1
|
Hikino K, Hesse BD, Gebhardt T, Hafner BD, Buchhart C, Baumgarten M, Häberle KH, Grams TEE. Drought legacy in mature spruce alleviates physiological stress during recurrent drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40375713 DOI: 10.1111/plb.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Forest ecosystems are facing severe and prolonged droughts with delayed recovery, known as "drought legacy". This study presents positive legacy effects following a long-term, experimental drought and subsequent recovery in a mature mixed Norway spruce and European beech forest. Approximately 50 mature trees were exposed to five consecutive years of summer drought by completely excluding growing season precipitation from May 2014 to June 2019. Experimental drought recovery started in July 2019, after which the trees received natural precipitation. Taking advantage of the natural summer drought of 2022, following the unique long-term experimental drought, we investigated how drought legacy affects tree physiological responses to recurrent drought. The long-term experimental drought resulted in a 60% reduction in spruce leaf area, which was still reduced by 30% 4 years after the drought release. This slow recovery and associated reduced water use resulted in higher soil water availability under spruce during the 2022 drought, leading to significantly reduced physiological drought stress: about two times higher predawn leaf water potential, leaf gas exchange and sap flow density in legacy spruce compared to previous controls. Furthermore, neighbouring beech, displaying no leaf area reduction during the experimental drought, also had higher predawn leaf water potential and leaf gas exchange during the 2022 drought compared to previous controls, likely benefitting from the reduced water use of spruce. The slow recovery of spruce leaf area as a pronounced drought legacy effect proved advantageous for trees in alleviating physiological stress and overcoming future drought events.
Collapse
Affiliation(s)
- K Hikino
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - B D Hesse
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Gebhardt
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- School of Life Sciences, Forest and Agroforest Systems, Technical University of Munich, Freising, Germany
| | - B D Hafner
- School of Life Sciences, Soil Biophysics & Environmental Systems, Technical University of Munich, Freising, Germany
| | - C Buchhart
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - M Baumgarten
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| | - K-H Häberle
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Wilkening JV, Dawson TE, Thompson SE. Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery. PLANT, CELL & ENVIRONMENT 2025; 48:3673-3690. [PMID: 39810482 PMCID: PMC11963493 DOI: 10.1111/pce.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.
Collapse
Affiliation(s)
- Jean V. Wilkening
- Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyCaliforniaUSA
- Civil, Environmental, and Geo‐EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- St. Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Todd E. Dawson
- Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Environmental Science, Policy, & ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sally E. Thompson
- Civil, Environmental, and Mining EngineeringUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Centre for Water and Spatial ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
3
|
Vander Mijnsbrugge K, Moreels S, Moreels S, Buisset D, Vancampenhout K, Notivol Paino E. Influence of Summer Drought on Post-Drought Resprouting and Leaf Senescence in Prunus spinosa L. Growing in a Common Garden. PLANTS (BASEL, SWITZERLAND) 2025; 14:1132. [PMID: 40219200 PMCID: PMC11991280 DOI: 10.3390/plants14071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Understanding how woody plants cope with severe water shortages is critical, especially for regions where droughts are becoming more frequent and intense. We studied the effects of drought intensity, focusing on post-drought resprouting, autumn leaf senescence and the subsequent spring bud burst. Furthermore, we aimed to study population differentiation in the drought and post-drought responses. We performed a summer dry-out experiment in a common garden of potted Prunus spinosa L. (Rosaceae) saplings. We analysed responses across different visual stress symptom categories and examined differentiation between provenances from a local origin (Western Europe, Belgium), a lower latitude (Spain) and a higher latitude (Sweden). The chance of post-drought resprouting was greater for the more severely affected plants than for the less severely affected ones, and it occurred earlier. The plants that displayed wilting of the leaves during the drought had a leaf senescence 2.7 days earlier than the controls, whereas that of plants with 25 to 75% and more than 75% of desiccated leaves was 7 and 15 days later, respectively. During the drought, the local provenance was the first to develop visual symptoms compared to the other two provenances. However, among plants that exhibited no or only mild symptoms, this provenance also had a higher likelihood of post-drought resprouting. Among the control plants, the higher-latitude provenance displayed leaf senescence earlier, while the lower-latitude provenance senesced later compared to the local provenance. However, these differences in the timing of leaf senescence among the three provenances disappeared in treated plants with more than 25% of desiccated leaves due to the drought. Whereas leaf senescence could be earlier or later depending on the developed drought symptoms, the timing of bud burst was only delayed. Results indicate that resprouting and timing of leaf senescence are responsive to the severity of the experienced drought in a provenance-dependent way.
Collapse
Affiliation(s)
- Kristine Vander Mijnsbrugge
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Stefaan Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Sharon Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Damien Buisset
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Karen Vancampenhout
- Department of Earth and Environmental Sciences, KU Leuven Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium;
| | - Eduardo Notivol Paino
- Department for Environment, Agricultural and Forest Systems, Agri-Food Research and Technology Centre of Aragon (CITA), 50059 Zaragoza, Spain;
| |
Collapse
|
4
|
Özçelik MS, Poyatos R. Water-use strategies in pines and oaks across biomes are modulated by soil water availability. TREE PHYSIOLOGY 2025; 45:tpaf031. [PMID: 40089894 DOI: 10.1093/treephys/tpaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Quercus and Pinus are amongst the most economically and ecologically relevant genera of woody species across northern hemisphere forests. Mixed pine-oak woodlands are also abundant in temperate and Mediterranean regions. The recent shift towards dominance of oaks to the detriment of pines-reported in several regions-could be partly driven by differential drought responses between genera and associated with climate change. In this study, we synthesize water-use strategies across pine and oak species globally to elucidate whether water-saver and water-spender strategies are consistently found for pines and oak species, respectively, and to what extent these strategies are determined by species traits and site characteristics. Pines showed a water-saver strategy when soils are dry but a comparatively water-spender strategy when soils are wet. These patterns still hold when pines and oaks grow in the same site and thus are not affected by species interactions between them. Oak species have higher stem hydraulic conductivity and a deeper maximum rooting depth, supporting their higher capacity to withdraw soil water. Water-use regulation was more related to traits in pines, showing more water-spender strategies at low absolute values of predawn leaf water potentials, without necessarily increasing hydraulic risk, as a result of adjustments in sapwood-to-leaf area ratio (Huber value) and xylem hydraulic conductivity. Climate and vegetation structure were more related to water-use strategies in pines than in oaks. Our results show that-despite these trait adjustments-drought severely constrains water (and carbon) acquisition in pines, which would tend to favour oak species in drought-prone environments.
Collapse
Affiliation(s)
- Mehmet S Özçelik
- Isparta University of Applied Sciences, Faculty of Forestry, Department of Forest Engineering, 32260, Çünür, Isparta, Türkiye
| | - Rafael Poyatos
- CREAF, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, Department of Animal Biology, Plant Biology and Ecology, Edifici C Campus UAB, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| |
Collapse
|
5
|
Alonso-Forn D, Buesa I, Flor L, Sabater A, Medrano H, Escalona JM. Implications of root morphology and anatomy for water deficit tolerance and recovery of grapevine rootstocks. FRONTIERS IN PLANT SCIENCE 2025; 16:1541523. [PMID: 40182539 PMCID: PMC11966617 DOI: 10.3389/fpls.2025.1541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The intensification of drought conditions due to climate change poses a major challenge to sustainable grape production. Rootstocks are essential in supporting grapevine water uptake and drought resilience; however, their physiological responses to water stress are not fully understood. Under the hypothesis that root morphology and anatomy may be key traits in grapevine tolerance to water deficit, this study aimed to investigate these traits across diverse rootstocks under progressive water deficit and recovery phases. Thirteen genotypes, including commercial rootstocks and recently bred RG-series and RM2, were evaluated over two seasons in controlled pot-based conditions. Plants were subjected to five distinct watering stages, from well-watered to severe drought. Root traits, such as length, density, and xylem anatomical features, were analyzed alongside stem water potential (Ψstem) to gauge plant water status. Results showed significant genotype-specific differences in root morphology and anatomy, impacting drought tolerance and recovery. Rootstocks with higher root length density (RLD) and a larger proportion of fine roots maintained Ψstem more effectively under severe drought. Additionally, smaller xylem vessel diameters and reduced xylem area relative to root cross-sectional area correlated with improved water transport efficiency and faster recovery post-drought. A trade-off emerged wherein increased root density enhanced water uptake capacity but came at the cost of reduced transport efficiency. Notably, rootstocks 420A, 41B, RM2, and Fercal displayed superior drought resilience, while the RG-series did not outperform established genotypes like 13-5 Evex, 110 Richter, and 140 Ruggeri. These results underscore the role of root morphology and anatomy in grapevine drought tolerance, suggesting that these traits could be incorporated as criteria for future rootstocks breeding programs. Nevertheless, field-testing under non-limiting soil conditions is essential to validate these findings.
Collapse
Affiliation(s)
- David Alonso-Forn
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - Ignacio Buesa
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
- Dept. of Ecology and Global Change, Desertification Research Center (CIDE; CSIC-UV-GVA), Valencia, Spain
| | - Luis Flor
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Antoni Sabater
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
| | - Hipólito Medrano
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| | - José M. Escalona
- Agro-environmental and Water Economy Research Institute, University of Balearic Islands (INAGEA-UIB), Palma, Spain
- Research Group of Plant Biology Under Mediterranean Conditions, University of Balearic Islands (PlantMed-UIB), Palma, Spain
| |
Collapse
|
6
|
Knüver T, Bär A, Hamann E, Zuber M, Mayr S, Beikircher B, Ruehr NK. Stress dose explains drought recovery in Norway spruce. FRONTIERS IN PLANT SCIENCE 2025; 16:1542301. [PMID: 40115942 PMCID: PMC11922940 DOI: 10.3389/fpls.2025.1542301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
Introduction Understanding the stress recovery of trees, particularly with respect to increasing droughts due to climate change, is crucial. An often-overlooked aspect is how short versus long drought events of high intensity (i.e., low and high stress dose) result in stress damage and affect post-stress recovery. Methods This study examines the stress and recovery dynamics of 3-year-old Picea abies following a short drought (n = 5) of 18 days or a long drought (n = 9) of 51 days during late summer. We particularly assessed how the recovery of canopy conductance and tree transpiration is linked to i) stress intensity in terms of minimum water potential, ii) stress duration inferred by days below a water potential related to 12% hydraulic conductance loss (dP12), iii) stress dose inferred by the cumulative tree water deficit on days below P12 (TWDP12) as well as the cumulative water potential (Ψcum), and iv) the percent loss of conductive xylem area (PLA). Results Both drought treatments resulted in stem and root embolism with a higher PLA of 49% ± 10% in the long drought treatment compared to 18% ± 6% in the short drought treatment consistent across the measured plant parts. Suffering from embolism and leaf shedding (long drought, 32%; short drought, 12%), canopy conductance in the long drought treatment recovered to 41% ± 3% of the control and in the short drought treatment to 66% ± 4% at 12 days after drought release. These recovery rates were well explained by the observed PLA (R2 = 0.66) and the dP12 (R2 = 0.62) but best explained by stress dose metrics, particularly the cumulative TWDP12 (R2 = 0.88). Discussion Our study highlights that stress duration and intensity should be integrated to assess post-stress recovery rates. Here, the tree water deficit derived from point dendrometers appears promising, as it provides a non-destructive and high temporal resolution of the stress dose.
Collapse
Affiliation(s)
- Timo Knüver
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Nadine K Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| |
Collapse
|
7
|
Sanders SKD, van Kleunen M, Allan E, Thakur MP. Effects of extreme drought on the invasion dynamics of non-native plants. TRENDS IN PLANT SCIENCE 2025; 30:291-300. [PMID: 39523141 DOI: 10.1016/j.tplants.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants. We incorporate ideas from current ecological theories of invasive success and suggest how drought-mediated invasion is influenced by biotic interactions in the native community.
Collapse
Affiliation(s)
- Shareen K D Sanders
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; Centre for Development and Environment, University of Bern, 3012 Bern, Switzerland
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Nawaz AF, Gargiulo S, Pichierri A, Casolo V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:328. [PMID: 39942890 PMCID: PMC11820143 DOI: 10.3390/plants14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Global climate change has increased the severity and frequency of abiotic stresses, posing significant challenges to the survival and growth of woody plants. Non-structural carbohydrates (NSCs), including starch and sugars, play a vital role in enabling plants to withstand these stresses, helping to stabilize cellular functions by buffering plant energy demands and facilitating recovery on the alleviation of stress. Despite the recognized multiple functions of NSCs, the contrasting effects of multiple abiotic stresses on NSCs dynamics in woody plants remain poorly understood. This review aims to explore the current knowledge of the contrasting effects of abiotic stress conditions including drought, salinity, heat, water logging, and cold on NSCs dynamics. The roles of NSCs in regulating stress-resilience responses in woody plants are also discussed, along with the challenges in NSC measurement, and options for future research directions are explored. This review is based on comprehensive literature research across different search engines like Scopus, Web of Science, and Google Scholar (2000-2024) using targeted keywords. This study compiles the current research on NSCs functions and provides insights into the adaptive strategies of woody plants in response to changing climate conditions, providing groundwork for future research to improve stress tolerance in woody plants.
Collapse
Affiliation(s)
- Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Sara Gargiulo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Alessandro Pichierri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| |
Collapse
|
9
|
Ruehr NK, Nadal-Sala D. Legacies from early-season hot drought: how growth cessation alters tree water dynamics and modifies stress responses in Scots pine. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39812157 DOI: 10.1111/plb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψleaf) to assess the impacts of stress timing on drought resilience in Scots pine saplings. The early summer hot drought had peak temperatures of 36.5 °C, while the late summer hot drought peaked at 38.2 °C. Soil water content during both periods declined to ca. 50% of control values. The early-season hot drought caused growth cessation already at Ψleaf - 1.1 MPa, visible as an almost 30 days earlier end to needle elongation, resulting in needles 2.7 cm shorter, on average. This reduction in leaf area decreased productivity, resulting in a reduction of 50% in seasonal transpiration. However, the reduced water use of early-stressed saplings appeared to enhance resistance to a late-season drought, as reflected in a smaller decline in Ψleaf and lower tree water deficit compared to saplings that did not experience early-season stress. In summary, we observed persistant drought legacy effects from early-season hot-drought stress, as evident in a 35% reduction of leaf area, which impacted tree water use, stress resistance, and productivity. These structural adjustments of leaf development and reduced bud mass from early-season stress could be critical in evergreen conifers, whose long-lived foliage influences future water use and growth potential.
Collapse
Affiliation(s)
- N K Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D Nadal-Sala
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
- Ecology Section, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
10
|
Stefaniak EZ, Tissue DT, Dewar RC, Medlyn BE. Optimal carbon storage during drought. TREE PHYSIOLOGY 2024; 44:34-45. [PMID: 38498322 PMCID: PMC11898659 DOI: 10.1093/treephys/tpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Allocation of non-structural carbohydrates to storage allows plants to maintain a carbon pool in anticipation of future stress. However, to do so, plants must forego use of the carbon for growth, creating a trade-off between storage and growth. It is possible that plants actively regulate the storage pool to maximize fitness in a stress-prone environment. Here, we attempt to identify the patterns of growth and storage that would result during drought stress under the hypothesis that plants actively regulate carbon storage. We use optimal control theory to calculate the optimal allocation to storage and utilization of stored carbon over a single drought stress period. We examine two fitness objectives representing alternative life strategies: prioritization of growth and prioritization of storage, as well as the strategies in between these extremes. We find that optimal carbon storage consists of three discrete phases: 'growth', 'storage without growth' and the 'stress' phase where there is no carbon source. This trajectory can be defined by the time point when the plant switches from growth to storage. Growth-prioritizing plants switch later and fully deplete their stored carbon over the stress period, while storage-prioritizing plants either do not grow or switch early in the drought period. The switch time almost always occurs before the soil water is depleted, meaning that growth stops before photosynthesis. We conclude that the common observation of increasing carbon storage during drought could be interpreted as an active process that optimizes plant performance during stress.
Collapse
Affiliation(s)
- Elisa Z Stefaniak
- Biodiversity Ecology and Conservation Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg 2361, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Roderick C Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
11
|
Ziegler Y, Grote R, Alongi F, Knüver T, Ruehr NK. Capturing drought stress signals: the potential of dendrometers for monitoring tree water status. TREE PHYSIOLOGY 2024; 44:tpae140. [PMID: 39509249 DOI: 10.1093/treephys/tpae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The severity of droughts is expected to increase with climate change, leading to more frequent tree mortality and a decline in forest ecosystem services. Consequently, there is an urgent need for monitoring networks to provide early warnings of drought impacts on forests. Dendrometers capturing stem diameter variations may offer a simple and relatively low-cost opportunity. However, the links between stem shrinkage, a direct expression of tree water deficit (TWD), and hydraulic stress are not well understood thus far. In this study, we exposed two widespread conifers Pinus sylvestris L. and Larix decidua Mill. to lethal dehydration by withholding water and closely monitored TWD, midday water potential ($\psi $) and midday stomatal conductance (${\textit g}_{\textit s}$) under controlled greenhouse conditions. We found strong relationships between the three variables throughout the dehydration process, particularly suggesting the potential for continuous $\psi $ predictions and stomatal closure assessments. However, the relationships decoupled during recovery from severe drought. We also identified TWD thresholds that signal the onset of drought stress and tissue damage, providing insights into stress impacts and recovery potential. While these findings are promising, challenges remain in practically transferring them to field set-ups by suitable TWD normalization. Importantly, we observed that midday ${\textit g}_{\textit s}$ was drastically reduced when TWD persisted overnight, providing a directly applicable drought stress signal that does not require normalization. In conclusion, while challenges remain, our results highlight the potential of dendrometers for monitoring tree water dynamics. Implementing dendrometer networks could support the development of early warning metrics for drought impacts, enabling large-scale monitoring in diverse settings, such as urban areas and forest ecosystems.
Collapse
Affiliation(s)
- Yanick Ziegler
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Franklin Alongi
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Timo Knüver
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
12
|
Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman CJ, Brodribb TJ. A one-way ticket: Wheat roots do not functionally refill xylem emboli following rehydration. PLANT PHYSIOLOGY 2024; 196:2362-2373. [PMID: 39297870 PMCID: PMC11638109 DOI: 10.1093/plphys/kiae407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 12/14/2024]
Abstract
Understanding xylem embolism spread in roots is essential for predicting the loss of function across root systems during drought. However, the lasting relevance of root embolism to plant recovery depends on whether roots can refill xylem emboli and resume function after rehydration. Using MicroCT and optical and dye staining methods, we investigated embolism repair in rehydrated intact roots of wheat (Triticum aestivum L. 'Krichauff') exposed to a severe water deficit of -3.5 MPa, known to cause approximately 30% total root network embolism in this species. Air emboli in the xylem vessels of intact roots remained clearly observable using MicroCT after overnight rehydration. This result was verified by xylem staining of the root system and optical quantification of emboli, both of which indicated a lack of functional root xylem recovery 60 h following soil re-saturation. The absence of root xylem refilling in wheat has substantial implications for how we understand plant recovery after drought. Our findings suggest that xylem embolism causes irreversible damage to the soil-root hydraulic connection in affected parts of the root network.
Collapse
Affiliation(s)
| | - Kate M Johnson
- Plant Ecology Research Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8930 Birmensdorf, Switzerland
| | - Vanessa Tonet
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris J Blackman
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
13
|
Hasan MM, Liu XD, Yao GQ, Liu J, Fang XW. Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6719-6732. [PMID: 38367013 DOI: 10.1093/jxb/erae060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024]
Abstract
Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species, subsequent synthesis of nitric oxide and hydrogen sulfide, and SLOW ANION CHANNEL-ASSOCIATED 1 activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution, and K+ deficiency, inhibit drought- and ABA-induced stomatal closure in an ethylene synthesis-dependent manner. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, giving a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
14
|
Didion-Gency M, Deluigi J, Gisler J, Juillard T, Schaub M, Tuñas-Corzon A, Grossiord C. Reduced soil moisture drives leaf anatomical shifts more than chronically elevated temperatures in European temperate trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39541145 DOI: 10.1111/plb.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Chronic reductions in soil moisture combined with high air temperatures can modify tree carbon and water relations. However, little is known about how trees acclimate their foliar structure to the individual and combined effects of these two climate drivers. We used open-top chambers to determine the multi-year effects of chronic air warming (+5 °C) and soil moisture reduction (-50%) alone and in combination on the foliar anatomy of two European tree species. We further investigated how these climate drivers affected the relationship between foliar anatomy and physiology/chemistry in young downy oak and European beech trees. After 4 years, reduced soil moisture led to development of thinner leaves with a narrower epidermis and lower gas exchange for oak and beech, but to a lesser extent in the latter. In contrast, prolonged warming did not affect the anatomical and physiological/chemical traits in either species. Warming also did not exacerbate the impacts of dry soils, highlighting soil moisture as the key driver in leaf anatomical shifts. While soil moisture altered oak foliar anatomy, and the physiology and chemistry of both species, our work revealed a limited acclimation potential towards more drought- and heat-tolerant leaves as conditions become drier and warmer, suggesting potentially high vulnerability of both species to future climate predictions.
Collapse
Affiliation(s)
- M Didion-Gency
- Ecological and Forestry Applications Research Center CREAF, Cerdanyola-del-Vallès, Spain
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - J Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - J Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - T Juillard
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - M Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - A Tuñas-Corzon
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - C Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| |
Collapse
|
15
|
Moine A, Chitarra W, Nerva L, Agliassa C, Gambino G, Secchi F, Pagliarani C, Boccacci P. Grafting with non-suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments. PHYSIOLOGIA PLANTARUM 2024; 176:e70003. [PMID: 39658794 PMCID: PMC11632140 DOI: 10.1111/ppl.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the 'San Giovanni' cultivar (SG), the non-suckering rootstock 'Dundee' (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well-irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with 'Dundee' rootstock positively affected the ability of 'San Giovanni' plants to endure drought by increasing their intrinsic water use efficiency and facilitating post-rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non-suckering rootstocks could therefore represent a promising and environmentally-friendly strategy for improving the adaptability of hazelnut to water deficit.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Walter Chitarra
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Chiara Agliassa
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
- Present address:
Green Has Italia S.p.A.Canale (CN)Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Francesca Secchi
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| |
Collapse
|
16
|
Habibi A, Sarikhani S, Arab MM, Soltani M, Aliniaifard S, Roozban MR, Vahdati K. Drought and heat stress interactions: Unveiling the molecular and physiological responses of Persian walnut. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109237. [PMID: 39520907 DOI: 10.1016/j.plaphy.2024.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
While numerous studies explored the response of walnut plants to drought stress (DS), there remains a significant gap in the knowledge regarding the impact of heat stress (HS) and the combined effects of DS and HS on the recovery capacity of walnut trees. This study aimed to investigate the mechanism of Persian walnut (cv. Chandler) response to the combined DS and HS, focusing on various aspects including photosynthesis, water relations, and osmotic regulation. The treatments involved subjecting plants to DS (through a withholding method for 24 d), HS (gradually up to 40 °C for 8 d), and a combined DS and HS, which were compared to a control group (no stress) during the stress and recovery phases. The results showed that DS had significantly more negative effects on chlorophyll content, relative water content (RWC), leaf water potential (WP), osmotic potential (OP) compared to HS. Involvement of osmoregulation mechanism was detected more in DS and HS plants through the accumulation of proline, glycine Betaine and total soluble carbohydrates. The functionality of photosynthesis was significantly impacted by both HS and DS, respectively. While the HS accelerated the change of the abovementioned physiological processes in drought-stressed seedlings. Consistently, more pronounced damage was found in leaves under the combined stress, alongside the decrease RWC, chlorophyll content and fluorescence ratios. Based on the analysis of the linear mixed-effect model, the effects of combined stress and HS on photosynthesis parameters were detected in the early stages of stress compared to DS. Within a range of stresses, the abovementioned physiological processes of individual and combined-stressed plants recovered to levels comparable to those of the control. Our results also showed a substantial reduction in the expression of the photosynthetic genes (Fd, Cyt b6f, and PsbB) in Persian walnut saplings under abiotic stress conditions indicating significant damage to their photosynthetic apparatus. This study highlights that, under scenarios of aggravating drought occurring with heat, walnut seedlings could face a high risk of damage to physiological structures in relation to the synergistically increased hydraulic and thermal impairments.
Collapse
Affiliation(s)
- Asaad Habibi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | | | - Mohammad Soltani
- Independent Researcher in the Field Water Resources Engineering, Tehran, Iran
| | - Sasan Aliniaifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Mahmoud Reza Roozban
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
18
|
Tao W, He J, Smith NG, Yang H, Liu J, Chen L, Tao J, Luo W. Tree growth rate-mediated trade-off between drought resistance and recovery in the Northern Hemisphere. Proc Biol Sci 2024; 291:20241427. [PMID: 39471856 PMCID: PMC11521623 DOI: 10.1098/rspb.2024.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
The frequency and severity of drought events have increased with climate warming. This poses a significant threat to tree growth and survival worldwide. However, the underlying mechanism of tree growth responses to drought across diverse geographic regions and species remains inconclusive. Here, we used 2808 tree ring width chronologies of 32 species from 1951 to 2020 to examine the relationships between growth rates and resistance and recovery of trees in response to drought in the Northern Hemisphere. We found that trees with fast growth rates exhibited lower drought resistance but higher drought recovery compared to those with slow growth rates, which was further corroborated by the trade-off between resistance and recovery in response to variations in leaf photosynthetic traits. The difference in growth rates also well explained the large variability in the drought resistance and recovery for different geographic regions, as well as for species from different clades and successional stages. Our study provides a conclusive and uniform perspective that tree growth rate regulates drought resistance and recovery, shedding light on the diverse strategies employed by tree species in response to drought stress in the Northern Hemisphere.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Jiang He
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Nicholas G. Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX79409, USA
| | - Hongjun Yang
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| |
Collapse
|
19
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
20
|
Mateus P, Sousa F, Martins M, Sousa B, Afonso A, Oliveira F, Moutinho-Pereira J, Fidalgo F, Soares C. The ectomycorrhizal fungus Paxillus involutus positively modulates Castanea sativa Miller (var. Marsol) responses to heat and drought co-exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108999. [PMID: 39098185 DOI: 10.1016/j.plaphy.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.
Collapse
Affiliation(s)
- Pedro Mateus
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia Afonso
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - Fátima Oliveira
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - José Moutinho-Pereira
- CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
21
|
Qu LP, Dong G, Chen J, Xiao J, De Boeck HJ, Chen J, Jiang S, Batkhishig O, Legesse TG, Xin X, Shao C. Soil environmental anomalies dominate the responses of net ecosystem productivity to heatwaves in three Mongolian grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173742. [PMID: 38839012 DOI: 10.1016/j.scitotenv.2024.173742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Climate change is causing more frequent and intense heatwaves. Therefore, it is important to understand how heatwaves affect the terrestrial carbon cycle, especially in grasslands, which are especially susceptible to climate extremes. This study assessed the impact of naturally occurring, simultaneous short-term heatwaves on CO2 fluxes in three ecosystems on the Mongolia Plateau: meadow steppe (MDW), typical steppe (TPL), and shrub-grassland (SHB). During three heatwaves, net ecosystem productivity (NEP) was reduced by 86 %, 178 %, and 172 % at MDW, TPL, and SHB, respectively. The changes in ecosystem respiration, gross primary production, evapotranspiration, and water use efficiency were divergent, indicating the mechanisms underlying the observed NEP decreases among the sites. The impact of the heatwave in MDW was mitigated by the high soil water content, which enhanced evapotranspiration and subsequent cooling effects. However, at TPL, insufficient soil water led to combined thermal and drought stress and low resilience. At SHB, the ecosystem's low tolerance to an August heatwave was heavily influenced by species phenology, as it coincided with the key phenological growing phase of plants. The potential key mechanism of divergent NEP response to heatwaves lies in the divergent stability and varying importance of environmental factors, combined with the specific sensitivity of NEP to each factor in ecosystems. Furthermore, our findings suggest that anomalies in soil environment, rather than atmospheric anomalies, are the primary determinants of NEP anomalies during heatwaves. This challenges the conventional understanding of heatwaves as a discrete and ephemeral periods of high air temperatures. Instead, heatwaves should be viewed as chronologically variable, compound, and time-sensitive environmental stressors. The ultimate impact of heatwaves on ecosystems is co-determined by a complex interplay of environmental, biological, and heatwave features.
Collapse
Affiliation(s)
- Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Shanxi University, Taiyuan, China
| | - Jiquan Chen
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Hans J De Boeck
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Jingyan Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shicheng Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Ochirbat Batkhishig
- Institute of Geography, Mongolian Academy of Sciences, Ulaanbaartar 210620, Mongolia
| | - Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Jupa R, Plichta R, Plavcová L, Paschová Z, Gloser V. Adjustment of storage capacity for non-structural carbohydrates in response to limited water availability in two temperate woody species. PHYSIOLOGIA PLANTARUM 2024; 176:e14522. [PMID: 39248017 DOI: 10.1111/ppl.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Lenka Plavcová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Zuzana Paschová
- Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Flo V, Joshi J, Sabot M, Sandoval D, Prentice IC. Incorporating photosynthetic acclimation improves stomatal optimisation models. PLANT, CELL & ENVIRONMENT 2024; 47:3478-3493. [PMID: 38589983 DOI: 10.1111/pce.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.
Collapse
Affiliation(s)
- Victor Flo
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Univ Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jaideep Joshi
- Department of Geosciences, Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, Faculty of Science, University of Bern, Bern, Switzerland
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - David Sandoval
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Iain Colin Prentice
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
24
|
Ru C, Hu X, Chen D, Wang W. Drought stimulus enhanced stress tolerance in winter wheat (Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108906. [PMID: 38986237 DOI: 10.1016/j.plaphy.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pn being 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
Collapse
Affiliation(s)
- Chen Ru
- School of Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
25
|
Niemczyk M, Wrzesiński P, Szyp-Borowska I, Krajewski S, Żytkowiak R, Jagodziński AM. Coping with extremes: Responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174912. [PMID: 39038682 DOI: 10.1016/j.scitotenv.2024.174912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.
Collapse
Affiliation(s)
- Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland.
| | - Piotr Wrzesiński
- Dendrolab IBL, Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Iwona Szyp-Borowska
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Szymon Krajewski
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Braci Leśnej 3, Sękocin Stary, 05-090 Raszyn, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
26
|
Nadal-Sala D, Ruehr NK, Sabaté S. Overcoming drought: life traits driving tree strategies to confront drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3758-3761. [PMID: 38982745 DOI: 10.1093/jxb/erae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
This insight article comments on: Ziegler C, Cochard, H, Stahl C, Bastien Gérard LF, Goret J, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany 75, 4128-4147.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Spain
- Universitat de Barcelona (UB), Ecology Section, Diagonal, 643, Barcelona, Spain
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, D-82467 Garmisch-Partenkirchen, Germany
| | - Santiago Sabaté
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Spain
- Universitat de Barcelona (UB), Ecology Section, Diagonal, 643, Barcelona, Spain
| |
Collapse
|
27
|
Italiano SSP, Camarero JJ, Borghetti M, Colangelo M, Rita A, Ripullone F. Drought legacies in mixed Mediterranean forests: Analysing the effects of structural overshoot, functional traits and site factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172166. [PMID: 38575023 DOI: 10.1016/j.scitotenv.2024.172166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.
Collapse
Affiliation(s)
- Santain S P Italiano
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Michele Colangelo
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Angelo Rita
- Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, IT-80055 Portici, Napoli, Italy.
| | - Francesco Ripullone
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
28
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
29
|
Harris RJ, Alvarez PR, Bryant C, Briceño VF, Cook AM, Leigh A, Nicotra AB. Acclimation of thermal tolerance in juvenile plants from three biomes is suppressed when extremes co-occur. CONSERVATION PHYSIOLOGY 2024; 12:coae027. [PMID: 39850455 PMCID: PMC11756708 DOI: 10.1093/conphys/coae027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 01/25/2025]
Abstract
Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation. We assessed thermal thresholds (T crit-hot and T crit-cold) and TTB. We hypothesized that (i) desert species would show the highest heat tolerance, alpine species the greatest cold tolerance and temperate species intermediate tolerance; (ii) all species would increase heat tolerance after hot days and cold tolerance after cold nights; (iii) combined exposure would broaden TTB more than individual conditions, especially in desert and alpine species. We found that biome responses were minor compared to the responses to the extreme temperature treatments. All plants increased thermal tolerance in response to hot 40°C days (T crit-hot increased by ~3.5°C), but there was minimal change in T crit-cold in response to the cold -2°C nights. In contrast, when exposed to both hot days and cold nights, on average, plants exhibited an antagonistic response in TTB, where cold tolerance decreased and heat tolerance was reduced, and so we did not see the bi-directional expansion we hypothesized. There was, however, considerable variation among species in these responses. As climate change intensifies, plant communities, especially in transitional seasons, will regularly face such temperature swings. Our results shed light on potential plant responses under these extremes, emphasizing the need for deeper species-specific thermal acclimation insights, ultimately guiding conservation efforts.
Collapse
Affiliation(s)
- Rosalie J Harris
- Research School of Biology, The Australian National
University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian
Capital Territory, Australia
| | - Philippa R Alvarez
- School of Life Sciences, University of Technology Sydney,
PO Box 123, Broadway, Sydney NSW 2007, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National
University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian
Capital Territory, Australia
| | - Verónica F Briceño
- Research School of Biology, The Australian National
University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian
Capital Territory, Australia
| | - Alicia M Cook
- School of Life Sciences, University of Technology Sydney,
PO Box 123, Broadway, Sydney NSW 2007, Australia
| | - Andrea Leigh
- School of Life Sciences, University of Technology Sydney,
PO Box 123, Broadway, Sydney NSW 2007, Australia
| | - Adrienne B Nicotra
- Research School of Biology, The Australian National
University, 134 Linnaeus Way, Acton ACT 2601, Canberra, Australian
Capital Territory, Australia
| |
Collapse
|
30
|
Bose AK, Doležal J, Scherrer D, Altman J, Ziche D, Martínez-Sancho E, Bigler C, Bolte A, Colangelo M, Dorado-Liñán I, Drobyshev I, Etzold S, Fonti P, Gessler A, Kolář T, Koňasová E, Korznikov KA, Lebourgeois F, Lucas-Borja ME, Menzel A, Neuwirth B, Nicolas M, Omelko AM, Pederson N, Petritan AM, Rigling A, Rybníček M, Scharnweber T, Schröder J, Silla F, Sochová I, Sohar K, Ukhvatkina ON, Vozmishcheva AS, Zweifel R, Camarero JJ. Revealing legacy effects of extreme droughts on tree growth of oaks across the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172049. [PMID: 38552974 DOI: 10.1016/j.scitotenv.2024.172049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Jiri Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain; Scuola di Scienze Agrarie, Forestali, Alimentari, e Ambientali, Università della Basilicata, Potenza, Italy
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Igor Drobyshev
- Southern Swedish Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden; Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Eva Koňasová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Manuel Esteban Lucas-Borja
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla La Mancha, Albacete, Spain
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F 77300, France
| | - Alexander Mikhaylovich Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Neil Pederson
- Harvard Forest, 324 N.Main St, Petersham, MA 01366, USA
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Eroilor 128, 077190 Voluntari, Romania
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Tobias Scharnweber
- DendroGreif, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Fernando Silla
- Departamento Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, University Salamanca, 37007 Salamanca, Spain
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Sohar
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Olga Nikolaevna Ukhvatkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Stepanovna Vozmishcheva
- Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| |
Collapse
|
31
|
Depardieu C, Lenz P, Marion J, Nadeau S, Girardin MP, Marchand W, Bégin C, Treydte K, Gessler A, Bousquet J, Savard MM, Isabel N. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171174. [PMID: 38402972 DOI: 10.1016/j.scitotenv.2024.171174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon‑oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Patrick Lenz
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Joelle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Simon Nadeau
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Martin P Girardin
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - William Marchand
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
32
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
33
|
Sterck FJ, Song Y, Poorter L. Drought- and heat-induced mortality of conifer trees is explained by leaf and growth legacies. SCIENCE ADVANCES 2024; 10:eadl4800. [PMID: 38608026 PMCID: PMC11014445 DOI: 10.1126/sciadv.adl4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
An increased frequency and severity of droughts and heat waves have resulted in increased tree mortality and forest dieback across the world, but underlying mechanisms are poorly understood. We used a common garden experiment with 20 conifer tree species to quantify mortality after three consecutive hot, dry summers and tested whether mortality could be explained by putative underlying mechanisms, such as stem hydraulics and legacies affected by leaf life span and stem growth responses to previous droughts. Mortality varied from 0 to 79% across species and was not affected by hydraulic traits. Mortality increased with species' leaf life span probably because leaf damage caused crown dieback and contributed to carbon depletion and bark beetle damage. Mortality also increased with lower growth resilience, which may exacerbate the contribution of carbon depletion and bark beetle sensitivity to tree mortality. Our study highlights how ecological legacies at different time scales can explain tree mortality in response to hot, dry periods and climate change.
Collapse
Affiliation(s)
- Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Yanjun Song
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164-4236, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| |
Collapse
|
34
|
Kim GJ, Jo H, Cho MS, Noh NJ, Han SH, Khamzina A, Kim HS, Son Y. Photosynthetic responses of Larix kaempferi and Pinus densiflora seedlings are affected by summer extreme heat rather than by extreme precipitation. Sci Rep 2024; 14:5250. [PMID: 38438488 PMCID: PMC10912299 DOI: 10.1038/s41598-024-56120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The frequency and intensity of summer extreme climate events are increasing over time, and have a substantial negative effect on plants, which may be evident in their impact on photosynthesis. Here, we examined the photosynthetic responses of Larix kaempferi and Pinus densiflora seedlings to extreme heat (+ 3 °C and + 6 °C), drought, and heavy rainfall by conducting an open-field multifactor experiment. Leaf gas exchange in L. kaempferi showed a decreasing trend under increasing temperature, showing a reduction in the stomatal conductance, transpiration rate, and net photosynthetic rate by 135.2%, 102.3%, and 24.8%, respectively, in the + 6 °C treatment compared to those in the control. In contrast, P. densiflora exhibited a peak function in the stomatal conductance and transpiration rate under + 3 °C treatment. Furthermore, both species exhibited increased total chlorophyll contents under extreme heat conditions. However, extreme precipitation had no marked effect on photosynthetic activities, given the overall favorable water availability for plants. These results indicate that while extreme heat generally reduces photosynthesis by triggering stomatal closure under high vapor pressure deficit, plants employ diverse stomatal strategies in response to increasing temperature, which vary among species. Our findings contribute to the understanding of mechanisms underlying the photosynthetic responses of conifer seedlings to summer extreme climate events.
Collapse
Affiliation(s)
- Gwang-Jung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heejae Jo
- Division of Environmental Science and Ecological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Seok Cho
- Forest Technology and Management Research Center, National Institute of Forest Science, Pocheon, 11186, Republic of Korea
- Research Planning and Coordination Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Nam Jin Noh
- Department of Forest Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Hyun Han
- Forest Technology and Management Research Center, National Institute of Forest Science, Pocheon, 11186, Republic of Korea
| | - Asia Khamzina
- Division of Environmental Science and Ecological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyung-Sub Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources Research, Korea University, Seoul, 02841, Republic of Korea
| | - Yowhan Son
- Division of Environmental Science and Ecological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Neycken A, Wohlgemuth T, Frei ER, Klesse S, Baltensweiler A, Lévesque M. Slower growth prior to the 2018 drought and a high growth sensitivity to previous year summer conditions predisposed European beech to crown dieback. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169068. [PMID: 38049004 DOI: 10.1016/j.scitotenv.2023.169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.
Collapse
Affiliation(s)
- Anna Neycken
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland.
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Andri Baltensweiler
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
36
|
Rehschuh R, Ruehr NK. What is the role of soil nutrients in drought responses of trees? TREE PHYSIOLOGY 2024; 44:tpad152. [PMID: 38113532 DOI: 10.1093/treephys/tpad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Romy Rehschuh
- TU Dresden, Institute of General Ecology and Environmental Protection, Chair of Biodiversity and Nature Conservation, Pienner Straße 7, Tharandt 01737, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research, KIT-Campus Alpin, Kreuzeckbahnstraße 19, Garmisch-Partenkirchen 82467, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Geography and Geoecology, Kaiserstraße 12, Karlsruhe 76131, Germany
| |
Collapse
|
37
|
Qu LP, Chen J, Xiao J, De Boeck HJ, Dong G, Jiang SC, Hu YL, Wang YX, Shao CL. The complexity of heatwaves impact on terrestrial ecosystem carbon fluxes: Factors, mechanisms and a multi-stage analytical approach. ENVIRONMENTAL RESEARCH 2024; 240:117495. [PMID: 37890820 DOI: 10.1016/j.envres.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Extreme heatwaves have become more frequent and severe in recent decades, and are expected to significantly influence carbon fluxes at regional scales across global terrestrial ecosystems. Nevertheless, accurate prediction of future heatwave impacts remains challenging due to a lack of a consistent comprehension of intrinsic and extrinsic mechanisms. We approached this knowledge gap by analyzing the complexity factors in heatwave studies, including the methodology for determining heatwave events, divergent responses of individual ecosystem components at multiple ecological and temporal scales, and vegetation status and hydrothermal environment, among other factors. We found that heatwaves essentially are continuously changing compound environmental stress that can unfold into multiple chronological stages, and plant physiology and carbon flux responses differs in each of these stages. This approach offers a holistic perspective, recognizing that the impacts of heatwaves on ecosystems can be better understood when evaluated over time. These stages include instantaneous, post-heatwave, legacy, and cumulative effects, each contributing uniquely to the overall impact on the ecosystem carbon cycle. Next, we investigated the importance of the timing of heatwaves and the possible divergent consequences caused by different annual heatwave patterns. Finally, a conceptual framework is proposed to establish a united foundation for the study and comprehension of the consequences of heatwaves on ecosystem carbon cycle. This instrumental framework will assist in guiding regional assessments of heatwave impacts, shedding light on the underlying mechanisms responsible for the varied responses of terrestrial ecosystems to specific heatwave events, which are imperative for devising efficient adaptation and mitigation approaches.
Collapse
Affiliation(s)
- Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jiquan Chen
- Center for Global Change & Earth Observations (CGCEO), Michigan State University, East Lansing, MI, 48823, USA.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Hans J De Boeck
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Gang Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; School of Life Science, Shanxi University, Taiyuan, China.
| | | | - Ya-Lin Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yi-Xuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chang-Liang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Zhu L, Scafaro AP, Vierling E, Ball MC, Posch BC, Stock F, Atkin OK. Heat tolerance of a tropical-subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry. THE NEW PHYTOLOGIST 2024; 241:715-731. [PMID: 37932881 DOI: 10.1111/nph.19356] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Marilyn C Ball
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Frederike Stock
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Plant Phenomics Facility, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, Building 46, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
39
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Zhou C, Wu S, Li C, Quan W, Wang A. Response Mechanisms of Woody Plants to High-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3643. [PMID: 37896106 PMCID: PMC10610489 DOI: 10.3390/plants12203643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Shengjiang Wu
- Guizhou Academy of Tobacco Science, Guiyang 550081, China;
| | - Chaochan Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; (C.Z.); (C.L.)
| |
Collapse
|
41
|
Au J, Bloom AA, Parazoo NC, Deans RM, Wong CYS, Houlton BZ, Magney TS. Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points. GLOBAL CHANGE BIOLOGY 2023; 29:5652-5665. [PMID: 37497614 DOI: 10.1111/gcb.16867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/03/2023] [Indexed: 07/28/2023]
Abstract
More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate-plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012-2015 California drought. Our study area is a mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011-2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012-2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping-point collapse to recovery. We present novel process-driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states-showing that the full extent of GPP response takes several years to arise. Thus, long-term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.
Collapse
Affiliation(s)
- J Au
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - A A Bloom
- Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, USA
| | - N C Parazoo
- Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, USA
| | - R M Deans
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - C Y S Wong
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - B Z Houlton
- Department of Ecology and Evolutionary Biology and Department of Global Development, Cornell University, Ithaca, New York, USA
| | - T S Magney
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
42
|
Umaña MN. The interplay of drought and hurricanes on tree recovery: insights from dynamic and weak functional responses. Proc Biol Sci 2023; 290:20231732. [PMID: 37727090 PMCID: PMC10509583 DOI: 10.1098/rspb.2023.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Wagner Y, Volkov M, Nadal-Sala D, Ruehr NK, Hochberg U, Klein T. Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. PHYSIOLOGIA PLANTARUM 2023; 175:e13995. [PMID: 37882273 DOI: 10.1111/ppl.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx ) values of -3.5, -5.2 and -9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx ). An additional group of trees was exposed to Ψx of -6.0 MPa, either with or without preceding drought (Ψx of -5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached -9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as "drought legacy," impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
Collapse
Affiliation(s)
- Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mila Volkov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Lian H, Qin C, Shen J, Ahanger MA. Alleviation of Adverse Effects of Drought Stress on Growth and Nitrogen Metabolism in Mungbean ( Vigna radiata) by Sulphur and Nitric Oxide Involves Up-Regulation of Antioxidant and Osmolyte Metabolism and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:3082. [PMID: 37687329 PMCID: PMC10490269 DOI: 10.3390/plants12173082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, carotenoids and the content of nitrogen, phosphorous, potassium and sulphur. The foliar applications of NO and sulphur each individually alleviated the decline, with a greater alleviation observed in seedlings treated with both NO and sulphur. The reduction in intermediates of chlorophyll synthesis pathways and photosynthesis were alleviated by NO and sulphur. Oxidative stress was evident through the increased hydrogen peroxide, superoxide and activity of lipoxygenase and protease which were significantly assuaged by NO, sulphur and NO + sulphur treatments. A reduction in the activity of nitrate reductase, glutamine synthetase and glutamate synthase was mitigated due to the application of NO and the supplementation of sulphur. The endogenous concentration of NO and hydrogen sulphide (HS) was increased due to PEG; however, the PEG-induced increase in NO and HS was lowered due to NO and sulphur. Furthermore, NO and sulphur treatments to PEG-stressed seedlings further enhanced the functioning of the antioxidant system, osmolytes and secondary metabolite accumulation. Activities of γ-glutamyl kinase and phenylalanine ammonia lyase were up-regulated due to NO and S treatments. The treatment of NO and S regulated the expression of the Cu/ZnSOD, POD, CAT, RLP, HSP70 and LEA genes significantly under normal and drought stress. The present study advocates for the beneficial use of NO and sulphur in the mitigation of drought-induced alterations in the metabolism of Vigna radiata.
Collapse
Affiliation(s)
- Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China; (H.L.); (C.Q.)
| | - Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China; (H.L.); (C.Q.)
| | - Jie Shen
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China; (H.L.); (C.Q.)
| | | |
Collapse
|
45
|
Tripathy KP, Mukherjee S, Mishra AK, Mann ME, Williams AP. Climate change will accelerate the high-end risk of compound drought and heatwave events. Proc Natl Acad Sci U S A 2023; 120:e2219825120. [PMID: 37399379 PMCID: PMC10334742 DOI: 10.1073/pnas.2219825120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Compound drought and heatwave (CDHW) events have garnered increased attention due to their significant impacts on agriculture, energy, water resources, and ecosystems. We quantify the projected future shifts in CDHW characteristics (such as frequency, duration, and severity) due to continued anthropogenic warming relative to the baseline recent observed period (1982 to 2019). We combine weekly drought and heatwave information for 26 climate divisions across the globe, employing historical and projected model output from eight Coupled Model Intercomparison Project 6 GCMs and three Shared Socioeconomic Pathways. Statistically significant trends are revealed in the CDHW characteristics for both recent observed and model simulated future period (2020 to 2099). East Africa, North Australia, East North America, Central Asia, Central Europe, and Southeastern South America show the greatest increase in frequency through the late 21st century. The Southern Hemisphere displays a greater projected increase in CDHW occurrence, while the Northern Hemisphere displays a greater increase in CDHW severity. Regional warmings play a significant role in CDHW changes in most regions. These findings have implications for minimizing the impacts of extreme events and developing adaptation and mitigation policies to cope with increased risk on water, energy, and food sectors in critical geographical regions.
Collapse
Affiliation(s)
- Kumar P. Tripathy
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC29634
| | - Sourav Mukherjee
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC29634
| | - Ashok K. Mishra
- School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC29634
| | - Michael E. Mann
- Department of Earth & Environmental Science University of Pennsylvania, Philadelphia, PA19104-6316
| | - A. Park Williams
- Department of Geography, University of California, Los Angeles, CA90095
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10096
| |
Collapse
|
46
|
Bi MH, Jiang C, Brodribb T, Yang YJ, Yao GQ, Jiang H, Fang XW. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought. TREE PHYSIOLOGY 2023; 43:883-892. [PMID: 36547259 DOI: 10.1093/treephys/tpac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/11/2023]
Abstract
Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.
Collapse
Affiliation(s)
- Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chao Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
47
|
Wood JD, Gu L, Hanson PJ, Frankenberg C, Sack L. The ecosystem wilting point defines drought response and recovery of a Quercus-Carya forest. GLOBAL CHANGE BIOLOGY 2023; 29:2015-2029. [PMID: 36600482 DOI: 10.1111/gcb.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
48
|
Zlobin IE, Vankova R, Dobrev PI, Gaudinova A, Kartashov AV, Ivanov YV, Ivanova AI, Kuznetsov VV. Abscisic Acid and Cytokinins Are Not Involved in the Regulation of Stomatal Conductance of Scots Pine Saplings during Post-Drought Recovery. Biomolecules 2023; 13:biom13030523. [PMID: 36979458 PMCID: PMC10046708 DOI: 10.3390/biom13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Delayed or incomplete recovery of gas exchange after water stress relief limits assimilation in the post-drought period and can thus negatively affect the processes of post-drought recovery. Abscisic acid (ABA) accumulation and antagonistic action between ABA and cytokinins (CKs) play an important role in regulation of stomatal conductance under water deficit. Specifically, in pine species, sustained ABA accumulation is thought to be the main cause of delayed post-drought gas exchange recovery, although the role of CKs is not yet known. Therefore, we aimed to study the effects of ABA and CKs on recovery of stomatal conductance in greenhouse-grown 3-year-old Scots pine saplings recovering from water stress. We analysed both changes in endogenous ABA and CK contents and the effects of treatment with exogenous CK on stomatal conductance. Drought stress suppressed stomatal conductance, and post-drought stomatal conductance remained suppressed for 2 weeks after plant rewatering. ABA accumulated during water stress, but ABA levels decreased rapidly after rewatering. Additionally, trans-zeatin/ABA and isopentenyladenine/ABA ratios, which were decreased in water-stressed plants, recovered rapidly in rewatered plants. Spraying plants with 6-benzylaminopurine (0.1–100 µM) did not influence recovery of either stomatal conductance or needle water status. It can be concluded that the delayed recovery of stomatal conductance in Scots pine needles was not due to sustained ABA accumulation or a sustained decrease in the CK/ABA ratio, and CK supplementation was unable to overcome this delayed recovery.
Collapse
Affiliation(s)
- Ilya E. Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alexander V. Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Yury V. Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Alexandra I. Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
- Correspondence:
| |
Collapse
|
49
|
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KHM, Zhuang W, Varshney RK. Developing drought-smart, ready-to-grow future crops. THE PLANT GENOME 2023; 16:e20279. [PMID: 36366733 DOI: 10.1002/tpg2.20279] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/02/2022] [Indexed: 05/10/2023]
Abstract
Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS. This review examines recent advances in plant responses to DS to expand our understanding of DS-associated mechanisms. Suboptimal water sources adversely affect crop growth and yields through physical impairments, physiological disturbances, biochemical modifications, and molecular adjustments. To control the devastating effect of DS in crop plants, it is important to understand its consequences, mechanisms, and the agronomic and genetic basis of DS for sustainable production. In addition to plant responses, we highlight several mitigation options such as omics approaches, transgenics breeding, genome editing, and biochemical to mechanical methods (foliar treatments, seed priming, and conventional agronomic practices). Further, we have also presented the scope of conventional and speed breeding platforms in helping to develop the drought-smart future crops. In short, we recommend incorporating several approaches, such as multi-omics, genome editing, speed breeding, and traditional mechanical strategies, to develop drought-smart cultivars to achieve the 'zero hunger' goal.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | | | - Rahat Sharif
- Dep. of Horticulture, College of Horticulture and Plant Protection, Yangzhou Univ., Yangzhou, Jiangsu, 225009, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Rd., Islamabad, 45500, Pakistan
| | - Warda Jabeen
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National Univ. of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney Univ., Penrith, NSW, 2751, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The Univ. of Western Australia, Crawley, Perth, 6009, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch Univ., Murdoch, WA, 6150, Australia
| |
Collapse
|
50
|
Ru C, Hu X, Chen D, Wang W, Zhen J, Song T. Individual and combined effects of heat and drought and subsequent recovery on winter wheat (Triticum aestivum L.) photosynthesis, nitrogen metabolism, cell osmoregulation, and yield formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:222-235. [PMID: 36724706 DOI: 10.1016/j.plaphy.2023.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Extreme temperatures and droughts are considered as the two main factors that limit wheat growth and production. Although responses of wheat plants to heat and drought stress have been extensively investigated, little is known about the extent to which wheat plants can recover after stress relief. In this study, a winter wheat pot experiment was conducted to evaluate the growth, physiological activities, and yield formation responses of wheat to stress and recovery periods under heat stress (36 °C, daily maximum temperature), drought (45-55% of soil water holding capacity), and combined stress conditions. Heat and drought stress significantly reduced photosynthesis, leaf relative water content (LRWC), leaf water potential (LWPnoon), and nitrogen metabolism enzyme activities and increased electrolyte leakage. These parameters showed significant interactions between heat and drought stress. Beneficial osmoregulation of membrane stability was observed in stressed plants because of the accumulation of proline and soluble sugars. Within a range of stresses, the abovementioned physiological processes of individual heat- and drought-stressed plants recovered to levels comparable to those of the control. The recovery capacities of the physiological traits decreased gradually with increasing stress duration, particularly under combined stress. The recovery of LWPnoon and LRWC contributed to the improved photosynthetic performance after stress relief. The combined stress caused greater yield losses than individual heat and drought stress, which was mainly attributed to low levels of thousand grain weight (TGW), the number of grains per ear, and the grain filling rate. After stress relief, the recovery of proline content, glutamine synthetase activity, photosynthetic rate, and LRWC were closely associated with grain yield and thousand grain weight. Collectively, these findings contribute to a better understanding of the coordinated responses of winter wheat during the combined heat and drought stress and recovery periods.
Collapse
Affiliation(s)
- Chen Ru
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Jingbo Zhen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| | - Tianyuan Song
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|