1
|
Kabalı S, Ünlü Söğüt M, Öner N, Kara A. Protective Effects of Propolis Supplementation on Aflatoxin B1-Induced Oxidative Stress, Antioxidant Status, Intestinal Barrier Damage, and Gut Microbiota in Rats. Mol Nutr Food Res 2025; 69:e70052. [PMID: 40159764 PMCID: PMC12087736 DOI: 10.1002/mnfr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Aflatoxin B1 (AFB1) is common in the diets of humans and animals and often leads to adverse health effects. Propolis, with its strong antioxidant activity, can reduce oxidative stress and modulate gut microbiota composition. However, the underlying mechanism by which propolis alleviates AFB1-induced intestinal barrier damage remains unclear. This study was designed to investigate the protective effects of oral propolis supplementation in AFB1-exposed rats. Thirty-two male Sprague-Dawley rats were divided into four groups: control, AFB1, propolis, and AFB1+propolis. After 4 weeks, serum oxidative stress markers were examined, and gut microbiota was analyzed by 16S rRNA sequencing. Intestinal sections were processed by Hematoxylin & Eosin staining, and the expression level of tight junction proteins was assessed by immunostaining. Propolis supplementation in AFB1-exposed rats tended to decrease oxidative stress, and it also restructured the gut microbiota by preventing a decrease in the relative abundances of Lactobacillus, Roseburia, and Phascolarctobacterium. Propolis restored intestinal permeability impaired by AFB1 by ameliorating intestinal morphological damage and increasing the expression levels of tight junction proteins. Propolis supplementation may contribute to the modulation of gut microbiota by alleviating oxidative stress and improving intestinal barrier damage in AFB1-exposed rats.
Collapse
Affiliation(s)
- Sevtap Kabalı
- Department of Nutrition and DieteticsFaculty of Health SciencesOndokuz Mayıs UniversitySamsunTürkiye
| | - Mehtap Ünlü Söğüt
- Department of Nutrition and DieteticsFaculty of Health SciencesOndokuz Mayıs UniversitySamsunTürkiye
| | - Neslihan Öner
- Department of Nutrition and DieteticsFaculty of Health SciencesErciyes UniversityKayseriTürkiye
| | - Ayça Kara
- Genome and Stem Cell Center (GENKOK)Erciyes UniversityKayseriTürkiye
| |
Collapse
|
2
|
Mohd-Ridwan AR, Md-Zain BM, Najmuddin MF, Othman N, Haris H, Sariyati NH, Matsuda I, Yee BS, Lee Y, Lye SF, Abdul-Latiff MAB. Unveiling the Gut Microbiome of Malaysia's Colobine Monkeys : Insights into Health and Evolution. J Med Primatol 2024; 53:e12742. [PMID: 39462819 DOI: 10.1111/jmp.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Colobines are primarily leaf-eating primates, depend on microbiota of gastrointestinal tracts for food digestion. However, the gut microbiota of Malaysia's colobines specifically langurs remains unstudied. AIMS Hence, we aim to analyze the fecal microbiomes of Malaysia's langurs using Presbytis femoralis, Presbytis robinsoni, Trachypithecus obscurus, and Trachypithecus cristatus from various landscapes as models. MATERIAL AND METHODS We collected samples from all four species across several areas in Peninsular Malaysia and performed 16S ribosomal RNA gene amplicon sequencing using the Illumina sequencing platform. RESULTS Presbytis femoralis exhibited the highest bacterial diversity, followed by T. obscurus, T. cristatus, P. robinsoni and the lowest, P. siamensis. Over 11 million operational taxonomic units (OTUs) were identified across Malaysia's langurs spanning 26 phyla, 180 families, and 329 genera of microbes. The OTUs were dominated by Firmicutes, Proteobacteria, and Bacteroidetes. There are 11 genera of pathogenic bacteria were identified across all host species. Nine pathogenic bacterial genera inhabit both T. obscurus, indicating poor health due to low bacterial diversity and heightened pathogenicity. In contrast, P. robinsoni with the fewest pathogenic species is deemed the healthiest among Malaysia's langurs. DISCUSSION This study demonstrates that alterations in diet, behavior, and habitat affect bacterial diversity in Malaysia's langurs' gut microbiota. Even though this is the first comprehensive analysis of langur microbiomes in Malaysia, it is important to note the limitations regarding the number of samples, populations sampled, and the geographical origins and landscapes of these populations. Our results suggest that Malaysia's langurs may harbor pathogenic bacteria, potentially posing a risk of transmission to humans. CONCLUSION This highlights the critical need for the conservation and management of Malaysia's langurs, particularly considering their interactions with humans. This data can serve as a foundation for authorities to inform the public about the origins and significance of animal health and the management of zoonotic diseases.
Collapse
Affiliation(s)
- Abd Rahman Mohd-Ridwan
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faudzir Najmuddin
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Hidayah Haris
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | | | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
3
|
Ye L, Chen H, Wang J, Tsim KWK, Wang Y, Shen X, Lei H, Liu Y. Aflatoxin B 1-induced liver pyroptosis is mediated by disturbing the gut microbial metabolites: The roles of pipecolic acid and norepinephrine. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134822. [PMID: 38850943 DOI: 10.1016/j.jhazmat.2024.134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The disturbed gut microbiota is a key factor in activating the aflatoxin B1 (AFB1)-induced liver pyroptosis by promoting inflammatory hepatic injury; however, the pathogen associated molecular pattern (PAMP) from disturbed gut microbiota and its mechanism in activating liver pyroptosis remain undefined. By transplanting AFB1-originated fecal microbiota and sterile fecal microbial metabolites filtrate, we determined the association of PAMP in AFB1-induced liver pyroptosis. Notably, AFB1-originated sterile fecal microbial metabolites filtrate were more active in triggering liver pyroptosis in mice, as compared to parental fecal microbiota. This result supported a critical role of the metabolic homeostasis of gut microbiota in AFB1-induced liver pyroptosis, rather than an injurious response to direct exposure of AFB1 in liver. Among the gut-microbial metabolites, pipecolic acid and norepinephrine were proposed to bind TLR4 and NLRP3, the upstream proteins of pyroptosis signaling pathway. Besides, the activations of TLR4 and NLRP3 were linearly correlated with the concentrations of pipecolic acid and norepinephrine in the serum of mice. In silenced expression of TLR4 and NLRP3 in HepG2 cells, pipecolic acid or norepinephrine did not able to activate hepatocyte pyroptosis. These results demonstrated the necessity of gut microbial metabolism in sustaining liver homeostasis, as well as the potential to provide new insights into targeted intervention for AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., 510700 Guangzhou, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yurun Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 517000 Heyuan, China.
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 517000 Heyuan, China.
| |
Collapse
|
4
|
Li G, Wang H, Yang J, Qiu Z, Liu Y, Wang X, Yan H, He D. The protective effects of Lactobacillus SNK-6 on growth, organ health, and intestinal function in geese exposed to low concentration Aflatoxin B1. Poult Sci 2024; 103:103904. [PMID: 38880050 PMCID: PMC11228886 DOI: 10.1016/j.psj.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 μg/kg AFB1, 10 μg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 μg/kg AFB1, and 50 μg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 μg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.
Collapse
Affiliation(s)
- Guangquan Li
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Junhua Yang
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhi Qiu
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Xianze Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huaxiang Yan
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Daqian He
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China.
| |
Collapse
|
5
|
Wang JS, Xue K, Li Z, Ssempebwa J, Wamuyu-Maina G, Musinguzi G, Rhoads J, Hoisington D, Tang L. Peanut supplementation affects compositions and functions of gut microbiome in Ugandan children. Food Funct 2024; 15:4365-4374. [PMID: 38545932 DOI: 10.1039/d3fo04645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Childhood malnutrition remains a serious global health concern, particularly in low-income nations like Uganda. This study investigated the impact of peanut supplementation on the compositions and functions of gut microbiome with nutritional improvement. School children aged 6-9 years from four rural communities were recruited, with half receiving roasted peanut snacks while the other half served as controls. Fecal samples were collected at the baseline (day 0), day 60, and day 90. Microbial DNA was extracted, and 16S rRNA sequencing was performed, followed by the measurement of SCFA concentration in fecal samples using UHPLC. Alpha and beta diversity analyses revealed significant differences between the control and supplemented groups after 90 days of supplementation. Leuconostoc lactis, Lactococcus lactis, Lactococcus garvieae, Eubacterium ventriosum, and Bacteroides thetaiotaomicron, associated with the production of beneficial metabolites, increased significantly in the supplemented group. Acetic acid concentration also increased significantly. Notably, pathogenic bacteria, including Clostridium perfringens and Leuconostoc mesenteroides, were decreased in the supplemented group. The study indicates the potential of peanut supplementation to modulate the gut metabolome, enrich beneficial bacteria, and inhibit pathogens, suggesting a novel approach to mitigating child malnutrition and improving health status.
Collapse
Affiliation(s)
- Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.
| | - Kathy Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.
| | - Zilin Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.
| | - John Ssempebwa
- School of Public Health, Makerere University, Kampala, Uganda
| | | | - Geofrey Musinguzi
- Feed the Future Innovation Lab for Peanut, University of Georgia, Athens, Georgia 30602, USA
| | - Jamie Rhoads
- Feed the Future Innovation Lab for Peanut, University of Georgia, Athens, Georgia 30602, USA
| | - Dave Hoisington
- Feed the Future Innovation Lab for Peanut, University of Georgia, Athens, Georgia 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
6
|
Chen H, Ye L, Wang Y, Chen J, Wang J, Li X, Lei H, Liu Y. Aflatoxin B 1 exposure causes splenic pyroptosis by disturbing the gut microbiota-immune axis. Food Funct 2024; 15:3615-3628. [PMID: 38470843 DOI: 10.1039/d3fo04717b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aflatoxin B1 (AFB1) causes serious immunotoxicity and has attracted considerable attention owing to its high sensitivity and common chemical-viral interactions in living organisms. However, the sensitivity of different species to AFB1 widely varies, which cannot be explained by the different metabolism in species. The gut microbiota plays a crucial role in the immune system, but the interaction of the microbiota with AFB1-induced immunotoxicity still needs to be determined. Our results indicated that AFB1 exposure disrupted the structure of the gut microbiota and damaged the gut barrier, which caused translocation of microbiota metabolites, lipopolysaccharides, to the spleen. Subsequently, pyroptosis of the spleen was activated. Interestingly, AFB1 exposure had little effect on the splenic pyroptosis of pseudo-germfree mice (antibiotic mixtures eliminated their gut microbiota, ABX). Then, fecal microbiota transplant (FMT) and sterile fecal filtrate (SFF) were employed to validate the function of the gut microbiota and its metabolites in AFB1-induced splenic pyroptosis. The AFB1-disrupted microbiota and its metabolites significantly promoted splenic pyroptosis, which was worse than that in control mice. Overall, AFB1-induced splenic pyroptosis is associated with the gut microbiota and its metabolites, which was further demonstrated by FMT and SFF. The mechanism of AFB1-induced splenic pyroptosis was explored for the first time, which paves a new way for preventing and treating the immunotoxicity from mycotoxins by regulating the gut microbiota.
Collapse
Affiliation(s)
- Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Yurun Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| |
Collapse
|
7
|
Tang B, Xue KS, Wang JS, Williams PL, Tang L. Bacteria pyruvate metabolism modulates AFB 1 toxicity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165809. [PMID: 37506907 DOI: 10.1016/j.scitotenv.2023.165809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Aflatoxin B1 (AFB1), the most potent mycotoxin and Group 1 human carcinogen, continues to pose a significant public health burden, particularly in developing countries. Increasing evidence has shown the gut microbiota as a key mediator of AFB1 toxicity through multiple interactive host-microbiota activities. In our previous study we observed that disturbances in bacterial pyruvate metabolism might have a significant impact on AFB1 in the host. To further investigate the impact of the pyruvate pathway on AFB1 toxicity in C. elegans, we engineered two bacterial strains (triple-overexpressed and triple-knockout strains with aceB, lpd, and pflB). Additionally, we employed two mutant worm strains (pyk-1 and pdha-1 mutants) known to affect pyruvate metabolism. Our results revealed that the co-metabolism of pyruvate by the host and bacterial strains synergistically influences AFB1 toxicity. Remarkable, we found that bacterial pyruvate metabolism, rather than that of the host, plays a pivotal role in modulating AFB1 toxicity in C. elegans. Our study sheds light on the role of gut microbiota involved in pyruvate metabolism in influencing AFB1 toxicity in C. elegans.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Smaoui S, D’Amore T, Tarapoulouzi M, Agriopoulou S, Varzakas T. Aflatoxins Contamination in Feed Commodities: From Occurrence and Toxicity to Recent Advances in Analytical Methods and Detoxification. Microorganisms 2023; 11:2614. [PMID: 37894272 PMCID: PMC10609407 DOI: 10.3390/microorganisms11102614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Synthesized by the secondary metabolic pathway in Aspergilli, aflatoxins (AFs) cause economic and health issues and are culpable for serious harmful health and economic matters affecting consumers and global farmers. Consequently, the detection and quantification of AFs in foods/feeds are paramount from food safety and security angles. Nowadays, incessant attempts to develop sensitive and rapid approaches for AFs identification and quantification have been investigated, worldwide regulations have been established, and the safety of degrading enzymes and reaction products formed in the AF degradation process has been explored. Here, occurrences in feed commodities, innovative methods advanced for AFs detection, regulations, preventive strategies, biological detoxification, removal, and degradation methods were deeply reviewed and presented. This paper showed a state-of-the-art and comprehensive review of the recent progress on AF contamination in feed matrices with the intention of inspiring interests in both academia and industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax 3029, Tunisia
| | - Teresa D’Amore
- IRCCS CROB, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, Italy;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| |
Collapse
|
10
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
11
|
Ye L, Chen H, Tsim KWK, Shen X, Li X, Li X, Lei H, Liu Y. Aflatoxin B 1 Induces Inflammatory Liver Injury via Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406338 DOI: 10.1021/acs.jafc.3c02617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent food-borne hepatocarcinogen, is the most toxic aflatoxin that induces liver injury in humans and animals. Species-specific sensitivities of aflatoxins cannot be fully explained by differences in the metabolism of AFB1 between animal species. The gut microbiota are critical in inflammatory liver injury, but it remains to reveal the role of gut microbiota in AFB1-induced liver injury. Here, mice were gavaged with AFB1 for 28 days. Then, the modulation of gut microbiota, colonic barrier, and liver pyroptosis and inflammation were analyzed. To further verify the direct role of gut microbiota in AFB1-induced liver injury, mice were treated with antibiotic mixtures (ABXs) to deplete the microbiota, and fecal microbiota transplantation (FMT) was conducted. The treatment of AFB1 in mice altered gut microbiota composition, such as increasing the relative abundance of Bacteroides, Parabacteroides, and Lactobacillus, inducing colonic barrier dysfunction and promoting liver pyroptosis. In ABX-treated mice, AFB1 had little effect on the colonic barrier and liver pyroptosis. Notably, after FMT, in which the mice were colonized with gut microbiota from AFB1-treated mice, colonic barrier dysfunction, and liver pyroptosis and inflammation were obliviously identified. We proposed that the gut microbiota directly participated in AFB1-induced liver pyroptosis and inflammation. These results provide new insights into the mechanisms of AFB1 hepatotoxicity and pave a window for new targeted interventions to prevent or reduce AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Zeebone YY, Bóta B, Halas V, Libisch B, Olasz F, Papp P, Keresztény T, Gerőcs A, Ali O, Kovács M, Szabó A. Gut-Faecal Microbial and Health-Marker Response to Dietary Fumonisins in Weaned Pigs. Toxins (Basel) 2023; 15:328. [PMID: 37235363 PMCID: PMC10222793 DOI: 10.3390/toxins15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated effects of dietary fumonisins (FBs) on gut and faecal microbiota of weaned pigs. In total, 18 7-week-old male pigs were fed either 0, 15 or 30 mg FBs (FB1 + FB2 + FB3)/kg diet for 21 days. The microbiota was analysed with amplicon sequencing of the 16S rRNA gene V3-V4 regions (Illumina MiSeq). Results showed no treatment effect (p > 0.05) on growth performance, serum reduced glutathione, glutathione peroxidase and malondialdehyde. FBs increased serum aspartate transaminase, gamma glutamyl-transferase and alkaline phosphatase activities. A 30 mg/kg FBs treatment shifted microbial population in the duodenum and ileum to lower levels (compared to control (p < 0.05)) of the families Campylobacteraceae and Clostridiaceae, respectively, as well as the genera Alloprevotella, Campylobacter and Lachnospiraceae Incertae Sedis (duodenum), Turicibacter (jejunum), and Clostridium sensu stricto 1 (ileum). Faecal microbiota had higher levels of the Erysipelotrichaceae and Ruminococcaceae families and Solobacterium, Faecalibacterium, Anaerofilum, Ruminococcus, Subdoligranulum, Pseudobutyrivibrio, Coprococcus and Roseburia genera in the 30 mg/kg FBs compared to control and/or to the 15 mg/kg FBs diets. Lactobacillus was more abundant in the duodenum compared to faeces in all treatment groups (p < 0.01). Overall, the 30 mg/kg FBs diet altered the pig gut microbiota without suppressing animal growth performance.
Collapse
Affiliation(s)
- Yarsmin Yunus Zeebone
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| | - Brigitta Bóta
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| | - Veronika Halas
- Department of Farm Animal Nutrition, Institute of Animal Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi. Str., H-2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi. Str., H-2100 Gödöllő, Hungary
| | - Péter Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi. Str., H-2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi. Str., H-2100 Gödöllő, Hungary
- Doctoral School of Biology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi. Str., H-2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| | - Melinda Kovács
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba S. Str., H-7400 Kaposvár, Hungary
| |
Collapse
|
13
|
Tang B, Xue KS, Wang JS, Williams PL, Tang L. Host-microbiota affects the toxicity of Aflatoxin B 1 in Caenorhabditis elegans. Food Chem Toxicol 2023; 176:113804. [PMID: 37120088 DOI: 10.1016/j.fct.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Aflatoxins are a group of potent fungal metabolites produced by Aspergillus and commonly contaminate groundnuts and cereal grains. Aflatoxin B1 (AFB1), the most potent mycotoxin, has been classified as Group 1 human carcinogen because it can be metabolically activated by the cytochrome P450 (CYP450) in the liver to form AFB1-DNA adducts and induce gene mutations. Increasing evidence has shown the gut microbiota as a key mediator of AFB1 toxicity through multiple interactive host-microbiota activities. To identify specific bacterial activity that modulates AFB1 toxicity in Caenorhabditis (C.) elegans, we established a 3-way (microbe-worm-chemical) high-throughput screening system using C. elegans fed E. coli Keio collection on an integrated robotic platform, COPAS Biosort. We performed 2-step screenings using 3985 Keio mutants and identified 73 E. coli mutants that modulated C. elegans growth phenotype. Four genes (aceA, aceB, lpd, and pflB) involved in the pyruvate pathway were identified from the screening and confirmed to increase the sensitivity of all animals to AFB1. Taking together, our results indicated that disturbances in bacterial pyruvate metabolism might have a significant impact on AFB1 toxicity in the host.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Ibarra-Mendoza B, Gomez-Gil B, Betancourt-Lozano M, Raggi L, Yáñez-Rivera B. Microbial gut dysbiosis induced by xenobiotics in model organisms and the relevance of experimental criteria: a minireview. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e7. [PMID: 39295907 PMCID: PMC11406412 DOI: 10.1017/gmb.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiota is a dynamic ecosystem involved in multiple physiological processes that affect host health. Several factors affect intestinal microbial communities including dietary exposure to xenobiotics, which is highly concerning due to their widespread distribution. Current knowledge of this topic comes from culture-dependent methods, 16S rRNA amplicon fingerprinting, and metagenomics, but a standardised procedures framework remains lacking. This minireview integrates 45 studies from a systematic search using terms related to gut microbiota and its disruption. Only publications encompassing dietary-oral exposure and experimental gut microbiota assessments were included. The results were divided and described according to the biological model used and the disruption observed in the gut microbiota. An overall dysbiotic effect was unclear due to the variety of contaminants and hosts evaluated and the experimental gaps between publications. More standardised experimental designs, including WGS and physiological tests, are needed to establish how a particular xenobiotic can alter the gut microbiota and how the results can be extrapolated.
Collapse
Affiliation(s)
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, Mazatlán, Mexico
| | | | - Luciana Raggi
- Universidad Michoacana de San Nicolás de Hidalgo - CONACYT, Mexico City, Mexico
| | - Beatriz Yáñez-Rivera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| |
Collapse
|
15
|
Cheng Q, Glesener H, Montenegro G, Torres O, Miller AC, Krajmalnik-Brown R, Rohloff P, Voth-Gaeddert LE. Assessment of aflatoxin exposure, growth faltering and the gut microbiome among children in rural Guatemala: protocol for an observational prospective cohort and bioreactor simulations. BMJ Paediatr Open 2023; 7:e001960. [PMID: 37080609 PMCID: PMC10124301 DOI: 10.1136/bmjpo-2023-001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
INTRODUCTION Aflatoxin B1 (AFB1) is a carcinogen produced by Aspergillus flavus and Aspergillus parasiticus which grow on maize. Given the high prevalence of child stunting (ie, impaired growth) and other nutritional disorders in low-income and middle-income countries, where maize is consumed, the role of aflatoxin exposure may be significant. Observational reports have demonstrated associations between aflatoxin exposure and impaired child growth; however, most have been cross-sectional and have not assessed seasonal variations in aflatoxin, food preparation and dynamic changes in growth. Biological mechanistic data on how aflatoxin may exert an impact on child growth is missing. This study incorporates a prospective cohort of children from rural Guatemala to assess (1) temporal associations between aflatoxin exposure and child growth and (2) possible mediation of the gut microbiome among aflatoxin exposure, inflammation and child growth. METHODS AND ANALYSIS We will prospectively evaluate aflatoxin exposure and height-for-age difference trajectories for 18 months in a cohort of 185 children aged 6-9 months at enrolment. We will assess aflatoxin exposure levels and biomarkers of gut and systemic inflammation. We will examine the faecal microbiome of each child and identify key species and metabolic pathways for differing AFB1 exposure levels and child growth trajectories. In parallel, we will use bioreactors, inoculated with faeces, to investigate the response of the gut microbiome to varying levels of AFB1 exposure. We will monitor key microbial metabolites and AFB1 biotransformation products to study nutrient metabolism and the impact of the gut microbiome on aflatoxin detoxification/metabolism. Finally, we will use path analysis to summarise the effect of aflatoxin exposure and the gut microbiome on child growth. ETHICS AND DISSEMINATION Ethics approval was obtained from Arizona State University Institutional Review Board (IRB; STUDY00016799) and Wuqu' Kawoq/Maya Health Alliance IRB (WK-2022-003). Findings will be disseminated in scientific presentations and peer-reviewed publications.
Collapse
Affiliation(s)
- Qiwen Cheng
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| | - Hannah Glesener
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| | - Gabriela Montenegro
- Center for Indigenous Health Research, Wuqu' Kawoq | Maya Health Alliance, Tecpan, Guatemala
| | - Olga Torres
- Centro de Investigaciones en Nutricion y Salud (CIENSA), Guatemala City, Guatemala
| | - Ann C Miller
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| | - Peter Rohloff
- Center for Indigenous Health Research, Wuqu' Kawoq | Maya Health Alliance, Tecpan, Guatemala
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lee E Voth-Gaeddert
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
- Center for Indigenous Health Research, Wuqu' Kawoq | Maya Health Alliance, Tecpan, Guatemala
| |
Collapse
|
16
|
Bastos-Amador P, Duarte EL, Torres J, Caldeira AT, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. Maternal dietary exposure to mycotoxin aflatoxin B 1 promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food Chem Toxicol 2023; 173:113596. [PMID: 36603704 DOI: 10.1016/j.fct.2022.113596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi occurring in food that are toxic to animals and humans. Early-life mycotoxins exposure has been linked to diverse pathologies. However, how maternal exposure to mycotoxins impacts on the intestinal barrier function of progeny has not been explored. Here, exposure of pregnant and lactating C57Bl/6J female mice to aflatoxin B1 (AFB1; 400 μg/kg body weight/day; 3 times a week) in gelatine pellets, from embryonic day (E)11.5 until weaning (postnatal day 21), led to gut immunological changes in progeny. The results showed an overall increase of lymphocyte number in intestine, a reduction of expression of epithelial genes related to microbial defence, as well as a decrease in cytokine production by intestinal type 2 innate lymphoid cells (ILC2). While susceptibility to chemically induced colitis was not worsened, immune alterations were associated with changes in gut microbiota and with a higher vulnerability to infection by the protozoan Eimeria vermiformis at early-life. Together these results show that maternal dietary exposure to AFB1 can dampen intestinal barrier homeostasis in offspring decreasing their capability to tackle intestinal pathogens. These data provide insights to understand AFB1 potential harmfulness in early-life health in the context of intestinal infections.
Collapse
Affiliation(s)
- Patricia Bastos-Amador
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Elsa Leclerc Duarte
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal
| | - Júlio Torres
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | | | - Inês Silva
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal; HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Cátia Salvador
- HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829 - 511, Caparica, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Manuela Ferreira
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| |
Collapse
|
17
|
Xue M, Fu M, Zhang M, Xu C, Meng Y, Jiang N, Li Y, Liu W, Fan Y, Zhou Y. Aflatoxin B1 Induced Oxidative Stress and Gut Microbiota Disorder to Increase the Infection of Cyprinid Herpesvirus 2 in Gibel Carp ( Carassius auratus gibelio). Antioxidants (Basel) 2023; 12:antiox12020306. [PMID: 36829867 PMCID: PMC9952714 DOI: 10.3390/antiox12020306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Aflatoxin contamination of food and water is a serious problem worldwide. This study investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly increased the mortality of CyHV-2-infected gibel carp, and enhanced the viral load in the fish liver, kidney, and spleen. The oxidative-antioxidant balance suggested that AFB1 induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the AFB1 exposed group, and the reduced activity of superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in the AFB1 exposed group. Meanwhile, the related expression of nuclear factor erythroid 2-related factor 2 (Nrf2), interferon regulatory factor 3 (IRF3) and the type 1 interferon (IFN1) were noticeably down-regulated, but caspase-1 was up-regulated, after exposure to AFB1, demonstrating that fish are unable to avoid the virus infection. It should be noted that the intestinal microbiota diversity and richness were lower in the AFB1 exposed group, and the composition of intestinal microbiota was affected by AFB1, resulting in the higher abundance of bacteria (such as Aeromonas and Bacteroides) and the lower abundance of potentially beneficial bacteria (such as Cetobacterium and Clostridium) in the AFB1 exposed group. This research provides insight into the possibility that AFB1 may increase the susceptibility of C. gibelio to CyHV-2 infection, and thus amplify the viral outbreak to endanger ecological safety in aquatic environment.
Collapse
Affiliation(s)
- Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Miao Fu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengwei Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence:
| |
Collapse
|
18
|
Sui Y, Lu Y, Zuo S, Wang H, Bian X, Chen G, Huang S, Dai H, Liu F, Dong H. Aflatoxin B 1 Exposure in Sheep: Insights into Hepatotoxicity Based on Oxidative Stress, Inflammatory Injury, Apoptosis, and Gut Microbiota Analysis. Toxins (Basel) 2022; 14:toxins14120840. [PMID: 36548738 PMCID: PMC9787800 DOI: 10.3390/toxins14120840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The widespread fungal toxin Aflatoxin B1 (AFB1) is an inevitable pollutant affecting the health of humans, poultry, and livestock. Although studies indicate that AFB1 is hepatotoxic, there are few studies on AFB1-induced hepatotoxicity in sheep. Thus, this study examined how AFB1 affected sheep liver function 24 h after the animals received 1 mg/kg bw of AFB1 orally (dissolved in 20 mL, 4% v/v ethanol). The acute AFB1 poisoning caused histopathological injuries to the liver and increased total bilirubin (TBIL) and alkaline phosphatase (AKP) levels. AFB1 also markedly elevated the levels of the pro-inflammatory cytokines TNF-α and IL-6 while considerably reducing the expression of antioxidation-related genes (SOD-1 and SOD-2) and the anti-inflammatory gene IL-10 in the liver. Additionally, it caused apoptosis by dramatically altering the expression of genes associated with apoptosis including Bax, Caspase-3, and Bcl-2/Bax. Notably, AFB1 exposure altered the gut microbiota composition, mainly manifested by BF311 spp. and Alistipes spp. abundance, which are associated with liver injury. In conclusion, AFB1 can cause liver injury and liver dysfunction in sheep via oxidative stress, inflammation, apoptosis, and gut-microbiota disturbance.
Collapse
|
19
|
Subramaniam S, Sabran MR, Stanslas J, Kirby BP. Effect of aflatoxin B1 exposure on the progression of depressive-like behavior in rats. Front Nutr 2022; 9:1032810. [PMID: 36466381 PMCID: PMC9712965 DOI: 10.3389/fnut.2022.1032810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 07/20/2023] Open
Abstract
While it is well documented that aflatoxin B1 (AFB1); one of the most toxic food contaminants is linked to the development of depression. However, the mechanism on how it affects the gut and brain health leading to depressive-like behavior remains unclear. This study was conducted to determine the effect of AFB1 on the progression of depressive-like behavior. Thirty-two (n = 32) male Sprague Dawley rats were randomly allocated into four groups: control, low-dose (5 μg AFB1/kg), high-dose (25 μg AFB1/kg) and positive control group; exposed on chronic unpredictable mild stress (CUMS). After 4 weeks of exposure, sucrose preference test (SPT) and force swim test (FST) were used to measure behavioral despair. Fecal samples were selectively cultured to profile the bacteria. Body weight and relative organs weights were compared among groups. AFB1 and CUMS caused reduction in body weight and food intake as well as increased relative weight of adrenal glands, liver, and brain. Rats in AFB1 and CUMS groups had suppressed sucrose preference and prolonged immobility time in FST, wherein this could indicate anhedonia. Besides, fecal count of Lactobacillus spp. was significantly low following AFB1 exposure, with increasing count of Bifidobacterium spp, in comparison to the control. Indeed, further biochemical analysis and metagenomic approach are warranted to explore the underlying mechanisms on the role of gut microbiota dysbiosis and dysregulation of gut-brain axis due to AFB1 neurotoxicity on the progression of depressive-like behavior.
Collapse
Affiliation(s)
- Syarminie Subramaniam
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd-Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Brian P. Kirby
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
20
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Qing H, Huang S, Zhan K, Zhao L, Zhang J, Ji C, Ma Q. Combined Toxicity Evaluation of Ochratoxin A and Aflatoxin B1 on Kidney and Liver Injury, Immune Inflammation, and Gut Microbiota Alteration Through Pair-Feeding Pullet Model. Front Immunol 2022; 13:920147. [PMID: 35967406 PMCID: PMC9373725 DOI: 10.3389/fimmu.2022.920147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Ochratoxin A (OTA) and aflatoxin B1 (AFB1) are often co-contaminated, but their synergistic toxicity in poultry is limitedly described. Furthermore, the traditional ad libitum feeding model may fail to distinguish the specific impact of mycotoxins on the biomarkers and the indirect effect of mildew on the palatability of feed. A pair-feeding model was introduced to investigate the specific effect and the indirect effect of the combined toxicity of OTA and AFB1, which were independent and dependent on feed intake, respectively. A total of 180 one-day-old pullets were randomly divided into 3 groups with 6 replicates, and each replicate contained 10 chicks. The control group (Group A) and the pair-feeding group (Group B) received the basal diet without mycotoxin contamination. Group C was administrated with OTA- and AFB1-contaminated feed (101.41 μg/kg of OTA + 20.10 μg/kg of AFB1). The scale of feeding in Group B matched with the feed intake of Group C. The trial lasted 42 days. Compared with the control group, co-contamination of OTA and AFB1 in feed could adversely affect the growth performance (average daily feed intake (ADFI), body weight (BW), average daily weight gain (ADG), feed conversion ratio (FCR), and shank length (SL)), decrease the relative weight of the spleen (p < 0.01), and increase the relative weight of the kidney (p < 0.01). Moreover, the reduction of feed intake could also adversely affect the growth performance (BW, ADG, and SL), but not as severely as mycotoxins do. Apart from that, OTA and AFB1 also activated the antioxidative and inflammation reactions of chicks, increasing the level of catalase (CAT), reactive oxygen species (ROS), and interleukin-8 (IL-8) while decreasing the level of IL-10 (p < 0.01), which was weakly influenced by the feed intake reduction. In addition, OTA and AFB1 induced histopathological changes and apoptosis in the kidney and liver as well as stimulated the growth of pernicious bacteria to cause toxic effects. There were no histopathological changes and apoptosis in the kidney and liver of the pair-feeding group. The combined toxicity of OTA and AFB1 had more severe effects on pullets than merely reducing feed supply. However, the proper reduction of the feed intake could improve pullets’ physical health by enriching the bacteria Lactobacillus, Phascolarctobacterium, Bacteroides, Parabacteroides, and Barnesiella.
Collapse
Affiliation(s)
- Hanrui Qing
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Qiugang Ma,
| |
Collapse
|
22
|
Liew WPP, Sabran MR, Than LTL, Abd-Ghani F. Metagenomic and proteomic approaches in elucidating aflatoxin B 1 detoxification mechanisms of probiotic Lactobacillus casei Shirota towards intestine. Food Chem Toxicol 2022; 160:112808. [PMID: 34998910 DOI: 10.1016/j.fct.2022.112808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022]
Abstract
The modulation of gut microbiota and proteome due to aflatoxin B1 (AFB1) by probiotics remains unclear. This study investigated the alterations of gut microbiota and proteome in AFB1-exposed rats treated with probiotic Lactobacillus casei Shirota (Lcs). Forty male Sprague Dawley rats were randomly divided into five groups (n = 8) comprised control, AFB1, AFB1+activated charcoal, AFB1+Lcs, and Lcs groups. The rats were subjected to different treatments via oral gavage for four weeks. Urine and serum were collected for the measurement of AFB1 biomarkers and organs were harvested for histological analysis. Metagenomic sequencing was performed on fecal samples to profile gut microbiota. Besides, AFB1 most affected organ i.e. jejunum was subjected to proteomic analysis. The results indicated that Lcs intervention significantly reduced AFB1 biomarkers. H&E-stained intestine showed Lcs alleviated AFB1-induced inflammation and abnormal cell growth, particularly at the jejunum. Although AFB1 increased potentially pathogenic bacteria and reduced beneficial bacteria abundance in feces, the microbiota composition was normalized with Lcs treatment. The gut proteome analysis of the jejunum sample showed several pathways of AFB1 toxicity, wherein Lcs treatment demonstrated its protective effect. It is concluded that metagenomic and proteomic approaches are useful tools to understand AFB1-Lcs interaction and detoxification mechanism in the gut.
Collapse
Affiliation(s)
- Winnie-Pui-Pui Liew
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd-Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.
| | - Leslie-Thian-Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fauzah Abd-Ghani
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Mycotoxin Interactions along the Gastrointestinal Tract: In Vitro Semi-Dynamic Digestion and Static Colonic Fermentation of a Contaminated Meal. Toxins (Basel) 2022; 14:toxins14010028. [PMID: 35051005 PMCID: PMC8779761 DOI: 10.3390/toxins14010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) naturally co-occur in several foods, but no studies have followed the fate of mycotoxins' interactions along the gastrointestinal tract using in vitro digestion models. This study used a novel semi-dynamic model that mimics gradual acidification and gastric emptying, coupled with a static colonic fermentation phase, in order to monitor mycotoxins' bioaccessibility by the oral route. AFB1 and OTA bioaccessibility patterns differed in single or co-exposed scenarios. When co-exposed (MIX meal), AFB1 bioaccessibility at the intestinal level increased by ~16%, while OTA bioaccessibility decreased by ~20%. Additionally, a significant increase was observed in both intestinal cell viability and NO production. With regard to mycotoxin-probiotic interactions, the MIX meal showed a null effect on Lactobacillus and Bifidobacterium strain growth, while isolated AFB1 reduced bacterial growth parameters. These results were confirmed at phylum and family levels using a gut microbiota approach. After colonic fermentation, the fecal supernatant did not trigger the NF-kB activation pathway, indicating reduced toxicity of mycotoxins. In conclusion, if single exposed, AFB1 will have a significant impact on intestinal viability and probiotic growth, while OTA will mostly trigger NO production; in a co-exposure situation, both intestinal viability and inflammation will be affected, but the impact on probiotic growth will be neglected.
Collapse
|
24
|
Alvarez CS, Rivera‐Andrade A, Kroker‐Lobos MF, Florio AA, Smith JW, Egner PA, Freedman ND, Lazo M, Guallar E, Dean M, Graubard BI, Ramírez‐Zea M, McGlynn KA, Groopman JD. Associations between aflatoxin B 1-albumin adduct levels with metabolic conditions in Guatemala: A cross-sectional study. Health Sci Rep 2022; 5:e495. [PMID: 35229049 PMCID: PMC8865065 DOI: 10.1002/hsr2.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic conditions such as obesity, type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD) are highly prevalent in Guatemala and increase the risk for a number of disorders, including hepatocellular carcinoma (HCC). Aflatoxin B1 (AFB1) levels are also notably elevated in the population and are known to be associated with HCC risk. Whether AFB1 also contributes to the high prevalence of the metabolic disorders has not been previously examined. Therefore, the purpose of this study was to assess the association between AFB1 and the metabolic conditions. METHODS Four-hundred twenty-three individuals were included in the study, in which AFB1-albumin adduct levels were measured in sera. Metabolic conditions included diabetes, obesity, central obesity, metabolic syndrome, and NAFLD. Crude and adjusted prevalence odds ratios (PORs) and 95% confidence intervals (95% CI) were estimated for the associations between the metabolic conditions and AFB1-albumin adduct levels categorized into quartiles. RESULTS The study found a significant association between AFB1-albumin adduct levels and diabetes (Q4 vs Q1 POR = 3.74, 95%CI: 1.71-8.19; P-trend .003). No associations were observed between AFB1-albumin adduct levels and the other conditions. CONCLUSIONS As diabetes is the metabolic condition most consistently linked to HCC, the possible association between AFB1 exposure and diabetes may be of public health importance. Further studies are warranted to replicate the findings and examine potential mechanisms.
Collapse
Affiliation(s)
- Christian S. Alvarez
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Alvaro Rivera‐Andrade
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - María F. Kroker‐Lobos
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - Andrea A. Florio
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
- Department of Nutrition, Harvard TH Chan School of Public HealthHarvard UniversityBostonMassachusettsUSA
| | - Joshua W. Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Patricia A. Egner
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Mariana Lazo
- Division of General Internal Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Urban Health Collaborative, Dornsife School of Public HealthDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Eliseo Guallar
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael Dean
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Barry I. Graubard
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Manuel Ramírez‐Zea
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - John D. Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
25
|
Madeen EP, Maldarelli F, Groopman JD. Environmental Pollutants, Mucosal Barriers, and Pathogen Susceptibility; The Case for Aflatoxin B 1 as a Risk Factor for HIV Transmission and Pathogenesis. Pathogens 2021; 10:1229. [PMID: 34684180 PMCID: PMC8537633 DOI: 10.3390/pathogens10101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.
Collapse
Affiliation(s)
- Erin P. Madeen
- Department of Cancer Prevention, National Institute of Health, Shady Grove, MD 21773, USA
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - John D. Groopman
- Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
26
|
In Vitro Biological Control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, Producers of Antifungal Volatile Organic Compounds. Toxins (Basel) 2021; 13:toxins13090663. [PMID: 34564667 PMCID: PMC8471246 DOI: 10.3390/toxins13090663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a toxigenic fungal colonizer of fruits and cereals and may produce one of the most important mycotoxins from a food safety perspective, aflatoxins. Therefore, its growth and mycotoxin production should be effectively avoided to protect consumers' health. Among the safe and green antifungal strategies that can be applied in the field, biocontrol is a recent and emerging strategy that needs to be explored. Yeasts are normally good biocontrol candidates to minimize mold-related hazards and their modes of action are numerous, one of them being the production of volatile organic compounds (VOCs). To this end, the influence of VOCs produced by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793 on growth, expression of the regulatory gene of the aflatoxin pathway (aflR) and mycotoxin production by A. flavus for 21 days was assessed. The results showed that both yeasts, despite producing different kinds of VOCs, had a similar effect on inhibiting growth, mycotoxin biosynthetic gene expression and phenotypic toxin production overall at the mid-incubation period when their synthesis was the greatest. Based on the results, both yeast strains, H. opuntiae L479 and H. uvarum L793, are potentially suitable as a biopreservative agents for inhibiting the growth of A. flavus and reducing aflatoxin accumulation.
Collapse
|
27
|
Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice. Toxins (Basel) 2021; 13:toxins13090612. [PMID: 34564616 PMCID: PMC8472543 DOI: 10.3390/toxins13090612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisins are a kind of mycotoxin that has harmful influence on the health of humans and animals. Although some research studies associated with fumonisins have been reported, the regulatory limits of fumonisins are imperfect, and the effects of fumonisins on fecal bacterial flora of mice have not been suggested. In this study, in order to investigate the effects of fumonisin B1 (FB1) on fecal bacterial flora, BALB/c mice were randomly divided into seven groups, which were fed intragastrically with 0 mg/kg, 0.018 mg/kg, 0.054 mg/kg, 0.162 mg/kg, 0.486 mg/kg, 1.458 mg/kg and 4.374 mg/kg of FB1 solutions, once a day for 8 weeks. Subsequently, feces were collected for analysis of microflora. The V3-V4 16S rRNA of fecal bacterial flora was sequenced using the Illumina MiSeq platform. The results revealed that fecal bacterial flora of mice treated with FB1 presented high diversity. Additionally, the composition of fecal bacterial flora of FB1 exposure groups showed marked differences from that of the control group, especially for the genus types including Alloprevotella, Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, Parabacteroides and phylum types including Cyanobacteria. In conclusion, our data indicate that FB1 alters the diversity and composition of fecal microbiota in mice. Moreover, the minimum dose of FB1 exposure also causes changes in fecal microbiota to some extent. This study is the first to focus on the dose-related effect of FB1 exposure on fecal microbiota in rodent animals and gives references to the regulatory doses of fumonisins for better protection of human and animal health.
Collapse
|
28
|
Metaproteomics Reveals Alteration of the Gut Microbiome in Weaned Piglets Due to the Ingestion of the Mycotoxins Deoxynivalenol and Zearalenone. Toxins (Basel) 2021; 13:toxins13080583. [PMID: 34437454 PMCID: PMC8402495 DOI: 10.3390/toxins13080583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 μg DON/kg feed, DONhigh: 2493 μg DON/kg feed) or ZEN (ZENlow: 679 μg ZEN/kg feed, ZENhigh: 1623 μg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.
Collapse
|
29
|
Ivanovics B, Gazsi G, Reining M, Berta I, Poliska S, Toth M, Domokos A, Nagy B, Staszny A, Cserhati M, Csosz E, Bacsi A, Csenki-Bakos Z, Acs A, Urbanyi B, Czimmerer Z. Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125788. [PMID: 33838512 DOI: 10.1016/j.jhazmat.2021.125788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic effects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the aflatoxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced significant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1-induced defective gastrointestinal tract development and reduced L-arginine level were found in our model system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid utilization, defective intestinal development, and inflammation.
Collapse
Affiliation(s)
- Bence Ivanovics
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Gyongyi Gazsi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Marta Reining
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Izabella Berta
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marta Toth
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Apolka Domokos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; Molecular Cell and Immunobiology Doctoral School, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Staszny
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Matyas Cserhati
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Eva Csosz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsolt Csenki-Bakos
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Andras Acs
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Bela Urbanyi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary.
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
30
|
Zhou J, Tang L, Wang JS. Aflatoxin B1 Induces Gut-Inflammation-Associated Fecal Lipidome Changes in F344 Rats. Toxicol Sci 2021; 183:363-377. [PMID: 34358323 DOI: 10.1093/toxsci/kfab096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1 (AFB1) induced intestinal epithelial damage in rodent models, which indicates that long-term exposure to AFB1 may cause chronic gut disorders. In this study we tested the hypothesis that AFB1-induced adverse effects on gut is mediated by gut-microbiota, which is partially reflected by the changes of fecal microbiome and metabolome. F344 rats were orally exposed to AFB1 of 0, 5, 25 and 75 µg kg-1 body weight for 4 weeks and fecal samples were collected. An ion-fragmentation-spectrum-based metabolomics approach was developed to investigate the fecal microbiota-associated metabolic changes in fecal samples. We found that AFB1 inhibited the hepatic and intestinal metabolism of bile constituents. As compared to the controls, bile acid synthesis-associated cholesterols in rats treated with 25 µg kg-1 (the middle-dose group) were significantly decreased in the fecal samples, e.g., lathosterol (45% reduction), cholesterol ester (21% reduction), chenodeoxycholic acid (20% reduction), dihydroxycholesterol (55% reduction), hydroxycholesterol (20% reduction), and 5-cholestene (29% reduction). While disease-associated lipids were not detectable in the feces of the control group, they were found in AFB1-treated groups, including diglyceride, monoacylglyceride, 19,20-dihydroxy-docosapentaenoic acid, and phosphatidylethanolamine. Metabolisms of carbohydrates and production of short chain fatty acids were remarkedly decreased in all treated groups. Moreover, an inflammatory-bowel-disease (IBD)-associated taxonomic structure of fecal microbiota was observed as ∼25% Lachnospiraceae, ∼25% Ruminococcaceae, < 1% Lactobacillales, which was similar to the composition pattern found in IBD patients. These results suggest that AFB1-induced disruption on gut-microbiota, partially reflected by fecal microbiome and metabolome, may play important roles in the pathogenesis of chronic gut disorders.
Collapse
Affiliation(s)
- Jun Zhou
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.,Interdisciplinary Toxicology Program, the University of Georgia, Athens, Georgia, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, the University of Georgia, Athens, Georgia, 30602, USA.,Department of Environmental Health Science, College of Public Health, the University of Georgia, Athens, Georgia, 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, the University of Georgia, Athens, Georgia, 30602, USA.,Department of Environmental Health Science, College of Public Health, the University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
31
|
Jin J, Beekmann K, Ringø E, Rietjens IM, Xing F. Interaction between food-borne mycotoxins and gut microbiota: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Crudo F, Aichinger G, Mihajlovic J, Varga E, Dellafiora L, Warth B, Dall'Asta C, Berry D, Marko D. In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Arch Toxicol 2021; 95:2533-2549. [PMID: 33847775 PMCID: PMC8241668 DOI: 10.1007/s00204-021-03043-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
The human gut microbiota plays an important role in the maintenance of human health. Factors able to modify its composition might predispose the host to the development of pathologies. Among the various xenobiotics introduced through the diet, Alternaria mycotoxins are speculated to represent a threat for human health. However, limited data are currently available about the bidirectional relation between gut microbiota and Alternaria mycotoxins. In the present work, we investigated the in vitro effects of different concentrations of a complex extract of Alternaria mycotoxins (CE; containing eleven mycotoxins; e.g. 0.153 µM alternariol and 2.3 µM altersetin, at the maximum CE concentration tested) on human gut bacterial strains, as well as the ability of the latter to metabolize or adsorb these compounds. Results from the minimum inhibitory concentration assay showed the scarce ability of CE to inhibit the growth of the tested strains. However, the growth kinetics of most of the strains were negatively affected by exposure to the various CE concentrations, mainly at the highest dose (50 µg/mL). The CE was also found to antagonize the formation of biofilms, already at concentrations of 0.5 µg/mL. LC-MS/MS data analysis of the mycotoxin concentrations found in bacterial pellets and supernatants after 24 h incubation showed the ability of bacterial strains to adsorb some Alternaria mycotoxins, especially the key toxins alternariol, alternariol monomethyl ether, and altersetin. The tendency of these mycotoxins to accumulate within bacterial pellets, especially in those of Gram-negative strains, was found to be directly related to their lipophilicity.
Collapse
Affiliation(s)
- Francesco Crudo
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria
| | - Jovana Mihajlovic
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - David Berry
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090, Wien, Austria.
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
33
|
Zhai S, Zhu Y, Feng P, Li M, Wang W, Yang L, Yang Y. Ochratoxin A: its impact on poultry gut health and microbiota, an overview. Poult Sci 2021; 100:101037. [PMID: 33752074 PMCID: PMC8005833 DOI: 10.1016/j.psj.2021.101037] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin, that has strong thermal stability, and is difficult to remove from feed. OTA is nephrotoxic, hepatotoxic, teratogenic, immunotoxic, and enterotoxic to several species of animals. The gut is the first defense barrier against various types of mycotoxins present in feed that enter the body, and it is closely connected to other tissues through enterohepatic circulation. Compared with mammals, poultry is more sensitive to OTA and has a lower absorption rate. Therefore, the gut is an important target tissue for OTA in poultry. This review comprehensively discusses the role of OTA in gut health and the gut microbiota of poultry, focusing on the effect of OTA on digestive and absorptive processes, intestinal barrier integrity, intestinal histomorphology, gut immunity, and gut microbiota. According to the studies described to date, OTA can affect gut dysbiosis, including increasing gut permeability, immunity, and bacterial translocation, and can eventually lead to gut and other organ injury. Although there are many studies investigating the effects of OTA on the gut health of poultry, further studies are needed to better characterize the underlying mechanisms of action and develop preventative or therapeutic interventions for mycotoxicosis in poultry.
Collapse
Affiliation(s)
- Shuangshuang Zhai
- College of Animal Science, Yangtze University, Jingzhou 434000, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Peishi Feng
- Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Macheng Li
- Research and Development department, Hunan Microorganism & Herb Biological Feed Technology Co., Ltd., Xiangtan 411100, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Ye Yang
- College of Animal Science, Yangtze University, Jingzhou 434000, China.
| |
Collapse
|
34
|
Yiannikouris A, Apajalahti J, Kettunen H, Ojanperä S, Bell ANW, Keegan JD, Moran CA. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins (Basel) 2021; 13:24. [PMID: 33401432 PMCID: PMC7824576 DOI: 10.3390/toxins13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, adsorption of the carcinogenic mycotoxin aflatoxin B1 (AFB1) by two sequestrants-a yeast cell wall-based adsorbent (YCW) and a hydrated sodium calcium aluminosilicate (HSCAS)-was studied across four laboratory models: (1) an in vitro model from a reference method was employed to quantify the sorption capabilities of both sequestrants under buffer conditions at two pH values using liquid chromatography with fluorescence detection (LC-FLD); (2) in a second in vitro model, the influence of the upper gastrointestinal environment on the mycotoxin sorption capacity of the same two sequestrants was studied using a chronic AFB1 level commonly encountered in the field (10 µg/L and in the presence of feed); (3) the third model used a novel ex vivo approach to measure the absorption of 3H-labelled AFB1 in the intestinal tissue and the ability of the sequestrants to offset this process; and (4) a second previously developed ex vivo model readapted to AFB1 was used to measure the transfer of 3H-labelled AFB1 through live intestinal tissue, and the influence of sequestrants on its bioavailability by means of an Ussing chamber system. Despite some sorption effects caused by the feed itself studied in the second model, both in vitro models established that the adsorption capacity of both YCW and HSCAS is promoted at a low acidic pH. Ex vivo Models 3 and 4 showed that the same tested material formed a protective barrier on the epithelial mucosa and that they significantly reduced the transfer of AFB1 through live intestinal tissue. The results indicate that, by reducing the transmembrane transfer rate and reducing over 60% of the concentration of free AFB1, both products are able to significantly limit the bioavailability of AFB1. Moreover, there were limited differences between YCW and HSCAS in their sorption capacities. The inclusion of YCW in the dietary ration could have a positive influence in reducing AFB1's physiological bioavailability.
Collapse
Affiliation(s)
- Alexandros Yiannikouris
- Chemistry and Toxicology Division, Center for Animal Nutrigenomic and Applied Animal Nutrition, Alltech Inc., 3031 Nicholasville, KY 40356, USA
| | - Juha Apajalahti
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Hannele Kettunen
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Suvi Ojanperä
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Andrew N. W. Bell
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Jason D. Keegan
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Colm A. Moran
- Alltech SARL (France), ZA La Papillionnière, Rue Charles Amand, 14500 Vire, France;
| |
Collapse
|
35
|
Guerre P. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel) 2020; 12:E769. [PMID: 33291716 PMCID: PMC7761905 DOI: 10.3390/toxins12120769] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interactions between mycotoxins and gut microbiota were discovered early in animals and explained part of the differences in susceptibility to mycotoxins among species. Isolation of microbes present in the gut responsible for biotransformation of mycotoxins into less toxic metabolites and for binding mycotoxins led to the development of probiotics, enzymes, and cell extracts that are used to prevent mycotoxin toxicity in animals. More recently, bioactivation of mycotoxins into toxic compounds, notably through the hydrolysis of masked mycotoxins, revealed that the health benefits of the effect of the gut microbiota on mycotoxins can vary strongly depending on the mycotoxin and the microbe concerned. Interactions between mycotoxins and gut microbiota can also be observed through the effect of mycotoxins on the gut microbiota. Changes of gut microbiota secondary to mycotoxin exposure may be the consequence of the antimicrobial properties of mycotoxins or the toxic effect of mycotoxins on epithelial and immune cells in the gut, and liberation of antimicrobial peptides by these cells. Whatever the mechanism involved, exposure to mycotoxins leads to changes in the gut microbiota composition at the phylum, genus, and species level. These changes can lead to disruption of the gut barrier function and bacterial translocation. Changes in the gut microbiota composition can also modulate the toxicity of toxic compounds, such as bacterial toxins and of mycotoxins themselves. A last consequence for health of the change in the gut microbiota secondary to exposure to mycotoxins is suspected through variations observed in the amount and composition of the volatile fatty acids and sphingolipids that are normally present in the digesta, and that can contribute to the occurrence of chronic diseases in human. The purpose of this work is to review what is known about mycotoxin and gut microbiota interactions, the mechanisms involved in these interactions, and their practical application, and to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Philippe Guerre
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, F-31076 Toulouse, France
| |
Collapse
|
36
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
37
|
Yang J, Wang T, Lin G, Li M, Zhu R, Yiannikouris A, Zhang Y, Mai K. The Assessment of Diet Contaminated with Aflatoxin B 1 in Juvenile Turbot ( Scophthalmus maximus) and the Evaluation of the Efficacy of Mitigation of a Yeast Cell Wall Extract. Toxins (Basel) 2020; 12:toxins12090597. [PMID: 32942659 PMCID: PMC7551837 DOI: 10.3390/toxins12090597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the effects of dietary AFB1 on growth performance, health, intestinal microbiota communities and AFB1 tissue residues of turbot and evaluate the mitigation efficacy of yeast cell wall extract, Mycosorb® (YCWE) toward AFB1 contaminated dietary treatments. Nine experimental diets were formulated: Diet 1 (control): AFB1 free; Diets 2-5 or Diets 6-9: 20 μg AFB1/kg diet or 500 μg AFB1/kg diet + 0%, 0.1%, 0.2%, or 0.4% YCWE, respectively). The results showed that Diet 6 significantly decreased the concentrations of TP, GLB, C3, C4, T-CHO, TG but increased the activities of AST, ALT in serum, decreased the expressions of CAT, SOD, GPx, CYP1A but increased the expressions of CYP3A, GST-ζ1, p53 in liver. Diet 6 increased the AFB1 residues in serum and muscle, altered the intestinal microbiota composition, decreased the bacterial community diversity and the abundance of some potential probiotics. However, Diet 8 and Diet 9 restored the immune response, relieved adverse effects in liver, lowered the AFB1 residues in turbot tissues, promoted intestinal microbiota diversity and lowered the abundance of potentially pathogens. In conclusion, YCWE supplementation decreased the health effects of AFB1 on turbot, restoring biomarkers closer to the mycotoxin-free control diet.
Collapse
Affiliation(s)
- Jinzhu Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Tiantian Wang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Mingzhu Li
- College of Agriculture, Ludong University, Yantai 264025, China;
| | - Ronghua Zhu
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China;
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
- Correspondence: ; Tel.: +86-532-8203-1627
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| |
Collapse
|
38
|
Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon 2020; 184:83-93. [DOI: 10.1016/j.toxicon.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
39
|
Lourenco JM, Kieran TJ, Seidel DS, Glenn TC, da Silveira MF, Callaway TR, Stewart RL. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate. PLoS One 2020; 15:e0231533. [PMID: 32282837 PMCID: PMC7153887 DOI: 10.1371/journal.pone.0231533] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
Most of the research efforts involving the bovine gastrointestinal microbiota have focused on cattle’s forestomach, particularly the rumen, so information concerning the bovine fecal microbiota is more scarce, especially in young beef cattle. The present study was performed to evaluate the ruminal and fecal microbiotas of beef calves as they reached the end of their nursing phase. A total of 18 Angus cow/calf pairs were selected and assigned to one of two treatment groups for the last 92 days of the calves’ nursing period, as follows: 1) calves were supplemented with concentrate in a creep feeding system; or 2) control group with no supplementation of calves. After 92 days, ruminal and fecal samples were individually obtained from calves in both groups, and their microbiotas were evaluated using 16S rRNA gene sequencing. Ruminal samples were predominated by Prevotella (18 to 23% of the total bacterial abundance), regardless if calves received supplementation or not; however, in the feces, Prevotella was only the seventh most abundant genus (0.6 to 2.1% of total bacterial abundance). Both the rumen (P = 0.01) and the feces (P = 0.05) of calves that received supplementation had greater abundance of Firmicutes. In addition, calves that were supplemented had lower abundance of Fibrobacteres (P = 0.03) in their rumens. Regardless if the calves were supplemented or not, Faith’s Phylogenetic Diversity index (P ≤ 0.007) and total concentration of short chain fatty acids (P < 0.001) were both greater in the rumen than in the feces of calves. In summary, the ruminal and fecal microbiotas of weanling beef calves were considerably distinct. Additionally, supplementation with creep feed caused some significant changes in the composition of the gastrointestinal microbiota of the calves, especially in the rumen, where supplementation caused an increase in Firmicutes and a decrease in abundance of Fibrobacteres.
Collapse
Affiliation(s)
- Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Troy J. Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Darren S. Seidel
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States of America
| | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | | | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States of America
| | - R. Lawton Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
40
|
Yang S, Li L, Yu L, Sun L, Li K, Tong C, Xu W, Cui G, Long M, Li P. Selenium-enriched yeast reduces caecal pathological injuries and intervenes changes of the diversity of caecal microbiota caused by Ochratoxin-A in broilers. Food Chem Toxicol 2020; 137:111139. [DOI: 10.1016/j.fct.2020.111139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
|
41
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
42
|
Wacoo AP, Atukunda P, Muhoozi G, Braster M, Wagner M, van den Broek TJ, Sybesma W, Westerberg AC, Iversen PO, Kort R. Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children. Microorganisms 2020; 8:E347. [PMID: 32121365 PMCID: PMC7143030 DOI: 10.3390/microorganisms8030347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic exposure of children in sub-Saharan Africa to aflatoxins has been associated with low birth weight, stunted growth, immune suppression, and liver function damage. Lactobacillus species have been shown to reduce aflatoxin contamination during the process of food fermentation. Twenty-three Lactobacillus strains were isolated from fecal samples obtained from a cohort of rural Ugandan children at the age of 54 to 60 months, typed by 16S rRNA gene sequencing, and characterized in terms of their ability to bind aflatoxin B1 in vitro. Evidence for chronic exposure of these children to aflatoxin B1 in the study area was obtained by analysis of local foods (maize flour and peanuts), followed by the identification of the breakdown product aflatoxin M1 in their urine samples. Surprisingly, Lactobacillus in the gut microbiota of 140 children from the same cohort at 24 and 36 months showed the highest positive correlation coefficient with stunting among all bacterial genera identified in the stool samples. This correlation was interpreted to be associated with dietary changes from breastfeeding to plant-based solid foods that pose an additional risk for aflatoxin contamination, on one hand, and lead to increased intake of Lactobacillus species on the other.
Collapse
Affiliation(s)
- Alex Paul Wacoo
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (A.P.W.); (M.B.); (M.W.)
- Yoba for Life foundation, 1079 WB Amsterdam, The Netherlands;
- Department of Medical Biochemistry, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Prudence Atukunda
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (P.A.); (P.O.I.)
| | - Grace Muhoozi
- Department of Human Nutrition and Home Economics, Kyambogo University, P.O. Box 1 Kampala, Uganda;
| | - Martin Braster
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (A.P.W.); (M.B.); (M.W.)
| | - Marijke Wagner
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (A.P.W.); (M.B.); (M.W.)
| | - Tim J van den Broek
- Department of Microbiology and Systems Biology, TNO, 3704 HE Zeist, The Netherlands;
| | - Wilbert Sybesma
- Yoba for Life foundation, 1079 WB Amsterdam, The Netherlands;
| | - Ane C. Westerberg
- Institute of Health Sciences, Kristiania University College, 0107 Oslo, Norway;
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (P.A.); (P.O.I.)
- Division of Human Nutrition, Stellenbosch University, Tygerberg, 7505 Cape Town, South Africa
- Department of Hematology, Oslo University Hospital, 0318 Oslo, Norway
| | - Remco Kort
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (A.P.W.); (M.B.); (M.W.)
- Yoba for Life foundation, 1079 WB Amsterdam, The Netherlands;
- ARTIS-Micropia, 1018 CZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Jiang Y, Ogunade I, Pech-Cervantes A, Fan P, Li X, Kim D, Arriola K, Poindexter M, Jeong K, Vyas D, Adesogan A. Effect of sequestering agents based on a Saccharomyces cerevisiae fermentation product and clay on the ruminal bacterial community of lactating dairy cows challenged with dietary aflatoxin B1. J Dairy Sci 2020; 103:1431-1447. [DOI: 10.3168/jds.2019-16851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022]
|
44
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
45
|
Feng P, Xiao X, Zhou T, Li X. Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota. GUT REMEDIATION OF ENVIRONMENTAL POLLUTANTS 2020:109-143. [DOI: 10.1007/978-981-15-4759-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Kieran TJ, Arnold KMH, Thomas JC, Varian CP, Saldaña A, Calzada JE, Glenn TC, Gottdenker NL. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors 2019; 12:504. [PMID: 31665056 PMCID: PMC6821009 DOI: 10.1186/s13071-019-3761-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. Methods We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. Results We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. Conclusions We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kaylee M H Arnold
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jesse C Thomas
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nicole L Gottdenker
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
47
|
|
48
|
Ren Z, Guo C, Yu S, Zhu L, Wang Y, Hu H, Deng J. Progress in Mycotoxins Affecting Intestinal Mucosal Barrier Function. Int J Mol Sci 2019; 20:E2777. [PMID: 31174254 PMCID: PMC6600655 DOI: 10.3390/ijms20112777] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins, which are widely found in feed ingredients and human food, can exert harmful effects on animals and pose a serious threat to human health. As the first barrier against external pollutants, the intestinal mucosa is protected by a mechanical barrier, chemical barrier, immune barrier, and biological barrier. Firstly, mycotoxins can disrupt the mechanical barrier function of the intestinal mucosa, by destroying the morphology and tissue integrity of the intestinal epithelium. Secondly, mycotoxins can cause changes in the composition of mucin monosaccharides and the expression of intestinal mucin, which in turn affects mucin function. Thirdly, mycotoxins can cause damage to the intestinal mucosal immune barrier function. Finally, the microbiotas of animals closely interact with ingested mycotoxins. Based on existing research, this article reviews the effects of mycotoxins on the intestinal mucosal barrier and its mechanisms.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chaoyue Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
49
|
Lourenco JM, Callaway TR, Kieran TJ, Glenn TC, McCann JC, Stewart RL. Analysis of the Rumen Microbiota of Beef Calves Supplemented During the Suckling Phase. Front Microbiol 2019; 10:1131. [PMID: 31191476 PMCID: PMC6547912 DOI: 10.3389/fmicb.2019.01131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
A study was conducted to examine the effects of supplementing beef calves during their suckling phase (popularly known as creep feeding) with supplements that contained or did not contain the enzyme xylanase. Forty-two cow-calf pairs were divided into three groups and assigned to one of three treatments for a period of 105 days, as follows: (1) No supplemental feed for calves (control; CON); (2) Corn and soybean meal-based supplement feed for calves (positive control; PCON); and (3) Same feed regimen as PCON with xylanase added to the supplement (enzyme; ENZ). After 105 days, out of the 42 calves participating in the study, 25 male calves were randomly selected (8 from CON, 9 from PCON, and 8 from ENZ) and samples of their forestomach were collected by esophageal tubing. Immediately after this procedure, all calves were weaned, commingled, and placed in a common post-weaning diet for 4 weeks. At the end of this period, ruminal fluid was once again collected from the same 25 calves. All samples were subjected to DNA extraction and 16S rRNA gene sequencing. At weaning, most of the alpha diversity indexes were greater in CON; however, no differences (P ≥ 0.23) in alpha diversity were observed in samples collected 4 weeks after weaning. Regardless of treatment, 2 phyla - Bacteroidetes and Firmicutes - comprised approximately 80% of the total bacterial abundance of samples collected on both days. At the genus level, an effect of diet (P = 0.02) was observed for Prevotella in the samples collected at weaning; however, no differences were detected in the samples collected 4 weeks after weaning. Calf average daily gain (ADG) during the 105-day creep feeding trial tended (P = 0.09) to be greater in the groups that received supplementation, with the greatest numerical value observed in ENZ. Moreover, there was a positive correlation (ρ = 0.43; P = 0.03) between ADG and abundance of Prevotella, indicating the importance of this bacterial group for ruminants. In summary, most of the significant differences found in this study were detected at weaning, and the majority of them disappeared 4 weeks after the calves were weaned and commingled.
Collapse
Affiliation(s)
- Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Troy J. Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Joshua C. McCann
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - R. Lawton Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
50
|
Li H, Li S, Yang H, Wang Y, Wang J, Zheng N. l-Proline Alleviates Kidney Injury Caused by AFB1 and AFM1 through Regulating Excessive Apoptosis of Kidney Cells. Toxins (Basel) 2019; 11:226. [PMID: 30995739 PMCID: PMC6521284 DOI: 10.3390/toxins11040226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
The toxicity and related mechanisms of aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) in the mouse kidney were studied, and the role of l-proline in alleviating kidney damage was investigated. In a 28-day toxicity mouse model, thirty mice were divided into six groups: control (without treatment), l-proline group (10 g/kg body weight (b.w.)), AFB1 group (0.5 mg/kg b.w.), AFM1 (3.5 mg/kg b.w.), AFB1 + l-proline group and AFM1 + l-proline group. Kidney index and biochemical indicators were detected, and pathological staining was observed. Using a human embryonic kidney 293 (HEK 293) cell model, cell apoptosis rate and apoptotic proteins expressions were detected. The results showed that AFB1 and AFM1 activated pathways related with oxidative stress and caused kidney injury; l-proline significantly alleviated abnormal expressions of biochemical parameters and pathological kidney damage, as well as excessive cell apoptosis in the AF-treated models. Moreover, proline dehydrogenase (PRODH) was verified to regulate the levels of l-proline and downstream apoptotic factors (Bax, Bcl-2, and cleaved Caspase-3) compared with the control (p < 0.05). In conclusion, l-proline could protect mouse kidneys from AFB1 and AFM1 through alleviating oxidative damage and decreasing downstream apoptosis, which deserves further research and development.
Collapse
Affiliation(s)
- Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Songli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huaigu Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yizhen Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|