1
|
Sharin T, Crump D, O’Brien JM. Development and characterization of a double-crested cormorant hepatic cell line, DCH22, for chemical screening. FRONTIERS IN TOXICOLOGY 2025; 7:1482865. [PMID: 40012885 PMCID: PMC11861107 DOI: 10.3389/ftox.2025.1482865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
There are currently no available cell lines for the ecologically relevant colonial waterbird species, the double-crested cormorant (DCCO). DCCOs are high trophic level aquatic birds that are used for routine contaminant monitoring programs in the Laurentian Great Lakes and marine coasts of Canada. Developing a DCCO cell line for in vitro toxicological screening will ideally provide improved understanding of the effects of environmental chemicals given the large differences in sensitivity between laboratory and wild avian species. In this study, an immortalized DCCO hepatic cell line, DCH22, was established from the liver of a day 22 female embryo as a potential alternative to primary DCCO embryonic hepatocytes (DCEH) for chemical screening. DCH22 cells were cultured for over a year and have hepatocyte-like morphology. Exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB-126), benzo-a-pyrene, ß-napthoflavone and phenacetin induced CYP1A activity and mRNA expression in DCH22 3D spheroids. Induction of CYP3A activity and mRNA expression was observed following exposure to hexabromocyclododecane (HBCD), tris(1,3-dichloroisopropyl)phosphate, carbamazepine, and metyrapone. The phase II metabolism gene, UGT1A1, was upregulated following HBCD exposure and DCH22 spheroids expressed vitellogenin protein after exposure to 17α-ethinylestradiol. Based on these data, the novel DCH22 cell line, cultured as 3D spheroids, has potential use as an alternative to DCEH for chemical screening and will permit the evaluation of avian species differences in sensitivity from an in vitro screening perspective.
Collapse
Affiliation(s)
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada
| | | |
Collapse
|
2
|
Béziers P, Legrand E, Boulanger E, Basu N, Ewald JD, Henry P, Hecker M, Xia J, Karouna-Renier N, Crump D, Head J. Inconsistent Transcriptomic Responses to Hexabromocyclododecane in Japanese Quail: A Comparative Analysis of Results From Four Different Study Designs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 39073395 DOI: 10.1002/etc.5955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Efforts to use transcriptomics for toxicity testing have classically relied on the assumption that chemicals consistently produce characteristic transcriptomic signatures that are reflective of their mechanism of action. However, the degree to which transcriptomic responses are conserved across different test methodologies has seldom been explored. With increasing regulatory demand for New Approach Methods (NAMs) that use alternatives to animal models and high-content approaches such as transcriptomics, this type of comparative analysis is needed. We examined whether common genes are dysregulated in Japanese quail (Coturnix japonica) liver following sublethal exposure to the flame retardant hexabromocyclododecane (HBCD), when life stage and test methodologies differ. The four exposure scenarios included one NAM: Study 1-early-life stage (ELS) exposure via a single egg injection, and three more traditional approaches; Study 2-adult exposure using a single oral gavage; Study 3-ELS exposure via maternal deposition after adults were exposed through their diet for 7 weeks; and Study 4-ELS exposure via maternal deposition and re-exposure of nestlings through their diet for 17 weeks. The total number of differentially expressed genes (DEGs) detected in each study was variable (Study 1, 550; Study 2, 192; Study 3, 1; Study 4, 3) with only 19 DEGs shared between Studies 1 and 2. Factors contributing to this lack of concordance are discussed and include differences in dose, but also quail strain, exposure route, sampling time, and HBCD stereoisomer composition. The results provide a detailed overview of the transcriptomic responses to HBCD at different life stages and routes of exposure in a model avian species and highlight certain challenges and limits of comparing transcriptomics across different test methodologies. Environ Toxicol Chem 2024;00:1-11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Paul Béziers
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Elena Legrand
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Emily Boulanger
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Jessica D Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Paula Henry
- U.S. Geological Survey, Eastern Ecological Science Center at Patuxent Research Refuge, Laurel, Maryland, USA
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| | - Natalie Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center at Patuxent Research Refuge, Laurel, Maryland, USA
| | - Doug Crump
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jessica Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| |
Collapse
|
3
|
Goodchild CG, Karouna-Renier NK, Braham RP, Henry PFP, Letcher RJ, Fernie KJ. Hepatic Gene Expression Profiling of American Kestrels ( Falco sparverius) Exposed In Ovo to Three Alternative Brominated Flame Retardants. BIOLOGY 2022; 11:1341. [PMID: 36138821 PMCID: PMC9495696 DOI: 10.3390/biology11091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
A number of brominated flame retardants (BFRs) have been reported to interfere with the thyroid signaling pathway and cause oxidative stress in birds, yet the underlying shifts in gene expression associated with these effects remain poorly understood. In this study, we measured hepatic transcriptional responses of 31 genes in American kestrel (Falco sparverius) hatchlings following in ovo exposure to one of three high-volume alternative BFRs: 1,2-bis(2,4,6-tribromophenoxy) ethane (BTPBE), bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), or 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB). Hatchling kestrels exhibited shifts in the expression of genes related to oxidative stress (CYP, GSTA, SOD, and GPX1), thyroid hormone metabolism and transport (DIO1, DIO2, and TTR), lipid and protein metabolism (PPAR, HMGCR, FAB1, and LPL), and cytokine-mediated inflammation (TLR3, IL18, IRF7, STAT3, RACK1, and CEBPB). Male and female hatchlings differed in which genes were differentially expressed, as well as the direction of the effect (up- vs. downregulation). These results build upon our previous findings of increased oxidative stress and disrupted thyroid signaling pathway in the same hatchlings. Furthermore, our results indicate that inflammatory responses appear to occur in female hatchlings exposed to BTBPE and EHTBB in ovo. Gene expression analysis revealed multiple affected pathways, adding to the growing evidence that sublethal physiological effects are complex and are a concern for birds exposed to BTBPE, EHTBB, or TBPH in ovo.
Collapse
Affiliation(s)
- Christopher G. Goodchild
- U.S. Geological Survey Eastern Ecological Science Center—Patuxent Research Refuge, Beltsville, MD 20705, USA
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Natalie K. Karouna-Renier
- U.S. Geological Survey Eastern Ecological Science Center—Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Ryan P. Braham
- U.S. Geological Survey Eastern Ecological Science Center—Leetown Research Laboratory, Kearneysville, WV 25430, USA
- U.S. Fish and Wildlife Service Eastern Idaho Field Office, 4425 Burley Drive, Suite A, Chubbuck, ID 83202, USA
| | - Paula F. P. Henry
- U.S. Geological Survey Eastern Ecological Science Center—Patuxent Research Refuge, Laurel, MD 20708, USA
| | - Robert J. Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Kim J. Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
4
|
Yu YJ, Li ZR, Zhu Y, Li LZ, Zhang LH, Xiang MD, Zeng EY. Significance of biotransformation and excretion on the enantioselective bioaccumulation of hexabromocyclododecane (HBCDD) in laying hens and developing chicken embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126749. [PMID: 34390953 DOI: 10.1016/j.jhazmat.2021.126749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/07/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Although (-)-α-hexabromocyclododecane (HBCDD) and (+)-γ-HBCDD are preferentially enriched in chickens, the key factors contributing to their selective bioaccumulation in hens and their potential biotransformation in developing chicken embryos remain unclear. Herein, in vivo and in ovo exposure experiments using hens and fertilized eggs were conducted to investigate the absorption, excretion, and biotransformation of HBCDDs in chickens. γ-HBCDD (76%) exhibited a higher absorption efficiency than α- (22%) and β- (69%) HBCDDs. However, α-HBCDD was dominant in hen tissues, although γ-HBCDD accounted for >75% in the spiked feed. Moreover, chicken embryos biotransformed approximately 9.5% and 11.7% of absorbed α- and γ-HBCDDs, respectively, implying that diastereomer-selective elimination causes the predominance of α-HBCDD in hens. The concentration and enantiomer fraction (EF) of α-HBCDD in laid eggs were significantly positively correlated, suggesting enantioselective elimination. The EFs of α- and γ-HBCDDs varied between feces from the exposure and depuration periods, indicating the preferred excretion of (+)-α- and (-)-γ-HBCDDs. Furthermore, the enantioselective biotransformation of (-)-γ-HBCDD was confirmed in developing chicken embryos. These results show that excretion and biotransformation contribute to the diastereomer- and enantiomer-selective bioaccumulation of HBCDDs in chickens; The results may improve our understanding of the environmental fate and ecological risks of HBCDDs in biota.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zong-Rui Li
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environmental and Chemical Engineering, Xi' an Polytechnic University, Xi' an 710048, China
| | - Liang-Zhong Li
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Luo-Hong Zhang
- School of Environmental and Chemical Engineering, Xi' an Polytechnic University, Xi' an 710048, China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Farhat A, Crump D, Bidinosti L, Boulanger E, Basu N, Hecker M, Head JA. An Early-Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:141-154. [PMID: 31449668 DOI: 10.1002/etc.4582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Early-life stage (ELS) toxicity tests are recognized as an advancement over current testing methodologies in terms of cost, animal use, and biological relevance. However, standardized ELS tests are not presently available for some vertebrate taxa, including birds. The present study describes a Japanese quail (Coturnix japonica) ELS test that is a promising candidate for standardization and applies it to test 8 environmental chemicals (ethinylestradiol, benzo[a]pyrene, chlorpyrifos, fluoxetine, lead(II)nitrate, trenbolone, seleno-L-methionine, hexabromocyclododecane). Individual chemicals were injected into the air cell of unincubated Japanese quail eggs at 3 concentrations, all predicted to cause ≤20% mortality. Survival to embryonic day 16 was consistently high (>90%) among the vehicle-injected controls. All chemicals, except ethinylestradiol, were detected in liver tissue, most at concentrations suggestive of embryonic clearance. Adverse effects were observed for 5 of the 8 chemicals; chlorpyrifos (41.1 µg/g) significantly increased developmental abnormalities and decreased embryo and gallbladder mass. Ethinylestradiol (54.2 µg/g) and hexabromocyclododecane (0.02 µg/g) decreased embryo mass and tarsus length, respectively. Benzo[a]pyrene (0.83 µg/g) and fluoxetine hydrochloride (32.7 µg/g) exceeded the 20% mortality cutoff. No effects were observed following lead(II)nitrate, seleno-L-methionine, or trenbolone exposure up to 10.7, 0.07, and 4.4 µg/g, respectively. Overall, our ELS approach was time- and cost-effective, caused minimal mortality in controls, effectively delivered diverse chemicals to the embryo, and permitted identification of apical outcomes, all of which provide support toward standardization. Environ Toxicol Chem 2019;39:141-154. © 2019 SETAC.
Collapse
Affiliation(s)
- Amani Farhat
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Lisa Bidinosti
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Emily Boulanger
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Nil Basu
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Effects of prenatal exposure to triclosan on the liver transcriptome in chicken embryos. Toxicol Appl Pharmacol 2018; 347:23-32. [DOI: 10.1016/j.taap.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
9
|
Zheng X, Qiao L, Sun R, Luo X, Zheng J, Xie Q, Sun Y, Mai B. Alteration of Diastereoisomeric and Enantiomeric Profiles of Hexabromocyclododecanes (HBCDs) in Adult Chicken Tissues, Eggs, and Hatchling Chickens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5492-5499. [PMID: 28440626 DOI: 10.1021/acs.est.6b06557] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The concentrations and enantiomer fractions (EFs) of α-, β-, and γ-hexabromocyclododecanes (HBCDs) were measured in chicken diet sources (soil and chicken feed), home-raised adult chicken (Gallus domesticus) tissues, eggs during incubation, and hatchling chicken tissues. HBCD concentrations were not detected-0.69 ng/g dry weight (dw) and 25.6-48.4 ng/g dw in chicken feed and soil, respectively. HBCDs were detected in all adult chicken tissues, except the brain, at median levels of 13.1-44.0 ng/g lipid weight (lw). The proportions of α-HBCD in total HBCDs increased from 51% in soil to more than 87% in adult chicken tissues. The accumulation ratios (ARs) of α-HBCD from diet to adult chicken tissues were 4.27 for liver, 11.2 for fat, and 7.64-12.9 for other tissues, respectively. The AR and carry-over rate (COR) of α-HBCD from diet to eggs were 22.4 and 0.226, respectively. The concentrations of α-HBCD in hatchling chicken liver (median: 35.4 ng/g lw) were significantly lower than those in hatchling chicken pectoral muscle (median: 130 ng/g lw). The EFs of α-HBCD decreased from soil to adult chicken tissues and from eggs to hatchling chicken liver. Meanwhile, the EFs of γ-HBCD increased from soil to adult chicken tissues. These results indicate the preferential enrichment of (-)-α-HBCD and (+)-γ-HBCD in chickens. The alteration of diastereoisomeric and enantiomeric patterns of HBCDs might be influenced by the different absorption and elimination rates of the six HBCD enantiomers as well as variations in HBCD metabolism in chickens.
Collapse
Affiliation(s)
- Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University , Guangzhou 510642, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| | - Lin Qiao
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection , Guangzhou 510655, People's Republic of China
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| | - Jing Zheng
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection , Guangzhou 510655, People's Republic of China
| | - Qilai Xie
- College of Resources and Environment, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| |
Collapse
|
10
|
Eng ML, Bishop CA, Crump D, Jones SP, Williams TD, Drouillard KG, Elliott JE. Catbirds are the New Chickens: High Sensitivity to a Dioxin-like Compound in a Wildlife Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5252-5258. [PMID: 28379684 DOI: 10.1021/acs.est.7b00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dioxins and dioxin-like compounds (DLCs) are highly toxic and persistent global pollutants with extremely large differences in sensitivity across taxonomic groups. The chicken has long been considered uniquely sensitive to DLCs among avian species; but DLC toxicity in nondomesticated birds is largely untested, and the relevance of the chicken as an ecological model is uncertain. New approaches that use genotyping of the AHR1 ligand binding domain to screen for DLC sensitivity among avian species predicted that the gray catbird, a relevant wildlife species, is also highly sensitive. We tested this prediction using egg injections of a dioxin-like PCB (PCB-126) and found that the catbird is at least as sensitive as the chicken to DLCs, based on both embryotoxicity and mRNA induction of phase I metabolizing enzymes (CYP1A4/5). This study is the first to confirm that there are wildlife species as sensitive as the chicken and demonstrates how using predictive genotyping methods and targeted bioassays can focus toxicity assessments on ecologically relevant species.
Collapse
Affiliation(s)
- Margaret L Eng
- Science and Technology Branch, Environment and Climate Change Canada , 5421 Robertson Road, Delta, British Columbia V4K 3N2, Canada
| | - Christine A Bishop
- Science and Technology Branch, Environment and Climate Change Canada , 5421 Robertson Road, Delta, British Columbia V4K 3N2, Canada
| | - Doug Crump
- Science and Technology Branch, Environment and Climate Change Canada , 1125 Colonel By Drive, Raven Road, Ottawa, Ontario K1A 0H3, Canada
| | - Stephanie P Jones
- Science and Technology Branch, Environment and Climate Change Canada , 1125 Colonel By Drive, Raven Road, Ottawa, Ontario K1A 0H3, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Kenneth G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor , 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - John E Elliott
- Science and Technology Branch, Environment and Climate Change Canada , 5421 Robertson Road, Delta, British Columbia V4K 3N2, Canada
- Department of Biological Sciences, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
11
|
Guigueno MF, Fernie KJ. Birds and flame retardants: A review of the toxic effects on birds of historical and novel flame retardants. ENVIRONMENTAL RESEARCH 2017; 154:398-424. [PMID: 28193557 DOI: 10.1016/j.envres.2016.12.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 05/28/2023]
Abstract
Flame retardants (FRs) are a diverse group of chemicals, many of which persist in the environment and bioaccumulate in biota. Although some FRs have been withdrawn from manufacturing and commerce (e.g., legacy FRs), many continue to be detected in the environment; moreover, their replacements and/or other novel FRs are also detected in biota. Here, we review and summarize the literature on the toxic effects of various FRs on birds. Birds integrate chemical information (exposure, effects) across space and time, making them ideal sentinels of environmental contamination. Following an adverse outcome pathway (AOP) approach, we synthesized information on 8 of the most commonly reported endpoints in avian FR toxicity research: molecular measures, thyroid-related measures, steroids, retinol, brain anatomy, behaviour, growth and development, and reproduction. We then identified which of these endpoints appear more/most sensitive to FR exposure, as determined by the frequency of significant effects across avian studies. The avian thyroid system, largely characterized by inconsistent changes in circulating thyroid hormones that were the only measure in many such studies, appears to be moderately sensitive to FR exposure relative to the other endpoints; circulating thyroid hormones, after reproductive measures, being the most frequently examined endpoint. A more comprehensive examination with concurrent measurements of multiple thyroid endpoints (e.g., thyroid gland, deiodinase enzymes) is recommended for future studies to more fully understand potential avian thyroid toxicity of FRs. More research is required to determine the effects of various FRs on avian retinol concentrations, inconsistently sensitive across species, and to concurrently assess multiple steroid hormones. Behaviour related to courtship and reproduction was the most sensitive of all selected endpoints, with significant effects recorded in every study. Among domesticated species (Galliformes), raptors (Accipitriformes and Falconiformes), songbirds (Passeriformes), and other species of birds (e.g. gulls), raptors seem to be the most sensitive to FR exposure across these measurements. We recommend that future avian research connect biochemical disruptions and changes in the brain to ecologically relevant endpoints, such as behaviour and reproduction. Moreover, connecting in vivo endpoints with molecular endpoints for non-domesticated avian species is also highly important, and essential to linking FR exposure with reduced fitness and population-level effects.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1; Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, Canada H9X 3V9
| | - Kim J Fernie
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1.
| |
Collapse
|
12
|
Marteinson SC, Eulaers I, Jaspers VLB, Covaci A, Eens M, Letcher RJ, Fernie KJ. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:441-451. [PMID: 27707600 DOI: 10.1016/j.envpol.2016.09.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Feathers are useful for monitoring contaminants in wild birds and are increasingly used to determine persistent organic pollutants. However, few studies have been conducted on birds with known exposure levels. We aimed to determine how well nestling feather concentrations reflect in ovo exposure to hexabromocyclododecane (α-, β- and γ-HBCDD), and to determine if feather concentrations are related to physiological biomarkers. Captive kestrels (n = 11) were exposed in ovo to maternally transferred HBCDD-isomers at concentrations of 127, 12 and 2 ng/g wet weight of α-, β- and γ-HBCDD (measured in sibling eggs), respectively, and compared to controls (n = 6). Nestling growth was monitored at 5 d intervals and circulating thyroid hormone concentrations assessed at d 20. Tail feathers were collected prior to the first molt and analyzed for HBCDD isomers. The mean ΣHBCDD concentration in feathers was 2405 pg/g dry weight (in exposed birds) and α-, β- and γ-HBCDD made up 32%, 13%, and 55%, respectively of the ΣHBCDD concentrations. This isomer distribution deviated from the typical dominance of α-HBCDD reported in vertebrate samples. Exposed chicks had significantly higher feather concentrations of β- and γ-HBCDD compared with controls (p = 0.007 and p = 0.001 respectively), while α-HBCDD concentrations did not differ between the two groups. Feather concentrations of α-HBCDD were best explained by egg concentrations of β- or γ-HBCDD concentrations (wi = 0.50, 0.30 respectively), while feather concentrations of β- and γ-HBCDD were influenced by growth parameters (rectrix length: wi = 0.61; tibiotarsus length: wi = 0.28). These results suggest that feather α-HBCDD concentrations may reflect internal body burdens, whereas β- and γ-HBCDD may be subject to selective uptake. The α-HBCDD concentrations in the feathers were negatively associated with the ratio of plasma free triiodothyronine to free thyroxine (T3:T4; p = 0.020), demonstrating for the first time that feather concentrations may be used to model the effect of body burdens on physiological endpoints.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Robert J Letcher
- National Wildlife Research Centre, Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
13
|
Hu SX. Age-related change of hepatic uridine diphosphate glucuronosyltransferase and sulfotransferase activities in male chickens and pigs. J Vet Pharmacol Ther 2016; 40:270-278. [PMID: 27593531 DOI: 10.1111/jvp.12355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023]
Abstract
The hepatic activities of uridine diphosphate glucuronosyltransferase (UGT) and sulfotransferase (SULT) of male Ross 708 broiler chickens at the age of 1, 7, 14, 28, and 56 days and male Camborough-29 pigs at the age of 1 day and 2, 5, 10, and 20 weeks were investigated. Glucuronidation and sulfation of 4-nitrophenol were used to evaluate the activities. Porcine hepatic UGT and SULT activities were low at birth, peaked at around 5-10 weeks, and then declined. Both hepatic UGT and SULT activities of chickens were high at hatch and declined. Chicken hepatic UGT activity had a peak at the age of 28 days. Affinity of hepatic SULT to 4-nitrophenol is similar in chickens and pigs, but the affinity of hepatic UGT in pigs was about 10 times higher than that in chickens. 4-nitrophenol was predominantly conjugated by SULT instead of UGT in chicken livers from hatch to day 56. Conversely, hepatic UGT contributed predominantly in 4-nitrophenol conjugation than the SULT in pigs from birth to 20 weeks. Therefore, age has significant impact on hepatic activities of UGT and SULT, and the importance of UGT and SULT on conjugation is different in chickens and pigs.
Collapse
Affiliation(s)
- S X Hu
- Veterinary Medicine Research and Development, Zoetis, Inc., Kalamazoo, MI, USA
| |
Collapse
|
14
|
Crump D, Farhat A, Chiu S, Williams KL, Jones SP, Langlois VS. Use of a Novel Double-Crested Cormorant ToxChip PCR Array and the EROD Assay to Determine Effects of Environmental Contaminants in Primary Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3265-3274. [PMID: 26894911 DOI: 10.1021/acs.est.5b06181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In vitro screening tools and 'omics methods are increasingly being incorporated into toxicity studies to determine mechanistic effects of chemicals and mixtures. To date, the majority of these studies have been conducted with well-characterized laboratory animal models. In the present study, well-established methods developed for chicken embryonic hepatocyte (CEH) studies were extended to a wild avian species, the double-crested cormorant (DCCO; Phalacrocorax auritus), in order to compare the effects of several environmental contaminants on cytotoxicity, ethoxyresorufin O-deethylase (EROD) activity, and mRNA expression. Five organic flame retardants and one plasticizer decreased cormorant hepatocyte viability in a similar manner to that observed in previous studies with CEH. EROD activity was induced in a concentration-dependent manner following exposure to two dioxin-like chemicals and the calculated EC50 values were concordant with domestic avian species from similar species sensitivity categories. Transcriptomic effects were determined using a novel DCCO PCR array, which was designed, constructed and validated in our laboratory based on a commercially available chicken PCR array. The DCCO array has 27 target genes covering a wide range of toxicity pathways. Gene profiles were variable among the 10 chemicals screened; however, good directional concordance was observed with regard to results previously obtained in CEH. Overall, the application of well-established methods (i.e., CEH and chicken PCR array) to the double-crested cormorant demonstrated the portability of the techniques to an indicator species of ecological relevance.
Collapse
Affiliation(s)
- Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Amani Farhat
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | - Stephanie P Jones
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, ON Canada K1A 0H3
| | | |
Collapse
|
15
|
Zheng X, Erratico C, Abdallah MAE, Negreira N, Luo X, Mai B, Covaci A. In vitro metabolism of BDE-47, BDE-99, and α-, β-, γ-HBCD isomers by chicken liver microsomes. ENVIRONMENTAL RESEARCH 2015; 143:221-228. [PMID: 26505652 DOI: 10.1016/j.envres.2015.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/04/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and the individual α-, β- and γ-hexabromocyclododecane (HBCD) isomers catalyzed by cytochrome P450 (CYP) enzymes was studied using chicken liver microsomes (CLMs). Metabolites were identified using a liquid chromatography-tandem mass spectrometry method and authentic standards for the oxidative metabolites of BDE-47 and BDE-99. Six hydroxylated tetra-BDEs, namely 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42), 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47), 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), 4'-hydroxy-2,2',4,5'- tetrabromodiphenyl ether (4'-OH-BDE-49), and 2'-hydroxy-2,3',4,4'-tetrabromodiphenyl ether (2'-OH-BDE-66), were identified and quantified after incubation of BDE-47 with CLMs. 4'-OH-BDE-49 was the major metabolite formed. Three hydroxylated penta-BDEs (5'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (5'-OH-BDE-99), 6'-hydroxy-2,2',4,4',5- pentabromodiphenyl ether (6'-OH-BDE-99), and 4'-hydroxy-2,2',4,5,5'-pentabromodiphenyl ether, 4'-OH-BDE-101, were formed incubating BDE-99 with CLMs. Concentrations of BDE-99 metabolites were lower than those of BDE-47. More than four mono-hydroxylated HBCD (OH-HBCD), more than four di-hydroxylated HBCD (di-OH-HBCD), more than five mono-hydroxylated pentabromocyclododecenes (OH-PBCD), and more than five di-hydroxylated pentabromocyclododecenes (di-OH-PBCD) were detected when α-, β-, or γ-HBCD were individually incubated with CLMs. Response values (the ratio between the peak areas of the target compound and its internal standard) for OH-HBCD were 1-3 orders of magnitude higher than those for OH-PBCD, di-OH-HBCD, and di-OH-PBCD, suggesting that OH-HBCD might be the major metabolites of α-, β- and γ-HBCD produced by CLMs. No diastereoisomeric or enantiomeric bioisomerisation was observed incubating α-, β- or γ-HBCD with CLMs. Collectively, our data suggest that (i) BDE-47 is metabolized at a faster rate than BDE-99 by CLMs, (ii) OH-HBCD are the major hydroxylated metabolites of α-, β- and γ-HBCD produced by CLMs and (iii) the diastereoisomeric or enantiomeric bioisomerisation of α-, β- and γ-HBCD is not mediated by chicken CYP enzymes.
Collapse
Affiliation(s)
- Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Claudio Erratico
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Noelia Negreira
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
16
|
Su G, Letcher RJ, Moore JN, Williams LL, Martin PA, de Solla SR, Bowerman WW. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. ENVIRONMENTAL RESEARCH 2015; 142:720-730. [PMID: 26406977 DOI: 10.1016/j.envres.2015.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
In the Laurentian Great Lakes basin of North America, an increasing number of chemicals of emerging concern (CECs) are being investigated, including legacy and replacement flame retardants (FRs). In the present study, 14 polybrominated diphenyl ethers (PBDEs), 23 non-PBDEs halogenated FRs (NPHFRs) and 16 organophosphate ester FRs (OPE-FRs) were analyzed in 100 individual eggs collected in 2012 and 2013 and in 15 egg pools of herring gulls collected in 2012 from 20 colonies across the entire Laurentian Great Lakes basin. For CEC-FRs in eggs from all colonies, 14 PBDEs, 12 NPHFRs and 9 OPE-FRs were quantifiable in at least one of the 115 analyzed samples. The mean sum PBDE (Σ14PBDE) concentrations ranged from 244 to 657 ng/g wet weight (ww), and on average were 1-2 orders of magnitude greater than the Σ12NPHFR concentrations (13.8-35.6 ng/g ww), and 2-3 orders of magnitude greater than Σ9OPE-FR concentrations (0.31-2.14 ng/g ww). Mean Σ14PBDE and sum of syn- and anti-Dechlorane Plus isomer (Σ2DDC-CO) concentrations in eggs from colonies within Laurentian Great Lakes Areas of Concern (AOCs) were in most cases greater than in eggs from nearby colonies outside of AOCs. Comparing CEC-FR concentrations in eggs collected in 2012-2013 to those previously measured in eggs collected approximately 7 years earlier (2006 and 2008) showed that Σ7PBDE (BDE-28, -47, -100, -99, -154,-153 and -183) mean concentrations in eggs from 6 colonies were approximately 30% less than they were in eggs from the same colonies from the earlier time period, whereas 3 current-use FR (BDE-209, HBCDD and Σ2DDC-CO) concentrations were significantly greater (p<0.05) than previously measured. Between 2006 and 2013 there were significant changes in individual PBDE patterns for BDE-71, -138, -153, -203, -206 and -207. Among all of the examined CEC-FRs, concentrations of Σ4PBDE (BDE-47, -99, -100 and -153) and HBCDD in gull eggs from all colonies were greater than or comparable to their lowest observed effect concentrations (LOECs) based on in ovo egg injection studies. Overall, the current profiles of a broad suite of FRs in Laurentian Great Lakes herring gull eggs highlights the need to better understand e.g., exposure-effect implications and metabolism of FRs, i.e. OPE-FRs, and emphasizes the importance of continued monitoring of CEC-FRs whose concentrations appear to be increasing, including BDE-209, HBCDD and DDC-COs.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6.
| | - Jeremy N Moore
- US Fish and Wildlife Service, East Lansing Ecological Services Field Office, East Lansing, MI, USA
| | - Lisa L Williams
- US Fish and Wildlife Service, East Lansing Ecological Services Field Office, East Lansing, MI, USA
| | - Pamela A Martin
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, Burlington, ON, Canada
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment Canada, Burlington, ON, Canada
| | - William W Bowerman
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
17
|
Crump D, Williams KL, Chiu S, Letcher RJ, Periard L, Kennedy SW. Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10190-10198. [PMID: 26192021 DOI: 10.1021/acs.est.5b02745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Determining the effects of complex mixtures of environmental contaminants poses many challenges within the field of ecotoxicology. In this study, graded concentrations of herring gull egg extracts, collected from five Great Lakes breeding colonies with variable burdens of organohalogen contaminants (OHCs), were administered to chicken embryonic hepatocytes to determine effects on 7-ethoxyresorufin-O-deethylase (EROD) activity, porphyrin accumulation, and mRNA expression. EROD activity and porphyrin accumulation permitted the ranking of colonies based on the efficacy of eliciting an aryl hydrocarbon receptor-mediated response. An avian ToxChip polymerase chain reaction (PCR) array provided more exhaustive coverage in terms of potential toxicity pathways being affected, including xenobiotic and lipid metabolism and the thyroid hormone pathway. Herring gull eggs from Channel Shelter Island (CHSH, Lake Huron) and Gull Island (GULL, Lake Michigan) had among the highest OHC burdens, and extracts elicited a biochemical and transcriptomic response greater than that of extracts from the other three, less polluted colonies. For example, EROD EC50 values and porphyrin ECthreshold values were lower for CHSH and GULL extracts than for the other colonies. Extracts from CHSH and GULL altered 15 and 13 of 27 genes on the PCR array compared to no more than eight genes for the less contaminated sites. The combination of a well-established avian in vitro assay, two well-characterized biochemical assays, and the avian ToxChip PCR array permitted the geographical discrimination of variably contaminated herring gull eggs from the Great Lakes. Such high-throughput assays show potential promise as cost-effective tools for determining toxic potencies of complex mixtures in the environment.
Collapse
Affiliation(s)
- Doug Crump
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Kim L Williams
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Suzanne Chiu
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Robert J Letcher
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Luke Periard
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Sean W Kennedy
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
- ‡Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
18
|
Letcher RJ, Mattioli LC, Marteinson SC, Bird D, Ritchie IJ, Fernie KJ. Uptake, distribution, depletion, and in ovo transfer of isomers of hexabromocyclododecane flame retardant in diet-exposed American kestrels (Falco sparverius). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1103-1112. [PMID: 25703155 DOI: 10.1002/etc.2903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/22/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Hexabromocyclododecane (HBCDD) is a flame retardant and a global contaminant, yet the toxicokinetics of HBCDD diastereoisomers remains unknown in wildlife species. The present study examined in captive American kestrels (Falco sparverius) (diastereo) isomer-specific HBCDD uptake, depletion, tissue distribution, and transfer to eggs in a dietary dosing study with an HBCDD technical mixture (HBCDD-TM). Adult tissue and plasma collections were from separate cohorts of unpaired individual males (n = 10) and females (n = 10) exposed for 21 d to 800 ng/g wet weight of HBCDD-TM (in safflower oil and injected into their cockerel [brain] diet), followed by a 25-d depuration period. A separate cohort of 12 males only was used for control adult tissue and plasma collections. For egg collections, separate cohorts of 11 control pairs (n = 22 birds) and 20 HBCDD-exposed pairs (n = 40 birds) were allowed to breed, and their eggs were collected (n = 19 exposed eggs and n = 10 control eggs). The sum (Σ) HBCDD concentrations were near or below detection (<0.01-0.1 ng/g wet wt) in all control samples but quantifiable in all samples from exposed birds (no differences [p > 0.05] between males and females). Arithmetic mean ΣHBCDD concentrations were highest in fat >> eggs > liver > plasma. The mean ΣHBCDD depletion rate in plasma between the uptake and depuration periods was estimated to be 0.22 ng/g/d with a half-life of approximately 15 d. The γ-HBCDD diastereoisomer was >60% of the ΣHBCDD in plasma after the uptake period and similar to the HBCDD-TM (∼80%). After the depuration period, α-HBCDD was >70% of the HBCDD in plasma, fat, liver, and eggs; and this α-HBCDD domination indicated isomer-specific accumulation as a result of selective metabolism, uptake, protein binding, and/or in ovo transport.
Collapse
Affiliation(s)
- Robert J Letcher
- National Wildlife Research Centre, Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment Canada, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Drage D, Mueller JF, Birch G, Eaglesham G, Hearn LK, Harrad S. Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:177-184. [PMID: 25617997 DOI: 10.1016/j.scitotenv.2015.01.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
This paper presents the first historical data on the occurrence of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs) in estuarine sediment from Australia. Sediment cores and surficial sediment samples were collected from four locations within Sydney estuary, Australia. Large increases in concentrations were observed for all compounds between 1980 and 2014, especially for BDE-209 (representative usage of Deca-BDE commercial mixture), which was found in surficial sediment at an average concentration of 42 ng/g dry wt (21-65 ng/g dry wt). PBDE congeners representative of both the Penta- and Octa-BDE commercial mixtures (∑6PBDEs) were also found in their highest concentrations in surficial sediments (average: 1.3 ng/g dry wt; range: 0.65-2.5 ng/g dry wt). PBDE concentrations in surficial sediments were relatively high when compared with those presented in the available literature. This suggests that their input into the Sydney estuary has not decreased since their bans almost a decade earlier. After a sharp increase in the 1990s, HBCD concentrations peaked at an average of 3.5 ng/g dry wt (1.8-5.3 ng/g dry wt) in surficial samples. With global legislation on HBCDs allowing its usage for the next 10 years, it is expected that its input into the estuary is likely to continue.
Collapse
Affiliation(s)
- D Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
| | - J F Mueller
- National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - G Birch
- Environmental Geology Group, School of Geosciences, University of Sydney, NSW 2006, Australia
| | - G Eaglesham
- National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - L K Hearn
- National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - S Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
20
|
Ma M, Crump D, Farmahin R, Kennedy SW. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:391-401. [PMID: 25470364 DOI: 10.1002/etc.2814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals.
Collapse
Affiliation(s)
- Melissa Ma
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Miller A, Elliott JE, Elliott KH, Guigueno MF, Wilson LK, Lee S, Idrissi A. Spatial and temporal trends in brominated flame retardants in seabirds from the Pacific coast of Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:48-55. [PMID: 25194271 DOI: 10.1016/j.envpol.2014.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) are bioaccumulative flame retardants. PBDEs increased in many ecosystems during the late 20th century, but recently have declined in some environments. To examine trends in the northern Pacific, we analysed PBDEs, HBCDD and carbon and nitrogen stable isotopes (δ13C and δ15N) to account for dietary effects in archived eggs of three seabird species from British Columbia, Canada, 1990-2011 (rhinoceros auklets, Cerorhinca monocerata; Leach's storm-petrels, Oceanodroma leucorhoa; ancient murrelets, Synthliboramphus antiquus, 2009 only). PBDEs increased until approximately 2000 and then decreased, while HBCDD increased exponentially throughout the examined period. No significant changes in dietary tracers were observed. HBCDD and ΣPBDE levels varied among species; ΣPBDE also varied among sites. Temporal changes in contaminant concentrations are unlikely to have been caused by dietary changes, and likely reflect the build-up followed by decreases associated with voluntary phase-outs and regulations implemented in North America to control PBDEs.
Collapse
Affiliation(s)
- Aroha Miller
- Department of Applied Biology, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada
| | - John E Elliott
- Science and Technology, Environment Canada, Delta, BC, V4K 3N2, Canada.
| | - Kyle H Elliott
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Mélanie F Guigueno
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Laurie K Wilson
- Canadian Wildlife Service, Pacific Wildlife Research Centre, Environment Canada, Delta, BC, V4K 3N2, Canada
| | - Sandi Lee
- Science and Technology, Environment Canada, Delta, BC, V4K 3N2, Canada
| | - Abde Idrissi
- Environment Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| |
Collapse
|
22
|
Su G, Crump D, Letcher RJ, Kennedy SW. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13511-9. [PMID: 25350880 DOI: 10.1021/es5039547] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The organophosphate flame retardant, triphenyl phosphate (TPHP), has been detected with increasing frequency in environmental samples and its primary metabolite is considered to be diphenyl phosphate (DPHP). Information on the adverse effects of these compounds in avian species is limited. Here, we investigate the effects of TPHP and DPHP on cytotoxicity and mRNA expression, as well as in vitro metabolism of TPHP, by use of a chicken embryonic hepatocyte (CEH) screening assay. After 36 h of exposure, CEH cytotoxicity was observed following exposure to >10 μM TPHP (LC50 = 47 ± 8 μM), whereas no significant cytotoxic effects were observed for DPHP concentrations up to 1000 μM. Using a custom chicken ToxChip polymerase chain reaction (PCR) array, the number of genes altered by 10 μM DPHP (9 out of 27) was greater than that by 10 μM TPHP (4 out of 27). Importantly, 4 of 6 genes associated with lipid/cholesterol metabolism were significantly dysregulated by DPHP, suggesting a potential pathway of importance for DPHP toxicity. Rapid degradation of TPHP was observed in CEH exposed to 10 μM, but the resulting concentration of DPHP accounted for only 17% of the initial TPHP dosing concentration. Monohydroxylated-TPHP (OH-TPHP) and two (OH)2-TPHP isomers were identified in TPHP-exposed CEH, and concentrations of these metabolites increased over 0 to 36 h. Overall, this is the first reported evidence that across 27 toxicologically relevant genes, DPHP altered more transcripts than its precursor, and that TPHP is also metabolized via a hydroxylation pathway in CEH.
Collapse
Affiliation(s)
- Guanyong Su
- Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | | | | | | |
Collapse
|
23
|
Su G, Letcher RJ, Crump D, Farmahin R, Giesy JP, Kennedy SW. Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12039-12046. [PMID: 25222814 DOI: 10.1021/es503399r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are photolytically unstable flame retarding chemicals. Here, photocatalyzed byproducts of TeDB-DiPhOBz and BDE-209 (i.e Br(8)- to Br(11)-PB-DiPhOBz congeners from TeDB-DiPhOBz, and Br(6)- to Br(8)-BDE congeners from BDE-209), formed after 21 days of natural sunlight irradiation (SI), were assessed for exposure effects on cytotoxicity and mRNA expression levels of selected genes in chicken embryonic hepatocytes (CEH). CEHs were exposed for 36 h to concentrations of SI- and nonirradiated (NI)-TeDB-DiPhOBz and BDE-209. Cytotoxic effects were observed only in CEH exposed to 50 μM SI-BDE-209. Results from a custom-designed Avian ToxChip polymerase chain reaction array showed that NI-TeDB-DiPhOBz and NI-BDE-209, up to maximum concentrations of 1.9 and 9 μM, respectively, caused limited changes in mRNA levels of 27 genes from toxicologically relevant pathways, including phase I/II metabolism, the thyroid hormone pathway, lipid/cholesterol metabolism, oxidative stress, immune response, and cell death. In contrast, 12 and 14 of the 27 genes were altered after exposure to 25 μM SI-TeDB-DiPhOBz or 10 μM SI-BDE-209, respectively. Aryl hydrocarbon receptor (AhR)-related CYP1A4 mRNA levels were the most altered on the PCR array with an induction of 560- and 5200-fold after exposure to 1 or 25 μM SI-TeDB-DiPhOBz, respectively, and 2500- and 2300-fold after exposure to 1 or 10 μM SI-BDE-209, respectively. A dioxin-responsive luciferase reporter gene assay confirmed that the CYP1A4 inductions were independent of the dissolution solvents used (tetrahydrofuran/n-hexane, n-hexane, or methanol) during photolysis. Overall, degradation of TeDB-DiPhOBz and BDE-209 by natural sunlight generates byproducts that affect in vitro expression of genes, especially the AhR-mediated CYP1A4.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Egloff C, Crump D, Porter E, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos. Toxicol Appl Pharmacol 2014; 279:303-310. [DOI: 10.1016/j.taap.2014.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
|
25
|
Crump D, Porter E, Egloff C, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. 1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos. Toxicol Appl Pharmacol 2014; 277:279-87. [DOI: 10.1016/j.taap.2014.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/14/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
26
|
Porter E, Crump D, Egloff C, Chiu S, Kennedy SW. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:573-82. [PMID: 24273086 DOI: 10.1002/etc.2469] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 05/24/2023]
Abstract
Risk assessors are challenged with the task of providing data for an increasing number of priority chemicals. High-throughput toxicity screening methods--which permit rapid determination of toxic, molecular, and/or biochemical effects of a wide range of chemicals--are essential to help meet this demand. The avian embryonic hepatocyte in vitro screening method has been utilized in the authors' laboratory to assess the effects of a wide range of environmental contaminants on cytotoxicity and mRNA expression of genes associated with xenobiotic metabolism, the thyroid hormone pathway, lipid metabolism, and growth. Sixteen structurally variable organic flame retardants (OFRs)--including tetrabromoethylcyclohexane (TBECH), tris(2-butoxyethyl) phosphate (TBEP), tricresyl phosphate (TCP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP)--were screened using the in vitro method in the present study. Hepatocytes from 2 avian species, chicken and herring gull, were prepared, and species differences in hepatocyte viability were observed for several OFRs. For example, TCP was not cytotoxic in chicken hepatocytes up to the highest concentration tested (300 µM), whereas the median lethal concentration (LC50) was 31.2 µM in herring gull hepatocytes. Effects on mRNA expression in chicken embryonic hepatocytes were determined using a 3 × 32 custom-made Avian ToxChip polymerse chain reaction array and were variable among OFRs; TCP, TDCPP, and tris(2,3-dibromopropyl) isocyanurate showed the most significant alterations among the target genes assessed. Overall, this rapid screening method helped prioritize OFRs for further assessment. For example, OFRs that elicited significant effects on cytoxicity or mRNA expression represent prime candidates for egg injection studies that determine adverse effects on the whole animal but are more costly in terms of time, money, and embryo utilization.
Collapse
Affiliation(s)
- Emily Porter
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Farhat A, Crump D, Chiu S, Williams KL, Letcher RJ, Gauthier LT, Kennedy SW. In Ovo Effects of Two Organophosphate Flame Retardants—TCPP and TDCPP—on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol Sci 2013; 134:92-102. [DOI: 10.1093/toxsci/kft100] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Cassone CG, Vongphachan V, Chiu S, Williams KL, Letcher RJ, Pelletier E, Crump D, Kennedy SW. In Ovo Effects of Perfluorohexane Sulfonate and Perfluorohexanoate on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicol Sci 2012; 127:216-24. [DOI: 10.1093/toxsci/kfs072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Crump D, Chiu S, Kennedy SW. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol Sci 2012; 126:140-8. [PMID: 22268003 DOI: 10.1093/toxsci/kfs015] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(1-chloropropyl) phosphate (TCPP) belong to a group of chemicals collectively known as triester organophosphate flame retardants (OPFRs). OPFRs are used in a wide range of consumer products and have been detected in biota, including free-living avian species; however, data on toxicological and molecular effects of exposure are limited. An in vitro screening approach was used to compare concentration-dependent effects of TDCPP and TCPP on cytotoxicity and messenger RNA (mRNA) expression in cultured hepatocytes and neuronal cells derived from embryonic chickens. TDCPP was toxic to hepatocytes (LC₅₀ = 60.3 ± 45.8μM) and neuronal cells (LC₅₀ = 28.7 ± 19.1μM), whereas TCPP did not affect viability in either cell type up to the highest concentration administered, 300μM. Real-time reverse transcription-PCR revealed alterations in mRNA abundance of genes associated with phase I and II metabolism, the thyroid hormone (TH) pathway, lipid regulation, and growth in hepatocytes. None of the transcripts measured in neuronal cells (D2, D3, RC3, and Oct-1) varied in response to TDCPP or TCPP exposure. Exposure to ≥ 10μM TDCPP and TCPP resulted in significant upregulation of CYP2H1 (4- to 8-fold), CYP3A37 (13- to 127-fold), and UGT1A9 (3.5- to 7-fold) mRNA levels. Transthyretin was significantly downregulated more than twofold by TCPP at 100μM; however, TDCPP did not alter its expression. Liver fatty acid-binding protein, TH-responsive spot 14-α, and insulin-like growth factor-1 were all downregulated (up to 10-fold) in hepatocytes exposed to ≥ 0.01μM TDCPP and TCPP. Taken together, our results indicate that genes associated with xenobiotic metabolism, the TH pathway, lipid regulation, and growth are vulnerable to TDCPP and TCPP administration in cultured avian hepatocytes. The mRNA expression data were similar to those from a previous study with hexabromocyclododecane.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1A 0H3.
| | | | | |
Collapse
|
30
|
Egloff C, Crump D, Chiu S, Manning G, McLaren KK, Cassone CG, Letcher RJ, Gauthier LT, Kennedy SW. In vitro and in ovo effects of four brominated flame retardants on toxicity and hepatic mRNA expression in chicken embryos. Toxicol Lett 2011; 207:25-33. [DOI: 10.1016/j.toxlet.2011.08.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 11/17/2022]
|
31
|
Fernie KJ, Marteinson SC, Bird DM, Ritchie IJ, Letcher RJ. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2570-2575. [PMID: 21898552 DOI: 10.1002/etc.652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/06/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Recently, the ban of hexabromocyclododecane (HBCD), a high-production-volume flame retardant, was announced in Europe and North America. However, the effects of HCBD remain understudied in birds. The objectives of the present comparative effects study were to determine whether exposure to an HBCD technical mixture (HBCD-TM) altered avian reproductive measures at an environmentally relevant concentration. American kestrels were exposed daily by food to HBCD-TM, i.e., 0.51 µg HBCD/g kestrel/d; exposed kestrels laid eggs that had α-HBCD concentrations (163.5 ± 75.1 ng/g wet wt) tenfold greater than β- and γ-HBCD isomers, an isomer profile and concentrations similar to those of eggs of wild peregrine falcons (Falco peregrinus). Concentrations of HBCD were not detected in the control kestrel eggs. In comparison with controls, the kestrels exposed to HBCD began to lay their eggs 6 d earlier and laid larger clutches of smaller eggs. The size of the eggs was inversely correlated with the in ovo α-HBCD concentrations. The smaller eggs of the HBCD exposed kestrels also lost more weight by midincubation, suggesting increased eggshell porosity since eggshell thickness was comparable. Generally birds that lay more eggs and lay earlier in the breeding season gain the advantage of better hatching and fledging success, yet the kestrels exposed to HBCD failed to have better reproductive success than the control birds. These reproductive changes were a function of HBCD exposure, likely through changes in food consumption, with possible impacts on, for example, reproductive behavior and/or alterations in thyroid hormones.
Collapse
Affiliation(s)
- Kim J Fernie
- Wildlife and Landscape Science Directorate, Environment Canada, Burlington, Ontario, Canada.
| | | | | | | | | |
Collapse
|
32
|
Marteinson SC, Kimmins S, Letcher RJ, Palace VP, Bird DM, Ritchie IJ, Fernie KJ. Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius). ENVIRONMENTAL RESEARCH 2011; 111:1116-1123. [PMID: 21917248 DOI: 10.1016/j.envres.2011.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/02/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Hexabromocyclododecane (HBCD) is a high-production-volume, brominated flame-retardant that is used in items such as polystyrene foams. HBCD has been detected in the environment, wildlife tissues and in humans globally with some of the highest recorded levels in predatory birds. This study examined the effects of exposure to environmentally relevant levels of HBCD on the reproductive physiology of captive male American kestrels (Falco sparverius), a predatory bird. Two sets of males were used: one group not housed with females (unpaired: nc=12, nHBCD=10) and the second group housed with females (breeding: nc=10, nHBCD=20). All treatment birds were exposed to 0.51 μg HBCD/g kestrel/day technical HBCD, and controls to safflower oil only, injected into their food during seasonal testicular development. Unpaired males were exposed for 3 weeks and euthanized for testicular analysis. Breeding males were exposed for 3 weeks prior to pairing and throughout the courtship period. The HBCD-exposed unpaired males had heavier testes (p≤0.017) and a trend towards more seminiferous tubules containing elongated spermatids (p=0.052). There was also a moderate increase in plasma testosterone concentrations (p=0.056) compared to controls. In breeding males, testosterone levels increased during courtship to culminate in higher levels than controls by the time the first egg was laid (p=0.010) and circulating free and total T4 was reduced throughout. The number of sperm cells reaching the perivitelline layer of the first egg for breeding males did not differ between the two groups. This study is the first report that HBCD exposure at environmentally relevant levels alters reproductive physiology in male birds and suggests that birds may be more sensitive to HBCD than mammals.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Avian Science and Conservation Centre, McGill University, 21-111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | | | | | |
Collapse
|
33
|
Riddell N, Becker R, Chittim B, Emmerling F, Köppen R, Lough A, McAlees A, McCrindle R. Preparation and X-ray structural characterization of further stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane. CHEMOSPHERE 2011; 84:900-907. [PMID: 21724224 DOI: 10.1016/j.chemosphere.2011.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/08/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
Technical 1,2,5,6,9,10-hexabromocyclododecane (HBCD) consists largely of three diastereomers (α-, β-, and γ-HBCD) produced by the trans addition of bromine to cis,trans,trans-cyclododeca-1,5,9-triene (CDT). However, another seven diastereomers are theoretically possible and may be produced by trans addition of bromine across the double bonds of the other three isomers of 1,5,9-CDT. There are indications that small amounts of the minor HBCD isomers may be present in commercial HBCD mixtures or in products containing this brominated flame retardant (BFR). Such minor components may indeed derive from traces of other 1,5,9-CDTs in the cis, trans, trans starting material, however their formation may also be possible through isomerizations during the processing of this BFR or by bioisomerization subsequent to its release into the environment. Two of the seven additional diastereomers (δ- and ε-HBCD) were synthesized previously from trans,trans,trans-CDT. We now report the preparation of the remaining five diastereomers, ζ-, η-, and θ-HBCD from cis,cis,trans-CDT and ι- and κ-HBCD from cis,cis,cis-CDT, and their characterization by (1)H NMR spectroscopy and X-ray crystallography. The availability of these further diastereomers of HBCDshould aid in determining if the minor isomers are present in commercial samples of this BFR, in products containing HBCDs, or in environmental samples. We have also carried out an X-ray crystal structure determination on ε-HBCD, so that crystal structures are now available for all 10 HBCD diastereomers.
Collapse
Affiliation(s)
- Nicole Riddell
- Wellington Laboratories, Research Division, Guelph, ON, Canada N1G 3M5.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Crump D, Chiu S, Gauthier LT, Hickey NJ, Letcher RJ, Kennedy SW. The effects of Dechlorane Plus on toxicity and mRNA expression in chicken embryos: a comparison of in vitro and in ovo approaches. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:129-34. [PMID: 21539933 DOI: 10.1016/j.cbpc.2011.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/30/2022]
Abstract
Dechlorane Plus (DP) is an additive chlorinated flame retardant comprising two major isomers, syn- and anti-DP, that is used in a variety of commercial/industrial products. It has been detected in biotic and abiotic matrices including the eggs of herring gulls collected from the Laurentian Great Lakes. However, data on potential toxicological and molecular responses to exposure are lacking, especially for avian species. A combined in vitro/in ovo approach was used to determine concentration-dependent effects of DP in chicken embryonic hepatocytes (CEH) and chicken embryos following injection of DP into the air cell of eggs prior to incubation. Overt toxicity (i.e. cytotoxicity and pipping success) and mRNA expression levels of transcripts previously determined to be responsive to a brominated flame retardant were assessed in CEH and hepatic tissue. DP was not cytotoxic up to a maximum concentration of 3 μM in CEH, and no effects on pipping success were observed up to the highest nominal dose group of 500 ng/g egg. A significant shift in isomeric content of syn- and anti-DP was detected between stock solutions of the commercial mixture and hepatic tissue; the proportion of the syn-DP isomer increased from 0.34 to 0.65 with a concomitant decrease of anti-DP from 0.66 to 0.35. None of the mRNA transcripts changed as a result of in vitro or in ovo exposure to DP indicating that, although there was concordance between the two approaches, DP may evoke its toxicity through other modes of action. At current environmental exposure levels, no adverse effects of DP on embryonic viability or pathways associated with the genes assessed are predicted.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Hamlin HJ, Guillette LJ. Embryos as targets of endocrine disrupting contaminants in wildlife. ACTA ACUST UNITED AC 2011; 93:19-33. [PMID: 21425439 DOI: 10.1002/bdrc.20202] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Environmental contaminants are now a ubiquitous part of the ecological landscape, and a growing literature describes the ability of many of these chemicals to alter the developmental trajectory of the embryo. Because many environmental pollutants readily bioaccumulate in lipid rich tissues, wildlife can attain considerable body burdens. Embryos are often exposed to these pollutants through maternal transfer, and a growing number of studies report long-term or permanent developmental consequences. Many biological mechanisms are reportedly affected by environmental contaminants in the developing embryo and fetus, including neurodevelopment, steroidogenesis, gonadal differentiation, and liver function. Embryos are not exposed to one chemical at a time, but are chronically exposed to many chemicals simultaneously. Mixture studies show that for some developmental disorders, mixtures of chemicals cause a more deleterious response than would be predicted from their individual toxicities. Synergistic responses to low dose mixtures make it difficult to estimate developmental outcomes, and as such, traditional toxicity testing often results in an underestimate of exposure risks. In addition, the knowledge that biological systems do not necessarily respond in a dose-dependent fashion, and that very low doses of a chemical can prove more harmful than higher doses, has created a paradigm shift in studies of environmental contaminant-induced dysfunction. Although laboratory studies are critical for providing dose-response relationships and determining specific mechanisms involved in disease etiology, wildlife sentinels more accurately reflect the genetic diversity of real world exposure conditions, and continue to alert scientists and health professionals alike of the consequences of developmental exposures to environmental pollutants.
Collapse
Affiliation(s)
- Heather J Hamlin
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, USA.
| | | |
Collapse
|
36
|
Szabo DT, Diliberto JJ, Huwe JK, Birnbaum LS. Differences in Tissue Distribution of HBCD Alpha and Gamma between Adult and Developing Mice. Toxicol Sci 2011; 123:256-63. [DOI: 10.1093/toxsci/kfr161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Johansson AK, Sellström U, Lindberg P, Bignert A, de Wit CA. Temporal trends of polybrominated diphenyl ethers and hexabromocyclododecane in Swedish Peregrine Falcon (Falco peregrinus peregrinus) eggs. ENVIRONMENT INTERNATIONAL 2011; 37:678-686. [PMID: 21396716 DOI: 10.1016/j.envint.2011.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 12/21/2010] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
A temporal trend study of brominated flame retardants in eggs from peregrine falcon (Falco peregrinus peregrinus), a terrestrial bird of prey, is presented. Eggs collected between 1974 and 2007 were analyzed for the major constituents of the Penta-, Octa- and Decabromodiphenyl ether technical products (BDE-47, -99, -100, -153, -183 and -209), and hexabromocyclododecane (HBCD). Concentrations of BDE-99, -100, -153, -183, -209 and HBCD increased from 1974 to 2000. After the early 2000s, BDE-99, -100, -153 and -183 concentrations decreased, whereas BDE-209 and HBCD concentrations continued to increase. No temporal trend was detected for BDE-47. Rates of increase also differed, with BDE-99 and -100 increasing 3-fold between the 1980s and mid-1990s, and BDE-153 and -183 increasing approximately 10-fold during the same period. The average yearly increase was 15% and 11% for BDE-209 and HBCD, respectively, based on log-linear regression trends. There is a change in BDE congener patterns over time, with a shift from the predominance of BDE-99 and -47 until the late 1980s, to BDE-153 becoming the predominant congener later on. BFR temporal trends in Swedish peregrine falcon eggs reflect European BFR usage patterns.
Collapse
Affiliation(s)
- Anna-Karin Johansson
- Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|