposure to TCDD we analyzed simultaneously sperm sex chromosome constitution and viability, and evaluated sperm sex chromosome ratio association with embryo sex ratio in mice. Short-term exposure to TCDD affects the decreased sperm motility and viability, and the increased acrosome reaction. Interestingly, Y spermatozoa survived shorter than X spermatozoa at high concentrations of TCDD. Moreover, the decreased sex ratio of embryos was associated with the short lifespan of Y spermatozoa. Our results suggest that TCDD may affect the fertility of Y spermatozoa more than X spermatozoa. Further studies are needed to compare the difference of fertilizing capability between X and Y spermatozoa by the effect of TCDD.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Elsayed A Mohamed
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Won-Hee Song
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Republic of Korea.
| |
Collapse
|
19
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
20
|
Hausen J, Otte JC, Legradi J, Yang L, Strähle U, Fenske M, Hecker M, Tang S, Hammers-Wirtz M, Hollert H, Keiter SH, Ottermanns R. Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4023-4036. [PMID: 28391457 DOI: 10.1007/s11356-017-8977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/03/2017] [Indexed: 05/10/2023]
Abstract
In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.
Collapse
Affiliation(s)
- Jonas Hausen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jens C Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jessica Legradi
- Environment and Health, VU Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, the Netherlands
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group for Translational Medicine and Pharmacology, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Kackertstraße 10, 52072, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
21
|
Aguirre-Martínez GV, Reinardy HC, Martín-Díaz ML, Henry TB. Response of gene expression in zebrafish exposed to pharmaceutical mixtures: Implications for environmental risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:471-479. [PMID: 28458231 DOI: 10.1016/j.ecoenv.2017.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 05/26/2023]
Abstract
Complex mixtures of pharmaceutical chemicals in surface waters indicate potential for mixture effects in aquatic organisms. The objective of the present study was to evaluate whether effects on target gene expression and enzymatic activity of individual substances at environmentally relevant concentrations were additive when mixed. Expression of zebrafish cytochrome P4501A (cyp1a) and vitellogenin (vtg) genes as well as activity of ethoxyresorufin-O-deethylase (EROD) were analyzed after exposure (96h) to caffeine-Caf, ibuprofen-Ibu, and carbamazepine-Cbz (0.05 and 5µM), tamoxifen-Tmx (0.003 and 0.3µM), and after exposure to pharmaceutical mixtures (low mix: 0.05µM of Caf, Ibu, Cbz and 0.003µM of Tmx, and high mix: 5µM of Caf, Ibu, Cbz and 0.3µM of Tmx). Pharmaceuticals tested individually caused significant down regulation of both cyp1a and vtg, but EROD activity was not affected. Exposure to low mix did not cause a significant change in gene expression; however, the high mix caused significant up-regulation of cyp1a but did not affect vtg expression. Up-regulation of cyp1a was consistent with induction of EROD activity in larvae exposed to high mix. The complex mixture induced different responses than those observed by the individual substances. Additive toxicity was not supported, and results indicate the need to evaluate complex mixtures rather than models based on individual effects, since in environment drugs are not found in isolation and the effects of their mixtures is poorly understood.
Collapse
Affiliation(s)
- Gabriela V Aguirre-Martínez
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; Health Science Faculty, Arturo Prat University, Casilla 121, 1110939 Iquique, Chile; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - Helena C Reinardy
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; Department of Arctic Technology, UNIS, Longyearbyen N-9171, Norway
| | - M Laura Martín-Díaz
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain; Facultad Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain
| | - Theodore B Henry
- School of Biomedical and Biological Science, 411 Davy Building, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom; School of Life Sciences, Heriot-Watt University, 3.05 William Perkin Building, Edinburgh EH14 4AS, United Kingdom; Center for Environmental Biotechnology, University of Tennessee, Knoxville TN 37996, USA; Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
22
|
One TEF concept does not fit all: The case for human risk assessment of polychlorinated biphenyls. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Fader KA, Zacharewski TR. Beyond the Aryl Hydrocarbon Receptor: Pathway Interactions in the Hepatotoxicity of 2,3,7,8-Tetrachlorodibenzo- p-dioxin and Related Compounds. CURRENT OPINION IN TOXICOLOGY 2017; 2:36-41. [PMID: 28948239 PMCID: PMC5609723 DOI: 10.1016/j.cotox.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical ligand for a group of environmental halogenated aromatic hydrocarbon contaminants which elicit hepatotoxicity and other toxic responses through activation of the aryl hydrocarbon receptor (AhR). Despite the conservation of the AhR and its signaling pathway, TCDD-elicited differential gene expression networks are species-specific, consistent with differences in sensitivity and toxic responses between species. This review integrates gene expression studies with complementary phenotypic analyses (e.g., metabolomics, clinical biochemistry, and histopathology) to elucidate the pathways through which TCDD and related compounds cause hepatotoxicity beyond AhR activation. We propose that AhR-mediated toxicity is a collective response to the cumulative burden of metabolic reprogramming across multiple pathways. Consequently, nutrition, health status, and genetic background establish the basis for differences in sensitivity and predisposition to adverse outcomes between species, sub-populations, tissues, and cells.
Collapse
Affiliation(s)
- Kelly A. Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824
| | - Timothy R. Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
24
|
Wimmerová S, van den Berg M, Chovancová J, Patayová H, Jusko TA, van Duursen MBM, Palkovičová Murínová Ľ, Canton RF, van Ede KI, Trnovec T. Relative effect potency estimates of dioxin-like activity for dioxins, furans, and dioxin-like PCBs in adults based on cytochrome P450 1A1 and 1B1 gene expression in blood. ENVIRONMENT INTERNATIONAL 2016; 96:24-33. [PMID: 27588699 PMCID: PMC6047354 DOI: 10.1016/j.envint.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the risk assessment of PCDDs, PCDFs, and dioxin-like (DL) PCBs, regulatory authorities support the use of the toxic equivalency factor (TEF)-scheme derived from a heterogeneous data set of the relative effect potency (REPs) estimates. OBJECTIVES We sought to determine REPs for dioxin-like compounds (DLCs) using expression of cytochrome P450 (CYP) 1A1 and 1B1 mRNA in human peripheral blood mononuclear cells representing two different pathways. METHODS We used a sex and age adjusted regression-based approach comparing the strength of association between each DLC and the cytochrome P450 (CYP) 1A1 and 1B1 mRNA expression in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. RESULTS We calculated REPs based on CYP1A1 expression for 4 PCDDs, 8 PCDFs, and 1 PCB congener, and based on CYP1B1 expression for 5 PCDFs and 11 PCB congeners. REPs from CYP1A1 correlated with REPs previously derived from thyroid volume (ρ=0.85; p<0.001) and serum FT4 (ρ=0.77; p=0.009). The 13 log REPs from CYP1A1 correlated with log WHO-TEFs (r=0.63; p=0.015) and 11 log PCB REPs with PCB consensus toxicity factors (CTFs) for compounds with WHO-TEFs (r=0.80; p=0.003). The complete set of derived 56 log REPs correlated with the log CTFs (r=0.77; p=0.001) and log WHO-TEFs (r=0.81; p<0.001). CONCLUSIONS REPs calculated from thyroid and cytochrome P450 endpoints realistically reflect human exposure scenarios because they are based on human chronic and low-dose exposures. While the CYP 1A1 seems more suitable for toxicity evaluation of PCDD/Fs, the CYP 1B1 is more apt for PCDFs and PCBs and reflects different pathways.
Collapse
Affiliation(s)
- Soňa Wimmerová
- Slovak Medical University, Limbová 14, 83303 Bratislava, Slovakia.
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.176, 3508, TD, Utrecht, The Netherlands.
| | - Jana Chovancová
- Slovak Medical University, Limbová 14, 83303 Bratislava, Slovakia.
| | | | - Todd A Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Majorie B M van Duursen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.176, 3508, TD, Utrecht, The Netherlands.
| | | | - Rocio F Canton
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.176, 3508, TD, Utrecht, The Netherlands.
| | - Karin I van Ede
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.176, 3508, TD, Utrecht, The Netherlands.
| | - Tomáš Trnovec
- Slovak Medical University, Limbová 14, 83303 Bratislava, Slovakia.
| |
Collapse
|
25
|
van Ede KI, van Duursen MBM, van den Berg M. Evaluation of relative effect potencies (REPs) for dioxin-like compounds to derive systemic or human-specific TEFs to improve human risk assessment. Arch Toxicol 2016; 90:1293-305. [PMID: 27161441 PMCID: PMC4873528 DOI: 10.1007/s00204-016-1724-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 01/20/2023]
Abstract
Toxic equivalency factors (TEFs) are generally applied for estimating human risk of dioxins and dioxin-like compounds using systemic (e.g., blood) levels, even though these TEFs are established based on intake doses in rodent studies. This review shows that systemic relative effect potencies (REPs) can deviate substantially from intake REPs, but are similar to in vitro-derived REPs. Interestingly, the in vitro REPs for 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) and 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) are up to one order of magnitude higher than their in vivo REPs and WHO-TEFs, based on oral intake. In addition, clear species-differences in in vitro REPs were apparent for some congeners. Especially the human-derived REP for polychlorinated biphenyl 126 is one to two orders of magnitude lower than rodent REPs and its current WHO-TEF. Next, suggested adapted systemic or human-specific TEFs for these congeners were applied to calculate changes in systemic TEQ concentrations in studies from the USA, Germany and Japan and compared with either the JECFA TDI or USEPA RfD of TCDD. Overall, the effect of such TEF changes for these three congeners on total TEQ roughly balances each other out in the general population. However, results may be different for situations in which a specific group of congeners dominates. For those congeners that show a distinct deviation between either intake and systemic REPs or between rodent- and human-based in vitro REPs, we propose that especially REPs derived from human-based in vitro models are weighted more heavily in establishing systemic or human-specific TEF values to improve human health risk assessment.
Collapse
Affiliation(s)
- Karin I van Ede
- Division of Toxicology and Veterinary Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| | - Majorie B M van Duursen
- Division of Toxicology and Veterinary Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Martin van den Berg
- Division of Toxicology and Veterinary Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| |
Collapse
|
26
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
27
|
Larsson M, van den Berg M, Brenerová P, van Duursen MBM, van Ede KI, Lohr C, Luecke-Johansson S, Machala M, Neser S, Pěnčíková K, Poellinger L, Schrenk D, Strapáčová S, Vondráček J, Andersson PL. Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro screening of AhR-mediated effects in human and rodent cells. Chem Res Toxicol 2015; 28:641-50. [PMID: 25654323 DOI: 10.1021/tx500434j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Consensus toxicity factors (CTFs) were developed as a novel approach to establish toxicity factors for risk assessment of dioxin-like compounds (DLCs). Eighteen polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and biphenyls (PCBs) with assigned World Health Organization toxic equivalency factors (WHO-TEFs) and two additional PCBs were screened in 17 human and rodent bioassays to assess their induction of aryl hydrocarbon receptor-related responses. For each bioassay and compound, relative effect potency values (REPs) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin were calculated and analyzed. The responses in the human and rodent cell bioassays generally differed. Most notably, the human cell models responded only weakly to PCBs, with 3,3',4,4',5-pentachlorobiphenyl (PCB126) being the only PCB that frequently evoked sufficiently strong responses in human cells to permit us to calculate REP values. Calculated REPs for PCB126 were more than 30 times lower than the WHO-TEF value for PCB126. CTFs were calculated using score and loading vectors from a principal component analysis to establish the ranking of the compounds and, by rescaling, also to provide numerical differences between the different congeners corresponding to the TEF scheme. The CTFs were based on rat and human bioassay data and indicated a significant deviation for PCBs but also for certain PCDD/Fs from the WHO-TEF values. The human CTFs for 2,3,4,7,8-pentachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, and 1,2,3,4,7,8,9-heptachlorodibenzofuran were up to 10 times greater than their WHO-TEF values. Quantitative structure-activity relationship models were used to predict CTFs for untested WHO-TEF compounds, suggesting that the WHO-TEF value for 1,2,3,7,8-pentachlorodibenzofuran could be underestimated by an order of magnitude for both human and rodent models. Our results indicate that the CTF approach provides a powerful tool for condensing data from batteries of screening tests using compounds with similar mechanisms of action, which can be used to improve risk assessment of DLCs.
Collapse
Affiliation(s)
- Malin Larsson
- †Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Martin van den Berg
- ‡Endocrine Toxicology Group, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, NL-3508 TD Utrecht, The Netherlands
| | - Petra Brenerová
- #Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno, Czech Republic
| | - Majorie B M van Duursen
- ‡Endocrine Toxicology Group, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, NL-3508 TD Utrecht, The Netherlands
| | - Karin I van Ede
- ‡Endocrine Toxicology Group, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, NL-3508 TD Utrecht, The Netherlands
| | - Christiane Lohr
- ⊥Department of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sandra Luecke-Johansson
- §Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Miroslav Machala
- #Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno, Czech Republic
| | - Sylke Neser
- ⊥Department of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Kateřina Pěnčíková
- #Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno, Czech Republic
| | - Lorenz Poellinger
- §Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Dieter Schrenk
- ⊥Department of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Simona Strapáčová
- #Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno, Czech Republic
| | - Jan Vondráček
- #Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno, Czech Republic.,∥Department of Cytokinetics, Institute of Biophysics AS CR, 612 65 Brno, Czech Republic
| | | |
Collapse
|
28
|
van Ede K, Gaisch K, van den Berg M, van Duursen M. Reply to Koppe and Ten Tusscher's letter to the Editor concerning the use of human peripheral blood lymphocytes to determine relative effect potencies for dioxin like compounds. Toxicol Lett 2015; 232:544-5. [PMID: 25290575 DOI: 10.1016/j.toxlet.2014.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Karin van Ede
- Institute for Risk Assessment Sciences, Utrecht University, Toxicology, Yalelaan 104, 3584 CM Utrecht, Netherlands.
| | - Konrad Gaisch
- Institute for Risk Assessment Sciences, Utrecht University, Toxicology, Yalelaan 104, 3584 CM Utrecht, Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Toxicology, Yalelaan 104, 3584 CM Utrecht, Netherlands
| | - Majorie van Duursen
- Institute for Risk Assessment Sciences, Utrecht University, Toxicology, Yalelaan 104, 3584 CM Utrecht, Netherlands
| |
Collapse
|
29
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
30
|
Kakutani H, Aozasa O, Mizuno A, Akiyama E, Nakao T, Ohta S. In vitro and in vivo induction of cytochrome P450 by coplanar polychlorinated/brominated biphenyls (Co-PXBs) providing high TEQ in mother’s milk in Japan. Toxicology 2014; 324:68-75. [DOI: 10.1016/j.tox.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022]
|
31
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Jarvis IWH, Dreij K, Mattsson Å, Jernström B, Stenius U. Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology 2014; 321:27-39. [PMID: 24713297 DOI: 10.1016/j.tox.2014.03.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 01/27/2023]
Abstract
In this review we discuss the effects of exposure to complex PAH mixtures in vitro and in vivo on mechanisms related to carcinogenesis. Of particular concern regarding exposure to complex PAH mixtures is how interactions between different constituents can affect the carcinogenic response and how these might be included in risk assessment. Overall the findings suggest that the responses resulting from exposure to complex PAH mixtures is varied and complicated. More- and less-than additive effects on bioactivation and DNA damage formation have been observed depending on the various mixtures studied, and equally dependent on the different test systems that are used. Furthermore, the findings show that the commonly used biological end-point of DNA damage formation is insufficient for studying mixture effects. At present the assessment of the risk of exposure to complex PAH mixtures involves comparison to individual compounds using either a surrogate or a component-based potency approach. We discuss how future risk assessment strategies for complex PAH mixtures should be based around whole mixture assessment in order to account for interaction effects. Inherent to this is the need to incorporate different experimental approaches using robust and sensitive biological endpoints. Furthermore, the emphasis on future research should be placed on studying real life mixtures that better represent the complex PAH mixtures that humans are exposed to.
Collapse
Affiliation(s)
- Ian W H Jarvis
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Åse Mattsson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Bengt Jernström
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
33
|
van Ede KI, Gaisch KPJ, van den Berg M, van Duursen MBM. Differential relative effect potencies of some dioxin-like compounds in human peripheral blood lymphocytes and murine splenic cells. Toxicol Lett 2014; 226:43-52. [PMID: 24472611 DOI: 10.1016/j.toxlet.2014.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/29/2022]
Abstract
Human risk assessment for dioxin-like compounds is typically based on the concentration measured in blood serum multiplied by their assigned toxic equivalency factor (TEF). Consequently, the actual value of the TEF is very important for accurate human risk assessment. In this study we investigated the effect potencies of three polychlorinated dibenzo-p-dioxins (PCDDs), six polychlorinated dibenzofurans (PCDFs) and 10 polychlorinated biphenyls (PCBs) relative to the reference congener 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) in in vitro exposed primary human peripheral blood lymphocytes (PBLs) and mouse splenic cells. REPs were determined based on cytochrome P450 (CYP) 1A1, 1B1 and aryl hydrocarbon receptor repressor (AhRR) gene expression as well as CYP1A1 activity in human PBLs and Cyp1a1 gene expression in murine splenic cells. Estimated median human REPs for 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (1234678-HpCDD), 2,3,4,7,8,-pentachlorodibenzofuran (23478-PeCDF), 1,2,3,4,7,8-hexachlorodibenzofuran (123478-HxCDF) and 1,2,3,4,7,8,9-heptachlorodibenzofuran (1234789-HpCDF) were with 0.1, 1.1, 1 and 0.09, respectively, significantly higher compared to those estimated for mouse with REPs of 0.05, 0.45, 0.09 and 0.04, respectively. Opposite to these results, the estimated median human REP of 3,3',4,4',5-pentachlorobiphenyl (PCB 126), was with 0.001 30-fold lower compared to the mouse REP of 0.03. Furthermore, human REPs for 1234678-HpCDD, 23478-PeCDF, 123478-HxCDF, 1234789-HpCDF and PCB 126 were all outside the ± half log uncertainty range that is taken into account in the WHO-assigned TEFs. Together, these data show congener- and species-specific differences in REPs for some, but not all dioxin-like congeners tested. This suggests that, more emphasis should be placed on human-tissue derived REPs in the establishment of a TEF for human risk assessment.
Collapse
Affiliation(s)
- Karin I van Ede
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Konrad P J Gaisch
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Majorie B M van Duursen
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
34
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Gábelová A, Poláková V, Prochazka G, Kretová M, Poloncová K, Regendová E, Luciaková K, Segerbäck D. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation. Toxicol Appl Pharmacol 2013; 271:1-12. [DOI: 10.1016/j.taap.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
|
36
|
Forgacs AL, Dere E, Angrish MM, Zacharewski TR. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol Sci 2013; 133:54-66. [PMID: 23418086 DOI: 10.1093/toxsci/kft028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
37
|
Nault R, Kim S, Zacharewski TR. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague-Dawley rats and C57BL/6 mice. Toxicol Appl Pharmacol 2012; 267:184-91. [PMID: 23238561 DOI: 10.1016/j.taap.2012.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20μg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
38
|
Tuomisto J, Tuomisto JT. Is the fear of dioxin cancer more harmful than dioxin? Toxicol Lett 2012; 210:338-44. [PMID: 22387160 DOI: 10.1016/j.toxlet.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/08/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a proven animal carcinogen. Occupational cohorts with the highest exposures imply that there is a small risk of all cancers combined, but it is difficult to pinpoint the confounding effect of the main chemicals. Studies after major accidents do not unequivocally confirm this risk. The risks to populations at the current dioxin levels seem trivial if present at all. There is increasing evidence that the aryl hydrocarbon receptor (AhR), i.e. the so called "dioxin receptor", is a physiological transcription factor exerting important functions in the body. Consequently a certain level of AhR activation may be beneficial rather than harmful. This challenges the wisdom of excessive regulation of dioxin levels in certain foods and nutrients. This could pose indirect nutritional risks, in fact being more harmful than even the worst case predictions of the putative cancer risks attributable to dioxins.
Collapse
Affiliation(s)
- Jouko Tuomisto
- Department of Environmental Health, National Institute for Health and Welfare (THL), P.O. Box 95, FI-70701 Kuopio, Finland.
| | | |
Collapse
|
39
|
Black MB, Budinsky RA, Dombkowski A, Cukovic D, LeCluyse EL, Ferguson SS, Thomas RS, Rowlands JC. Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2012; 127:199-215. [PMID: 22298810 DOI: 10.1093/toxsci/kfs069] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A toxicogenomics approach was used to qualitatively and quantitatively compare the gene expression changes in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Hepatocytes from five individual rats and five individual humans were exposed for 24 h to 11 concentrations of TCDD ranging from 0.00001 to 100nM and a vehicle control. Gene expression changes were analyzed using whole-genome microarrays containing 13,002 orthologs. Significant changes in expression of individual orthologs at any concentration (fold change [FC] ± 1.5 and false discovery rate < 0.05) were higher in the rat (1547) compared with human hepatocytes (475). Only 158 differentially expressed orthologs were common between rats and humans. Enrichment analysis was performed on the differentially expressed orthologs in each species with 49 and 34 enriched human and rat pathways, respectively. Only 12 enriched pathways were shared between the two species. The results demonstrate significant cross-species differences in expression at both the gene and pathway level. Benchmark dose analysis of gene expression changes showed an average 18-fold cross-species difference in potency among differentially expressed orthologs with the rat more sensitive than the human. Similar cross-species differences in potency were observed for signaling pathways. Using the maximum FC in gene expression as a measure of efficacy, the human hepatocytes showed on average a 20% lower efficacy among the individual orthologs showing differential expression. The results provide evidence for divergent cross-species gene expression changes in response to TCDD and are consistent with epidemiological and clinical evidence showing humans to be less sensitive to TCDD-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michael B Black
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Korashy HM, El-Kadi AO. Transcriptional and posttranslational mechanisms modulating the expression of the cytochrome P450 1A1 gene by lead in HepG2 cells: A role of heme oxygenase. Toxicology 2012; 291:113-21. [DOI: 10.1016/j.tox.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
41
|
Forgacs AL, Kent MN, Makley MK, Mets B, DelRaso N, Jahns GL, Burgoon LD, Zacharewski TR, Reo NV. Comparative metabolomic and genomic analyses of TCDD-elicited metabolic disruption in mouse and rat liver. Toxicol Sci 2011; 125:41-55. [PMID: 21964420 DOI: 10.1093/toxsci/kfr262] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) elicits a broad spectrum of species-specific effects that have not yet been fully characterized. This study compares the temporal effects of TCDD on hepatic aqueous and lipid metabolite extracts from immature ovariectomized C57BL/6 mice and Sprague-Dawley rats using gas chromatography-mass spectrometry and nuclear magnetic resonance-based metabolomic approaches and integrates published gene expression data to identify species-specific pathways affected by treatment. TCDD elicited metabolite and gene expression changes associated with lipid metabolism and transport, choline metabolism, bile acid metabolism, glycolysis, and glycerophospholipid metabolism. Lipid metabolism is altered in mice resulting in increased hepatic triacylglycerol as well as mono- and polyunsaturated fatty acid (FA) levels. Mouse-specific changes included the induction of CD36 and other cell surface receptors as well as lipases- and FA-binding proteins consistent with hepatic triglyceride and FA accumulation. In contrast, there was minimal hepatic fat accumulation in rats and decreased CD36 expression. However, choline metabolism was altered in rats, as indicated by decreases in betaine and increases in phosphocholine with the concomitant induction of betaine-homocysteine methyltransferase and choline kinase gene expression. Results from these studies show that aryl hydrocarbon receptor-mediated differential gene expression could be linked to metabolite changes and species-specific alterations of biochemical pathways.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee JS, Kim EY, Iwabuchi K, Iwata H. Molecular and functional characterization of aryl hydrocarbon receptor nuclear translocator 1 (ARNT1) and ARNT2 in chicken (Gallus gallus). Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:269-79. [PMID: 21134488 DOI: 10.1016/j.cbpc.2010.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022]
Abstract
Our previous studies have provided evidence that birds have two isoforms of aryl hydrocarbon receptors (AHR1 and AHR2) and AHR nuclear translocators (ARNT1 and ARNT2) that potentially mediate toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. We have also shown that while both in vitro-expressed chicken AHR1 (ckAHR1) and AHR2 (ckAHR2) exhibit binding affinities to TCDD, only ckAHR1 but not ckAHR2 showed a TCDD-dose-dependent transactivation potency of chicken cytochrome P450 1A5 (ckCYP1A5) in in vitro reporter gene assays. To explore the molecular mechanism of functional difference in the two ckAHRs, the present study investigated the molecular characteristics and function of chicken ARNT (ckARNT) that is a potential dimerization partner for the activation of ckAHR. The full-length ckARNT1 and ckARNT2 cDNAs were isolated and their alternative splice variants were also identified. The ckARNT1 transcript was ubiquitously expressed in various tissues, but ckARNT2 showed restricted expressions in brain, kidney and eye, indicating a similar expression pattern to mammalian ARNTs. The expressions of tagged-ckARNT1 and -ckARNT2 were confirmed in a chicken hepatoma LMH cells by western blot analyses, and their interactions with each ckAHR and a specific recognition DNA element, xenobiotic response element (XRE), were examined by gel shift assays. The result showed that ckARNT1 and ckARNT2 dimerize with each ckAHR isoform and bind with the XRE in a TCDD-dependent manner. Hence, we conclude that functional loss on the dimerization with ckARNTs or the XRE binding is not the major cause of the deficient TCDD-dependency of ckAHR2 for the transactivation. Furthermore, in vitro reporter gene assays showed that transfected ckARNT1 failed to modulate the transcriptional induction of ckAHR-mediated ckCYP1A5 gene by TCDD in COS-7 and LMH cells, whereas ckARNT2 could potentiate the TCDD-dependent response in COS-7 but not in LMH cells. This suggests that ckARNT2 has a distinct role from ckARNT1 in AHR signaling pathway and in a cell-specific mode of action.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Laboratory of Environmental Toxicology, Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | |
Collapse
|
43
|
Aly HAA, Khafagy RM. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: Possible role of mitochondrial fractions of Sertoli cells. Toxicol Appl Pharmacol 2011; 252:273-80. [PMID: 21382395 DOI: 10.1016/j.taap.2011.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15nM) of TCDD for 6, 12 or 24h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, γ-GT and β-glucuronidase activities, GSH content and Δψ(m) were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. γ-GT and β-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the Δψ(m) was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases Δψ(m), COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|
44
|
Sutter CH, Bodreddigari S, Sutter TR, Carlson EA, Silkworth JB. Analysis of the CYP1A1 mRNA dose-response in human keratinocytes indicates that relative potencies of dioxins, furans, and PCBs are species and congener specific. Toxicol Sci 2010; 118:704-15. [PMID: 20819910 DOI: 10.1093/toxsci/kfq262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reports indicate that toxic equivalency factors (TEFs) based primarily on rodent data do not accurately predict in vitro human responsiveness to certain dioxin-like chemicals (DLCs). To investigate this in cells responsive to dioxins and relevant to chloracne, normal human epidermal keratinocytes were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and several DLCs, each with a TEF value of 0.1, representing three classes of congeners. We estimated half maximal effective concentration (EC50)-based donor-specific relative potency (REP) values for cytochrome P450 1A1 (CYP1A1) messenger RNA (mRNA) induction for TCDD, 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,6,7,8-hexachlorodibenzofuran (HxCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). We also determined EC50-based population-level REP values (n = 4) for CYP1A1 mRNA induction for TCDD, HxCDF, and PCB 126. Furthermore, an alternative factor, the relative threshold factor (RTF) based on the low end (threshold) of the dose-response curve, was calculated. Our results demonstrated that HxCDF had a population-based REP value of 0.98, 9.8-fold higher than its assigned TEF value of 0.1. Conversely, PCB 126 had an REP value of 0.0027 and an RTF of 0.0022, 37-fold and 45-fold less than its assigned TEF of 0.1, respectively. The REP values for HxCDD and TCDF were 0.24 and 0.10, respectively, similar to their assigned value of 0.1. Therefore, although the DLCs tested in the current study all possessed the same assigned TEF value of 0.1, congener-specific differences in REPs and RTFs were observed for human keratinocytes. These congener-specific discrepancies are likely because of differences in interspecies factors that have yet to be defined.
Collapse
Affiliation(s)
- Carrie H Sutter
- Department of Biological Sciences and W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, Tennessee 38152-3560, USA.
| | | | | | | | | |
Collapse
|
45
|
Budinsky RA, LeCluyse EL, Ferguson SS, Rowlands JC, Simon T. Human and rat primary hepatocyte CYP1A1 and 1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran. Toxicol Sci 2010; 118:224-35. [PMID: 20705892 DOI: 10.1093/toxsci/kfq238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concentration dose response for aryl hydrocarbon receptor (AHR)-mediated CYP1A1 and CYP1A2 messenger RNA (mRNA) induction and enzyme activity was determined in primary cultures of rat and human hepatocytes for 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,3,7,8-tetrachlorodibenzofuran. Eleven different congener concentrations from 0.00001 to 100 nM were used, thus spanning seven orders of magnitude. The Hill model was used to obtain values of EC(x) and maximal response from the individual data sets. No-observed effect concentration values were derived using several statistical methods including Dunnett's test, the Welch-Aspin test, and step-down bilinear regression. Thresholds were estimated using baseline projection methods and a "hockey stick" fitting method. Human hepatocytes were less responsive and less sensitive with respect to CYP1A1 activity and mRNA induction than rats. On the other hand, the human CYP1A2 response was more robust than the response in rats but generally less sensitive. These data allow an evaluation of relative species sensitivities for developing interspecies toxicodynamic adjustment factors, for assessing AHR activation thresholds, and for evaluating relative congener potencies. Overall, these data support the position that humans are less sensitive than rats to these AHR-dependent end points and support the use of a data-derived adjustment factor of 1.0 or less for extrapolating between rats and humans.
Collapse
|
46
|
Watanabe MX, Kunisue T, Tao L, Kannan K, Subramanian A, Tanabe S, Iwata H. Dioxin-like and perfluorinated compounds in pigs in an Indian open waste dumping site: toxicokinetics and effects on hepatic cytochrome P450 and blood plasma hormones. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1551-1560. [PMID: 20821605 DOI: 10.1002/etc.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dioxins and related compounds (DRCs) and perfluorinated compounds were measured in the livers of pigs (Sus scrofa) collected from an open waste dumping site in South India. Hepatic concentrations of DRCs and perfluorooctanesulfonate (PFOS; up to 200 ng/g wet wt) were significantly higher in male and female pigs, respectively, collected from the dumping site than in those from a reference site. Results suggest that dumping sites are a source of DRCs and PFOS. Hepatic concentrations of DRCs in piglets were higher than in mothers, especially for the congeners with molecular weights in the range of 360 to 400, implying congener-specific maternal transfer of DRCs in swine. Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans and some non-ortho dioxin-like polychlorinated biphenyls (PCBs) in the liver of pigs were higher than those in the adipose fat and muscle of the same specimens. In addition, the liver-to-adipose concentration ratios for each congener had a significant positive correlation with the levels of hepatic cytochrome P450 (CYP)1A-like protein, suggesting congener-specific and CYP1A-dependent hepatic sequestration of DRCs in the swine. Total hepatic 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs; 8.9-350 pg/g fat wt) had a significant positive correlation with CYP1A-like protein expression (r=0.56, p=0.012), suggesting the induction of CYP1A by DRCs. However, the total TEQs had a significant negative correlation with CYP4A-like protein (r=-0.49, p=0.029), suggesting repression of peroxisome proliferator-activated receptor-alpha (PPARalpha)-mediated signaling pathway by DRCs. Decreases in plasma total thyroxine (T4), free T4, and immunoglobulin (Ig) G were also found in pigs from the dumping site compared with those from the reference site. This study provides insight into the toxicological impacts of DRCs and perfluorinated compounds in wild animals from open waste dumping sites.
Collapse
Affiliation(s)
- Michio X Watanabe
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Wan Y, Wiseman S, Chang H, Zhang X, Jones PD, Hecker M, Kannan K, Tanabe S, Hu J, Lam MHW, Giesy JP. Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7536-42. [PMID: 19848173 DOI: 10.1021/es901357u] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants. The structurally related hydroxylated PBDEs (OH-PBDEs) and methoxylated PBDEs (MeO-PBDEs) occur in precipitation, surface water, wildlife, and humans. The formation of OH-PBDEs in wildlife and humans is of considerable concern due to their greater toxicities relative to PBDEs and MeO-PBDEs. Research to date suggests that OH-PBDEs are formed by hydroxylation of PBDEs, and MeO-PBDEs are then formed by methylation of the OH-PBDEs. Here we show significant metabolic production of OH-PBDEs from MeO-PBDEs while hydroxylation of synthetic PBDEs to OH-PBDEs was negligible. Concentrations of PBDEs, OH-PBDEs, and MeO-PBDEs were analyzed in tuna, albatross, and polar bears collected from marine environments worldwide, and we found a closer relationship between OH-PBDEs and MeO-PBDEs than had been previously reported. Furthermore, for the first time the metabolic relationships between PBDEs, OH-PBDEs, and MeO-PBDEs were elucidated in vitro using rainbow trout, chicken, and rat microsomes. We propose the production of OH-PBDEs from naturally occurring MeO-PBDEs as a previously unidentified mechanism that could be an important contributor for the occurrence of OH-PBDEs found in wildlife from remote areas. Our results suggest that risk assessment paradigms for PBDEs and their metabolites need reevaluation and that human exposure to MeO-PBDEs that occur naturally in marine organisms should be considered.
Collapse
Affiliation(s)
- Yi Wan
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Simon T, Aylward LL, Kirman CR, Rowlands JC, Budinsky RA. Estimates of Cancer Potency of 2,3,7,8-Tetrachlorodibenzo(p)dioxin Using Linear and Nonlinear Dose-Response Modeling and Toxicokinetics. Toxicol Sci 2009; 112:490-506. [DOI: 10.1093/toxsci/kfp232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
49
|
Carlson EA, McCulloch C, Koganti A, Goodwin SB, Sutter TR, Silkworth JB. Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes. Toxicol Sci 2009; 112:257-72. [PMID: 19692669 DOI: 10.1093/toxsci/kfp200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin and the polychlorinated biphenyl (PCB) congener PCB 126. Dose-responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose-response criteria for both chemicals and were subjected to further analysis including the calculation of the 50% effective concentration and the relative potency (REP) of PCB 126 for each gene. Only five responsive orthologous genes were shared between the two species; yet, the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% confidence interval [CI]; 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and REP for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., cytochrome P450 1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.
Collapse
Affiliation(s)
- Erik A Carlson
- General Electric Company, Global Research Center, Environmental Technology Laboratory, One Research Circle, Niskayuna, New York 12309, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kim S, Dere E, Burgoon LD, Chang CC, Zacharewski TR. Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci 2009; 112:229-44. [PMID: 19684285 DOI: 10.1093/toxsci/kfp189] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Time course and dose-response studies were conducted in HL1-1 cells, a human liver cell line with stem cell-like characteristics, to assess the differential gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared with other established models. Cells were treated with 0.001, 0.01, 0.1, 1, 10, or 100nM TCDD or dimethyl sulfoxide vehicle control for 12 h for the dose-response study, or with 10nM TCDD or vehicle for 1, 2, 4, 8, 12, 24, or 48 h for the time course study. Elicited changes were monitored using a human cDNA microarray with 6995 represented genes. Empirical Bayes analysis identified 144 genes differentially expressed at one or more time points following treatment. Most genes exhibited dose-dependent responses including CYP1A1, CYP1B1, ALDH1A3, and SLC7A5 genes. Comparative analysis of HL1-1 differential gene expression to human HepG2 data identified 74 genes with comparable temporal expression profiles including 12 putative primary responses. HL1-1-specific changes were related to lipid metabolism and immune responses, consistent with effects elicited in vivo. Furthermore, comparative analysis of HL1-1 cells with mouse Hepa1c1c7 hepatoma cell lines and C57BL/6 hepatic tissue identified 18 and 32 commonly regulated orthologous genes, respectively, with functions associated with signal transduction, transcriptional regulation, metabolism and transport. Although some common pathways are affected, the results suggest that TCDD elicits species- and model-specific gene expression profiles.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Biochemistry & Molecular Biology, 501 Biochemistry Building, Wilson Road, East Lansing, MI 48824-1319, USA
| | | | | | | | | |
Collapse
|