1
|
Chin ARO, Gessler A, Laín O, Østerlund I, Schaub M, Théroux-Rancourt G, Voggeneder K, Lambers JHR. The memory of past water abundance shapes trees 7 years later. AMERICAN JOURNAL OF BOTANY 2025; 112:e16452. [PMID: 39716401 DOI: 10.1002/ajb2.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/25/2024]
Abstract
PREMISE Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown. METHODS In an 18-year forest irrigation experiment, we explored the lasting structural impact of past water richness on leaves and twigs of Pinus sylvestris using synchrotron-based X-ray microscopy. We compared 47 anatomical traits among never-irrigated control trees, trees irrigated for 18 years, and formerly irrigated trees, 7 years after their return to control-level water availability in this naturally dry forest. RESULTS We found that legacy effects induced by a period of experimental irrigation continue to shape the structure of new leaves and twigs long after a sharp decrease in water availability. Legacy effects shaping twigs were present but dissipating, while leaf traits displayed long-lasting effects on structural strategy, with extreme values for traits associated with high water stress and low productivity. CONCLUSIONS Mature trees acclimating to an increasingly dry world may be at a disadvantage compared to young trees that have known only chronic drought. However, these young trees may be capable of thriving in sites of drought-related forest decline especially if planted while larger individuals are still present to support tree establishment. Without a legacy of past water abundance, trees in future forests may be better equipped to cope with our rapidly changing climate.
Collapse
Affiliation(s)
- Alana R O Chin
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
- ETH-Zürich, Institute for Terrestrial Ecology, Zürich, Switzerland
| | - Omar Laín
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
| | - Isabella Østerlund
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Guillaume Théroux-Rancourt
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Klara Voggeneder
- ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Rodman KC, Bradford JB, Formanack AM, Fulé PZ, Huffman DW, Kolb TE, Miller‐ter Kuile AT, Normandin DP, Ogle K, Pedersen RJ, Schlaepfer DR, Stoddard MT, Waltz AEM. Restoration treatments enhance tree growth and alter climatic constraints during extreme drought. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3072. [PMID: 39627996 PMCID: PMC11726003 DOI: 10.1002/eap.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 01/14/2025]
Abstract
The frequency and severity of drought events are predicted to increase due to anthropogenic climate change, with cascading effects across forested ecosystems. Management activities such as forest thinning and prescribed burning, which are often intended to mitigate fire hazard and restore ecosystem processes, may also help promote tree resistance to drought. However, it is unclear whether these treatments remain effective during the most severe drought conditions or whether their impacts differ across environmental gradients. We used tree-ring data from a system of replicated, long-term (>20 years) experiments in the southwestern United States to evaluate the effects of forest restoration treatments (i.e., evidence-based thinning and burning) on annual growth rates (i.e., basal area increment; BAI) of ponderosa pine (Pinus ponderosa), a broadly distributed and heavily managed species in western North America. The study sites were established at the onset of the most extreme drought event in at least 1200 years and span much of the climatic niche of Rocky Mountain ponderosa pine. Across sites, tree-level BAI increased due to treatment, where trees in treated units grew 133.1% faster than trees in paired, untreated units. Likewise, trees in treated units grew an average of 85.6% faster than their pre-treatment baseline levels (1985 to ca. 2000), despite warm, dry conditions in the post-treatment period (ca. 2000-2018). Variation in the local competitive environment promoted variation in BAI, and larger trees were the fastest-growing individuals, irrespective of treatment. Tree thinning and prescribed fire altered the climatic constraints on growth, decreasing the effects of belowground moisture availability and increasing the effects of atmospheric evaporative demand over multi-year timescales. Our results illustrate that restoration treatments can enhance tree-level growth across sites spanning ponderosa pine's climatic niche, even during recent, extreme drought events. However, shifting climatic constraints, combined with predicted increases in evaporative demand in the southwestern United States, suggest that the beneficial effects of such treatments on tree growth may wane over the upcoming decades.
Collapse
Affiliation(s)
- Kyle C. Rodman
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - John B. Bradford
- US Geological Survey, Northwest Climate Adaptation Science CenterSeattleWashingtonUSA
- US Geological Survey, Southwest Biological Science CenterFlagstaffArizonaUSA
| | - Alicia M. Formanack
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Peter Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - David W. Huffman
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas E. Kolb
- School of ForestryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Ana T. Miller‐ter Kuile
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
- USDA Forest Service, Rocky Mountain Research StationFlagstaffArizonaUSA
| | - Donald P. Normandin
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rory J. Pedersen
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Daniel R. Schlaepfer
- US Geological Survey, Southwest Biological Science CenterFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Michael T. Stoddard
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Amy E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Peltier DMP, Nguyen P, Ebert C, Koch GW, Schuur EAG, Ogle K. Moisture stress limits radial mixing of non-structural carbohydrates in sapwood of trembling aspen. TREE PHYSIOLOGY 2024; 44:204-216. [PMID: 37387246 DOI: 10.1093/treephys/tpad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Dynamics in non-structural carbohydrate (NSC) pools may underlie observed drought legacies in tree growth. We assessed how aridity influences the dynamics of different-aged NSC pools in tree sapwood at two sites with differing climate conditions ('wet' vs 'dry'), which also experienced widespread regional drought 5 years earlier. We used an incubation method to measure the radiocarbon (Δ14C) in CO2 respired from Populus tremuloides Michx. (aspen) tree rings to evaluate NSC storage and mixing patterns, coupled with measurements of NSC (soluble sugars and starch) concentrations and respired δ13C-CO2. At a wet site, CO2 respired from rings formed during 1962-67 was only ~11 years old, suggesting deep sapwood mixing of NSCs as starch. At a dry site, the total NSC was about one-third of wet-site totals, maximum ages in deep rings were lower and ages more rapidly increased in shallow rings and then plateaued. These results suggest historically shallower mixing and/or relatively higher consumption of NSCs under dry conditions. Both sites, however, had similar aged NSC (<1 year) in the most recent six rings, indicative of deep radial mixing following relatively wet conditions during the sampling year. We suggest that the significant differences in NSC mixing among sites are driven by moisture stress, where aridity reduces NSC reserves and restricts the depth of radial mixing. However, dynamic climate conditions in the south-western USA resulted in more complex radial patterns of sapwood NSC age than previously described. We suggest a novel conceptual framework to understand how moisture variability might influence the dynamics of NSC mixing in the sapwood.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - Phiyen Nguyen
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Chris Ebert
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
| | - George W Koch
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, AZ 86011, USA
| |
Collapse
|
4
|
Laoué J, Havaux M, Ksas B, Orts JP, Reiter IM, Fernandez C, Ormeno E. A decade of rain exclusion in a Mediterranean forest reveals trade-offs of leaf chemical defenses and drought legacy effects. Sci Rep 2024; 14:24119. [PMID: 39406765 PMCID: PMC11480208 DOI: 10.1038/s41598-024-71417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd. to future Mediterranean drought using a long-term drought experiment in natura where trees have been submitted to amplified drought (~ -30% annual precipitation) since April 2012. We focused on leaf metabolites including chlorophylls and carotenoids (central metabolism) and flavonols (specialized metabolism). Measurements were performed in summer from 2016 to 2022. Amplified drought led to higher concentrations of total photosynthetic pigments over the 2016-2022 period. However, it also led to lower AZ/VAZ and flavonol concentrations. Additionally, chemical defenses of Q. pubescens responded to previous precipitation where low precipitation 1 year and/or 2 years preceding sampling was associated to low concentrations of VAZ, flavonol and high neoxanthin concentrations. Our study indicates that the decline of flavonol concentration under long-term drought is counterbalanced by a higher production of several central metabolites. Such results are potentially due to an adjustment in tree metabolism, highlighting the importance of performing long-term experimental studies in natura for assessing drought legacy effects and thus forest adaptation to climate change.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Jean-Philippe Orts
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | - Elena Ormeno
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| |
Collapse
|
5
|
Thompson RA. A neutral theory of plant carbon allocation. TREE PHYSIOLOGY 2024; 44:tpad151. [PMID: 38102767 DOI: 10.1093/treephys/tpad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
How plants use the carbon they gain from photosynthesis remains a key area of study among plant ecologists. Although numerous theories have been presented throughout the years, the field lacks a clear null model. To fill this gap, I have developed the first null model, or neutral theory, of plant carbon allocation using probability theory, plant biochemistry and graph theory at the level of a leaf. Neutral theories have been used to establish a null hypothesis in molecular evolution and community assembly to describe how much of an ecological phenomenon can be described by chance alone. Here, the aim of a neutral theory of plant carbon allocation is to ask: how is carbon partitioned between sinks if one assumes plants do not prioritize certain sinks over others? Using the biochemical network of plant carbon metabolism, I show that, if allocation was strictly random, carbon is more likely to be allocated to storage, defense, respiration and finally growth. This 'neutral hierarchy' suggests that a sink's biochemical distance from photosynthesis plays an important role in carbon allocation patterns, highlighting the potentially adaptive role of this biochemical network for plant survival in variable environments. A brief simulation underscores that our ability to measure the carbon allocation from photosynthesis to a given sink is unreliable due to simple probabilistic rules. While neutral theory may not explain all patterns of carbon allocation, its utility is in the minimal assumptions and role as a null model against which future data should be tested.
Collapse
Affiliation(s)
- R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Blonder BW, Brodrick PG, Chadwick KD, Carroll E, Cruz-de Hoyos RM, Expósito-Alonso M, Hateley S, Moon M, Ray CA, Tran H, Walton JA. Climate lags and genetics determine phenology in quaking aspen (Populus tremuloides). THE NEW PHYTOLOGIST 2023; 238:2313-2328. [PMID: 36856334 DOI: 10.1111/nph.18850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/19/2023] [Indexed: 05/19/2023]
Abstract
Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.
Collapse
Affiliation(s)
- Benjamin W Blonder
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Philip G Brodrick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - K Dana Chadwick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Erin Carroll
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Roxanne M Cruz-de Hoyos
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | | | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Minkyu Moon
- Department of Earth & Environment, Boston University, Boston, MA, 02215, USA
| | - Courtenay A Ray
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Hoang Tran
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08540, USA
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James A Walton
- Molecular Ecology Laboratory, Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
7
|
Long RW, Adams HD. The osmotic balancing act: When sugars matter for more than metabolism in woody plants. GLOBAL CHANGE BIOLOGY 2023; 29:1684-1687. [PMID: 36545769 DOI: 10.1111/gcb.16572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Sugars and other non-structural carbohydrates are known to serve as currency in plants, to either fuel metabolic activities or as storage for later use. They can also serve non-metabolic purposes of osmoregulation and cryoprotection, especially in perennial woody plants.
Collapse
Affiliation(s)
- Randall W Long
- Biology Department, Lewis and Clark College, Portland, Oregon, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Thomas FM, Schunck L, Zisakos A. Legacy Effects in Buds and Leaves of European Beech Saplings ( Fagus sylvatica) after Severe Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:568. [PMID: 36771652 PMCID: PMC9920899 DOI: 10.3390/plants12030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Against the background of climate change, we studied the effects of a severe summer drought on buds of European beech (Fagus sylvatica L.) saplings and on leaves formed during the subsequent spring in trees attributed to different drought-damage classes. For the first time, we combined assessments of the vitality (assessed through histochemical staining), mass and stable carbon isotope ratios (δ13C) of buds from drought-stressed woody plants with morphological and physiological variables of leaves that have emerged from the same plants and crown parts. The number, individual mass and vitality of the buds decreased and δ13C increased with increasing drought-induced damage. Bud mass, vitality and δ13C were significantly intercorrelated. The δ13C of the buds was imprinted on the leaves formed in the subsequent spring, but individual leaf mass, leaf size and specific leaf area were not significantly different among damage classes. Vitality and δ13C of the buds are suitable indicators of the extent of preceding drought impact. Bud vitality may be used as a simple means of screening saplings for the flushing capability in the subsequent spring. European beech saplings are susceptible, but-due to interindividual differences-are resilient, to a certain extent, to a singular severe drought stress.
Collapse
|
9
|
Mu Y, Lyu L, Li Y, Fang O. Tree-ring evidence of ecological stress memory. Proc Biol Sci 2022; 289:20221850. [PMID: 36285497 PMCID: PMC9597412 DOI: 10.1098/rspb.2022.1850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/05/2022] [Indexed: 10/21/2023] Open
Abstract
Plants experiencing stress could develop the ability to reshape their response toward present stress based on past stress experience, called 'ecological stress memory' (ESM), which is important for plant acclimation to repeated stresses. Although ESM has been largely reported, it remains unclear whether ESM could improve tree resistance to recurrent stress in subsequent decades. Here, we explore it from a tree-ring network of 1491 trees from 50 long-living juniper forests on the Tibetan Plateau. Through comparing performances of tree radial growth in past sequential growth stresses, we found that trees could obtain ESM under antecedent stresses and elevate resistance to subsequent stress after several years or even decades. Such positive effects of ESM are associated with post-stress recovery. Trees with slow recovery trajectories after antecedent stress show significantly improved resistance to subsequent stress, while trees with extremely fast post-stress recovery showed decreased resistance to subsequent stress. These results imply that temporary depressive tree radial growth after antecedent stress might be a trigger of long storage of ESM. Incorporating positive effects of ESM and relationship between ESM activation and post-stress recovery into future Earth system models could advance our capacity to predict forest dynamics and forest ecosystem stabilization under future stress conditions.
Collapse
Affiliation(s)
- Yumei Mu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Lixin Lyu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ouya Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|
10
|
Peltier DMP, Anderegg WRL, Guo JS, Ogle K. Contemporary tree growth shows altered climate memory. Ecol Lett 2022; 25:2663-2674. [PMID: 36257775 DOI: 10.1111/ele.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Trees are long-lived organisms, exhibiting temporally complex growth arising from strong climatic "memory." But conditions are becoming increasingly arid in the western USA. Using a century-long tree-ring network, we find altered climate memory across the entire range of a widespread western US conifer: growth is supported by precipitation falling further into the past (+15 months), while increasingly impacted by more recent temperature conditions (-8 months). Tree-ring datasets can be biased, so we confirm altered climate memory in a second, ecologically-sampled tree-ring network. Predicted drought responses show trees may have also become more sensitive to repeat drought. Finally, plots near sites with relatively longer precipitation memory and shorter temperature memory had significantly lower recent mortality rates (R2 = 0.61). We argue that increased drought frequency has altered climate memory, demonstrate how non-stationarity may arise from failure to account for memory, and suggest memory length may be predictive of future tree mortality.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Jessica S Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA.,School of Informatics, Computing, and Cyber-Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
11
|
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu M, Yang J. Predicting resilience through the lens of competing adjustments to vegetation function. PLANT, CELL & ENVIRONMENT 2022; 45:2744-2761. [PMID: 35686437 DOI: 10.1111/pce.14376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco-evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2 ] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2 ]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short-lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.
Collapse
Affiliation(s)
- Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andy J Pitman
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Teresa E Gimeno
- CREAF, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Agnieszka Wujeska-Klause
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Urban Studies, School of Social Sciences, Penrith, New South Wales, Australia
| | - Mengyuan Mu
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jinyan Yang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
12
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|