1
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abolhasanzadeh N, Sarabandi S, Dehghan B, Karamad V, Avci CB, Shademan B, Nourazarian A. Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Front Immunol 2024; 15:1333563. [PMID: 38807590 PMCID: PMC11130376 DOI: 10.3389/fimmu.2024.1333563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer stands as the most prevalent form of cancer among women globally, influenced by a combination of genetic and environmental factors. Recent studies have investigated changes in microRNAs (miRNAs) during breast cancer progression and the potential impact of environmental chemicals on miRNA expression. This review aims to provide an updated overview of miRNA alterations in breast cancer and to explore their potential association with environmental chemicals. We will discuss the current knowledge on dysregulated miRNAs in breast cancer, including both upregulated and downregulated miRNAs. Additionally, we will review the influence of environmental chemicals, such as endocrine-disrupting compounds, heavy metals, and air pollutants, on miRNA expression and their potential contribution to breast cancer development. This review aims to advance our understanding of the complex molecular mechanisms underlying miRNA dysregulation in breast cancer by comprehensively examining miRNA alterations and their association with environmental chemicals. This knowledge is crucial for the development of targeted therapies and preventive measures. Furthermore, identifying specific miRNAs affected by environmental chemicals may allow the prediction of individual susceptibility to breast cancer and the design of personalized intervention strategies.
Collapse
Affiliation(s)
- Narges Abolhasanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sajed Sarabandi
- Department of Computer Science Leiden University, Leiden, Netherlands
| | - Bahar Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Türkiye
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
3
|
Sanchez Y, Vasquez Callejas MA, Miret NV, Rolandelli G, Costas C, Randi AS, Español A. Hexachlorobenzene as a differential modulator of the conventional and metronomic chemotherapy response in triple negative breast cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:278-295. [PMID: 38745771 PMCID: PMC11090688 DOI: 10.37349/etat.2024.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024] Open
Abstract
Aim Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.
Collapse
Affiliation(s)
- Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mariana Abigail Vasquez Callejas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Noelia Victoria Miret
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gabino Rolandelli
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Catalina Costas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Andrea Silvana Randi
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alejandro Español
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
4
|
Stelling-Férez J, López-Miranda S, Gabaldón JA, Nicolás FJ. Oleanolic Acid Complexation with Cyclodextrins Improves Its Cell Bio-Availability and Biological Activities for Cell Migration. Int J Mol Sci 2023; 24:14860. [PMID: 37834307 PMCID: PMC10573973 DOI: 10.3390/ijms241914860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Wound healing is a complex process to restore skin. Plant-derived bioactive compounds might be a source of substances for the treatment of wounds stalled in a non-resolving stage of wound healing. Oleanolic acid (OA), a pentacyclic triterpene, has shown favorable wound healing properties both in vitro and in vivo. Unfortunately, OA cannot be solubilized in aqueous media, and it needs to be helped by the use of dimethyl sulfoxide (DMSO). In this paper, we have shown that cyclodextrins (CDs) are a good alternative to DMSO as agents to deliver OA to cells, providing better features than DMSO. Cyclodextrins are natural macromolecules that show a unique tridimensional structure that can encapsulate a wide variety of hydrophobic compounds. We have studied the cyclodextrin-encapsulated form of OA with OA/DMSO, comparing their stability, biological properties for cell migration, and cell viability. In addition, detailed parameters related to cell migration and cytoskeletal reorganization have been measured and compared. Our results show that OA-encapsulateds compound exhibit several advantages when compared to non-encapsulated OA in terms of chemical stability, migration enhancement, and preservation of cell viability.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Santiago López-Miranda
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
5
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zárate LV, Miret NV, Nicola Candia AJ, Zappia CD, Pontillo CA, Chiappini FA, Monczor F, Candolfi M, Randi AS. Breast cancer progression and kynurenine pathway enzymes are induced by hexachlorobenzene exposure in a Her2-positive model. Food Chem Toxicol 2023; 177:113822. [PMID: 37169060 DOI: 10.1016/j.fct.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor β (ERβ) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 μM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERβ while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERβ and GPER levels, collaborating in HER2-positive breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er Subsuelo, (CP 1121), Buenos Aires, Argentina.
| | - Alejandro J Nicola Candia
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptors, Junín 954, Planta Baja, (CP1113), Buenos Aires, Argentina.
| | - Marianela Candolfi
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas, Laboratorio de Inmunoterapia Antitumoral, Paraguay 2155, Piso 10, (CP 1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminants Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Stelling-Férez J, Gabaldón JA, Nicolás FJ. Oleanolic acid stimulation of cell migration involves a biphasic signaling mechanism. Sci Rep 2022; 12:15065. [PMID: 36064555 PMCID: PMC9445025 DOI: 10.1038/s41598-022-17553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cell migration is a critical process for wound healing, a physiological phenomenon needed for proper skin restoration after injury. Wound healing can be compromised under pathological conditions. Natural bioactive terpenoids have shown promising therapeutic properties in wound healing. Oleanolic acid (OA), a triterpenoid, enhances in vitro and in vivo cell migration. However, the underlying signaling mechanisms and pathways triggered by OA are poorly understood. We have previously shown that OA activates epidermal growth factor receptor (EGFR) and downstream effectors such as mitogen-activated protein (MAP) kinase cascade and c-Jun N-terminal kinase (JNK), leading to c-Jun transcription factor phosphorylation, all of which are involved in migration. We performed protein expression or migration front protein subcellular localization assays, which showed that OA induces c-Jun activation and its nuclear translocation, which precisely overlaps at wound-edge cells. Furthermore, c-Jun phosphorylation was independent of EGFR activation. Additionally, OA promoted actin cytoskeleton and focal adhesion (FA) dynamization. In fact, OA induced the recruitment of regulator proteins to FAs to dynamize these structures during migration. Moreover, OA changed paxillin distribution and activated focal adhesion kinase (FAK) at focal adhesions (FAs). The molecular implications of these observations are discussed.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain.,Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
8
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
9
|
Miret NV, Zárate LV, Díaz FE, Agustina Leguizamón M, Pontillo CA, Chiappini FA, Ceballos L, Geffner J, Randi AS. Extracellular acidosis stimulates breast cancer cell motility through aryl hydrocarbon receptor and c-Src kinase activation. J Cell Biochem 2022; 123:1197-1206. [PMID: 35538691 DOI: 10.1002/jcb.30275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
A reduction in extracellular pH (pHe) is a characteristic of most malignant tumors. The aryl hydrocarbon receptor (AhR) is a transcription factor localized in a cytosolic complex with c-Src, which allows it to trigger non-genomic effects through c-Src. Considering that the slightly acidic tumor microenvironment promotes breast cancer progression in a similar way to the AhR/c-Src axis, our aim was to evaluate whether this pathway could be activated by low pHe. We examined the effect of pHe 6.5 on AhR/c-Src axis using two breast cancer cell lines (MDA-MB-231 and LM3) and mammary epithelial cells (NMuMG) and found that acidosis increased c-Src phosphorylation only in tumor cells. Moreover, the presence of AhR inhibitors prevented c-Src activation. Low pHe reduced intracellular pH (pHi), while amiloride treatment, which is known to reduce pHi, induced c-Src phosphorylation through AhR. Analyses were conducted on cell migration and metalloproteases (MMP)-2 and -9 activities, with results showing an acidosis-induced increase in MDA-MB-231 and LM3 cell migration and MMP-9 activity, but no changes in NMuMG cells. Moreover, all these effects were blocked by AhR and c-Src inhibitors. In conclusion, acidosis stimulates the AhR/c-Src axis only in breast cancer cells, increasing cell migration and MMP-9 activity. Although the AhR activation mechanism still remains elusive, a reduction in pHi may be thought to be involved. These findings suggest a critical role for the AhR/c-Src axis in breast tumor progression stimulated by an acidic microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - M Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Jorge Geffner
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| |
Collapse
|
10
|
Lasagna M, Ventura C, Hielpos MS, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. ENVIRONMENTAL RESEARCH 2022; 204:111989. [PMID: 34506784 DOI: 10.1016/j.envres.2021.111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus chlorpyrifos (CPF) is currently considered an endocrine disruptor (ED), as it can imitate hormone actions both in vitro and in vivo. We recently reported that CPF induces migration and invasion in 2D cultures and changes the expression of key molecular markers involved in epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cell lines. In this study, we investigated whether CPF could behave as a predisposing factor for tumors to become more metastatic and aggressive using 3D culture models. In MCF-7 cells, 0.05 μM CPF induced an increase in the number and size of mammospheres via estrogen receptor alpha (ERα) and c-SRC. Furthermore, 0.05 μM CPF increased the area of spheroids generated from MCF-7 cells, induced invasion using both Matrigel® and type 1 collagen matrices, and increased cell migration capacity via ERα in this 3D model. In turn, 50 μM CPF increased cell migration capacity and invasion using type 1 collagen matrix. In monolayers, CPF increased the phosphorylation and membrane translocation of c-SRC at both concentrations assayed. CPF at 0.05 μM boosted p-AKT, p-GSK-3β and p-P38. While p-AKT rose in a ERα-dependent way, p-GSK-3β was dependent on ERα- and c-SRC, and p-P38 was only dependent on c-SRC. On the other hand, the increase in p-AKT and p-P38 induced by 50 μM CPF was dependent on the c-SRC pathway. We also observed that 0.05 μM CPF increased IGF-1R and IRS-1 expression and that 50 μM CPF induced IGF-1Rβ phosphorylation. In the MDA-MB-231 cell line, 0.05 and 50 μM CPF increased p-c-SRC. Finally, p-AKT and p-GSK-3β were also induced by CPF at 0.05 and 50 μM, and an increase in p-P38 was observed at 50 μM. Taken together, these data provide support for the notion that CPF may represent a risk factor for breast cancer development and progression.
Collapse
Affiliation(s)
- M Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad Nacional de La Plata-CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - M S Hielpos
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - M N Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - G Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - N Miret
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - A Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - M Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - C Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Lasagna M, Hielpos MS, Ventura C, Mardirosian MN, Martín G, Miret N, Randi A, Núñez M, Cocca C. Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111312. [PMID: 32956863 DOI: 10.1016/j.ecoenv.2020.111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is one of the most frequently used pesticide in extensive agriculture around the world and can be incorporated by humans and animals with possible consequences on health. The effects of this pesticide on carcinogenesis are not clear and there is no consensus concerning the risks of this compound. In previous work, we demonstrated that CPF induces proliferation of breast cancer cells both in vivo and in vitro. In this work we investigate whether CPF promotes the epithelial-mesenchymal transition (EMT) in breast cancer cells. Herein, we demonstrate that 50 μM CFP induces invasion in MCF-7 and MDA-MB-231 cells. In addition, 0.05 and 50 μM CPF increases migration in both cell lines. In MCF-7 cells, 0.05 and 50 μM CPF increase the metalloprotease MMP2 expression and decrease E-Cadherin and β-Catenin expression diminishing their membrane location. Furthermore, 50 μM CPF induces Vimentin expression and Slug nuclear translocation in MCF-7 cells. 0.05 and 50 μM CPF increase MMP2 gelatinolytic activity and expression, decrease β-Catenin expression and increase Vimentin expression in MDA-MB-231 cells. Inhibition of the oncoprotein c-Src reverses all the effects induced by CPF in MDA-MB-231 but not in MCF-7 indicating that c-Src is a kinase with a crucial role in the cells which grow in an estrogen-independent way. In MCF-7 cells both c-Src and estrogen receptor alpha must be blocked to completly inhibit the CPF-mediated effects. Our results show for the first time that the exposure to subthreshold concentrations of CPF promotes the modulation of EMT-molecular markers and pathways. These results, together with the ubiquitous distribution of the pesticide CPF, make it of utmost importance to take measures to minimize the risk of exposure to this compound.
Collapse
Affiliation(s)
- M Lasagna
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M S Hielpos
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Ventura
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP) CONICET-UNLP, La Plata, Argentina
| | - M N Mardirosian
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina
| | - G Martín
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N Miret
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Núñez
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C Cocca
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA-CONICET, Buenos Aires, Argentina; Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Miret N, Zappia CD, Altamirano G, Pontillo C, Zárate L, Gómez A, Lasagna M, Cocca C, Kass L, Monczor F, Randi A. AhR ligands reactivate LINE-1 retrotransposon in triple-negative breast cancer cells MDA-MB-231 and non-tumorigenic mammary epithelial cells NMuMG. Biochem Pharmacol 2020; 175:113904. [PMID: 32156659 DOI: 10.1016/j.bcp.2020.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-β1 (TGF-β1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-β1 and AhR pathways. Results show that 0.5 μM CPF and 0.005 μM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 μM HCB and 50 μM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 μM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-β1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Gabriela Altamirano
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Ayelén Gómez
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Marianela Lasagna
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Laura Kass
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Miret NV, Pontillo CA, Zárate LV, Kleiman de Pisarev D, Cocca C, Randi AS. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. ENVIRONMENTAL RESEARCH 2019; 173:330-341. [PMID: 30951959 DOI: 10.1016/j.envres.2019.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Breast cancer incidence is increasing globally and exposure to endocrine disruptors has gained importance as a potential risk factor. Hexachlorobenzene (HCB) was once used as a fungicide and, despite being banned, considerable amounts are still released into the environment. HCB acts as an endocrine disruptor in thyroid, uterus and mammary gland and was classified as possibly carcinogenic to human. This review provides a thorough analysis of results obtained in the last 15 years of research and evaluates data from assays in mammary gland and breast cancer in diverse animal models. We discuss the effects of environmentally relevant HCB concentrations on the normal mammary gland and different stages of carcinogenesis, and attempt to elucidate its mechanisms of action at molecular level. HCB weakly binds to the aryl hydrocarbon receptor (AhR), activating both membrane (c-Src) and nuclear pathways. Through c-Src stimulation, AhR signaling interacts with other membrane receptors including estrogen receptor-α, insulin-like growth factor-1 receptor, epidermal growth factor receptor and transforming growth factor beta 1 receptors. In this way, several pathways involved in mammary morphogenesis and breast cancer development are modified, inducing tumor progression. HCB thus stimulates epithelial cell proliferation, preneoplastic lesions and alterations in mammary gland development as well as neoplastic cell migration and invasion, metastasis and angiogenesis in breast cancer. In conclusion, our findings support the hypothesis that the presence and bioaccumulation of HCB in high-fat tissues and during highly sensitive time windows such as pregnancy, childhood and adolescence make exposure a risk factor for breast tumor development.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, CP1113, Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Ghotbaddini M, Moultrie V, Powell JB. Constitutive Aryl Hydrocarbon Receptor Signaling in Prostate Cancer Progression. ACTA ACUST UNITED AC 2018; 2:11-16. [PMID: 31328183 PMCID: PMC6641558 DOI: 10.29245/2578-2967/2018/5.1136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Research on the aryl hydrocarbon receptor (AhR) has largely focused on its activation by various environmental toxins. Consequently, only limited inferences have been made regarding its constitutive activity in the absence of an exogenous ligands. Evidence has shown that AhR is constitutively active in advanced prostate cancer cell lines which model castration resistant prostate cancer (CRPC). CRPC cells can thrive in an androgen depleted environment. However, AR signaling still plays a major role. Although several mechanisms have been suggested for the sustained AR signaling, much is still unknown. Recent studies suggest that crosstalk between constitutive AhR and Src kinase may sustained AR signaling in CRPC. AhR forms a protein complex with Src and plays a role in regulating Src activity. Several groups have reported that tyrosine phosphorylation of AR protein by Src leads to AR activation, thereby promoting the development of CRPC. This review evaluates reports that implicate constitutive AhR as a key regulator of AR signaling in CRPC by utilizing Src as a signaling intermediate.
Collapse
Affiliation(s)
- Maryam Ghotbaddini
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| | - Vivian Moultrie
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| | - Joann B Powell
- Clark Atlanta University- Center for Cancer Research and Therapeutic Development 223 James P Brawley Drive Atlanta, Georgia, USA
| |
Collapse
|
17
|
Ellsworth RE, Kostyniak PJ, Chi LH, Shriver CD, Costantino NS, Ellsworth DL. Organochlorine pesticide residues in human breast tissue and their relationships with clinical and pathological characteristics of breast cancer. ENVIRONMENTAL TOXICOLOGY 2018; 33:876-884. [PMID: 29923341 DOI: 10.1002/tox.22573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Agricultural pesticides are abundant environmental contaminants worldwide, prompting interest in studying their possible detrimental health effects. We examined organochlorine residues by quadrant (n = 245) in breast adipose tissues from 51 women with various stages of breast health to determine patterns of bioaccumulation within the breast and to assess relationships with patient clinical characteristics. Three organochlorine residues-2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), and mirex-assayed by high resolution gas chromatography were abundant in breast tissue. p,p'-DDE (745 ± 1054 ng/g lipid) was the most prevalent residue, comprising 97.5% of the total chemical burden. Mean levels of p,p'-DDE and HCB were significantly correlated (P < .001) with patient age at mastectomy, and levels of p,p'-DDE were correlated (P < .05) with BMI. Pesticide concentrations did not differ significantly by breast quadrant and were not different in the quadrant(s) where the primary tumor was located compared to other cancer-free quadrants. In invasive cancer patients, organochlorine levels differed significantly based on clinical characteristics of the primary carcinoma, including stage, grade, ER status, and HER2 status, indicating that body burden of organochlorines may influence the development of specific subtypes of breast cancer. Potentially carcinogenic organochlorines were present at high levels within the human breast warranting further research to determine the impact of organochlorines in the etiology of breast cancer.
Collapse
Affiliation(s)
- Rachel E Ellsworth
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Paul J Kostyniak
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Lai-Har Chi
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Craig D Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | |
Collapse
|
18
|
Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells. Toxicol Lett 2018; 289:54-62. [DOI: 10.1016/j.toxlet.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/24/2018] [Accepted: 03/10/2018] [Indexed: 11/20/2022]
|
19
|
Starek-Świechowicz B, Budziszewska B, Starek A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol Rep 2017; 69:1232-1239. [DOI: 10.1016/j.pharep.2017.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
|
20
|
Miret N, Rico-Leo E, Pontillo C, Zotta E, Fernández-Salguero P, Randi A. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-β1 and aryl hydrocarbon receptor signaling. Toxicol Appl Pharmacol 2017; 334:192-206. [DOI: 10.1016/j.taap.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
|
21
|
Ventura C, Núñez M, Gaido V, Pontillo C, Miret N, Randi A, Cocca C. Hexachlorobenzene alters cell cycle by regulating p27-cyclin E-CDK2 and c-Src-p27 protein complexes. Toxicol Lett 2017; 270:72-79. [DOI: 10.1016/j.toxlet.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/14/2023]
|
22
|
Bernabé-García Á, Armero-Barranco D, Liarte S, Ruzafa-Martínez M, Ramos-Morcillo AJ, Nicolás FJ. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation. PLoS One 2017; 12:e0172574. [PMID: 28231262 PMCID: PMC5323077 DOI: 10.1371/journal.pone.0172574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed.
Collapse
Affiliation(s)
- Ángel Bernabé-García
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - David Armero-Barranco
- Departamento de Enfermería, Facultad Enfermería, Universidad de Murcia, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - María Ruzafa-Martínez
- Departamento de Enfermería, Facultad Enfermería, Universidad de Murcia, Murcia, Spain
| | | | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGF-ß, Instituto Murciano de Investigaciones Biosanitarias-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
- * E-mail:
| |
Collapse
|
23
|
Miret N, Pontillo C, Ventura C, Carozzo A, Chiappini F, Kleiman de Pisarev D, Fernández N, Cocca C, Randi A. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion. Toxicology 2016; 366-367:20-31. [PMID: 27519288 DOI: 10.1016/j.tox.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell assay) through the Smad, JNK, and p38 pathways, while ERK1/2 is only involved in HCB-induced cell migration. These results demonstrate that HCB modulates the crosstalk between AhR and TGF-β1 and consequently exacerbates a pro-migratory phenotype in MDA-MB-231 cells, which contributes to a high degree of malignancy. Taken together, our findings help to characterize the molecular mechanism underlying the effects of HCB on breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Clara Ventura
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Alejandro Carozzo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| | - Natalia Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, ININFA-CONICET, Laboratorio de Farmacología Molecular, Junín 954, PB, (CP1113), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, subsuelo (CP1113), Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells. Biochem Pharmacol 2016; 109:91-104. [DOI: 10.1016/j.bcp.2016.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 11/18/2022]
|
25
|
Park JH, Choi AJ, Kim SJ, Cheong SW, Jeong SY. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:44-53. [PMID: 26950395 DOI: 10.1016/j.etap.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea.
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Seon-Woo Cheong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| |
Collapse
|
26
|
Delisle A, Ferraris E, Plante I. Chronic exposure to hexachlorobenzene results in down-regulation of connexin43 in the breast. ENVIRONMENTAL RESEARCH 2015; 143:229-240. [PMID: 26519829 DOI: 10.1016/j.envres.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Decreased expression of connexins has been associated with cancer, but the underlying mechanisms are poorly understood. We have previously shown that a 5 day exposure to hexachlorobenzene (HCB) resulted in decreased connexins expression in hepatocytes 45 days later, and that this down-regulation was linked to activation of Akt through the ILK pathway. Because HCB promotes cancer in both the liver and breast, the present study aimed to determine if the mechanisms are similar in both tissues. MCF-12A breast cells were thus transfected with vectors coding for either Akt or a constitutively active form of Akt. In those cells, activation of Akt was correlated with decreased Cx43 levels. Female rats were then exposed to HCB by gavage either following the same protocol used previously for the liver or through a chronic exposure. While no changes were observed after the 5 days exposure protocol, chronic exposure to HCB resulted in increased Akt levels and decreased Cx43 levels in breast cells. In vitro, Akt was activated in MCF-12A cells exposed to HCB either for 7 days or chronically, but no changes were observed in junctional proteins. Together, these results suggested that, while activation of Akt can decrease Cx43 expression in breast cells in vitro, other mechanisms are involved during HCB exposure, leading to a decrease in Cx43 levels in a model- and duration-dependent manner. Finally, we showed that HCB effects are tissue specific, as we did not observe the same results in breast and liver tissues.
Collapse
Affiliation(s)
- Ariane Delisle
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | - Isabelle Plante
- INRS-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7. http://www.inrs.ca
| |
Collapse
|
27
|
Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1. Toxicol Lett 2015; 239:53-64. [DOI: 10.1016/j.toxlet.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
|
28
|
de Tomaso Portaz AC, Caimi GR, Sánchez M, Chiappini F, Randi AS, Kleiman de Pisarev DL, Alvarez L. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Alcaraz A, Mrowiec A, Insausti CL, Bernabé-García Á, García-Vizcaíno EM, López-Martínez MC, Monfort A, Izeta A, Moraleda JM, Castellanos G, Nicolás FJ. Amniotic Membrane Modifies the Genetic Program Induced by TGFß, Stimulating Keratinocyte Proliferation and Migration in Chronic Wounds. PLoS One 2015; 10:e0135324. [PMID: 26284363 PMCID: PMC4540284 DOI: 10.1371/journal.pone.0135324] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 07/21/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Post-traumatic large-surface or deep wounds often cannot progress to reepithelialisation because they become irresponsive in the inflammatory stage, so intervention is necessary to provide the final sealing epidermis. Previously we have shown that Amniotic Membrane (AM) induced a robust epithelialisation in deep traumatic wounds. METHODS AND FINDINGS To better understand this phenomenon, we used keratinocytes to investigate the effect of AM on chronic wounds. Using keratinocytes, we saw that AM treatment is able to exert an attenuating effect upon Smad2 and Smad3 TGFß-induced phosphorylation while triggering the activation of several MAPK signalling pathways, including ERK and JNK1, 2. This also has a consequence for TGFß-induced regulation on cell cycle control key players CDK1A (p21) and CDK2B (p15). The study of a wider set of TGFß regulated genes showed that the effect of AM was not wide but very concrete for some genes. TGFß exerted a powerful cell cycle arrest; the presence of AM however prevented TGFß-induced cell cycle arrest. Moreover, AM induced a powerful cell migration response that correlates well with the expression of c-Jun protein at the border of the healing assay. Consistently, the treatment with AM of human chronic wounds induced a robust expression of c-Jun at the wound border. CONCLUSIONS The effect of AM on the modulation of TGFß responses in keratinocytes that favours proliferation together with AM-induced keratinocyte migration is the perfect match that allows chronic wounds to move on from their non-healing state and progress into epithelialization. Our results may explain why the application of AM on chronic wounds is able to promote epithelialisation.
Collapse
Affiliation(s)
- Antonia Alcaraz
- Oncología Molecular y TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Anna Mrowiec
- Oncología Molecular y TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Carmen Luisa Insausti
- Unidad de Terapia Celular, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Ángel Bernabé-García
- Oncología Molecular y TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Eva María García-Vizcaíno
- Oncología Molecular y TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | | | - Asunción Monfort
- Instituto Biodonostia, Hospital Universitario Donostia, San Sebastian, Spain
| | - Ander Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, San Sebastian, Spain
| | - José María Moraleda
- Unidad de Terapia Celular, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Gregorio Castellanos
- Servicio de Cirugía, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco José Nicolás
- Oncología Molecular y TGFß, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| |
Collapse
|
30
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley L, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi I, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-S159. [PMID: 26106135 PMCID: PMC4565611 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- *To whom correspondence should be addressed. Tel: +1 615 327 6119; Fax: +1 615 327 6442;
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T. Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P. Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
31
|
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web. J Mammary Gland Biol Neoplasia 2014; 19:253-70. [PMID: 25544707 DOI: 10.1007/s10911-014-9329-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
Collapse
Affiliation(s)
- A Dittrich
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
32
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
33
|
Addae C, Cheng H, Martinez-Ceballos E. Effect of the environmental pollutant hexachlorobenzene (HCB) on the neuronal differentiation of mouse embryonic stem cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5244-56. [PMID: 24157519 PMCID: PMC3823326 DOI: 10.3390/ijerph10105244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/06/2013] [Accepted: 02/16/2013] [Indexed: 11/21/2022]
Abstract
Exposure to persistent environmental pollutants may constitute an important factor on the onset of a number of neurological disorders such as autism, Parkinson’s disease, and Attention Deficit Disorder (ADD), which have also been linked to reduced GABAergic neuronal function. GABAergic neurons produce γ-aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in the brain. However, the lack of appropriate models has hindered the study of suspected environmental pollutants on GABAergic function. In this work, we have examined the effect of hexachlorobenzene (HCB), a persistent and bioaccumulative environmental pollutant, on the function and morphology of GABAergic neurons generated in vitro from mouse embryonic stem (ES) cells. We observed that: (1) treatment with 0.5 nM HCB did not affect cell viability, but affected the neuronal differentiation of ES cells; (2) HCB induced the production of reactive oxygen species (ROS); and (3) HCB repressed neurite outgrowth in GABAergic neurons, but this effect was reversed by the ROS scavenger N-acetylcysteine (NAC). Our study also revealed that HCB did not significantly interfere with the function of K+ ion channels in the neuronal soma, which indicates that this pollutant does not affect the maturation of the GABAergic neuronal soma. Our results suggest a mechanism by which environmental pollutants interfere with normal GABAergic neuronal function and may promote the onset of a number of neurological disorders such as autism and ADD.
Collapse
Affiliation(s)
- Cynthia Addae
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; E-Mail:
| | - Eduardo Martinez-Ceballos
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-225-771-3606; Fax: +1-225-771-3606
| |
Collapse
|
34
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
35
|
Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 2013; 307:74-88. [DOI: 10.1016/j.tox.2012.11.015] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
36
|
Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis. Toxicol Lett 2013; 220:109-17. [PMID: 23639249 DOI: 10.1016/j.toxlet.2013.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/01/2023]
Abstract
Although AhR activation regulates CD4T cell differentiation, how it works has yet to be elucidated. In the present study, using in vitro Th17 differentiation model, we examined effects of AhR activation by indoxyl 3-sulfate (I3S), a uremic toxin, on Th17 differentiation and investigated underlying mechanisms. I3S increased expression of RORγt, the master transcription factor for Th17 differentiation, and stimulated Th17 differentiation, in a comparative manner as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a prototypical AhR ligand. Activation of STAT3, which is phosphorylated by the IL-6 signaling pathways and thus is necessary for Th17 differentiation, was strongly stimulated by I3S and TCDD. Phosphorylation of c-Src, which was shown to be activated by AhR ligands, was also increased by I3S and TCDD, and blocking of c-Src activity by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine (PP2) inhibited phosphorylation of both c-Src and STAT3, raising a possibility that stimulatory activities of I3S and TCDD on Th17 differentiation could be exerted via increased phosphorylation of c-Src, which in turn stimulates STAT3 activation. Finally, we found that I3S worsened experimental autoimmune encephalomyelitis (EAE), which is primarily mediated by Th17 cells, enhancing the frequency of IL-17-producing cells in draining lymph nodes.
Collapse
|
37
|
Pontillo CA, Rojas P, Chiappini F, Sequeira G, Cocca C, Crocci M, Colombo L, Lanari C, Kleiman de Pisarev D, Randi A. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol Appl Pharmacol 2013; 268:331-42. [PMID: 23462309 DOI: 10.1016/j.taap.2013.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression.
Collapse
Affiliation(s)
- Carolina Andrea Pontillo
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, Alcaraz A, Cenis JL, Nicolás FJ. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One 2012; 7:e42271. [PMID: 22860103 PMCID: PMC3409175 DOI: 10.1371/journal.pone.0042271] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.
Collapse
Affiliation(s)
- Celia Martínez-Mora
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Anna Mrowiec
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Eva María García-Vizcaíno
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Antonia Alcaraz
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José Luis Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGF-ß, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| |
Collapse
|
39
|
The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene 2012; 32:1811-20. [PMID: 22665056 DOI: 10.1038/onc.2012.197] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is commonly described as a transcription factor, which regulates xenobiotic-metabolizing enzymes. Recent studies have suggested that the binding of ligands to the AhR also activates the Src kinase. In this manuscript, we show that the AhR, through the activation of Src, activates focal adhesion kinase (FAK) and promotes integrin clustering. These effects contribute to cell migration. Further, we show that the activation of the AhR increases the interaction of FAK with the metastatic marker, HEF1/NEDD9/CAS-L, and the expression of several integrins. Xenobiotic exposure, thus, may contribute to novel cell-migratory programs.
Collapse
|
40
|
Alterations in c-Src/HER1 and estrogen receptor α signaling pathways in mammary gland and tumors of hexachlorobenzene-treated rats. Toxicology 2012; 293:68-77. [DOI: 10.1016/j.tox.2011.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/07/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022]
|
41
|
Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC. Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res 2011; 13:220. [PMID: 22018398 PMCID: PMC3262193 DOI: 10.1186/bcr2921] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
STAT5 consists of two proteins, STAT5A/B, that impact mammary cell differentiation, proliferation, and survival. In normal development, STAT5 expression and activity are regulated by prolactin signaling with JAK2/ELF5, EGF signaling networks that include c-Src, and growth hormone, insulin growth factor, estrogen, and progesterone signaling pathways. In cancer, erythropoietin signaling can also regulate STAT5. Activation levels are influenced by AKT, caveolin, PIKE-A, Pak1, c-Myb, Brk, beta-integrin, dystroglycan, other STATs, and STAT pathway molecules JAK1, Shp2, and SOCS. TGF-β and PTPN9 can downregulate prolactin- and EGF-mediated STAT5 activation, respectively. IGF, AKT, RANKL, cyclin D1, BCL6, and HSP90A lie downstream of STAT5.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Research Building, Room 520A, Washington DC 20057, USA.
| | | | | | | | | |
Collapse
|