1
|
Hurtado P, Espelta JM, Jaime L, Martínez‐Vilalta J, Kokolaki MS, Lindner M, Lloret F. Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience. GLOBAL CHANGE BIOLOGY 2025; 31:e70196. [PMID: 40351244 PMCID: PMC12067180 DOI: 10.1111/gcb.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/14/2025]
Abstract
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
Collapse
Affiliation(s)
- Pilar Hurtado
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- DIFARUniversity of GenoaGenoaItaly
- Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMadridSpain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Luciana Jaime
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Manto Samou Kokolaki
- Department of Natural Resources Development and Agricultural EngineeringAgricultural University of AthensAthensGreece
| | | | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
2
|
Rungwattana K, Kasemsap P, Phumichai T, Rattanawong R, Hietz P. Testing intra-species variation in allocation to growth and defense in rubber tree ( Hevea brasiliensis). PeerJ 2024; 12:e17877. [PMID: 39131614 PMCID: PMC11317040 DOI: 10.7717/peerj.17877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.
Collapse
Affiliation(s)
- Kanin Rungwattana
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Poonpipope Kasemsap
- Hevea Research Platform in Partnership, DORAS Center, Kasetsart University, Bangkok, Thailand
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | | | - Peter Hietz
- Institute of Botany, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
3
|
Kormann JM, van der Maaten E, Liesebach M, Liepe KJ, van der Maaten-Theunissen M. High risk, high gain? Trade-offs between growth and resistance to extreme events differ in northern red oak ( Quercus rubra L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1374498. [PMID: 38645393 PMCID: PMC11026572 DOI: 10.3389/fpls.2024.1374498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Information about the resistance and adaptive potential of tree species and provenances is needed to select suitable planting material in times of rapidly changing climate conditions. In this study, we evaluate growth responses to climatic fluctuations and extreme events for 12 provenances of northern red oak (Quercus rubra L.) that were tested across three trial sites with distinct environmental conditions in Germany. Six provenances each were sourced from the natural distribution in North America and from introduced stands in Germany. We collected increment cores of 16 trees per provenance and site. Dendroecological methods were used to compare provenance performance and establish climate-growth relationships to identify the main growth limiting factors. To evaluate the provenance response to extreme drought and frost events, three site-specific drought years were selected according to the Standardized Precipitation Evapotranspiration Index (SPEI) and 2010 as a year with an extreme late frost event. Resistance indices for these years were calculated and assessed in relation to overall growth performance. We observed a high variation in growth and in the climate sensitivity between sites depending on the prevailing climatic conditions, as well as a high intra-specific variation. Overall, summer drought and low temperatures in the early growing season appear to constrain the growth of red oak. The resistance of provenances within sites and extreme years showed considerable rank changes and interaction effects. We did not find a trade-off between growth and resistance to late frost, namely, fast growing provenances had a high frost hardiness. Further, there was no evidence for a trade-off between growth and drought hardiness. Still, responses to drought or late frost differ between provenances, pointing to dissimilar adaptive strategies. Provenances from introduced (i.e. German) stands represent suitable seed sources, as they combine a higher growth and frost hardiness compared to their North American counterparts. Drought hardiness was slightly higher in the slow-growing provenances. The results provide a better understanding of the variable adaptive strategies between provenances and help to select suitable planting material for adaptive forest management.
Collapse
Affiliation(s)
- Jonathan M. Kormann
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | | | - Katharina J. Liepe
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | |
Collapse
|
4
|
Sasani N, Pâques LE, Boulanger G, Singh AP, Gierlinger N, Rosner S, Brendel O. Physiological and anatomical responses to drought stress differ between two larch species and their hybrid. TREES (BERLIN, GERMANY : WEST) 2021; 35:1467-1484. [PMID: 34720435 PMCID: PMC8550302 DOI: 10.1007/s00468-021-02129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Hybrid saplings were more reactive to soil water deficit than Japanese and European larch. European larch had hydraulically safer wood and anisohydric behavior, Japanese and hybrid larch showed isohydric strategy. ABSTRACT Deciduous larch species could be an alternative to evergreen conifers in reforestation, but little is known about drought sensitivity of their saplings. The effect of an experimental drought on hydraulics and quantitative wood anatomy was tested on saplings of European larch (EL, Larix decidua), Japanese larch (JL, Larix kaempferi) and their hybrid (HL). Across species, biomass, transpiration rate and relative water content were higher in controls than in drought stressed trees, but transpiration efficiency was lower. JL had the highest transpiration efficiency under drought, and EL the lowest, coinciding with slower growth of EL. Wood of EL formed before drought was hydraulically safer as shown by higher wall/lumen ratio and lower pit cavity area. EL neither had a significant increase in transpiration efficiency nor a reduction in transpiration rate under drought, suggesting that the stomata remained open under soil water deficit. HL saplings were the most reactive to water shortage, indicated by intra-annual density fluctuations and a decrease in relative water content of the sapwood. Significant reduction in transpiration by HL suggested a higher stomatal sensitivity, while the same leaf surface area was maintained and radial growth was still similar to its best parent, the JL. The latter showed a significantly lower leaf surface area under drought than controls. EL, with its hydraulically safer wood, followed an anisohydric behavior, while JL and HL revealed an isohydric strategy. Altogether, our results suggest species dependent acclimations to drought stress, whereby HL followed the strategy of JL rather than that of EL. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00468-021-02129-4.
Collapse
Affiliation(s)
- Nadia Sasani
- Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Guillaume Boulanger
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Adya P. Singh
- Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sabine Rosner
- Institute of Botany, University of Natural Resources and Life Sciences, Gregor Mendel Strasse 33, 1180 Vienna, Austria
| | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| |
Collapse
|
5
|
Schueler S, George JP, Karanitsch-Ackerl S, Mayer K, Klumpp RT, Grabner M. Evolvability of Drought Response in Four Native and Non-native Conifers: Opportunities for Forest and Genetic Resource Management in Europe. FRONTIERS IN PLANT SCIENCE 2021; 12:648312. [PMID: 34305960 PMCID: PMC8295755 DOI: 10.3389/fpls.2021.648312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/07/2021] [Indexed: 05/05/2023]
Abstract
Intraspecific genetic variation in drought response is expected to play an important role in determining the persistence of tree populations in global change as it (1) allows for spontaneous selection and local adaptation of tree populations, (2) supports assisted seed transfer of less-drought-sensitive provenance, and (3) enables the integration of drought-sensitivity traits into tree breeding. Estimating the potential of such adaptation options requires quantitative genetic knowledge of drought sensitivity across significant parts of species distributions and a comparative assessment of genetic variation within economically and ecologically important tree species. We quantified genetic variation within and among populations of four conifers growing within common garden experiments in the drought-prone eastern Austria. This region experienced three strong drought periods between 1980 and 2010 that resulted in significant reductions in radial growth. Among the four tested species, Douglas-fir revealed the highest resistance during drought and silver fir the best recovery after drought, while European larch and Norway spruce showed the lowest resistance. High genetic variation among populations and phenotypic stability across all three drought events was found for Norway spruce and silver fir, but not for the other species. Heritability and evolvability of drought traits, both approximated via genetic repeatability, revealed strong differences among populations of all four species. Repeatability and evolvability for resistance were highest in Norway spruce and, for recovery, highest in European larch. Our comparison indicates that the mean drought sensitivity of a species is not related to the intraspecific genetic variation in drought response. Thus, also highly drought-sensitive species, such as Norway spruce and European larch, harbor significant genetic variation in drought response within and among populations to justify targeted tree breeding, assisted gene flow, and supportive forest management to foster local adaptations to future conditions.
Collapse
Affiliation(s)
- Silvio Schueler
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests BFW, Vienna, Austria
- *Correspondence: Silvio Schueler
| | - Jan-Peter George
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests BFW, Vienna, Austria
| | - Sandra Karanitsch-Ackerl
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln an der Donau, Austria
| | - Konrad Mayer
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln an der Donau, Austria
| | - Raphael Thomas Klumpp
- Department of Forest- and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Michael Grabner
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
6
|
Depardieu C, Girardin MP, Nadeau S, Lenz P, Bousquet J, Isabel N. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. THE NEW PHYTOLOGIST 2020; 227:427-439. [PMID: 32173867 PMCID: PMC7317761 DOI: 10.1111/nph.16551] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/29/2020] [Indexed: 05/03/2023]
Abstract
Drought intensity and frequency are increasing under global warming, with soil water availability now being a major factor limiting tree growth in circumboreal forests. Still, the adaptive capacity of trees in the face of future climatic regimes remains poorly documented. Using 1481 annually resolved tree-ring series from 29-yr-old trees, we evaluated the drought sensitivity of 43 white spruce (Picea glauca (Moench) Voss) populations established in a common garden experiment. We show that genetic variation among populations in response to drought plays a significant role in growth resilience. Local genetic adaptation allowed populations from drier geographical origins to grow better, as indicated by higher resilience to extreme drought events, compared with populations from more humid geographical origins. The substantial genetic variation found for growth resilience highlights the possibility of selecting for drought resilience in boreal conifers. As a major research outcome, we showed that adaptive genetic variation in response to changing local conditions can shape drought vulnerability at the intraspecific level. Our findings have wide implications for forest ecosystem management and conservation.
Collapse
Affiliation(s)
- Claire Depardieu
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055, rue du PEPS, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| |
Collapse
|
7
|
Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R, Winkel G, Muys B. Reviewing the Use of Resilience Concepts in Forest Sciences. CURRENT FORESTRY REPORTS 2020; 6:61-80. [PMID: 35747899 PMCID: PMC7612878 DOI: 10.1007/s40725-020-00110-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesizing how resilience is defined and assessed. RECENT FINDINGS Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socioeconomic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. SUMMARY Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context.
Collapse
Affiliation(s)
- L. Nikinmaa
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| | - M. Lindner
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - E. Cantarello
- Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK
| | - A. S. Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - R. Seidl
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences in Vienna, Peter Jordan Str. 82, 1190 Vienna, Austria
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - G. Winkel
- European Forest Institute, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - B. Muys
- Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E, Box 2411, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Lstibůrek M, Schueler S, El-Kassaby YA, Hodge GR, Stejskal J, Korecký J, Škorpík P, Konrad H, Geburek T. In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction. Front Genet 2020; 11:28. [PMID: 32117444 PMCID: PMC7031344 DOI: 10.3389/fgene.2020.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/08/2020] [Indexed: 12/04/2022] Open
Abstract
Sustainable and efficient forestry in a rapidly changing climate is a daunting task. The sessile nature of trees makes adaptation to climate change challenging; thereby, ecological services and economic potential are under risk. Current long-term and costly gene resources management practices have been primarily directed at a few economically important species and are confined to defined ecological boundaries. Here, we present a novel in situ gene-resource management approach that conserves forest biodiversity and improves productivity and adaptation through utilizing basic forest regeneration installations located across a wide range of environments without reliance on structured tree breeding/conservation methods. We utilized 4,267 25- to 35-year-old European larch trees growing in 21 reforestation installations across four distinct climatic regions in Austria. With the aid of marker-based pedigree reconstruction, we applied multi-trait, multi-site quantitative genetic analyses that enabled the identification of broadly adapted and productive individuals. Height and wood density, proxies to fitness and productivity, yielded in situ heritability estimates of 0.23 ± 0.07 and 0.30 ± 0.07, values similar to those from traditional “structured” pedigrees methods. In addition, individual trees selected with this approach are expected to yield genetic response of 1.1 and 0.7 standard deviations for fitness and productivity attributes, respectively, and be broadly adapted to a range of climatic conditions. Genetic evaluation across broad climatic gradients permitted the delineation of suitable reforestation areas under current and future climates. This simple and resource-efficient management of gene resources is applicable to most tree species.
Collapse
Affiliation(s)
- Milan Lstibůrek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czechia
| | - Silvio Schueler
- Department of Forest Growth and Silviculture, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Wien, Austria
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Gary R Hodge
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jan Stejskal
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czechia
| | - Jičí Korecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czechia
| | - Petr Škorpík
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Wien, Austria
| | - Heino Konrad
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Wien, Austria
| | - Thomas Geburek
- Department of Forest Genetics, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Wien, Austria
| |
Collapse
|
9
|
The Effect of Insect Defoliations and Seed Production on the Dynamics of Radial Growth Synchrony among Scots Pine Pinus sylvestris L. Provenances. FORESTS 2019. [DOI: 10.3390/f10100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intraspecific variation of climate–growth relationships observed on provenance trials results from among–provenance differences in phenotypic plasticity. Temporal variation in radial growth synchrony among provenances may be modified by adverse climatic/biotic conditions such as drought or insect defoliation. However, these factors can potentially diminish provenance–specific growth reactions and, consequently, prevent the identification of provenances with the highest adaptive potential. Thus, understanding the influence of major biotic conditions on provenance–specific climate–growth relationships seems to be important to anticipate climate change. To determine provenance–specific growth patterns in relation to climate conditions (drought), seed production (reproductive effort), and insect defoliation in a common garden of Scots pine (Pinus sylvestris L.), we applied dendroecological techniques to time–series of tree–ring widths and basal area increments. The long–term records of seed production and insect outbreaks from the local Scots pine stands were used to explain the potential effect of biotic factors on the temporal dynamics of radial growth synchrony. During a period of favorable growth conditions, Scots pine provenances showed a decline in inter–provenance synchronicity in growth patterns, while during years affected by severe soil water deficit and insect defoliation, they manifested high uniformity in growth dynamics. The long–term trend in growth synchrony among P. sylvestris provenances depend on both abiotic and biotic environmental factors. This gains significance following an introduction of the appropriate selection of tree provenances for climate–smart forestry.
Collapse
|
10
|
Sang Z, Sebastian‐Azcona J, Hamann A, Menzel A, Hacke U. Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range. Evol Appl 2019; 12:1850-1860. [PMID: 31548862 PMCID: PMC6752154 DOI: 10.1111/eva.12845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
A cost-effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This is meant to match locally adapted populations with anticipated environments, but adaptive traits do not always show population differences suitable to mitigate climate change impacts. For white spruce, drought tolerance is a critical adaptive trait to prevent mortality and productivity losses. Here, we use a 40-year-old provenance experiment that has been exposed to severe drought periods in 1999 and 2002 to retrospectively investigate drought response and the adaptive capacity of white spruce populations across their boreal range. Relying on dendrochronological analysis under experimentally controlled environments, we evaluate population differences in resistance, resilience, and recovery to these extreme events. Results showed evidence for population differentiation in resistance and recovery parameters, but provenances conformed to approximately the same growth rates under drought conditions and had similar resilience metrics. The lack of populations with better growth rates under drought conditions is contrary to expectations for a wide-ranging species with distinct regional climates. Populations from the wettest environments in the northeastern boreal were surprisingly drought-tolerant, suggesting that these populations would readily resist water deficits projected for the 2080s, and supporting the view that northeastern Canada will provide a refugium for boreal species under climate change. The findings also suggest that white spruce is sensitive to growth reductions under climate change in the western boreal. The study highlights that population differentiation in adaptive capacity is species- and trait-specific, and we provide a counterexample for drought tolerance traits, where assisted migration prescriptions may be ineffective to mitigate climate change impacts. For resource managers and policy makers, we provide maps where planning for widespread declines of boreal white spruce forests may be unavoidable.
Collapse
Affiliation(s)
- Zihaohan Sang
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| | | | - Andreas Hamann
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| | - Annette Menzel
- Department of Ecology and Ecosystem ManagementTechnical University of MunichFreisingGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| | - Uwe Hacke
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
11
|
Whipple AV, Cobb NS, Gehring CA, Mopper S, Flores-Rentería L, Whitham TG. Long-Term Studies Reveal Differential Responses to Climate Change for Trees Under Soil- or Herbivore-Related Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:132. [PMID: 30833952 PMCID: PMC6387935 DOI: 10.3389/fpls.2019.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Worldwide, trees are confronting increased temperature and aridity, exacerbating susceptibility to herbivory. Long-term studies comparing patterns of plant performance through drought can help identify variation among and within populations in vulnerability to climate change and herbivory. We use long-term monitoring data to examine our overarching hypothesis that the negative impacts of poor soil and herbivore susceptibility would be compounded by severe drought. We studied pinyon pine, Pinus edulis, a widespread southwestern tree species that has suffered extensive climate-change related mortality. We analyzed data on mortality, growth, male reproduction, and herbivory collected for 14-32 years in three areas with distinct soil-types. We used standardized precipitation-evapotranspiration index (SPEI) as a climate proxy that summarizes the impacts of drought due to precipitation and temperature variation on semi-arid forests. Several key findings emerged: (1) Plant performance measurements did not support our hypothesis that trees growing in stressful, coarse-textured soils would suffer more than trees growing in finer-textured soils. Stem growth at the area with coarse, young cinder soils (area one) responded only weakly to drought, while stem growth on more developed soils with sedimentary (area two) and volcanic (area three) substrates, was strongly negatively affected by drought. Male reproduction declined less with drought at area one and more at areas two and three. Overall mortality was 30% on coarse cinder soils (area one) and averaged 55% on finer soil types (areas two and three). (2) Although moth herbivore susceptible trees were hypothesized to suffer more with drought than moth resistant trees, the opposite occurred. Annual stem growth was negatively affected by drought for moth resistant trees, but much less strongly for moth susceptible trees. (3) In contrast to our hypothesis, moths declined with drought. Overall, chronically water-stressed and herbivore-susceptible trees had smaller declines in performance relative to less-stressed trees during drought years. These long-term findings support the idea that stressed trees might be more resistant to drought since they may have adapted or acclimated to resist drought-related mortality.
Collapse
Affiliation(s)
- Amy V. Whipple
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Susan Mopper
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | | | - Thomas G. Whitham
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
12
|
What Can We Learn from an Early Test on the Adaptation of Silver Fir Populations to Marginal Environments? FORESTS 2018. [DOI: 10.3390/f9070441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the adaptive potential of silver fir in the southeast of Poland, the stability of the height of its five-year-old progeny was analyzed. The study was conducted in two different population groups in a total of four environments, including one ecologically marginal environment. The linear mixed model was used to evaluate the differentiation of populations in terms of height growth. The genotype and genotype-by-environment interaction biplot (GGE) were used to verify the stability of height. The climate of populations origin, in relation to actual fir distribution in Poland, was verified based on principal components analysis (PCA) of bioclimatic parameters. The highest total variability was explained by the genotype-environment interaction effect (GE) (54.50%), while the genotype effect (G) explained 41.27% and only 4.23% was explained by the site effect. The result of height growth variations revealed the Komańcza site as the most representative among study sites, while the Lesko site characterized the highest discriminating ability. The progeny occurring in climatic conditions most different from the average testing conditions showed a heterogeneous growth reaction, only adapting to the marginal environment, while the progeny of the second population in this region as well as the northernmost one was characterized by a mean but stable growth. The westernmost population revealed maladaptation. The assessment of the adaptability of silver fir depends on the broad spectrum of test conditions considering the ecologically marginal environments.
Collapse
|
13
|
Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances. G3-GENES GENOMES GENETICS 2018; 8:1225-1245. [PMID: 29440346 PMCID: PMC5873913 DOI: 10.1534/g3.117.300524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norway spruce (Picea abies) is by far the most important timber species in Europe, but its outstanding role in future forests is jeopardized by its high sensitivity to drought. We analyzed drought response of Norway spruce at the warmest fringe of its natural range. Based on a 35-year old provenance experiment we tested for genetic variation among and within seed provenances across consecutively occurring strong drought events using dendroclimatic time series. Moreover, we tested for associations between ≈1,700 variable SNPs and traits related to drought response, wood characteristics and climate-growth relationships. We found significant adaptive genetic variation among provenances originating from the species’ Alpine, Central and Southeastern European range. Genetic variation between individuals varied significantly among provenances explaining up to 44% of the phenotypic variation in drought response. Varying phenotypic correlations between drought response and wood traits confirmed differences in selection intensity among seed provenances. Significant associations were found between 29 SNPs and traits related to drought, climate-growth relationships and wood properties which explained between 11 and 43% of trait variation, though 12 of them were due to single individuals having extreme phenotypes of the respective trait. The majority of these SNPs are located within exons of genes and the most important ones are preferentially expressed in cambium and xylem expansion layers. Phenotype-genotype associations were stronger if only provenances with significant quantitative genetic variation in drought response were considered. The present study confirms the high adaptive variation of Norway spruce in Central and Southeastern Europe and demonstrates how quantitative genetic, dendroclimatic and genomic data can be linked to understand the genetic basis of adaptation to climate extremes in trees.
Collapse
|