1
|
Wołejko E, Łozowicka B, Jabłońska-Trypuć A, Pietruszyńska M, Wydro U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12209. [PMID: 36231509 PMCID: PMC9566616 DOI: 10.3390/ijerph191912209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Chlorpyrifos (CPF) was the most frequently used pesticide in food production in the European Union (EU) until 2020. Unfortunately, this compound is still being applied in other parts of the world. National monitoring of pesticides conducted in various countries indicates the presence of CPF in soil, food, and water, which may have toxic effects on consumers, farmers, and animal health. In addition, CPF may influence changes in the population of fungi, bacteria, and actinomycete in soil and can inhibit nitrogen mineralization. The mechanisms of CPF activity are based on the inhibition of acetylcholinesterase (AChE) activity. This compound also exhibits reproductive toxicity, neurotoxicity, and genotoxicity. The problem seems to be the discrepancy between the actual observations and the final conclusions drawn for the substance's approval in reports presenting the toxic impact of CPF on human health. Therefore, this influence is still a current and important issue that requires continuous monitoring despite its withdrawal from the market in the EU. This review traces the scientific reports describing the effects of CPF resulting in changes occurring in both the environment and at the cellular and tissue level in humans and animals. It also provides an insight into the hazards and risks to human health in food consumer products in which CPF has been detected.
Collapse
Affiliation(s)
- Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Marta Pietruszyńska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24A Street, 15-276 Białystok, Poland
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| |
Collapse
|
2
|
Cruz-Méndez JS, Herrera-Sánchez MP, Céspedes-Rubio ÁE, Rondón-Barragán IS. Molecular characterization of myelin basic protein a (mbpa) gene from red-bellied pacu (Piaractus brachypomus). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:8. [PMID: 35024999 PMCID: PMC8758815 DOI: 10.1186/s43141-022-00296-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Background Myelin basic protein (MBP) is one of the most important structural components of the myelin sheaths in both central and peripheral nervous systems. MBP has several functions including organization of the myelin membranes, reorganization of the cytoskeleton during the myelination process, and interaction with the SH3 domain in signaling pathways. Likewise, MBP has been proposed as a marker of demyelination in traumatic brain injury and chemical exposure. Methods The aim of this study was to molecularly characterize the myelin basic protein a (mbpa) gene from the Colombian native fish, red-bellied pacu, Piaractus brachypomus. Bioinformatic tools were used to identify the phylogenetic relationships, physicochemical characteristics, exons, intrinsically disordered regions, and conserved domains of the protein. Gene expression was assessed by qPCR in three models corresponding to sublethal chlorpyrifos exposure, acute brain injury, and anesthesia experiments. Results mbpa complete open reading frame was identified with 414 nucleotides distributed in 7 exons that encode 137 amino acids. MBPa was recognized as belonging to the myelin basic protein family, closely related with orthologous proteins, and two intrinsically disordered regions were established within the sequence. Gene expression of mbpa was upregulated in the optic chiasm of the chlorpyrifos exposed fish in contrast to the control group. Conclusions The physicochemical computed features agree with the biological functions of MBP, and basal gene expression was according to the anatomical distribution in the tissues analyzed. This study is the first molecular characterization of mbpa from the native species Piaractus brachypomus.
Collapse
Affiliation(s)
- Juan Sebastian Cruz-Méndez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Ángel Enrique Céspedes-Rubio
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibague, 730006299, Colombia.
| |
Collapse
|
3
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
4
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
5
|
Masood MI, Naseem M, Warda SA, Tapia-Laliena MÁ, Rehman HU, Nasim MJ, Schäfer KH. Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116179. [PMID: 33348142 DOI: 10.1016/j.envpol.2020.116179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany; Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, 87550, Pakistan
| | - Salam A Warda
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany
| | | | - Habib Ur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany
| | - Karl Herbert Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Department of Pediatric Surgery Mannheim, University Medicine Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
6
|
Al-Gholam MA, Issa NM. Effect of cypermethrin on the postnatal development of the medulla oblongata and the possible protective role of melatonin in albino rats. Anat Cell Biol 2020; 53:460-470. [PMID: 33361544 PMCID: PMC7769100 DOI: 10.5115/acb.20.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/27/2022] Open
Abstract
Previous studies have shown that cypermethrin (CYP), a broad spectrum pesticide has a teratogenic effect on rat offspring born to an exposed dam with no information on its effect on the development of the brain. To the best of our knowledge, this research is the first attempt to study the postnatal development medulla oblongata of rat offspring exposed to CYP during the perinatal period and the possible neuroprotective role of melatonin. The offspring of treated female rats were organized into control, melatonin (1 mg/kg/day orally); CYP (12 mg/kg/day orally); and CYP/melatonin groups. The mothers received treatments from day 6 of gestation until day 21 after birth. At Postnatal days 7 and 21, the animals were sacrificed and their medulla oblongata was removed and subjected to histological, immunohistochemical, and electron microscopic studies. CYP induced neuronal degeneration by chromatolysis and pyknosis. Nuclear changes, cytoplasmic vacuolation, damage mitochondria, and breakdown of RER were also detected. Reduction of microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), and oligodendrocyte transcription factor expressions and increment of glial fibrillary acidic protein expression in the medulla oblongata of the developing rats were observed. On the other hand, melatonin led to an obvious improvement of the injured medulla oblongata tissues and ameliorating the damaging effects of CYP. In conclusion, melatonin has protected rats against CYP-induced histopathological and immunohistochemical changes. This may be due to the protection of MAP-2, conservation of MBP, an increment of oligodendrocytes, and alleviation of astrogliosis.
Collapse
Affiliation(s)
- Marwa A Al-Gholam
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Noha M Issa
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
7
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
8
|
van den Dries MA, Lamballais S, El Marroun H, Pronk A, Spaan S, Ferguson KK, Longnecker MP, Tiemeier H, Guxens M. Prenatal exposure to organophosphate pesticides and brain morphology and white matter microstructure in preadolescents. ENVIRONMENTAL RESEARCH 2020; 191:110047. [PMID: 32805249 PMCID: PMC7657967 DOI: 10.1016/j.envres.2020.110047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prenatal exposure to organophosphate (OP) pesticides associate with impaired neurodevelopment in humans and animal models. However, much uncertainty exists about the brain structural alterations underlying these associations. The objective of this study was to determine whether maternal OP pesticide metabolite concentrations in urine repeatedly measured during gestation are associated with brain morphology and white matter microstructure in 518 preadolescents aged 9-12 years. METHOD Data came from 518 mother-child pairs participating in the Generation R Study, a population-based birth cohort from Rotterdam, the Netherlands. Maternal urine concentrations were determined for 6 dialkylphosphates (DAPs) including 3 dimethyl (DM) and 3 diethyl (DE) alkyl phosphate metabolites, collected at early, mid, and late pregnancy. At child's age 9-12 years, magnetic resonance imaging was performed to obtain T1-weighted images for brain volumes and surface-based cortical thickness and cortical surface area, and diffusion tensor imaging was used to measure white matter microstructure through fractional anisotropy (FA) and mean diffusivity (MD). Linear regression models were fit for the averaged prenatal exposure across pregnancy. RESULTS DM and DE metabolite concentrations were not associated with brain volumes, cortical thickness, and cortical surface area. However, a 10-fold increase in averaged DM metabolite concentrations across pregnancy was associated with lower FA (B = -1.00, 95%CI = -1.80, -0.20) and higher MD (B = 0.13, 95%CI = 0.04, 0.21). Similar associations were observed for DE concentrations. CONCLUSIONS This study provides the first evidence that OP pesticides may alter normal white matter microstructure in children, which could have consequences for normal neurodevelopment. No associations were observed with structural brain morphology, including brain volumes, cortical thickness, and cortical surface area.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands
| | - Sander Lamballais
- Erasmus MC, University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, 3015 CN, the Netherlands
| | - Hanan El Marroun
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Pediatrics, Rotterdam, 3015 CN, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, 3062 PA, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, NC, 27709, USA
| | | | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mònica Guxens
- Erasmus MC, University Medical Center Rotterdam, Department of Child and Adolescent Psychiatry, Rotterdam, 3015 CN, the Netherlands; ISGlobal, Barcelona, 08003, Spain; Pompeu Fabra University, Barcelona, 08002, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Spain.
| |
Collapse
|
9
|
Acute and Chronic Exposure of Toluene Induces Genotoxicity in Different Regions of the Brain in Normal and Allergic Mouse Models. Neurotox Res 2019; 36:669-678. [PMID: 30888611 DOI: 10.1007/s12640-019-00024-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Toluene is a widely used industrial organic solvent and is ubiquitous in our environment. The neurobehavioral and neurotoxic effects of toluene are well recognized; however, its genotoxicity is still under discussion. Toluene biotransformation leads to the generation of reactive oxygen species that cause oxidative stress and DNA damages. Individuals with different immunogenetic backgrounds have different sensitivities to toxic chemical exposure. Previous studies have suggested that allergic stimulation may influence the threshold for toluene sensitivity due to the modulation of neurotrophin-related genes. Therefore, we aimed to investigate toluene-induced genotoxicity in different brain regions following acute and chronic exposure in vivo and to further examine whether allergic stimulation may influence the sensitivity to toluene-induced genotoxicity. In this present study, we found that exposure of toluene induced oxidative DNA damages resulting in genotoxicity in different brain regions including cortex, cerebellum, and hippocampus using comet assay. Higher genotoxicity induced by toluene was observed in the hippocampus of control mice compared to OVA-immunized mice. These results provide evidence that toluene-induced genotoxicity may contribute to its neurotoxicity in different immunogenetic individuals.
Collapse
|
10
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
11
|
Bojić T, Perović VR, Senćanski M, Glišić S. Identification of Candidate Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor Which May Improve Vagus Nerve Stimulation in Chronic Tinnitus. Front Neurosci 2017; 11:636. [PMID: 29184482 PMCID: PMC5694542 DOI: 10.3389/fnins.2017.00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic tinnitus is characterized by neuroplastic changes of the auditory cortex. A promising method for therapy of chronic tinnitus is vagus nerve stimulation (VNS) combined with auditory stimulation. The principle of VNS is reversal of pathological neuroplastic changes of the auditory cortex toward physiological neural activity and synchronicity. The VNS mechanism of action in chronic tinnitus patients is prevailingly through the muscarinic neuromodulation of the auditory cortex by the activation of nc. basalis Meynerti. The aim of this study is to propose potential pharmaceutics which may improve the neuromodulatory effects of VNS. The working hypothesis is that M1 receptors have a dominant role in the neural plasticity of the auditory cortex. We propose that allosteric agonists of the muscarinic receptor type 1 (M1) receptor could improve specificity and selectivity of the neuromodulatory effect of VNS on the auditory cortex of chronic tinnitus patients even in the circumstances of lower acetylcholine brain concentration. This intervention would also reinforce the re-learning process of tinnitus (sub)networks by acting on cholinergic memory and learning mechanisms. We performed in silico screening of drug space using the EIIP/AQVN filter and selected 50 drugs as candidates for allosteric modulators of muscarinic receptors. Further filtering of these compounds by means of 3D QSAR and docking revealed 3 approved drugs-bromazepam, estazolam and flumazenil as the most promising candidates for combined chronic tinnitus therapy. These drugs should be further evaluated by biological tests and clinical trials.
Collapse
Affiliation(s)
- Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - Vladimir R Perović
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Seth B, Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK. Inhibition of the transforming growth factor-β/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem 2017; 292:19423-19440. [PMID: 28982980 DOI: 10.1074/jbc.m117.798074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The widely used carbamate pesticide carbofuran causes neurophysiological and neurobehavioral deficits in rodents and humans and therefore poses serious health hazards around the world. Previously, we reported that gestational carbofuran exposure has detrimental effects on hippocampal neurogenesis, the generation of new neurons from neural stem cells (NSC), in offspring. However, the underlying cellular and molecular mechanisms for carbofuran-impaired neurogenesis remain unknown. Herein, we observed that chronic carbofuran exposure from gestational day 7 to postnatal day 21 altered expression of genes and transcription factors and levels of proteins involved in neurogenesis and the TGF-β pathway (i.e. TGF-β; SMAD-2, -3, and -7; and SMURF-2) in the rat hippocampus. We found that carbofuran increases TGF-β signaling (i.e. increased phosphorylated SMAD-2/3 and reduced SMAD-7 expression) in the hippocampus, which reduced NSC proliferation because of increased p21 levels and reduced cyclin D1 levels. Moreover, the carbofuran-altered TGF-β signaling impaired neuronal differentiation (BrdU/DCX+ and BrdU/NeuN+ cells) and increased apoptosis and neurodegeneration in the hippocampus. Blockade of the TGF-β pathway with the specific inhibitor SB431542 and via SMAD-3 siRNA prevented carbofuran-mediated inhibition of neurogenesis in both hippocampal NSC cultures and the hippocampus, suggesting the specific involvement of this pathway. Of note, both in vitro and in vivo studies indicated that TGF-β pathway attenuation reverses carbofuran's inhibitory effects on neurogenesis and associated learning and memory deficits. These results suggest that carbofuran inhibits NSC proliferation and neuronal differentiation by altering TGF-β signaling. Therefore, we conclude that TGF-β may represent a potential therapeutic target against carbofuran-mediated neurotoxicity and neurogenesis disruption.
Collapse
Affiliation(s)
- Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India, .,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
13
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Shi H, Hou C, Gu L, Xing H, Zhang M, Zhao L, Bi K, Chen X. Investigation of the protective effect of Paeonia lactiflora on Semen Strychni-induced neurotoxicity based on monitoring nine potential neurotoxicity biomarkers in rat serum and brain tissue. Metab Brain Dis 2017; 32:133-145. [PMID: 27521025 DOI: 10.1007/s11011-016-9894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Semen Strychni has been widely used as a traditional Chinese herb medicine, but its clinical use was limited for its potential neurotoxicity and nephrotoxicity. This study aimed to investigate S. Strychni-induced neurotoxicity and the neuro-protective effect of Paeonia lactiflora based on monitoring nine potential neurotoxicity biomarkers in rat serum and brain tissue. A sensitive liquid chromatography-tandem mass spectrometry method was developed and validated to monitor serotonin, tryptophan, dopamine, tyrosine and glutamate in serum and five brain regions (prefrontal cortex, hippocampus, striatum, cerebellum and hypothalamus). Analytes were separated on a CAPCELL CORE PC column (150 mm × 2 mm, 2.7 μm) with a gradient program of acetonitrile-water (0.2 % formic acid) and a total runtime of 7.5 min. In addition, enzyme-linked immunosorbent assay was conducted to determine four kinds of protein (tryptophan hydroxylase, tyrosine hydroxylase, endogenous brain-derived neurotrophic factor and nerve growth factor). Results demonstrated that the administration of S. Strychni could cause certain endogenous substances disorder. These analytes were found significantly changed (p < 0.05) in serum (except glutamate) and in certain tested brain regions in S. Strychni extract group. Pretreatment of P. lactiflora could significantly reverse the S. Strychni-induced neurotoxicity and normalize the levels of such endogenous substances. The study could be further used in predicting and monitoring neurotoxicity caused by other reasons, and it was expected to be useful for improving clinical use of S. Strychni through pretreatment with P. lactiflora.
Collapse
Affiliation(s)
- Huiyan Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chenzhi Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meiyu Zhang
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
15
|
Fields RD, Dutta DJ, Belgrad J, Robnett M. Cholinergic signaling in myelination. Glia 2017; 65:687-698. [PMID: 28101995 DOI: 10.1002/glia.23101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022]
Abstract
There is a long history of research on acetylcholine (ACh) function in myelinating glia, but a resurgence of interest recently as a result of the therapeutic potential of manipulating ACh signaling to promote remyelination, and the broader interest in neurotransmitter signaling in activity-dependent myelination. Myelinating glia express all the major types of muscarinic and nicotinic ACh receptors at different stages of development, and acetylcholinesterase and butyrylcholinesterase are highly expressed in white matter. This review traces the history of research on ACh signaling in Schwann cells, oligodendrocytes, and in the myelin sheath, and summarizes current knowledge on the intracellular signaling and functional consequences of ACh signaling in myelinating glia. Implications of ACh in diseases, such as Alzheimer's disease, multiple sclerosis, and white matter toxicity caused by pesticides are considered, together with an outline of major questions for future research. GLIA 2017;65:687-698.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Dipankar J Dutta
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Jillian Belgrad
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Maya Robnett
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Yuan L, Li J, Zha J, Wang Z. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:670-7. [PMID: 26552522 DOI: 10.1016/j.envpol.2015.10.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow.
Collapse
Affiliation(s)
- Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Mullins RJ, Xu S, Pereira EFR, Pescrille JD, Todd SW, Mamczarz J, Albuquerque EX, Gullapalli RP. Prenatal exposure of guinea pigs to the organophosphorus pesticide chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 2015; 48:9-20. [PMID: 25704171 DOI: 10.1016/j.neuro.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Su Xu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
18
|
Su M, Sheng L, Zhao X, Wang L, Yu X, Hong J, Xu B, Liu D, Jiang H, Ze X, Zhu Y, Long Y, Zhou J, Cui J, Li K, Ze Y, Hong F. Involvement of neurotrophins and related signaling genes in TiO2 nanoparticle – induced inflammation in the hippocampus of mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00106k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in industry and daily life; their potential neurotoxic effects are of great concern.
Collapse
|
19
|
De Felice A, Venerosi A, Ricceri L, Sabbioni M, Scattoni ML, Chiarotti F, Calamandrei G. Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicol Teratol 2014; 46:32-9. [DOI: 10.1016/j.ntt.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
20
|
Cole TB, Li WF, Co AL, Hay AM, MacDonald JW, Bammler TK, Farin FM, Costa LG, Furlong CE. Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues. Toxicol Sci 2014; 141:409-22. [PMID: 25070982 DOI: 10.1093/toxsci/kfu144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured enzyme inhibition and fetal-brain gene expression in wild-type (PON1(+/+)), PON1-knockout (PON1(-/-)), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75, or 0.85 mg/kg/d CPO from gestational day (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), red blood cell acylpeptide hydrolase (APH), and plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1(-/-) and tgHuPON1Q192, but not PON1(+/+) or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1(-/-) mice, but not in other genotypes. Weighted gene co-expression network analysis identified five gene modules based on clustering of the correlations among their fetal-brain expression values, allowing for correlation of module membership with the phenotypic data on enzyme inhibition. One module that correlated highly with maternal brain AChE activity had a large representation of homeobox genes. Gene set enrichment analysis revealed multiple gene sets affected by gestational CPO exposure in tgHuPON1Q192 but not tgHuPON1R192 mice, including gene sets involved in protein export, lipid metabolism, and neurotransmission. These data indicate that maternal PON1 status modulates the effects of repeated gestational CPO exposure on fetal-brain gene expression and on inhibition of both maternal and fetal biomarker enzymes.
Collapse
Affiliation(s)
- Toby B Cole
- Department of Medicine, Division of Medical Genetics Department of Environmental and Occupational Health Sciences Department of Genome Sciences Center on Human Development and Disability
| | - Wan-Fen Li
- Department of Medicine, Division of Medical Genetics
| | - Aila L Co
- Department of Medicine, Division of Medical Genetics Department of Genome Sciences
| | - Ariel M Hay
- Department of Medicine, Division of Medical Genetics Department of Genome Sciences
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98195
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98195
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98195
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences Department of Neuroscience, University of Parma, Parma, Italy
| | - Clement E Furlong
- Department of Medicine, Division of Medical Genetics Department of Genome Sciences
| |
Collapse
|
21
|
Liu J, He Y, Chen S, Xiao Y, Hu M, Zhong G. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables. PLoS One 2014; 9:e103558. [PMID: 25061758 PMCID: PMC4111614 DOI: 10.1371/journal.pone.0103558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | - Yue He
- Guangdong Zhuhai Supervision Testing Institute of Quality and Metrology, Zhuhai, P.R. China
| | - Shaohua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P.R. China
| | - Ying Xiao
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | - Meiying Hu
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
- * E-mail:
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. RECENT FINDINGS Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. SUMMARY MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.
Collapse
|
23
|
Characterization of NGF, trkA (NGFR) , and p75 (NTR) in Retina of Mice Lacking Reelin Glycoprotein. Int J Cell Biol 2014; 2014:725928. [PMID: 24627687 PMCID: PMC3928862 DOI: 10.1155/2014/725928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Both Reelin and Nerve Growth Factor (NGF) exert crucial roles in retinal development. Retinogenesis is severely impaired in E-reeler mice, a model of Reelin deficiency showing specific Green Fluorescent Protein expression in Rod Bipolar Cells (RBCs). Since no data are available on Reelin and NGF cross-talk, NGF and trkANGFR/ p75NTR expression was investigated in retinas from E-reeler versus control mice, by confocal microscopy, Western blotting, and real time PCR analysis. A scattered increase of NGF protein was observed in the Ganglion Cell Layer and more pronounced in the Inner Nuclear Layer (INL). A selective increase of p75NTR was detected in most of RBCs and in other cell subtypes of INL. On the contrary, a slight trend towards a decrease was detected for trkANGFR, albeit not significant. Confocal data were validated by Western blot and real time PCR. Finally, the decreased trkANGFR/ p75NTR ratio, representative of p75NTR increase, significantly correlated with E-reeler versus E-control. These data indicate that NGF-trkANGFR/ p75NTR is affected in E-reeler retina and that p75NTR might represent the main NGF receptor involved in the process. This first NGF-trkANGFR/ p75NTR characterization suggests that E-reeler might be suitable for exploring Reelin-NGF cross-talk, representing an additional information source in those pathologies characterized by retinal degeneration.
Collapse
|
24
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
|
26
|
Zhang L, Wang H, Yang Y, Liu H, Zhang Q, Xiang Q, Ge R, Su Z, Huang Y. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration. Biochem Biophys Res Commun 2013; 436:300-5. [PMID: 23743199 DOI: 10.1016/j.bbrc.2013.05.098] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
Abstract
Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male).
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
28
|
Mullins RJ, Xu S, Pereira EFR, Mamczarz J, Albuquerque EX, Gullapalli RP. Delayed hippocampal effects from a single exposure of prepubertal guinea pigs to sub-lethal dose of chlorpyrifos: a magnetic resonance imaging and spectroscopy study. Neurotoxicology 2013; 36:42-8. [PMID: 23411083 DOI: 10.1016/j.neuro.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/09/2023]
Abstract
This study was designed to test the hypothesis that in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) can detect in adulthood the neurotoxic effects of a single exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos. Twelve female guinea pigs were given either a single dose of chlorpyrifos (0.6×LD50 or 300mg/kg, sc) or peanut oil (vehicle; 0.5ml/kg, sc) at 35-40 days of age. One year after the exposure, the animals were tested in the Morris water maze. Three days after the end of the behavioral testing, the metabolic and structural integrity of the brain of the animals was examined by means of MRI/MRS. In the Morris water maze, the chlorpyrifos-exposed guinea pigs showed significant memory deficit. Although no significant anatomical differences were found between the chlorpyrifos-exposed guinea pigs and the control animals by in vivo MRI, the chlorpyrifos-exposed animals showed significant decreases in hippocampal myo-inositol concentration using MRS. The present results indicate that a single sub-lethal exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos can lead to long-term memory deficits that are accompanied by significant reductions in the levels of hippocampal myo-inositol.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | |
Collapse
|
29
|
Mohideen SS, Ichihara S, Subramanian K, Huang Z, Naito H, Kitoh J, Ichihara G. Effects of exposure to 1-bromopropane on astrocytes and oligodendrocytes in rat brain. J Occup Health 2012. [PMID: 23183024 DOI: 10.1539/joh.12-0118-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Human cases of 1-bromopropane (1-BP) toxicity showed ataxic gait and cognitive dysfunction, whereas rat studies showed pyknotic shrinkage in cerebellar Purkinje cells and electrophysiological changes in the hippocampus. The present study investigated the effects of 1-BP on astrocytes and oligodendrocytes in the rat cerebellum and hippocampus to find sensitive markers of central nervous system toxicity. METHODS Forty-eight F344 rats were divided into four equal groups and exposed to 1-BP at 0, 400, 800 and 1,000 ppm for 8 h/day; 7 days/week, for 4 weeks. Nine and three rats per group were used for biochemical and histopathological studies, respectively. RESULTS Kluver-Barrera staining showed pyknotic shrinkage in the cytoplasm of Purkinje cells and nuclei of granular cells in the cerebellum at 1,000 ppm. Immunohistochemical analysis showed increased length of glial fibrillary acidic protein (GFAP)-positive processes of astrocytes in the cerebellum, hippocampus and dentate gyrus at 800 and 1,000 ppm. The myelin basic protein (MBP) level was lower at 1,000 ppm. The numbers of astrocytes and granular cells per tissue volume increased at 400 ppm or higher. CONCLUSION The present study showed that elongation of processes of astrocytes accompanies degeneration of granular cells and Purkinje cells in the cerebellum of the rats exposed to 1-BP. The decrease in MBP and number of oligodendrocytes suggest adverse effects on myelination. The increase in astrocyte population per tissue volume in the cerebellum might be a sensitive marker of 1-BP neurotoxicity, but the underlying mechanism for this change remains elusive.
Collapse
Affiliation(s)
- Sahabudeen Sheik Mohideen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Cole TB, Fisher JC, Burbacher TM, Costa LG, Furlong CE. Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon. Neurotoxicol Teratol 2012; 34:311-22. [PMID: 22425525 PMCID: PMC3367041 DOI: 10.1016/j.ntt.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/08/2012] [Accepted: 02/29/2012] [Indexed: 11/17/2022]
Abstract
Chlorpyrifos (CPF), one of the most widely-used organophosphorus (OP) insecticides in agriculture, is degraded in the field to its oxon form, chlorpyrifos-oxon (CPO), which can represent a significant contaminant in exposures to adults and children. CPO is also responsible for the acetylcholinesterase (AChE) inhibition associated with CPF exposures; CPF is converted by liver CYP450 enzymes to CPO, which binds to and inhibits AChE and other serine active-site esterases, lipases and proteases. Young children represent a particularly susceptible population for exposure to CPF and CPO, in part because levels of the plasma enzyme, paraoxonase (PON1), which hydrolyzes CPO, are very low during early development. While a number of studies have demonstrated developmental neurotoxicity associated with CPF exposure, including effects at or below the threshold levels for AChE inhibition, it is unclear whether these effects were due directly to CPF or to its active metabolite, CPO. PON1 knockout (PON1-/-) mice, which lack PON1, represent a highly sensitive mouse model for toxicity associated with exposure to CPF or CPO. To examine the neurobehavioral consequences of CPO exposure during postnatal development, PON1-/- mice were exposed daily from PND 4 to PND 21 to CPO at 0.15, 0.18, or 0.25 mg/kg/d. A neurobehavioral test battery did not reveal significant effects of CPO on early reflex development, motor coordination, pre-pulse inhibition of startle, startle amplitude, open field behavior, or learning and memory in the contextual fear conditioning, Morris water maze, or water radial-arm maze tests. However, body weight gain and startle latency were significantly affected by exposure to 0.25 mg/kg/d CPO. Additionally, from PNDs 15-20 the mice exposed repeatedly to CPO at all three doses exhibited a dose-related transient hyperkinesis in the 20-min period following CPO administration, suggesting possible effects on catecholaminergic neurotransmission. Our previous study demonstrated wide-ranging effects of neonatal CPO exposure on gene expression in the brain and on brain AChE inhibition, and modulation of both of these effects by the PON1(Q192R) polymorphism. The current study indicates that the neurobehavioral consequences of these effects are more elusive, and suggests that alternative neurobehavioral tests might be warranted, such as tests of social interactions, age-dependent effects on learning and memory, or tests designed specifically to assess dopaminergic or noradrenergic function.
Collapse
Affiliation(s)
- Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Jenna C. Fisher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Clement E. Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Li AA, Lowe KA, McIntosh LJ, Mink PJ. Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:109-184. [PMID: 22401178 PMCID: PMC3386549 DOI: 10.1080/10937404.2012.645142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Developmental neurobehavioral outcomes attributed to exposure to chlorpyrifos (CPF) obtained from epidemiologic and animal studies published before June 2010 were reviewed for risk assessment purposes. For epidemiological studies, this review considered (1) overall strength of study design, (2) specificity of CPF exposure biomarkers, (3) potential for bias, and (4) Hill guidelines for causal inference. In the case of animal studies, this review focused on evaluating the consistency of outcomes for developmental neurobehavioral endpoints from in vivo mammalian studies that exposed dams and/or offspring to CPF prior to weaning. Developmental neuropharmacologic and neuropathologic outcomes were also evaluated. Experimental design and methods were examined as part of the weight of evidence. There was insufficient evidence that human developmental exposures to CPF produce adverse neurobehavioral effects in infants and children across different cohort studies that may be relevant to CPF exposure. In animals, few behavioral parameters were affected following gestational exposures to 1 mg/kg-d but were not consistently reported by different laboratories. For postnatal exposures, behavioral effects found in more than one study at 1 mg/kg-d were decreased errors on a radial arm maze in female rats and increased errors in males dosed subcutaneously from postnatal day (PND) 1 to 4. A similar finding was seen in rats exposed orally from PND 1 to 21 with incremental dose levels of 1, 2, and 4 mg/kg-d, but not in rats dosed with constant dose level of 1 mg/kg-d. Neurodevelopmental behavioral, pharmacological, and morphologic effects occurred at doses that produced significant brain or red blood cell acetylcholinesterase inhibition in dams or offspring.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences Group, Menlo Park, California, USA.
| | | | | | | |
Collapse
|
32
|
Cole TB, Beyer RP, Bammler TK, Park SS, Farin FM, Costa LG, Furlong CE. Repeated developmental exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1)-modulated effects on cerebellar gene expression. Toxicol Sci 2011; 123:155-69. [PMID: 21673326 DOI: 10.1093/toxsci/kfr157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microarray analysis was used to examine effects of repeated postnatal exposure to chlorpyrifos oxon (CPO) on gene expression in the cerebellum of genetically modified mice. The high-density lipoprotein-associated enzyme paraoxonase 1 (PON1) plays a significant role in the detoxication of CPO, which is present in exposures and generated from chlorpyrifos (CPF) in vivo following exposure. Two factors are important in modulating toxicity of CPO, the Q192R PON1 polymorphism and PON1 plasma level, which is low at birth and increases throughout postnatal development. Mice used in these studies included wild type (PON1(+/+)), PON1 knockout (PON1(-/-)), and two transgenic lines (tgHuPON1(Q192), tgHuPON1(R192)) expressing either human PON1(Q192) or PON1(R192) on the PON1(-/-) background. PON1(R192) hydrolyzes CPO more efficiently than PON1(Q192). All four genotypes exposed to CPO (0.35 or 0.50 mg/kg/day) daily from postnatal day (PND) 4 to PND 21 showed significant differences in gene expression on PND 22 compared with controls. Pathway analysis and Gene Set Analysis revealed multiple pathways and gene sets significantly affected by CPO exposure, including genes involved in mitochondrial dysfunction, oxidative stress, neurotransmission, and nervous system development. Comparison between genotypes revealed specific genes, gene sets, and pathways differentially affected between tgHuPON1(Q192) and tgHuPON1(R192) mice and between PON1(-/-) and PON1(+/+) mice following CPO exposure. Repeated CPO exposure also resulted in a dose-related decrease in brain acetylcholinesterase activity during postnatal development in PON1(-/-) and tgHuPON1(Q192) mice but not in PON1(+/+) or tgHuPON1(R192) mice. These findings indicate that PON1 status plays a critical role in modulating the effects of neonatal CPO exposure in the developing brain.
Collapse
Affiliation(s)
- Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Shideler KK, Yan J. M1 muscarinic receptor for the development of auditory cortical function. Mol Brain 2010; 3:29. [PMID: 20964868 PMCID: PMC2972260 DOI: 10.1186/1756-6606-3-29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/22/2010] [Indexed: 02/02/2023] Open
Abstract
The sensory cortex is subject to continuous remodelling during early development and throughout adulthood. This process is important for establishing normal brain function and is dependent on cholinergic modulation via muscarinic receptors. Five muscarinic receptor genes encode five unique receptor subtypes (M1-5). The distributions and functions of each subtype vary in central and peripheral systems. In the brain, the M1 receptor is most abundant in the cerebral cortex, where its immunoreactivity peaks transiently during early development. This likely signifies the importance of M1 receptor in the development and maintenance of normal cortical function. Several lines of study have outlined the roles of M1 receptors in the development and plasticity of the auditory cortex. For example, M1-knockout reduces experience-dependent plasticity and disrupts tonotopic mapping in the adult mouse auditory cortex. Further evidence demonstrates a role for M1 in neurite outgrowth and hence determining the structure of cortical neurons. The disruption of tonotopic maps in M1-knockout mice may be linked to alterations in thalamocortical connectivity, because the targets of thalamocortical afferents (layer IV cortical neurons) appear less mature in M1 knockouts. Herein we review the literature to date concerning M1 receptors in the auditory cortex and consider some future directions that will contribute to our understanding.
Collapse
Affiliation(s)
- Karalee K Shideler
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
34
|
Ray A, Liu J, Ayoubi P, Pope C. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats. Toxicol Appl Pharmacol 2010; 248:144-55. [PMID: 20691718 PMCID: PMC2946483 DOI: 10.1016/j.taap.2010.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 12/27/2022]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2mg/kg) gene expression profiles and changes in cell signaling pathways 24h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis®. Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.
Collapse
Affiliation(s)
- Anamika Ray
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | | | | | | |
Collapse
|
35
|
Moreira EG, Yu X, Robinson JF, Griffith W, Hong SW, Beyer RP, Bammler TK, Faustman EM. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol 2010; 245:310-25. [PMID: 20350560 DOI: 10.1016/j.taap.2010.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022]
Abstract
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles across doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Estefania G Moreira
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sui L, Ren WW, Li BM. Administration of thyroid hormone increases reelin and brain-derived neurotrophic factor expression in rat hippocampus in vivo. Brain Res 2009; 1313:9-24. [PMID: 20018181 DOI: 10.1016/j.brainres.2009.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/20/2022]
Abstract
Thyroid hormones play important roles in the maturation and function of the central nervous system. However, the underlying mechanism behind thyroid hormone-regulated gene expression in the adult brain is not well understood. Two genes critical for neuronal plasticity and implicated in psychiatric disorders, reelin and brain-derived neurotrophic factor (BDNF), were investigated in the present study. Triiodothyronine (T3), the active form of thyroid hormone was administered to young adult rats in two different manners: systemic injection or local brain infusion. Real time RT-PCR results revealed that T3 administration lead to a significant increase in reelin, total BDNF and exon-specific BDNF mRNA expression in the hippocampus. Furthermore, the association of transcriptional coactivators (including steroid receptor coactivator-1 (SRC-1), cAMP response element binding protein-binding protein (CBP), and thyroid hormone receptor associated protein 220 (TRAP 220)) and RNA polymerase II (RNA Pol II), with reelin and BDNF genes in the rat hippocampus displayed a distinct process following thyroid hormone administration. These findings suggest that association of transcriptional coactivators and RNA Pol II with gene promoters may be a possible mechanism explaining T3-induced reelin and BDNF expression in the hippocampus of young adult rats.
Collapse
Affiliation(s)
- Li Sui
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | | | | |
Collapse
|
37
|
Diazinon oxon interferes with differentiation of rat C6 glioma cells. Toxicol In Vitro 2009; 23:1548-52. [DOI: 10.1016/j.tiv.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 06/12/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022]
|
38
|
Win-Shwe TT, Tsukahara S, Yamamoto S, Fukushima A, Kunugita N, Arashidani K, Fujimaki H. Up-regulation of neurotrophin-related gene expression in mouse hippocampus following low-level toluene exposure. Neurotoxicology 2009; 31:85-93. [PMID: 19932712 DOI: 10.1016/j.neuro.2009.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 10/26/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
To investigate the role of strain differences in sensitivity to low-level toluene exposure on neurotrophins and their receptor levels in the mouse hippocampus, 8-week-old male C3H/HeN, BALB/c and C57BL/10 mice were exposed to 0, 5, 50, or 500 ppm toluene for 6h per day, 5 days per week for 6 weeks in an inhalation chamber. We examined the expressions of neurotrophin-related genes and receptors in the mouse hippocampus using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase (Trk) A, and TrkB mRNAs in the C3H/HeN mice hippocampus was significantly higher in the mice exposed to 500 ppm toluene. Among the three strains of mice, the C3H/HeN mice seemed to be sensitive to toluene exposure. To examine the combined effect of toluene exposure and allergic challenge, the C3H/HeN mice stimulated with ovalbumin were exposed to toluene. The allergy group of C3H/HeN mice showed significantly elevated level of NGF mRNA in the hippocampus following exposure to 50 ppm toluene. Then, we also examined the expression of transcription factor, dopamine markers and oxidative stress marker in the hippocampus of sensitive strain C3H/HeN mice and found that the expression of CREB1 mRNA was significantly increased at 50 ppm toluene. In immunohistochemical analysis, the density of the NGF-immunoreactive signal was significantly stronger in the hippocampal CA3 region of the C3H/HeN mice exposed to 500 ppm toluene in non-allergy group and 50 ppm in allergy group. Our results indicate that low-level toluene exposure may induce up-regulation of neurotrophin-related gene expression in the mouse hippocampus depending on the mouse strain and an allergic stimulation in sensitive strain may decrease the threshold for sensitivity at lower exposure level.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Paşca SP, Dronca E, Nemeş B, Kaucsár T, Endreffy E, Iftene F, Benga I, Cornean R, Dronca M. Paraoxonase 1 activities and polymorphisms in autism spectrum disorders. J Cell Mol Med 2009; 14:600-7. [PMID: 18624774 PMCID: PMC3823459 DOI: 10.1111/j.1582-4934.2008.00414.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders (ASD) comprise a complex and heterogeneous group of conditions of unknown aetiology, characterized by significant disturbances in social, communicative and behavioural functioning. Recent studies suggested a possible implication of the high-density lipoprotein associated esterase/lactonase paraoxonase 1 (PON1) in ASD. In the present study, we aimed at investigating the PON1 status in a group of 50 children with ASD as compared to healthy age and sex matched control participants. We evaluated PON1 bioavailability (i.e. arylesterase activity) and catalytic activity (i.e. paraoxonase activity) in plasma using spectrophotometric methods and the two common polymorphisms in the PON1 coding region (Q192R, L55M) by employing Light Cycler real-time PCR. We found that both PON1 arylesterase and PON1 paraoxonase activities were decreased in autistic patients (respectively, P < 0.001, P < 0.05), but no association with less active variants of the PON1 gene was found. The PON1 phenotype, inferred from the two-dimensional enzyme analysis, had a similar distribution in the ASD group and the control group. In conclusion, both the bioavailability and the catalytic activity of PON1 are impaired in ASD, despite no association with the Q192R and L55M polymorphisms in the PON1 gene and a normal distribution of the PON1 phenotype.
Collapse
Affiliation(s)
- Sergiu P Paşca
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu HaTieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Saulsbury MD, Heyliger SO, Wang K, Johnson DJ. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 2009; 259:1-9. [DOI: 10.1016/j.tox.2008.12.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 12/08/2008] [Accepted: 12/24/2008] [Indexed: 11/30/2022]
|
41
|
Slotkin TA, Levin ED, Seidler FJ. Developmental neurotoxicity of parathion: progressive effects on serotonergic systems in adolescence and adulthood. Neurotoxicol Teratol 2009; 31:11-7. [PMID: 18773955 PMCID: PMC2630364 DOI: 10.1016/j.ntt.2008.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 01/31/2023]
Abstract
Neonatal exposures to organophosphates that are not acutely symptomatic or that produce little or no cholinesterase inhibition can nevertheless compromise the development and later function of critical neural pathways, including serotonin (5HT) systems that regulate emotional behaviors. We administered parathion to newborn rats on postnatal days (PN) 1-4 at doses spanning the threshold for detectable cholinesterase inhibition (0.1 mg/kg/day) and the first signs of loss of viability (0.2 mg/kg/day). In adolescence (PN30), young adulthood (PN60) and full adulthood (PN100), we measured radioligand binding to 5HT(1A) and 5HT(2) receptors, and to the 5HT transporter in the brain regions comprising all the major 5HT projections and 5HT cell bodies. Parathion caused a biphasic effect over later development with initial, widespread upregulation of 5HT(1A) receptors that peaked in the frontal/parietal cortex by PN60, followed by a diminution of that effect in most regions and emergence of deficits at PN100. There were smaller, but statistically significant changes in 5HT(2) receptors and the 5HT transporter. These findings stand in strong contrast to previous results with neonatal exposure to a different organophosphate, chlorpyrifos, which evoked parallel upregulation of all three 5HT synaptic proteins that persisted from adolescence through full adulthood and that targeted males much more than females. Our results support the view that the various organophosphates have disparate effects on 5HT systems, distinct from their shared property as cholinesterase inhibitors, and the targeting of 5HT function points toward the importance of studying the impact of these agents on 5HT-linked behaviors.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Body Weight/drug effects
- Cholinesterase Inhibitors/toxicity
- Data Interpretation, Statistical
- Female
- Insecticides/toxicity
- Male
- Neurotoxicity Syndromes/psychology
- Organ Size/drug effects
- Parathion/toxicity
- Pregnancy
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Sex Characteristics
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
42
|
Unrelated developmental neurotoxicants elicit similar transcriptional profiles for effects on neurotrophic factors and their receptors in an in vitro model. Neurotoxicol Teratol 2008; 32:42-51. [PMID: 19130878 DOI: 10.1016/j.ntt.2008.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/04/2008] [Accepted: 11/12/2008] [Indexed: 12/25/2022]
Abstract
Diverse developmental neurotoxicants can often produce similar functional and behavioral outcomes. We examined an organophosphate pesticide (diazinon), an organochlorine pesticide (dieldrin) and a metal (Ni(2+)) for effects on the expression of neurotrophic factors and their receptors and modulators in differentiating PC12 cells, an in vitro model of neuronal development. Each agent was introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity. Using microarrays, we examined the mRNAs encoding members of the fibroblast growth factor (fgf) family, the neurotrophins (ntfs), brain-derived neurotrophic factor (bdnf), nerve growth factor (ngf), the wnt and fzd gene families, and the receptors and modulators for each class. All three agents evoked highly concordant patterns of effects on genes encoding the fgf family, whereas the correlations were poor for the group comprising bdnf, ngf and their respective receptors. For wnt, fzd and their receptors/modulators, the relationships between diazinon and dieldrin were highly concordant, whereas the effect of Ni(2+) was less similar, albeit still significantly correlated with the others. Our results show that otherwise disparate developmental neurotoxicants converge on common sets of neurotrophic pathways known to control neuronal differentiation, likely contributing to similarities in functional outcomes. Further, cell culture models can provide a useful initial screen to identify members of a given class of compounds that may be greater or lesser risks for developmental neurotoxicity, or to provide an indication of agents in different classes that might produce similar effects.
Collapse
|
43
|
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 2008; 38 Suppl 2:1-125. [PMID: 18726789 DOI: 10.1080/10408440802272158] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Slotkin T, Seidler F. Transcriptional profiles reveal similarities and differences in the effects of developmental neurotoxicants on differentiation into neurotransmitter phenotypes in PC12 cells. Brain Res Bull 2008; 78:211-25. [PMID: 18812211 DOI: 10.1016/j.brainresbull.2008.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
Unrelated developmental neurotoxicants nevertheless converge on common functional and behavioral outcomes. We used PC12 cells, a model of neuronal development, to explore similarities and differences for organophosphate pesticides (chlorpyrifos, diazinon), an organochlorine pesticide (dieldrin) and a metal (Ni(2+)), focusing on transcriptional profiles related to differentiation into acetylcholine, dopamine and norepinephrine phenotypes. Agents were introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity. Using microarrays, we examined the mRNAs encoding the proteins involved in neurotransmitter biosynthesis, storage, and degradation, along with the complete panoply of receptors for each transmitter. All three pesticides evoked concordant patterns of effects on genes involved in neural growth and neurite extension, with a distinctly different pattern for Ni(2+). All four toxicants promoted differentiation into the dopamine phenotype at the expense of the acetylcholine phenotype, involving separable effects of each agent on the various gene families; however, there were major differences in the ability of each to promote or repress the norepinephrine phenotype. Chlorpyrifos and diazinon, although displaying many similarities in their transcriptional profiles, also showed major disparities in keeping with their known differences in synaptic and behavioral outcomes after neonatal exposures to these agents in vivo. Surprisingly, there were closer similarities among diazinon, dieldrin and Ni(2+) than for each agent to chlorpyrifos. Our results illustrate how cell culture systems, combined with microarray technology, can screen for developmental neurotoxicants, serving as a model for alternative approaches to the detection and characterization of the impact of exogenous chemicals on brain development.
Collapse
Affiliation(s)
- Theodore Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Centre, Durham, NC 27710, USA.
| | | |
Collapse
|
45
|
Slotkin TA, Seidler FJ. Developmental neurotoxicants target neurodifferentiation into the serotonin phenotype: Chlorpyrifos, diazinon, dieldrin and divalent nickel. Toxicol Appl Pharmacol 2008; 233:211-9. [PMID: 18835401 DOI: 10.1016/j.taap.2008.08.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 01/30/2023]
Abstract
Developmental exposure to organophosphates (OP) produces long-term changes in serotonin (5HT) synaptic function and associated behaviors, but there are disparities among the different OPs. We contrasted effects of chlorpyrifos and diazinon, as well as non-OP neurotoxicants (dieldrin, Ni(2+)) using undifferentiated and differentiating PC12 cells, a well-established neurodevelopmental model. Agents were introduced at 30 microM for 24 or 72 h, treatments devoid of cytotoxicity, and we evaluated the mRNAs encoding the proteins for 5HT biosynthesis, storage and degradation, as well as 5HT receptors. Chlorpyrifos and diazinon both induced tryptophan hydroxylase, the rate-limiting enzyme for 5HT biosynthesis, but chlorpyrifos had a greater effect, and both agents suppressed expression of 5HT transporter genes, effects that would tend to augment extracellular 5HT. However, whereas chlorpyrifos enhanced the expression of most 5HT receptor subtypes, diazinon evoked overall suppression. Dieldrin evoked even stronger induction of tryptophan hydroxylase, and displayed a pattern of receptor effects similar to that of diazinon, even though they come from different pesticide classes. In contrast, Ni(2+) had completely distinct actions, suppressing tryptophan hydroxylase and enhancing the vesicular monoamine transporter, while also reducing 5HT receptor gene expression, effects that would tend to lower net 5HT function. Our findings provide some of the first evidence connecting the direct, initial mechanisms of developmental neurotoxicant action on specific transmitter pathways with their long-term effects on synaptic function and behavior, while also providing support for in vitro test systems as tools for establishing mechanisms and outcomes of related and unrelated neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology Box 3813, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
46
|
Carr RL, Nail CA. Effect of different administration paradigms on cholinesterase inhibition following repeated chlorpyrifos exposure in late preweanling rats. Toxicol Sci 2008; 106:186-92. [PMID: 18703558 DOI: 10.1093/toxsci/kfn164] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
47
|
Subtoxic chlorpyrifos treatment resulted in differential expression of genes implicated in neurological functions and development. Arch Toxicol 2008; 83:319-33. [PMID: 18668222 DOI: 10.1007/s00204-008-0346-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Chlorpyrifos (CPF), a commonly used organophosphorus insecticide, induces acetylcholinesterase inhibition and cholinergic toxicity. Subtoxic exposure to CPF has long-term adverse effects on synaptic function/development and behavioral performance. To gain insight into the possible mechanism(s) of these observations, this study aims to investigate gene expression changes in the forebrain of rats treated with subtoxic CPF doses using DNA microarrays. Statistical analysis revealed that CPF treatment resulted in differential expression of 277 genes. Gene ontology and pathway analyses revealed that these genes have important roles in nervous system development and functions including axon guidance, dorso-ventral axis formation, long-term potentiation, synaptic transmission, and insulin signaling. The results of biological associated network analysis showed that Gsk3b is highly connected in several of these networks suggesting its potential role in cellular response to CPF exposure/neurotoxicity. These findings might serve as the basis for future mechanistic analysis of the long-term adverse effects of subtoxic CPF exposure.
Collapse
|
48
|
Slotkin TA, Ryde IT, Levin ED, Seidler FJ. Developmental neurotoxicity of low dose diazinon exposure of neonatal rats: effects on serotonin systems in adolescence and adulthood. Brain Res Bull 2008; 75:640-7. [PMID: 18355640 PMCID: PMC2322865 DOI: 10.1016/j.brainresbull.2007.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
The developmental neurotoxicity of organophosphate pesticides targets serotonin (5HT) systems, which are involved in emotional and appetitive behaviors. We exposed neonatal rats to daily doses of diazinon on postnatal days 1-4, using doses (0.5 or 2mg/kg) spanning the threshold for barely-detectable cholinesterase inhibition. We then evaluated the effects on 5HT(1A) and 5HT(2) receptors, and on the 5HT transporter in cerebral cortical regions and the brainstem in adolescence through adulthood. Diazinon evoked a lasting deficit in 5HT(1A) receptors in males only, whereas it caused a small but significant increase in 5HT transporters in females; neither effect showed a significant regional selectivity. This pattern differed substantially from that seen in earlier work with another organophosphate, chlorpyrifos, which at pharmacodynamically similar doses spanning the threshold for cholinesterase inhibition, evoked a much more substantial, global upregulation of 5HT receptor expression; with chlorpyrifos, effects on receptors were seen in females, albeit to a lesser extent than in males, and were also regionally distinct. The effects of diazinon were nonmonotonic, showing larger alterations at the lower dose, likely reflecting positive trophic effects of cholinergic stimulation once the threshold for cholinesterase inhibition is exceeded. Our results reinforce the idea that different organophosphates have fundamentally distinct effects on the developmental trajectories of specific neurotransmitter systems, unrelated to their shared action as cholinesterase inhibitors. The effects on 5HT circuits expand the scope of behavioral endpoints that need to be considered in evaluating the developmental neurotoxicity of organophosphates.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
49
|
Slotkin TA, Seidler FJ, Ryde IT, Yanai J. Developmental neurotoxic effects of chlorpyrifos on acetylcholine and serotonin pathways in an avian model. Neurotoxicol Teratol 2008; 30:433-9. [PMID: 18436430 DOI: 10.1016/j.ntt.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 11/27/2022]
Abstract
The developmental neurotoxicity of organophosphates such as chlorpyrifos (CPF) involves multiple mechanisms that ultimately compromise the function of specific neurotransmitter systems, notably acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5HT). Studies in mammalian models incorporate both direct effects on brain development and indirect effects mediated through maternal physiology and maternal/neonatal interactions. We examined the effects of CPF in an avian model, which does not share these potential confounds. Chick eggs were injected with CPF (10 or 20 mg/kg) on incubation days 2 and 6 and markers of ACh and 5HT systems were examined at hatching. The higher dose caused a reduction in cholinesterase activity but there was no consistent downregulation of m(2)-muscarinic ACh receptors as would have been expected from ACh hyperstimulation. Both doses evoked significant reductions in the presynaptic high-affinity choline transporter, the rate-limiting factor in ACh biosynthesis, as monitored by binding of hemicholinium-3. Choline acetyltransferase, a constitutive marker for ACh terminals, was unaffected. This suggests that CPF reduces ACh presynaptic activity rather than compromising the development of ACh projections per se. CPF exposure also reduced the expression of cerebrocortical 5HT(1A) receptors. These effects in the chick model recapitulate many of the actions of early gestational CPF exposure in rats, and thus suggest that CPF exerts direct actions on the immature brain to compromise the development of ACh and 5HT pathways.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
50
|
Slotkin TA, Bodwell BE, Levin ED, Seidler FJ. Neonatal exposure to low doses of diazinon: long-term effects on neural cell development and acetylcholine systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:340-8. [PMID: 18335101 PMCID: PMC2265026 DOI: 10.1289/ehp.11005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 12/13/2007] [Indexed: 05/24/2023]
Abstract
BACKGROUND The developmental neurotoxicity of organophosphate pesticides involves mechanisms other than their shared property of cholinesterase inhibition. OBJECTIVES We gave diazinon (DZN) to newborn rats on postnatal days 1-4, using doses (0.5 or 2 mg/kg) spanning the threshold for barely detectable cholinesterase inhibition. METHODS We then evaluated the lasting effects on indices of neural cell number and size, and on functional markers of acetylcholine (ACh) synapses (choline acetyltransferase, presynaptic high-affinity choline transporter, nicotinic cholinergic receptors) in a variety of brain regions. RESULTS DZN exposure produced a significant overall increase in cell-packing density in adolescence and adulthood, suggestive of neuronal loss and reactive gliosis; however, some regions (temporal/occipital cortex, striatum) showed evidence of net cell loss, reflecting a greater sensitivity to neurotoxic effects of DZN. Deficits were seen in ACh markers in cerebrocortical areas and the hippocampus, regions enriched in ACh projections. In contrast, there were no significant effects in the midbrain, the major locus for ACh cell bodies. The striatum showed a unique pattern, with robust initial elevations in the ACh markers that regressed in adulthood to normal or subnormal values. CONCLUSIONS These results indicate that developmental exposures to apparently nontoxic doses of DZN compromise neural cell development and alter ACh synaptic function in adolescence and adulthood. The patterns seen here differ substantially from those seen in earlier work with chlorpyrifos, reinforcing the concept that the various organophosphates have fundamentally different effects on the developmental trajectories of specific neurotransmitter systems, unrelated to their shared action as cholinesterase inhibitors.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|