1
|
Domingo-Sabugo C, Willis-Owen SA, Mandal A, Nastase A, Dwyer S, Brambilla C, Gálvez JH, Zhuang Q, Popat S, Eveleigh R, Munter M, Lim E, Nicholson AG, Lathrop GM, Cookson WO, Moffatt MF. Genomic analysis defines distinct pancreatic and neuronal subtypes of lung carcinoid. J Pathol 2024; 264:332-343. [PMID: 39329437 DOI: 10.1002/path.6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Lung carcinoids (L-CDs) are rare, poorly characterised neuroendocrine tumours (NETs). L-CDs are more common in women and are not the consequence of cigarette smoking. They are classified histologically as typical carcinoids (TCs) or atypical carcinoids (ACs). ACs confer a worse survival. Histological classification is imperfect, and there is increasing interest in molecular markers. We therefore investigated global transcriptomic and epigenomic profiles of 15 L-CDs resected with curative intent at Royal Brompton Hospital. We identified underlying mutations and structural abnormalities through whole-exome sequencing (WES) and single nucleotide polymorphism (SNP) genotyping. Transcriptomic clustering algorithms identified two distinct L-CD subtypes. These showed similarities either to pancreatic or neuroendocrine tumours at other sites and so were named respectively L-CD-PanC and L-CD-NeU. L-CD-PanC tumours featured upregulation of pancreatic and metabolic pathway genes matched by promoter hypomethylation of genes for beta cells and insulin secretion (p < 1 × 10-6). These tumours were centrally located and showed mutational signatures of activation-induced deaminase/apolipoprotein B editing complex activity, together with genome-wide DNA methylation loss enriched in repetitive elements (p = 2.2 × 10-16). By contrast, the L-CD-NeU group exhibited upregulation of neuronal markers (adjusted p < 0.01) and was characterised by focal spindle cell morphology (p = 0.04), peripheral location (p = 0.01), high mutational load (p = 2.17 × 10-4), recurrent copy number alterations, and enrichment for ACs. Mutations affected chromatin remodelling and SWI/SNF complex pathways. L-CD-NeU tumours carried a mutational signature attributable to aflatoxin and aristolochic acid (p = 0.05), suggesting a possible environmental exposure in their pathogenesis. Immunologically, myeloid and T-cell markers were enriched in L-CD-PanC and B-cell markers in L-CD-NeU tumours. The substantial epigenetic and non-coding differences between L-CD-PanC and L-CD-NeU open new possibilities for biomarker selection and targeted treatment of L-CD. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anca Nastase
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah Dwyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Cecilia Brambilla
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - José Héctor Gálvez
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Qinwei Zhuang
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London and Surrey, UK
- The Institute of Cancer Research, London, UK
| | - Robert Eveleigh
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Markus Munter
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton Hospital, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Mark Lathrop
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Bellamri M, Yao L, Tomar R, Vartanian V, Rizzo CJ, Stone MP, Groopman JD, Lloyd RS, Turesky RJ. Mass Spectrometry-Based Method to Measure Aflatoxin B 1 DNA Adducts in Formalin-Fixed Paraffin-Embedded Tissues. Chem Res Toxicol 2024; 37:633-642. [PMID: 38498000 PMCID: PMC11279702 DOI: 10.1021/acs.chemrestox.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a potent human liver carcinogen produced by certain molds, particularly Aspergillus flavus and Aspergillus parasiticus, which contaminate peanuts, corn, rice, cottonseed, and ground and tree nuts, principally in warm and humid climates. AFB1 undergoes bioactivation in the liver to produce AFB1-exo-8,9-epoxide, which forms the covalently bound cationic AFB1-N7-guanine (AFB1-N7-Gua) DNA adduct. This adduct is unstable and undergoes base-catalyzed opening of the guanine imidazolium ring to form two ring-opened diastereomeric 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy-aflatoxin B1 (AFB1-FapyGua) adducts. The AFB1 formamidopyrimidine (Fapy) adducts induce G → T transversion mutations and are likely responsible for the carcinogenic effects of AFB1. Quantitative liquid chromatography-mass spectrometry (LC-MS) methods have shown that AFB1-N7-Gua is eliminated in rodent and human urine, whereas ring-opened AFB1-FapyGua adducts persist in rodent liver. However, fresh frozen biopsy tissues are seldom available for biomonitoring AFB1 DNA adducts in humans, impeding research advances in this potent liver carcinogen. In contrast, formalin-fixed paraffin-embedded (FFPE) specimens used for histopathological analysis are often accessible for molecular studies. However, ensuring nucleic acid quality presents a challenge due to incomplete reversal of formalin-mediated DNA cross-links, which can preclude accurate quantitative measurements of DNA adducts. In this study, employing ion trap or high-resolution accurate Orbitrap mass spectrometry, we demonstrate that ring-opened AFB1-FapyGua adducts formed in AFB1-exposed newborn mice are stable to the formalin fixation and DNA de-cross-linking retrieval processes. The AFB1-FapyGua adducts can be detected at levels comparable to those in a match of fresh frozen liver. Orbitrap MS2 measurements can detect AFB1-FapyGua at a quantification limit of 4.0 adducts per 108 bases when only 0.8 μg of DNA is assayed on the column. Thus, our breakthrough DNA retrieval technology can be adapted to screen for AFB1 DNA adducts in FFPE human liver specimens from cohorts at risk of this potent liver carcinogen.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Lihua Yao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Rachana Tomar
- Department of Chemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael P. Stone
- Department of Chemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - John D. Groopman
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
4
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Bellamri M, Turesky RJ, Groopman JD, Francies HE, Garnett MJ, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Tissue Organoid Cultures Metabolize Dietary Carcinogens Proficiently and Are Effective Models for DNA Adduct Formation. Chem Res Toxicol 2024; 37:234-247. [PMID: 38232180 PMCID: PMC10880098 DOI: 10.1021/acs.chemrestox.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Jill E. Kucab
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Halh Al-Serori
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Rebekah S. S. Beck
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Madjda Bellamri
- Department
of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Department
of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Groopman
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | | | | | - Meritxell Huch
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess
Máxima Center for Pediatric Oncology, Oncode Institute, 3584
CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department
of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, U.K.
| | - Volker M. Arlt
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - David H. Phillips
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| |
Collapse
|
6
|
Chen L, Yan J, Shi H, Zhang Z, Zhao Y, Zhao Y, Wang Y, Ou J. Intervention mechanism of marine-based chito-oligosaccharide on acute liver injury induced by AFB 1 in rats. BIORESOUR BIOPROCESS 2024; 11:13. [PMID: 38647922 PMCID: PMC10992386 DOI: 10.1186/s40643-023-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 04/25/2024] Open
Abstract
Aflatoxin B1 (AFB1) is extremely hepatotoxic, a causative agent of liver cancer, and can cause symptoms of acute or chronic liver damage. Chito-oligosaccharides (COS), obtained from the degradation of chitosan derived from shrimp and crab shells, is a natural antioxidant substance and its antitumor properties have been widely studied, but less research has been done on the prevention of AFB1-induced acute liver injury. In this study, rats were acutely exposed to 1 mg/kg BW AFB1 and simultaneously gavaged with different doses of COS for 8 days. The results showed that COS attenuated the hepatic histopathological changes and reduced serum biochemical indices (ALT, AST, ALP, and TBIL) in rats. It significantly inhibited MDA content and promoted SOD and GSH-Px activity production. Moreover, it also improved hepatocyte apoptosis. Furthermore, AFB1-vs-HCOS differential genes were enriched with 622 GO entries, and 380 were Biological Processes, 170 were Molecular Functions, 72 were Cellular Components. Differentially expressed genes (DEGs) analyzed by KEGG enrichment were more enriched in pathways, such as metabolism, PPAR signaling pathway, and peroxisome. Q-PCR technique verified that Lama5, Egr1, Cyp2b1, and Gadd45g in DEGs were associated with oxidative stress damage and apoptosis. In conclusion, COS intervention reduces the effect of AFB1 on hepatic genes and thus reduces the changes in hepatic gene function.
Collapse
Affiliation(s)
- Lin Chen
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiahui Yan
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huijun Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaohuan Zhang
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - YueLiang Zhao
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jie Ou
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| |
Collapse
|
7
|
Gerdemann A, Cramer B, Degen GH, Veerkamp J, Günther G, Albrecht W, Behrens M, Esselen M, Ghallab A, Hengstler JG, Humpf HU. Comparative metabolism of aflatoxin B 1 in mouse, rat and human primary hepatocytes using HPLC-MS/MS. Arch Toxicol 2023; 97:3179-3196. [PMID: 37794256 PMCID: PMC10567917 DOI: 10.1007/s00204-023-03607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Gisela H. Degen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Jannik Veerkamp
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Georgia Günther
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523 Egypt
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
8
|
Wu KY, Wei YT, Luo YS, Shen LC, Chang BS, Chen YY, Huang YC, Huang HF, Chung WS, Chiang SY. Dose-response formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine in liver and urine correlates with micronucleated reticulocyte frequencies in mice administered safrole oxide. Food Chem Toxicol 2023; 181:114056. [PMID: 37739051 DOI: 10.1016/j.fct.2023.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Safrole oxide (SAFO), a metabolite of naturally occurring hepatocarcinogen safrole, is implicated in causing DNA adduct formation. Our previous study first detected the most abundant SAFO-induced DNA adduct, N7-(3-benzo[1,3] dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SAFO-G), in mouse urine using a well-developed isotope-dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (ID-HPLC-ESI-MS/MS) method. This study further elucidated the genotoxic mode of action of SAFO in mice treated with SAFO 30, 60, 90, or 120 mg/kg for 28 days. The ID-HPLC-ESI-MS/MS method detected N7γ-SAFO-G with excellent sensitivity and specificity in mouse liver and urine of SAFO-treated mice. Our data provide the first direct evidence of SAFO-DNA adduct formation in rodent tissues. N7γ-SAFO-G levels in liver were significantly increased by SAFO 120 mg/kg compared with SAFO 30 mg/kg, suggesting rapid spontaneous or enzymatic depurination of N7γ-SAFO-G in tissue DNA. Urinary N7γ-SAFO-G exhibited a sublinear dose response. Moreover, the micronucleated peripheral reticulocyte frequencies increased dose-dependently and significantly correlated with N7γ-SAFO-G levels in liver (r = 0.8647; p < 0.0001) and urine (r = 0.846; p < 0.0001). Our study suggests that safrole-mediated genotoxicity may be caused partly by its metabolic activation to SAFO and that urinary N7γ-SAFO-G may serve as a chemically-specific cancer risk biomarker for safrole exposure.
Collapse
Affiliation(s)
- Kuen-Yuh Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Tzu Wei
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Li-Chin Shen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Bao-Suei Chang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Yin Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yan-Chi Huang
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Fen Huang
- School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Galvão FHF, Traldi MCC, Araújo RSS, Stefano JT, D'Albuquerque LAC, Oliveira CP. PRECLINICAL MODELS OF LIVER CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:383-392. [PMID: 37792769 DOI: 10.1590/s0004-2803.230302023-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 10/06/2023]
Abstract
•In this review, we described different murine models of carcinogenesis: classic models, new transgenic and combined models, that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic physiopathological, and environmental abnormalities. •Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches. •Cholangiocarcinoma has been highlighted, with an increase in prevalence. This review has an important role in understanding the pathophysiology and the development of new drugs. Background - This manuscript provides an overview of liver carcinogenesis in murine models of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Objective - A review through MEDLINE and EMBASE was performed to assess articles until August 2022.Methods - Search was conducted of the entire electronic databases and the keywords used was HCC, CCA, carcinogenesis, animal models and liver. Articles exclusion was based on the lack of close relation to the subject. Carcinogenesis models of HCC include HCC induced by senescence in transgenic animals, HCC diet-induced, HCC induced by chemotoxicagents, xenograft, oncogenes, and HCC in transgenic animals inoculated with B and C virus. The models of CCA include the use of dimethylnitrosamine (DMN), diethylnitrosamine (DEN), thioacetamide (TAA), and carbon tetrachloride (CCl4). CCA murine models may also be induced by: CCA cells, genetic manipulation, Smad4, PTEN and p53 knockout, xenograft, and DEN-left median bile duct ligation. Results - In this review, we described different murine models of carcinogenesis that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic, physiopathological, and environmental abnormalities. Conclusion - Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Maria Clara Camargo Traldi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | | | - Jose Tadeu Stefano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| | - Luiz Augusto Carneiro D'Albuquerque
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Claudia P Oliveira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| |
Collapse
|
10
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
11
|
Armijo AL, Thongararm P, Fedeles BI, Yau J, Kay J, Corrigan JJ, Chancharoen M, Chawanthayatham S, Samson L, Carrasco S, Engelward B, Fox J, Croy R, Essigmann J. Molecular origins of mutational spectra produced by the environmental carcinogen N-nitrosodimethylamine and S N1 chemotherapeutic agents. NAR Cancer 2023; 5:zcad015. [PMID: 36992846 PMCID: PMC10041537 DOI: 10.1093/narcan/zcad015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
DNA-methylating environmental carcinogens such as N-nitrosodimethylamine (NDMA) and certain alkylators used in chemotherapy form O 6-methylguanine (m6G) as a functionally critical intermediate. NDMA is a multi-organ carcinogen found in contaminated water, polluted air, preserved foods, tobacco products, and many pharmaceuticals. Only ten weeks after exposure to NDMA, neonatally-treated mice experienced elevated mutation frequencies in liver, lung and kidney of ∼35-fold, 4-fold and 2-fold, respectively. High-resolution mutational spectra (HRMS) of liver and lung revealed distinctive patterns dominated by GC→AT mutations in 5'-Pu-G-3' contexts, very similar to human COSMIC mutational signature SBS11. Commonly associated with alkylation damage, SBS11 appears in cancers treated with the DNA alkylator temozolomide (TMZ). When cells derived from the mice were treated with TMZ, N-methyl-N-nitrosourea, and streptozotocin (two other therapeutic methylating agents), all displayed NDMA-like HRMS, indicating mechanistically convergent mutational processes. The role of m6G in shaping the mutational spectrum of NDMA was probed by removing MGMT, the main cellular defense against m6G. MGMT-deficient mice displayed a strikingly enhanced mutant frequency, but identical HRMS, indicating that the mutational properties of these alkylators is likely owed to sequence-specific DNA binding. In sum, the HRMS of m6G-forming agents constitute an early-onset biomarker of exposure to DNA methylating carcinogens and drugs.
Collapse
Affiliation(s)
- Amanda L Armijo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pennapa Thongararm
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judy Yau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marisa Chancharoen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Supawadee Chawanthayatham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY 10065, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Effects of Prenatal Exposure to Aflatoxin B1: A Review. Molecules 2021; 26:molecules26237312. [PMID: 34885894 PMCID: PMC8659025 DOI: 10.3390/molecules26237312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins are mycotoxins produced as secondary fungal metabolites. Among them, aflatoxin B1 (AFB1) stands out due to its genotoxic and mutagenic potential, being a potent initiator of carcinogenesis. In this review, the outcomes from the published literature in the past 10 years on the effects of AFB1 pathophysiological mechanisms on embryological and fetal development are discussed. In several animal species, including humans, AFB1 has a teratogenic effect, resulting in bone malformations, visceral anomalies, lesions in several organs, and behavioral and reproductive changes, in addition to low birth weight. The mutagenic capacity of AFB1 in prenatal life is greater than in adults, indicating that when exposure occurs in the womb, the risk of the development of neoplasms is higher. Studies conducted in humans indicate that the exposure to this mycotoxin during pregnancy is associated with low birth weight, decreased head circumference, and DNA hypermethylation. However, as the actual impacts on humans are still unclear, the importance of this issue cannot be overemphasized and studies on the matter are essential.
Collapse
|
13
|
Cheraghi Shahi S, Dadmehr M, Korouzhdehi B, Tavassoli A. A novel colorimetric biosensor for sensitive detection of aflatoxin mediated by bacterial enzymatic reaction in saffron samples. NANOTECHNOLOGY 2021; 32:505503. [PMID: 34488207 DOI: 10.1088/1361-6528/ac23f7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
Aflatoxin is regarded as the potent carcinogenic agent which is secreted from fungi and present in some food products. So far, many detection methods have been developed to determine the trace amounts of aflatoxin in foods. In the present study a colorimetric competitive assay for detection of aflatoxin B1 (AFB1) has been developed based on interaction of gelatin functionalized gold nanoparticles (AuNPs@gelatin) in specific enzymatic reaction. Bacterial supernatant containing gelatinase enzyme were used as the substrate that could digest the coated gelatin on the surface of AuNPs and following in the presence of NaCl medium ingredient resulted to color change of AuNPs colloidal solution from red to purple. It was observed that with addition of aflatoxin to the bacterial supernatant, aflatoxin could interfere in aggregation of AuNPs and inhibited the process which subsequently prevent the expected color change induced by AuNPs aggregation. The supernatant containing AuNPs were investigated to analyze their induced surface plasmon resonance spectra through UV-visible spectroscopy. The absorption values were directly proportional with the applied AFB1 concentration. The experiment conditions including incubation time, AuNPs concentration and pH were investigated. The obtained results showed that through this approach we could detect the AFB1 in a linear range from 10 to 140 pg ml-1, with detection limit of 4 pg ml-1. Real sample assay in saffron samples showed recoveries percentage of 92.4%-95.3%. The applied approach proposed simple, cost effective and specific method for detection of AFB1 toxin in food samples.
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Behnaz Korouzhdehi
- Department of Biotechnology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
14
|
Mehta R, Shetty SA, Young MF, Ryan PB, Rangiah K. Quantification of aflatoxin and ochratoxin contamination in animal milk using UHPLC-MS/SRM method: a small-scale study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3453-3464. [PMID: 34366462 PMCID: PMC8292487 DOI: 10.1007/s13197-021-04986-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Mycotoxin contamination in animal milk is an emerging concern around the globe. Here we developed and validated an ultrahigh-performance liquid chromatography and mass spectrometry-selected reaction monitoring (UHPLC/MS-SRM) method to quantify low concentrations of aflatoxins (AFs) and ochratoxins (OTs) in routinely consumed animal milk samples collected from southern India. Stable isotope dilution methodology was applied to quantify AFB1, AFB2, AFG1, AFG2, AFM1, AFM2 and OTA, OTB in n = 38 different milk samples, using 1 mL of milk. Bioanalytical parameters including method accuracy, precision, recovery, regression analysis and stability were assessed. Dynamic ranges for quantification were between 15.6-1000 pg/mL for AFB1, AFB2, AFG1, and OTA; 7.8-500 pg/mL for AFM1, AFM2 and OTB; 78.6-5000 pg/mL for AFG2. Method accuracy ranged between 80-120%, with ± 15% precision. Recoveries for spiked standards were > 88% in water and 75% in milk, with limits of quantification (LOQ) ranging between 31.3 pg/mL for AFB1, AFB2, AFG1 and OTA, 15.6 pg/mL for AFM1, AFM2 and OTB and 156 pg/mL for AFG2. R2 values for regression analyses ranged between 0.9991-0.9999. AFB2 [mean: 38 pg/mL (0.038 µg/kg)] was quantified in goat milk, AFM1 was quantified in cow, goat, pasteurized milk [mean: 331 pg/mL (0.331 µg/kg), 406 pg/mL (0.406 µg/kg), 164 pg/mL (0.164 µg/kg)]. Additionally, 90% of cow, goat and pasteurized milk samples were above European Union (EU) limits of 50 pg/mL (0.05 µg/kg) and 40% of cow and goat milk samples were above the Food Safety Standards Authority of India (FSSAI) limit of 500 pg/mL (0.5 µg/kg). AFM2 was also quantified in cow, goat, and pasteurized milk samples [mean: 249 pg/mL (0.249 µg/kg), 375 pg/mL (0.375 µg/kg), 81 pg/mL (0.081 µg/kg)]. Our dynamic ranges for quantification are lower than other published methods, with need for a smaller volume of milk. This validated method can be applied for routine quantification of mycotoxins in milk. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s13197-021-04986-w).
Collapse
Affiliation(s)
- Rukshan Mehta
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Claudia Nance Rollins (CNR) Building, Emory University, Atlanta, 30329 USA
| | - Sweekruthi A. Shetty
- FS&AQCL, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, 570020 India
| | - Melissa F. Young
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Claudia Nance Rollins (CNR) Building, Emory University, Atlanta, 30329 USA
- The Hubert Department of Global Health, Rollins School of Public Health, Claudia Nance Rollins (CNR) Building, Emory University, Atlanta, 30329 USA
| | - P. Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Claudia Nance Rollins (CNR) Building, Emory University, Atlanta, 30329 USA
| | - Kannan Rangiah
- FS&AQCL, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, 570020 India
- Institute of Bioinformatics, Discoverer Building, 7th Floor, International Tech Park, Whitefield, Bangalore, 560 066 Karnataka India
| |
Collapse
|
15
|
Maxwell LA, Callicott KA, Bandyopadhyay R, Mehl HL, Orbach MJ, Cotty PJ. Degradation of Aflatoxins B 1 by Atoxigenic Aspergillus flavus Biocontrol Agents. PLANT DISEASE 2021; 105:2343-2350. [PMID: 33754847 DOI: 10.1094/pdis-01-21-0066-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxins are potent Aspergillus mycotoxins that contaminate food and feed, thereby impacting health and trade. Biopesticides with atoxigenic Aspergillus flavus isolates as active ingredients are used to reduce aflatoxin contamination in crops. The mechanism of aflatoxin biocontrol is primarily attributed to competitive exclusion but, sometimes, aflatoxin is reduced by greater amounts than can be explained by displacement of aflatoxin-producing fungi on the crop. Objectives of this study were to (i) evaluate the ability of atoxigenic A. flavus genotypes to degrade aflatoxin B1 (AFB1) and (ii) characterize impacts of temperature, time, and nutrient availability on AFB1 degradation by atoxigenic A. flavus. Aflatoxin-contaminated maize was inoculated with atoxigenic isolates in three separate experiments that included different atoxigenic genotypes, temperature, and time as variables. Atoxigenic genotypes varied in aflatoxin degradation but all degraded AFB1 >44% after 7 days at 30°C. The optimum temperature for AFB1 degradation was 25 to 30°C, which is similar to the optimum range for AFB1 production. In a time-course experiment, atoxigenics degraded 40% of AFB1 within 3 days, and 80% of aflatoxin was degraded by day 21. Atoxigenic isolates were able to degrade and utilize AFB1 as a sole carbon source in a chemically defined medium but quantities of AFB1 degraded declined as glucose concentrations increased. Degradation may be an additional mechanism through which atoxigenic A. flavus biocontrol products reduce aflatoxin contamination pre- or postharvest. Thus, selection of optimal atoxigenic active ingredients can include assessment of both competitive ability in agricultural fields and their ability to degrade aflatoxins.
Collapse
Affiliation(s)
- Lourena A Maxwell
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, U.S.A
- Eduado Mondlane University, P. O. Box 257, Maputo, Mozambique
| | - Kenneth A Callicott
- United States Department of Agriculture-Agricultural Research Service, Arid-Land Agricultural Research Center, Tucson, AZ 85701, U.S.A
| | | | - Hillary L Mehl
- United States Department of Agriculture-Agricultural Research Service, Arid-Land Agricultural Research Center, Tucson, AZ 85701, U.S.A
| | - Marc J Orbach
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, U.S.A
| | - Peter J Cotty
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
17
|
Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, Tanabe KK. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med 2020; 9:E3817. [PMID: 33255794 PMCID: PMC7760293 DOI: 10.3390/jcm9123817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally. Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets patients with baseline chronic liver disease. Various epidemiological and experimental studies have identified candidates for secondary prevention-both etiology-specific and generic prevention strategies-including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based omics analysis along with better characterization of the hepatic microenvironment will further facilitate the identification of targets for prevention. In this review, we will summarize HCC risk factors, pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and also discuss current challenges in translating experimental work into clinical practice.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Antonio Saviano
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Yujin Hoshida
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Department of Internal Medicine, Dallas, TX 75390, USA;
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Thomas Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| |
Collapse
|
18
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
19
|
Thongararm P, Fedeles BI, Khumsubdee S, Armijo AL, Kim L, Thiantanawat A, Promvijit J, Navasumrit P, Ruchirawat M, Croy RG, Essigmann JM. Modulation of N-Methyl- N-nitrosourea Mutagenesis in Mouse Embryo Fibroblasts Derived from the gpt Delta Mouse by an Inhibitor of the O6-Methylguanine Methyltransferase, MGMT. Chem Res Toxicol 2020; 33:625-633. [PMID: 31841318 PMCID: PMC7033946 DOI: 10.1021/acs.chemrestox.9b00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.
Collapse
Affiliation(s)
- Pennapa Thongararm
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Bogdan I. Fedeles
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sakunchai Khumsubdee
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Amanda L. Armijo
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lina Kim
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | - Robert G. Croy
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M. Essigmann
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
21
|
Madrigal-Santillán E, Madrigal-Bujaidar E, Reyes-Arellano A, Morales-González JA, Álvarez-González I, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Calzada-Mendoza CC, Anguiano-Robledo L, Morales-González Á. Supramolecular complex formation, a possible antigenotoxic mechanism of glucomannan against aflatoxin B 1. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2019; 101:369-388. [DOI: 10.1080/02772248.2020.1715410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | - Alicia Reyes-Arellano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | | | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | | | | | - Claudia C. Calzada-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| |
Collapse
|
22
|
Minko IG, Vartanian VL, Tozaki NN, Linde OK, Jaruga P, Coskun SH, Coskun E, Qu C, He H, Xu C, Chen T, Song Q, Jiao Y, Stone MP, Egli M, Dizdaroglu M, McCullough AK, Lloyd RS. Characterization of rare NEIL1 variants found in East Asian populations. DNA Repair (Amst) 2019; 79:32-39. [PMID: 31100703 PMCID: PMC6677271 DOI: 10.1016/j.dnarep.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
The combination of chronic dietary exposure to the fungal toxin, aflatoxin B1 (AFB1), and hepatitis B viral (HBV) infection is associated with an increased risk for early onset hepatocellular carcinomas (HCCs). An in-depth knowledge of the mechanisms driving carcinogenesis is critical for the identification of genetic risk factors affecting the susceptibility of individuals who are HBV infected and AFB1 exposed. AFB1-induced mutagenesis is characterized by G to T transversions. Hence, the DNA repair pathways that function on AFB1-induced DNA adducts or base damage from HBV-induced inflammation are anticipated to have a strong role in limiting carcinogenesis. These pathways define the mutagenic burden in the target tissues and ultimately limit cellular progression to cancer. Murine data have demonstrated that NEIL1 in the DNA base excision repair pathway was significantly more important than nucleotide excision repair relative to elevated risk for induction of HCCs. These data suggest that deficiencies in NEIL1 could contribute to the initiation of HCCs in humans. To investigate this hypothesis, publicly-available data on variant alleles of NEIL1 were analyzed and compared with genome sequencing data from HCC tissues derived from individuals residing in Qidong County (China). Three variant alleles were identified and the corresponding A51V, P68H, and G245R enzymes were characterized for glycosylase activity on genomic DNA containing a spectrum of oxidatively-induced base damage and an oligodeoxynucleotide containing a site-specific AFB1-formamidopyrimidine guanine adduct. Although the efficiency of the P68H variant was modestly decreased, the A51V and G245R variants showed nearly wild-type activities. Consistent with biochemical findings, molecular modeling of these variants demonstrated only slight local structural alterations. However, A51V was highly temperature sensitive suggesting that its biological activity would be greatly reduced. Overall, these studies have direct human health relevance pertaining to genetic risk factors and biochemical pathways previously not recognized as germane to induction of HCCs.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Naoto N Tozaki
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Oskar K Linde
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Sanem Hosbas Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute & Qidong People's Hospital, Qidong, 226200, Jiangsu Province, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, United States
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
23
|
Bogen KT. Inflammation as a Cancer Co-Initiator: New Mechanistic Model Predicts Low/Negligible Risk at Noninflammatory Carcinogen Doses. Dose Response 2019; 17:1559325819847834. [PMID: 31205456 PMCID: PMC6537503 DOI: 10.1177/1559325819847834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/10/2023] Open
Abstract
Linear-no-threshold (LNT) risk extrapolation has long been applied to estimate risks posed by low-level environmental carcinogen exposures, based on the 60-year-old multistage somatic mutation/clonal expansion (MSM) cancer theory. Recent evidence supports an alternative theory: Malignant tumors arise most efficiently from a stem cell that incurs requisite mutations and also is activated by inflammation to an epigenetically mediated and maintained state of adaptive hyperplasia (AH). This new inflammation-MSM (ISM) theory posits that inflammation-activated stem cells normally restricted to sites of injury-induced inflammation and tissue repair become uniquely susceptible to efficient carcinogenesis if normal post-inflammation AH termination is blocked by mutation. This theory posits that inflammation generally thus co-initiates cancer and transiently amplifies activated stem cells, implying that MSM theory (eg, the 2-stage stochastic "Moolgavkar, Venzon, Knudson [MVK]" model) is incomplete. Because inflammation dose-response typically is not LNT, the ISM theory predicts this is also true for most (perhaps all) carcinogens. The ISM (but not the MVK) model is shown to be consistent with recent data showing ∼100% carcinoma incidence (but not DNA adducts) in livers of rats exposed to aflatoxin B1 and was eliminated when that dose was co-administered with a highly potent anti-inflammatory agent. Experimental approaches to test ISM theory more robustly are discussed.
Collapse
|
24
|
Wang Q, Zhang P, Li Z, Feng X, Lv C, Zhang H, Xiao H, Ding J, Chen X. Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics 2019; 9:1426-1452. [PMID: 30867842 PMCID: PMC6401493 DOI: 10.7150/thno.31683] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatoma is one of the most severe malignancies usually with poor prognosis, and many patients are insensitive to the existing therapeutic agents, including the drugs for chemotherapy and molecular targeted therapy. Currently, researchers are committed to developing the advanced formulations with controlled drug delivery to improve the efficacy of hepatoma therapy. Numerous inoculated, induced, and genetically engineered hepatoma rodent models are now available for formulation screening. However, animal models of hepatoma cannot accurately represent human hepatoma in terms of histological characteristics, metastatic pathways, and post-treatment responses. Therefore, advanced animal hepatoma models with comparable pathogenesis and pathological features are in urgent need in the further studies. Moreover, the development of nanomedicines has renewed hope for chemotherapy and molecular targeted therapy of advanced hepatoma. As one kind of advanced formulations, the polymer-based nanoformulated drugs have many advantages over the traditional ones, such as improved tumor selectivity and treatment efficacy, and reduced systemic side effects. In this article, the construction of rodent hepatoma model and much information about the current development of polymer nanomedicines were reviewed in order to provide a basis for the development of advanced formulations with clinical therapeutic potential for hepatoma.
Collapse
Affiliation(s)
- Qilong Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Chengyue Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Huaiyu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
25
|
Abstract
Human biomonitoring studies aim to identify potential exposures to environmental, occupational, or lifestyle toxicants in human populations and are commonly used by public health decision makers to predict disease risk. The Comet assay measures changes in genomic stability and is one of the most reliable biomarkers to indicate early biological effects and therefore accepted by various governmental regulatory agencies. The appeal of the Comet assay lies in its relative simplicity, rapidity, sensitivity, and economic efficiency. Furthermore, the assay is known for its broad versatility, as it can be applied to virtually any human cell and easily adapted in order to detect particular biomarkers of interest, such as DNA repair capacity or single and double-strand breaks. In a standard experiment, isolated single cells are first embedded in agarose, and then lysed in high-salt solutions in order to remove all cellular contents except the DNA attached to a nuclear scaffold. Subsequent electrophoresis results in accumulation of undamaged DNA sequences at the proximity of the nuclear scaffold, while damaged sequences migrate toward the anode. When visualized with fluorochromes, these migrated DNA fragments resemble a Comet tail and can be quantified for their intensity and shape according to internationally drafted guidelines.
Collapse
Affiliation(s)
- Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK.
| | - Alok Dhawan
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
26
|
Yasin M, Mazdak R, Mino I. Aflatoxin B1 impairs spermatogenesis: An experimental study for crosslink between oxidative stress and mitochondria-dependent apoptosis. ENVIRONMENTAL TOXICOLOGY 2018; 33:1204-1213. [PMID: 30126036 DOI: 10.1002/tox.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The present experimental study was carried out to investigate the crosslink between aflatoxin B1 (AFB1)-induced oxidative stress and mitochondria-dependent apoptosis in testicles. For this purpose, 24 mature male Swiss albino mice were randomly divided into control and test groups. The AFB1 was dissolved in corn oil and ethanol (95:5, v/v) vehicle. The animals in test group subdivided into three groups, which received the AFB1 at a daily dose of 20 μg/kg body weight, through intraperitoneal (i.p.) route, for 7, 14, and 21 days. The mice in the control group received the vehicle alone for 21 days. The expression of Bcl-2, Bax, p53, and caspase-3 at both mRNA and protein levels were analyzed by using reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. Moreover, the mitochondrial content of germinal epithelium, tubular differentiation (TDI), and spermiogenesis (SPI) indices was analyzed. Finally, the apoptosis was assessed by using TUNEL staining. Observations revealed that the AFB1 remarkably (P < .05) reduced Bcl-2 expression at both mRNA and protein levels. Up-regulated Bax, caspase-3, and p53 expression were revealed in AFB1-received animals, which developed time-dependently. Histological examinations exhibited a significant reduction in TDI and SPI indices. Finally, the AFB1-induced apoptosis index increased time-dependently. In conclusion, the AFB1 adversely affects the spermatogenesis via inducing oxidative stress, diminishing cellular mitochondrial content and enhancing pro-apoptotic Bax, caspase-3, and p53 expression. All these impairments result in mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Malekzadeh Yasin
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| | - Razi Mazdak
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ilkhanipour Mino
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| |
Collapse
|
27
|
Fedeles BI, Essigmann JM. Impact of DNA lesion repair, replication and formation on the mutational spectra of environmental carcinogens: Aflatoxin B 1 as a case study. DNA Repair (Amst) 2018; 71:12-22. [PMID: 30309820 DOI: 10.1016/j.dnarep.2018.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In a multicellular organism, somatic mutations represent a permanent record of the past chemical and biochemical perturbations experienced by a cell in its local microenvironment. Akin to a perpetual recording device, with every replication, genomic DNA accumulates mutations in patterns that reflect: i) the sequence context-dependent formation of DNA damage, due to environmental or endogenous reactive species, including spontaneous processes; ii) the activity of DNA repair pathways, which, depending on the type of lesion, can erase, ignore or exacerbate the mutagenic consequences of that DNA damage; and iii) the choice of replication machinery that synthesizes the nascent genomic copy. These three factors result in a richly contoured sequence context-dependent mutational spectrum that, from appearances, is distinct for most individual forms of DNA damage. Such a mutagenic legacy, if appropriately decoded, can reveal the local history of genome-altering events such as chemical or pathogen exposures, metabolic stress, and inflammation, which in turn can provide an indication of the underlying causes and mechanisms of genetic disease. Modern tools have positioned us to develop a deep mechanistic understanding of the cellular factors and pathways that modulate a mutational process and, in turn, provide opportunities for better diagnostic and prognostic biomarkers, better exposure risk assessment and even actionable therapeutic targets. The goal of this Perspective is to present a bottom-up, lesion-centric framework of mutagenesis that integrates the contributions of lesion replication, lesion repair and lesion formation to explain the complex mutational spectra that emerge in the genome following exposure to mutagens. The mutational spectra of the well-studied hepatocarcinogen aflatoxin B1 are showcased here as specific examples, but the implications are meant to be generalizable.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Biological Engineering, Chemistry and The Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - John M Essigmann
- Departments of Biological Engineering, Chemistry and The Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Zamir-Nasta T, Razi M, Shapour H, Malekinejad H. Roles of p21, p53, cyclin D1, CDK-4, estrogen receptor α in aflatoxin B1-induced cytotoxicity in testicular tissue of mice. ENVIRONMENTAL TOXICOLOGY 2018; 33:385-395. [PMID: 29274131 DOI: 10.1002/tox.22524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This study was done in order to investigate time-dependent effect of AFB1 on expression of genes involving in cell cycle check point machinery at G, S, and M phases. For this purpose, 24 mature male Swiss albino mice were randomly divided into control and test groups. The animals in test group subdivided into three groups, which received the AFB1 at a daily dose of 20 µg/kg body weight, through intraperitoneal (i.p.) route, for 7, 14, and 21 days. The p21, p53, cyclin D1, CDK4, and ERα expressions at both mRNA and protein level were analyzed by using reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. Moreover, the tubular differentiation (TDI) and spermiogenesis (SPI) indices were analyzed. Finally, the testicular DNA fragmentation was assessed by using DNA Ladder test. Observations revealed that the AFB1 remarkably (P < .05) reduced cyclin D1, Cdk4, and ERα expression at both mRNA and protein levels. Up-regulated p21 and p53 expression was revealed in AFB1-received animals, which developed time dependently. Histological examinations exhibited a significant reduction in TDI and SPI indices. Finally, the AFB1 resulted in severe DNA fragmentation. Our data showed that the AFB1 by down-regulating the cyclin D1, Cdk4, and ERα expression adversely affects cyclin D1/Cdk4 and cyclin D1/ERα interactions. Moreover, the AFB1-induced overexpression of p21 (as a kinase inhibitor), in turn results in cell cycle arrest via inhibiting the Cdk4 interaction with cyclin D1. Finally, the AFB1-induced DNA damage triggers the p53-dependent apoptosis pathway independent to p21 overexpression.
Collapse
Affiliation(s)
- Toraj Zamir-Nasta
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| | - Hasanzadeh Shapour
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
29
|
Soler L, Oswald I. The importance of accounting for sex in the search of proteomic signatures of mycotoxin exposure. J Proteomics 2018; 178:114-122. [DOI: 10.1016/j.jprot.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
30
|
Flavonoids Effects on Hepatocellular Carcinoma in Murine Models: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6328970. [PMID: 29681978 PMCID: PMC5850900 DOI: 10.1155/2018/6328970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
The hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. It occurs primarily as manifestation of other pathological processes, such as viral hepatitis, cirrhosis, and toxin exposure that affect directly the cellular process. Studies were selected from PubMed and Scopus databases according to the PRISMA statement. The research filters were constructed using three parameters: flavonoids, hepatocellular carcinoma, and animal model. The bias analysis of the 34 selected works was done using the ARRIVE guidelines. The most widely used flavonoid in the studies was epigallocatechin gallate extracted from green tea. In general, the treatment with different flavonoids presented inhibition of tumor growth and antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory activities. The bias analysis evidenced the absence of methodological processes in all studies, such as the age or weight of the animals, the method of flavonoids' extraction, or the experimental designs, analytical methods, and outcome measures. It has been known that flavonoids have a protective effect against HCC. However, the absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impaired the internal validity of the individual studies, making it difficult to determine the effectiveness of plant-derived products in the treatment of HCC.
Collapse
|
31
|
Zhao Y, Wang Q, Huang J, Ma L, Chen Z, Wang F. Aflatoxin B 1 and sterigmatocystin in wheat and wheat products from supermarkets in China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:9-14. [PMID: 29046130 DOI: 10.1080/19393210.2017.1388295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Wheat is an important cereal but it is often contaminated with mycotoxins. The natural occurrence of aflatoxin B1 (AFB1) and sterigmatocystin (STC) was determined in 178 food samples (32 wheat samples and 146 wheat products) purchased from Chinese supermarkets. The methodology was validated, the wheat and wheat products samples were treated with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). From these samples 18.8% of wheat and 8.2% of cracker samples were contaminated with AFB1. Mean levels were 0.06 µg/kg and 0.05µg/kg, respectively. There was no AFB1 contamination in white bread or whole meal bread. Meanwhile 53.1% of wheat, 59.2% of crackers, 20.8% of white bread and 16% of whole meal bread samples were contaminated with STC. The mean levels were 0.07, 0.79, 0.12 and 0.12 µg/kg respectively. Although the levels were low, this demonstrates the need for more comprehensive surveys for these two mycotoxins in wheat and wheat products from China.
Collapse
Affiliation(s)
- Yarong Zhao
- a Public Monitoring Center for Agro-product of Guangdong Academy of Agricultural Sciences , Guangzhou , China.,b College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China.,c Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality , Ministry of Agriculture , Guangzhou , China.,d Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou) , Ministry of Agriculture , Guangzhou , China
| | - Qiongshan Wang
- e Department of Biotechnology , Guangdong Food and Drug Vocational College , Guangzhou , China
| | - Jianxiang Huang
- a Public Monitoring Center for Agro-product of Guangdong Academy of Agricultural Sciences , Guangzhou , China.,c Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality , Ministry of Agriculture , Guangzhou , China.,d Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou) , Ministry of Agriculture , Guangzhou , China
| | - Liyan Ma
- b College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Zhihui Chen
- a Public Monitoring Center for Agro-product of Guangdong Academy of Agricultural Sciences , Guangzhou , China.,c Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality , Ministry of Agriculture , Guangzhou , China.,d Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou) , Ministry of Agriculture , Guangzhou , China
| | - Fuhua Wang
- a Public Monitoring Center for Agro-product of Guangdong Academy of Agricultural Sciences , Guangzhou , China.,c Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality , Ministry of Agriculture , Guangzhou , China.,d Laboratory of Quality and Safety Risk Assessment for Agro-product (Guangzhou) , Ministry of Agriculture , Guangzhou , China
| |
Collapse
|
32
|
Sriwattanapong K, Slocum SL, Chawanthayatham S, Fedeles BI, Egner PA, Groopman JD, Satayavivad J, Croy RG, Essigmann JM. Editor's Highlight: Pregnancy Alters Aflatoxin B1 Metabolism and Increases DNA Damage in Mouse Liver. Toxicol Sci 2017; 160:173-179. [PMID: 28973694 PMCID: PMC5837592 DOI: 10.1093/toxsci/kfx171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pregnancy is a complex physiological state, in which the metabolism of endogenous as well as exogenous agents is ostensibly altered. One exogenous agent of concern is the hepatocarcinogen aflatoxin B1 (AFB1), a foodborne fungal toxin, that requires phase I metabolic oxidation for conversion to its toxic and carcinogenic form, the AFB1-8,9-exo-epoxide. The epoxide interacts with cellular targets causing toxicity and cell death; these targets include the covalent modification of DNA leading to mutations that can initiate malignant transformation. The main detoxification pathway of the AFB1-epoxide involves phase II metabolic enzymes including the glutathione-S-transferase (GST) family. Pregnancy can modulate both phase I and II metabolism and alter the biological potency of AFB1. The present work investigated the impact of pregnancy on AFB1 exposure in mice. A single IP dose of 6 mg/kg AFB1 was administered to pregnant C57BL/6 J mice at gestation day 14 and matched non-pregnant controls. Pregnant mice accumulated 2-fold higher AFB1-N7-guanine DNA adducts in the liver when compared with nonpregnant controls 6 h post-exposure. Enhanced DNA adduct formation in pregnant animals paralleled elevated hepatic protein expression of mouse CYP1A2 and mouse homologs of human CYP3A4, phase I enzymes capable of bioactivating AFB1. Although phase II enzymes GSTA1/2 showed decreased protein expression, GSTA3, the primary enzymatic protection against the AFB1-epoxide, was unaffected at the protein level. Taken together, our results reveal that pregnancy may constitute a critical window of susceptibility for maternal health, and provide insight into the biochemical factors that could explain the underlying risks.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
- Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute,
Bangkok 10210, Thailand
| | - Stephen L. Slocum
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
| | - Supawadee Chawanthayatham
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
| | - Bogdan I. Fedeles
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
| | - Patricia A. Egner
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg
School of Public Health, Baltimore, Maryland 21205
| | - John D. Groopman
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg
School of Public Health, Baltimore, Maryland 21205
| | - Jutamaad Satayavivad
- Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute,
Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
| | - John M. Essigmann
- Departments of Biological Engineering and Chemistry, and Center for
Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139
| |
Collapse
|
33
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
34
|
Mutational spectra of aflatoxin B 1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma. Proc Natl Acad Sci U S A 2017; 114:E3101-E3109. [PMID: 28351974 DOI: 10.1073/pnas.1700759114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.
Collapse
|
35
|
Peterson LA. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK. Chem Res Toxicol 2017; 30:420-433. [PMID: 28092943 PMCID: PMC5473167 DOI: 10.1021/acs.chemrestox.6b00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
DNA polymerase ζ limits chromosomal damage and promotes cell survival following aflatoxin exposure. Proc Natl Acad Sci U S A 2016; 113:13774-13779. [PMID: 27849610 PMCID: PMC5137696 DOI: 10.1073/pnas.1609024113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Routine dietary consumption of foods that contain aflatoxins is the second leading cause of environmental carcinogenesis worldwide. Aflatoxin-driven mutagenesis is initiated through metabolic activation of aflatoxin B1 (AFB1) to its epoxide form that reacts with N7 guanine in DNA. The resulting AFB1-N7-dG adduct undergoes either spontaneous depurination or imidazole-ring opening yielding formamidopyrimidine AFB1 (AFB1-Fapy-dG). Because this latter adduct is known to persist in human tissues and contributes to the high frequency G-to-T mutation signature associated with many hepatocellular carcinomas, we sought to establish the identity of the polymerase(s) involved in processing this lesion. Although our previous biochemical analyses demonstrated the ability of polymerase ζ (pol ζ) to incorporate an A opposite AFB1-Fapy-dG and extend from this mismatch, biological evidence supporting a unique role for this polymerase in cellular tolerance following aflatoxin exposure has not been established. Following challenge with AFB1, survival of mouse cells deficient in pol ζ (Rev3L-/-) was significantly reduced relative to Rev3L+/- cells or Rev3L-/- cells complemented through expression of the wild-type human REV3L. Furthermore, cell-cycle progression of Rev3L-/- mouse embryo fibroblasts was arrested in late S/G2 following AFB1 exposure. These Rev3L-/- cells showed an increase in replication-dependent formation of γ-H2AX foci, micronuclei, and chromosomal aberrations (chromatid breaks and radials) relative to Rev3L+/- cells. These data suggest that pol ζ is essential for processing AFB1-induced DNA adducts and that, in its absence, cells do not have an efficient backup polymerase or a repair/tolerance mechanism facilitating survival.
Collapse
|
38
|
Li L, Brown KL, Ma R, Stone MP. DNA Sequence Modulates Geometrical Isomerism of the trans-8,9- Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)- 9-hydroxy Aflatoxin B1 Adduct. Chem Res Toxicol 2016; 28:225-37. [PMID: 25587868 PMCID: PMC4332041 DOI: 10.1021/tx5003832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Aflatoxin
B1 (AFB1), a mycotoxin produced
by Aspergillus flavus, is oxidized
by cytochrome P450 enzymes to aflatoxin B1-8,9-epoxide,
which alkylates DNA at N7-dG. Under basic conditions,
this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy
aflatoxin B1 (AFB1–FAPY) adduct. The
AFB1–FAPY adduct exhibits geometrical isomerism
involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides
containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′,
and 5′-XY-3′ sequences (X = AFB1–FAPY;
Y = 7-deaza-dG) demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen
bonding interactions. Structural analysis of the adduct in the 5′-XA-3′
sequence indicates the preference of the E isomer
of the formamide group, attributed to formation of a hydrogen bond
between the formyl oxygen and the N6 exocyclic amino group
of the 3′-neighbor adenine. While the 5′-XA-3′
sequence exhibits the E isomer, the 5′-XC-3′
sequence exhibits a 7:3 E:Z ratio
at equilibrium at 283 K. The E isomer is favored
by a hydrogen bond between the formyl oxygen and the N4-dC exocyclic amino group of the 3′-neighbor cytosine. The
5′-XT-3′ and 5′-XY-3′ sequences cannot
form such a hydrogen bond between the formyl oxygen and the 3′-neighbor
T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β
anomers and the potential to exhibit atropisomers about the C5–N5 bond do not depend upon sequence. In each
of the four DNA sequences, the AFB1–FAPY adduct
maintains the β deoxyribose configuration. Each of these four
sequences feature the atropisomer of the AFB1 moiety that
is intercalated above the 5′-face of the damaged guanine. This
enforces the Ra axial conformation for
the C5–N5 bond.
Collapse
|
39
|
Nohmi T. Past, Present and Future Directions of gpt delta Rodent Gene Mutation Assays. Food Saf (Tokyo) 2016; 4:1-13. [PMID: 32231899 PMCID: PMC6989157 DOI: 10.14252/foodsafetyfscj.2015024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Genotoxicity is a critical endpoint of toxicity to regulate environmental chemicals. Genotoxic chemicals are believed to have no thresholds for the action and impose genotoxic risk to humans even at very low doses. Therefore, genotoxic carcinogens, which induce tumors via genotoxic mechanisms, are regulated more strictly than non-genotoxic carcinogens, which induce tumors through non-genotoxic mechanisms such as hormonal effects, cell proliferation and cell toxicity. Although Ames bacterial mutagenicity assay is the gold standard to identify genotoxicity of chemicals, the genotoxicity should be further examined in rodents because Ames positive chemicals are not necessarily genotoxic in vivo. To better evaluate the genotoxicity of chemicals in a whole body system, gene mutation assays with gpt delta transgenic mice and rats have been developed. A feature of the assays is to detect point mutations and deletions by two distinct selection methods, ie, gpt and Spi- assays, respectively. The Spi- assay is unique in that it allows analyses of deletions and complex DNA rearrangements induced by double-strand breaks in DNA. Here, I describe the concept of gpt delta gene mutation assays and the application in food safety research, and discuss future perspectives of genotoxicity assays in vivo.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
40
|
Liu Y, Yin T, Feng Y, Cona MM, Huang G, Liu J, Song S, Jiang Y, Xia Q, Swinnen JV, Bormans G, Himmelreich U, Oyen R, Ni Y. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5:708-29. [PMID: 26682141 PMCID: PMC4671963 DOI: 10.3978/j.issn.2223-4292.2015.06.01] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-specific property. Chemical carcinogens can be classified upon their origins such as environmental pollutants, cooked meat derived carcinogens, N-nitroso compounds, food additives, antineoplastic agents, naturally occurring substances and synthetic carcinogens, etc. Carcinogen-induced models of primary cancers can be used to evaluate the diagnostic/therapeutic effects of candidate drugs, investigate the biological influential factors, explore preventive measures for carcinogenicity, and better understand molecular mechanisms involved in tumor initiation, promotion and progression. Among commonly adopted cancer models, chemically induced primary malignancies in mammals have several advantages including the easy procedures, fruitful tumor generation and high analogy to clinical human primary cancers. However, in addition to the time-consuming process, the major drawback of chemical carcinogenesis for translational research is the difficulty in noninvasive tumor burden assessment in small animals. Like human cancers, tumors occur unpredictably also among animals in terms of timing, location and the number of lesions. Thanks to the availability of magnetic resonance imaging (MRI) with various advantages such as ionizing-free scanning, superb soft tissue contrast, multi-parametric information, and utility of diverse contrast agents, now a workable solution to this bottleneck problem is to apply MRI for noninvasive detection, diagnosis and therapeutic monitoring on those otherwise uncontrollable animal models with primary cancers. Moreover, it is foreseeable that the combined use of chemically induced primary cancer models and molecular imaging techniques may help to develop new anticancer diagnostics and therapeutics.
Collapse
|
41
|
Madrigal-Bujaidar E, Morales-González JA, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Reyes-Arellano A, Álvarez-González I, Pérez-Pasten R, Madrigal-Santillán E. Prevention of Aflatoxin B₁-Induced DNA Breaks by β-D-Glucan. Toxins (Basel) 2015; 7:2145-2158. [PMID: 26110504 PMCID: PMC4488695 DOI: 10.3390/toxins7062145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins are a group of naturally-occurring carcinogens that are known to contaminate different human and animal foodstuffs. Aflatoxin B1 (AFB1) is the most genotoxic hepatocarcinogenic compound of all of the aflatoxins. In this report, we explore the capacity of β-D-glucan (Glu) to reduce the DNA damage induced by AFB1 in mouse hepatocytes. For this purpose, we applied the comet assay to groups of animals that were first administered Glu in three doses (100, 400 and 700 mg/kg bw, respectively) and, 20 min later, 1.0 mg/kg of AFB1. Liver cells were obtained at 4, 10 and 16 h after the chemical administration and examined. The results showed no protection of the damage induced by AFB1 with the low dose of the polysaccharide, but they did reveal antigenotoxic activity exerted by the two high doses. In addition, we induced a co-crystallization between both compounds, determined their fusion points and analyzed the molecules by UV spectroscopy. The data suggested the formation of a supramolecular complex between AFB1 and β-D-glucan.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Genetics Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - José Antonio Morales-González
- Conservation Medicine Laboratory, Superior School of Medicine, IPN. "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón. México, DF 11340, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| | - Jeannett A Izquierdo-Vega
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| | - Alicia Reyes-Arellano
- Organic Chemistry Department, National School of Biological Sciences, IPN. "Unidad Casco de Santo Tomas". Carpio y Plan de Ayala. México, DF 11340, Mexico.
| | - Isela Álvarez-González
- Genetics Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - Ricardo Pérez-Pasten
- Preclinical Toxicology Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Conservation Medicine Laboratory, Superior School of Medicine, IPN. "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón. México, DF 11340, Mexico.
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| |
Collapse
|
42
|
Harutyunyan T, Hovhannisyan G, Babayan N, Othman MA, Liehr T, Aroutiounian R. Influence of aflatoxin B1 on copy number variants in human leukocytes in vitro. Mol Cytogenet 2015; 8:25. [PMID: 25901182 PMCID: PMC4404608 DOI: 10.1186/s13039-015-0131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus spec. The latter are worldwide contaminants of food with mutagenic and carcinogenic activities in animals and humans. AFB1 was shown to have deleterious effects on metabolism of eukaryotes in many model systems, including the ability to inhibit DNA replication. An agent that disturbs DNA replication may also have the potential to induce de novo DNA copy number variations (CNVs). RESULTS Blood samples of three clinically healthy carriers were treated in vitro with AFB1 and chromosome preparations were subjected to parental origin determination fluorescence in situ hybridization (pod-FISH). Probes able to visualize CNVs in 8p21.2 and 15q11.2 were applied. In this setting here for the first time an influence of AFB1 on molecular-cytogenetically detectable CNVs could be shown. CONCLUSIONS The obtained results indicate that: (i) pod-FISH is a single cell directed, sensitive and suitable method for the analysis of mutagen induced CNVs, (ii) AFB1 has the potential to induce in vitro instability of known CNVs in human leukocytes.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Nelly Babayan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia ; Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan, 0014 Yerevan, Armenia
| | - Moneeb Ak Othman
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena, D-07743 Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena, D-07743 Germany
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| |
Collapse
|
43
|
Chawanthayatham S, Thiantanawat A, Egner PA, Groopman JD, Wogan GN, Croy RG, Essigmann JM. Prenatal exposure of mice to the human liver carcinogen aflatoxin B1 reveals a critical window of susceptibility to genetic change. Int J Cancer 2014; 136:1254-62. [PMID: 25070670 DOI: 10.1002/ijc.29102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/09/2014] [Indexed: 11/06/2022]
Abstract
It has become axiomatic that critical windows of susceptibility to genotoxins exist and that genetic damage in utero may be a trigger for later life cancers. Data supporting this critical window hypothesis are remarkably few. This study provides a quantitative bridge between DNA damage by the liver carcinogen aflatoxin B1 (AFB1 ) during prenatal development and the risk of later life genetic disease. AFB1 was given to pregnant C57BL/6J mice, carrying F1 gestation day 14 (GD14) embryos of the B6C3F1 genotype. Ultra-high performance liquid chromatography and mass spectrometry (UPLC-MS) using aflatoxin-(15) N5 -guanine adduct standards afforded measurement of the AFB1 -N(7) -Gua and AFB1 -FAPY adducts 6-hr post dosing in liver DNA of mothers and embryos. A parallel cohort gave birth and the livers of the F1 were analyzed for mutations in the gpt gene at 3 and 10 weeks of age. The data revealed mutational spectra dominated by G:C to T:A mutations in both the mother and offspring that are characteristic of AFB1 and distinct from background. It was shown that adducts in GD14 embryos were 20-fold more potent inducers of mutagenesis than adducts in parallel-dosed adults. This sensitivity enhancement correlated with Ki67 staining of the liver, reflecting the proliferative potential of the tissue. Taken together, these data provide insight into the relative genetic risks of prenatal and adult exposures to AFB1 . Early life exposure, especially during the embryonic period, is strikingly more mutagenic than treatment later in life. Moreover the data provide a baseline against which risk prevention strategies can be evaluated.
Collapse
Affiliation(s)
- Supawadee Chawanthayatham
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | | | | | | | | | | | | |
Collapse
|
44
|
Mo X, Lai H, Yang Y, Xiao J, He K, Liu C, Chen J, Lin Y. How does airway exposure of aflatoxin B1 affect serum albumin adduct concentrations? Evidence based on epidemiological study and animal experimentation. J Toxicol Sci 2014; 39:645-653. [PMID: 25056789 DOI: 10.2131/jts.39.645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aflatoxin B1 (AFB1) airway inhalation represents an additional route of exposure to this toxin. However, the association between AFB1 inhalation and serum AFB1 albumin adducts remains unclear. The aim of this study was to explore the association between airway exposure to AFB1 and serum AFB1 albumin adduct concentrations via an epidemiological study, as well as in an AFB1 airway exposure animal model. Our epidemiological study was conducted in a sugar factory in the Guangxi Autonomous Region of China. In order to examine fungal contamination, air samples were obtained in the workshop and areas outside the workshop, such as the office and nearby store. Dust samples were also collected from the bagasse warehouse and presser workshop, and were analyzed using an indirect competitive enzyme-linked immunosorbent assay (ELISA). Additionally, blood samples were collected from a total of 121 workshop workers, and a control group (n = 80) was comprised of workers who undertook administrative tasks or other work outside the workshop. The animal experiment was conducted in the laboratory animal center of Guangxi Medical University, where a total of 60 adult male rabbits were involved in this study. By intubation, AFB1 was administered in three groups of rabbits daily, at dose rates of 0.075, 0.05 and 0.025 mg/kg/day for a period of 7 days. Blood samples were collected on day 1, day 3, day 7 and day 21, and the measurements of the AFB1 albumin adducts in the serum were performed by a double antibody sandwich ELISA. The epidemiological study showed that serum albumin adducts were detected in 67 workshop workers (55.37%), and the values ranged 6.4 pg/mg albumin to 212 pg/mg albumin (mean value: 51 ± 4.62 pg/mg albumin). In contrast, serum albumin adducts were detected in only 7 control group participants, with the values ranging from 9 pg AFB1/mg albumin to 59 pg/mg albumin (mean value: 20 ± 13.72 pg/mg albumin). The animal experiment revealed that the rabbits had detectable levels of AFB1 in their serum with a minimum effective dose of 0.05 mg/kg/day; while 11 of 17 (64.71%) rabbits had detectable levels of AFB1 albumin adducts in the high exposure group (0.075 mg/kg/day), and only 5 rabbits (26.32%) had detectable levels of AFB1 albumin adducts in the moderate exposure group (0.05 mg/kg/day). No rabbits had detectable levels of AFB1 albumin adducts in the low exposure group (0.025 mg/kg/day). Our results demonstrated that only exposure to a certain level of AFB1 would result in detectable levels of serum AFB1 albumin adducts. Interventional programs aimed at reducing exposure to AFB1 by inhalation are urgently needed in high-risk populations. Additional large-sample, well-designed randomized controlled trials are needed to further confirm our results.
Collapse
Affiliation(s)
- Xianwei Mo
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Guangxi Medical University
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Involvement of DNA damage response pathways in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153867. [PMID: 24877058 PMCID: PMC4022277 DOI: 10.1155/2014/153867] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.
Collapse
|
46
|
Pottenger LH, Andrews LS, Bachman AN, Boogaard PJ, Cadet J, Embry MR, Farmer PB, Himmelstein MW, Jarabek AM, Martin EA, Mauthe RJ, Persaud R, Preston RJ, Schoeny R, Skare J, Swenberg JA, Williams GM, Zeiger E, Zhang F, Kim JH. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B1, tamoxifen and vinyl chloride. Crit Rev Toxicol 2014; 44:348-91. [DOI: 10.3109/10408444.2013.873768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
47
|
Lin YC, Li L, Makarova AV, Burgers PM, Stone MP, Lloyd RS. Molecular basis of aflatoxin-induced mutagenesis-role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis 2014; 35:1461-8. [PMID: 24398669 DOI: 10.1093/carcin/bgu003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a known carcinogen associated with early-onset hepatocellular carcinoma (HCC) and is thought to contribute to over half a million new HCCs per year. Although some of the fundamental risk factors are established, the molecular basis of AFB1-induced mutagenesis in primate cells has not been rigorously investigated. To gain insights into genome instability that is produced as a result of replicating DNAs containing AFB1 adducts, site-specific mutagenesis assays were used to establish the mutagenic potential of the persistent ring-opened AFB1 adduct, AFB1-formamidopyrimidine (AFB1-FAPY). This lesion was highly mutagenic, yielding replication error frequencies of 97%, with the predominant base substitution being a G to T transversion. This transversion is consistent with previous mutational data derived from aflatoxin-associated HCCs. In vitro translesion synthesis assays demonstrated that polymerase (pol) ζ was the most likely candidate polymerase that is responsible for the G to T mutations induced by this adduct.
Collapse
Affiliation(s)
- Ying-Chih Lin
- Oregon Institute of Occupational Health Sciences and Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liang Li
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA and
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA and
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
48
|
Mulder JE, Bondy GS, Mehta R, Massey TE. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B₁ and its dependence on p53 genotype. Toxicol Appl Pharmacol 2013; 275:96-103. [PMID: 24380836 DOI: 10.1016/j.taap.2013.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Aflatoxin B₁(AFB₁) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53(tm1Brd)N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB₁ for 26 weeks. NER activity was assessed with an in vitro assay, using AFB₁-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB₁-N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposed to 0.2 ppm and 1.0 ppm AFB₁respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB₁( p<0.05). In heterozygous p53 knockout mice, repair of AFB₁-N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB₁ (p<0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB₁or in liver extracts from mice treated with either AFB₁concentration. p53 genotype did not affect basal levels of repair. AFB₁exposure did not alter repair of AFB₁-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB₁increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage.
Collapse
Affiliation(s)
- Jeanne E Mulder
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario K7L 3N6, Canada
| | - Genevieve S Bondy
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Rekha Mehta
- Toxicology Research Division, 2202D, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Thomas E Massey
- Pharmacology and Toxicology Graduate Program, Department of Biomedical and Molecular Sciences, Queen's University Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
49
|
Lu JW, Yang WY, Lin YM, Jin SLC, Yuh CH. Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem 2013; 115:728-39. [PMID: 23499292 DOI: 10.1016/j.acthis.2013.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Aflatoxin B1 (AFB1) and the hepatitis B virus X antigen (HBx) are linked to the formation of liver diseases and hepatocellular carcinoma (HCC). The aim of this study was to investigate the synergistic effects between HBx and AFB1 in causing liver disorders using a transgenic zebrafish animal model. Histopathology, Periodic acid-Schiff (PAS) staining, Sirius red staining, TdT-mediated dUTP Nick End Labeling (TUNEL) assay, immunohistochemistry, and quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR) were used to examine the livers of the HBx transgenic fish injected with AFB1. We found that HBx and AFB1 synergistically promoted steatosis as indicated by histopathological examinations and the increased expression of lipogenic factors, enzymes, and genes related to lipid metabolism. Moreover, treatment of AFB1 in HBx transgenic fish accelerated the development of liver hyperplasia and enhanced the expression of cell cycle related genes. PCNA was co-localized with active caspase 3 protein expression in HBx zebrafish liver samples and human HBV positive HCC samples by double fluorescence immunostaining. Finally, we found that in human patients with liver disease, significant glycogen accumulated in the inflammation, cirrhosis stage, and all cases of hepatocellular and cholangiocellular carcinoma showed a moderate cytoplasmic accumulation of glycogen. Our data demonstrated a synergistic effect of AFB1 and HBx on the regulation of lipid metabolism related genes and cell cycle/division-related genes which might contribute to enhanced steatosis and hyperplasia at 5.75months.
Collapse
|
50
|
Minicis SD, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner D, Alvaro D, Alpini G, Marzioni M. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013; 45. [PMID: 23177172 PMCID: PMC3716909 DOI: 10.1016/j.dld.2012.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are primary liver cancers, both represent a growing challenge for clinicians due to their increasing morbidity and mortality. In the last few years a number of in vivo models of hepatocellular carcinoma and cholangiocarcinoma have been developed. The study of these models is providing a significant contribution in unveiling the pathophysiology of primary liver malignancies. They are also fundamental tools to evaluate newly designed molecules to be tested as new potential therapeutic agents in a pre-clinical set. Technical aspects of each model are critical steps, and they should always be considered in order to appropriately interpret the findings of a study or its planning. The purpose of this review is to describe the technical and experimental features of the most significant rodent models, highlighting similarities or differences between the corresponding human diseases. The first part is dedicated to the discussion of models of hepatocellular carcinoma, developed using toxic agents, or through dietary or genetic manipulations. In the second we will address models of cholangiocarcinoma developed in rats or mice by toxin administration, genetic manipulation and/or bile duct incannulation or surgery. Xenograft or syngenic models are also proposed.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Heather Francis
- Division Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Department of Medicine, Division Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - David Brenner
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Domenico Alvaro
- Division of Gastroenterology, Polo Pontino, Università degli Studi “La Sapienza”, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States,Co-corresponding author. Tel.: +1 254 743 1041/1044; fax: +1 254 743 0378/0555. (M. Marzioni)
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,Corresponding author at: Department of Gastroenterology, Università Politecnica delle Marche, Nuovo Polo Didattico, III Piano, Via Tronto 10, 60020 Ancona, Italy. Tel.: +39 0712206043; fax: +39 0712206044
| |
Collapse
|