1
|
Li BR, Sun N, Xu MS, Sun QX, Wang HM, Zhou J, Luo X, Lv GH, Yang XD. Difference in summer heatwave-induced damage between desert native and urban greening plants in an arid desert region. PLoS One 2024; 19:e0299976. [PMID: 39642188 PMCID: PMC11623472 DOI: 10.1371/journal.pone.0299976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/02/2024] [Indexed: 12/08/2024] Open
Abstract
Summer heatwaves have caused a distinct mortality between urban greening and native plants. However, there are insufficient studies revealing the underlying mechanisms. We hypothesized that differentiation in hydraulic traits and their integration cause the varied heatwave-induced damages between the two plant types. To prove it, three desert native species and five urban greening species were selected as the experimental objects. Then, the number of damaged individuals caused by summer heatwaves were investigated based on the 100 individuals for each species. The hydraulic traits (including hydraulic transport, photosynthetic and leaf traits) of 3-5 mature individuals were measured for each species. The comparative analysis (independent sample t test and one-way ANOVA) and the collaborative analysis (Pearson correlation and network analysis) were used to reveal the differences in heatwave-induced damage, hydraulic traits and their integration between urban greening and native plants. Our results showed that the heatwave-induced damage to urban greening plants was larger than that to native species. Water potentials of leaf and branch in pre-dawn and midday, P50, leaf dry matter content, net photosynthetic rate, transpiration rate and stomatal conductance of desert native species were significantly lower than those of urban greening plants (P < 0.05), while twig specific hydraulic conductivity, Huber value, wood density, intrinsic water use efficiency and the specific leaf area showed opposite patterns (P < 0.05). Trait integration of desert native species (0.63) was much higher than greening plants (0.24). Our results indicate that artificial urban greening plants are more susceptible to drought stress caused by heatwaves than native desert species. In the context of global climate change, in order to maintain the stability and function of urban ecosystems in extreme climate, the screening of greening plants should start from the perspective of hydraulics and trait integration, and more native species with strong drought adaptability should be planted.
Collapse
Affiliation(s)
- Bo-Rui Li
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Nan Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Ming-Shan Xu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Surveying Institute of Estuary and Coast), Hangzhou, Zhejiang, China
| | - Qi-Xing Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Hui-Ming Wang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Jie Zhou
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xu Luo
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Guang-Hui Lv
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xiao-Dong Yang
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
3
|
Wei Y, Chen YJ, Siddiq Z, Zhang JL, Zhang SB, Jansen S, Cao KF. Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species. TREE PHYSIOLOGY 2023; 43:2109-2120. [PMID: 37672225 DOI: 10.1093/treephys/tpad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Collapse
Affiliation(s)
- Yang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, Yunnan, China
| | - Zafar Siddiq
- Department of Botany, Government College University, Katchery Road, Lahore 54000, Punjab, Pakistan
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Baden-Wurttemberg, Germany
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| |
Collapse
|
4
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
5
|
Ávila-Lovera E, Winter K, Goldsmith GR. Evidence for phylogenetic signal and correlated evolution in plant-water relation traits. THE NEW PHYTOLOGIST 2023; 237:392-407. [PMID: 36271615 DOI: 10.1111/nph.18565] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary relationships are likely to play a significant role in shaping plant physiological and structural traits observed in contemporary taxa. We review research on phylogenetic signal and correlated evolution in plant-water relation traits, which play important roles in allowing plants to acquire, use, and conserve water. We found more evidence for a phylogenetic signal in structural traits (e.g. stomatal length and stomatal density) than in physiological traits (e.g. stomatal conductance and water potential at turgor loss). Although water potential at turgor loss is the most-studied plant-water relation trait in an evolutionary context, it is the only trait consistently found to not have a phylogenetic signal. Correlated evolution was common among traits related to water movement efficiency and hydraulic safety in both leaves and stems. We conclude that evidence for phylogenetic signal varies depending on: the methodology used for its determination, that is, model-based approaches to determine phylogenetic signal such as Blomberg's K or Pagel's λ vs statistical approaches such as ANOVAs with taxonomic classification as a factor; on the number of taxa studied (size of the phylogeny); and the setting in which plants grow (field vs common garden). More explicitly and consistently considering the role of evolutionary relationships in shaping plant ecophysiology could improve our understanding of how traits compare among species, how traits are coordinated with one another, and how traits vary with the environment.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Panama
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|
6
|
Brown A, Butler DW, Radford‐Smith J, Dwyer JM. Changes in trait covariance along an orographic moisture gradient reveal the relative importance of light- and moisture-driven trade-offs in subtropical rainforest communities. THE NEW PHYTOLOGIST 2022; 236:839-851. [PMID: 35922934 PMCID: PMC9804723 DOI: 10.1111/nph.18418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
A range of functional trait-based approaches have been developed to investigate community assembly processes, but most ignore how traits covary within communities. We combined existing approaches - community-weighted means (CWMs) and functional dispersion (FDis) - with a metric of trait covariance to examine assembly processes in five angiosperm assemblages along a moisture gradient in Australia's subtropics. In addition to testing hypotheses about habitat filtering along the gradient, we hypothesized that trait covariance would be strongest at both ends of the moisture gradient and weakest in the middle, reflecting trade-offs associated with light capture in productive sites and moisture stress in dry sites. CWMs revealed evidence of climatic filtering, but FDis patterns were less clear. As hypothesized, trait covariance was weakest in the middle of the gradient but unexpectedly peaked at the second driest site due to the emergence of a clear drought tolerance-drought avoidance spectrum. At the driest site, the same spectrum was truncated at the 'avoider' end, revealing important information about habitat filtering in this system. Our focus on trait covariance revealed the nature and strength of trade-offs imposed by light and moisture availability, complementing insights gained about community assembly from existing trait-based approaches.
Collapse
Affiliation(s)
- Alison Brown
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Donald W. Butler
- College of LawAustralian National UniversityCanberraACT2600Australia
| | - Julian Radford‐Smith
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| | - John M. Dwyer
- School of Biological SciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|
7
|
Medina‐Vega JA, Wright SJ, Bongers F, Schnitzer SA, Sterck FJ. Vegetative phenologies of lianas and trees in two Neotropical forests with contrasting rainfall regimes. THE NEW PHYTOLOGIST 2022; 235:457-471. [PMID: 35388492 PMCID: PMC9325559 DOI: 10.1111/nph.18150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Among tropical forests, lianas are predicted to have a growth advantage over trees during seasonal drought, with substantial implications for tree and forest dynamics. We tested the hypotheses that lianas maintain higher water status than trees during seasonal drought and that lianas maximize leaf cover to match high, dry-season light conditions, while trees are more limited by moisture availability during the dry season. We monitored the seasonal dynamics of predawn and midday leaf water potentials and leaf phenology for branches of 16 liana and 16 tree species in the canopies of two lowland tropical forests with contrasting rainfall regimes in Panama. In a wet, weakly seasonal forest, lianas maintained higher water balance than trees and maximized their leaf cover during dry-season conditions, when light availability was high, while trees experienced drought stress. In a drier, strongly seasonal forest, lianas and trees displayed similar dry season reductions in leaf cover following strong decreases in soil water availability. Greater soil moisture availability and a higher capacity to maintain water status allow lianas to maintain the turgor potentials that are critical for plant growth in a wet and weakly seasonal forest but not in a dry and strongly seasonal forest.
Collapse
Affiliation(s)
- José A. Medina‐Vega
- Forest Ecology and Forest Management GroupWageningen University and Research CentreWageningen6708 PBthe Netherlands
- Smithsonian Tropical Research InstituteApartado Postal 0843‐03092BalboaAncónPanama
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePO Box 37012WashingtonDC20013USA
| | - S. Joseph Wright
- Smithsonian Tropical Research InstituteApartado Postal 0843‐03092BalboaAncónPanama
| | - Frans Bongers
- Forest Ecology and Forest Management GroupWageningen University and Research CentreWageningen6708 PBthe Netherlands
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research InstituteApartado Postal 0843‐03092BalboaAncónPanama
- Department of Biological SciencesMarquette UniversityPO Box 1881MilwaukeeWI53201USA
| | - Frank J. Sterck
- Forest Ecology and Forest Management GroupWageningen University and Research CentreWageningen6708 PBthe Netherlands
| |
Collapse
|
8
|
Fajardo A, Piper FI, García‐Cervigón AI. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Frida I. Piper
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Ana I. García‐Cervigón
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, c/Tulipán s/n Móstoles 28933 Spain
| |
Collapse
|
9
|
Santiago LS. Stem functional traits, not just morphology, explain differentiation along the liana-tree continuum. TREE PHYSIOLOGY 2021; 41:1989-1991. [PMID: 34505149 DOI: 10.1093/treephys/tpab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| |
Collapse
|
10
|
Xiao Y, Song Y, Wu FC, Zhang SB, Zhang JL. Divergence of stem biomechanics and hydraulics between Bauhinia lianas and trees. AOB PLANTS 2021; 13:plab016. [PMID: 34007437 PMCID: PMC8114228 DOI: 10.1093/aobpla/plab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Liana abundance and biomass are increasing in neotropical and Asian tropical seasonal forests over the past decades. Stem mechanical properties and hydraulic traits influence the growth and survival of plants, yet the differences in stem mechanical and hydraulic performance between congeneric lianas and trees remain poorly understood. Here, we measured 11 stem mechanical and hydraulic traits for 10 liana species and 10 tree species from Bauhinia grown in a tropical common garden. Our results showed that Bauhinia lianas possessed lower stem mechanical strength as indicated by both modulus of elasticity and modulus of rupture, and higher stem potential hydraulic conductivity than congeneric trees. Such divergence was mainly attributed to the differentiation in liana and tree life forms. Whether the phylogenetic effect was considered or not, mechanical strength was positively correlated with wood density, vessel conduit wall reinforcement and sapwood content across species. Results of principle component analysis showed that traits related to mechanical safety and hydraulic efficiency were loaded in the opposite direction, suggesting a trade-off between biomechanics and hydraulics. Our results provide evidence for obvious differentiation in mechanical demand and hydraulic efficiency between congeneric lianas and trees.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Fu-Chuan Wu
- Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
11
|
Kunert N, Zailaa J, Herrmann V, Muller‐Landau HC, Wright SJ, Pérez R, McMahon SM, Condit RC, Hubbell SP, Sack L, Davies SJ, Anderson‐Teixeira KJ. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. THE NEW PHYTOLOGIST 2021; 230:485-496. [PMID: 33449384 PMCID: PMC8048579 DOI: 10.1111/nph.17187] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The effects of climate change on tropical forests will depend on how diverse tropical tree species respond to drought. Current distributions of evergreen and deciduous tree species across local and regional moisture gradients reflect their ability to tolerate drought stress, and might be explained by functional traits. We measured leaf water potential at turgor loss (i.e. 'wilting point'; πtlp ), wood density (WD) and leaf mass per area (LMA) on 50 of the most abundant tree species in central Panama. We then tested their ability to explain distributions of evergreen and deciduous species within a 50 ha plot on Barro Colorado Island and across a 70 km rainfall gradient spanning the Isthmus of Panama. Among evergreen trees, species with lower πtlp were associated with drier habitats, with πtlp explaining 28% and 32% of habitat association on local and regional scales, respectively, greatly exceeding the predictive power of WD and LMA. In contrast, πtlp did not predict habitat associations among deciduous species. Across spatial scales, πtlp is a useful indicator of habitat preference for tropical tree species that retain their leaves during periods of water stress, and holds the potential to predict vegetation responses to climate change.
Collapse
Affiliation(s)
- Norbert Kunert
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesGregor‐Mendel Str. 33ViennaA‐1190Austria
| | - Joseph Zailaa
- Department of Ecology and EvolutionUniversity of California Los Angeles621 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Valentine Herrmann
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
| | | | - S. Joseph Wright
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Rolando Pérez
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Sean M. McMahon
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Smithsonian Environmental Research CenterEdgewaterMD21307USA
| | - Richard C. Condit
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Steven P. Hubbell
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Lawren Sack
- Department of Ecology and EvolutionUniversity of California Los Angeles621 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Stuart J. Davies
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePO Box 37012WashingtonDC20013USA
| | - Kristina J. Anderson‐Teixeira
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
12
|
Liang X, Ye Q, Liu H, Brodribb TJ. Wood density predicts mortality threshold for diverse trees. THE NEW PHYTOLOGIST 2021; 229:3053-3057. [PMID: 33251581 DOI: 10.1111/nph.17117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 05/16/2023]
Affiliation(s)
- Xingyun Liang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Rd., Nansha District, Guangzhou, 511458, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, TAS, Private Bag 55, Hobart, 7001, Australia
| |
Collapse
|
13
|
Can Functional Traits Explain Plant Coexistence? A Case Study with Tropical Lianas and Trees. DIVERSITY 2020. [DOI: 10.3390/d12100397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organisms are adapted to their environment through a suite of anatomical, morphological, and physiological traits. These functional traits are commonly thought to determine an organism’s tolerance to environmental conditions. However, the differences in functional traits among co-occurring species, and whether trait differences mediate competition and coexistence is still poorly understood. Here we review studies comparing functional traits in two co-occurring tropical woody plant guilds, lianas and trees, to understand whether competing plant guilds differ in functional traits and how these differences may help to explain tropical woody plant coexistence. We examined 36 separate studies that compared a total of 140 different functional traits of co-occurring lianas and trees. We conducted a meta-analysis for ten of these functional traits, those that were present in at least five studies. We found that the mean trait value between lianas and trees differed significantly in four of the ten functional traits. Lianas differed from trees mainly in functional traits related to a faster resource acquisition life history strategy. However, the lack of difference in the remaining six functional traits indicates that lianas are not restricted to the fast end of the plant life–history continuum. Differences in functional traits between lianas and trees suggest these plant guilds may coexist in tropical forests by specializing in different life–history strategies, but there is still a significant overlap in the life–history strategies between these two competing guilds.
Collapse
|