1
|
Chen JT, Chen KJ, Wu KW, Yi SH, Shao JW. Identification and epidemiology of a novel Hepacivirus in domestic ducks in Hunan province, China. Front Vet Sci 2024; 11:1389264. [PMID: 38756518 PMCID: PMC11096584 DOI: 10.3389/fvets.2024.1389264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.
Collapse
Affiliation(s)
- Jin-Tao Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kang-Jing Chen
- School of Medical Technology, Shangqiu Medical College, Shangqiu, China
| | - Kang-Wei Wu
- Department of Microbial Testing, Hengyang Center for Disease Control & Prevention, Hengyang, China
| | - Shan-Hong Yi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Waller SJ, Egan E, Crow S, Charsley A, Lokman PM, Williams EK, Holmes EC, Geoghegan JL. Host and geography impact virus diversity in New Zealand's longfin and shortfin eels. Arch Virol 2024; 169:85. [PMID: 38546898 PMCID: PMC10978610 DOI: 10.1007/s00705-024-06019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
The fishing and aquaculture industry is vital for global food security, yet viral diseases can result in mass fish die-off events. Determining the viromes of traditionally understudied species, such as fish, enhances our understanding of the global virosphere and the factors that influence virome composition and disease emergence. Very little is known about the viruses present in New Zealand's native fish species, including the shortfin eel (Anguilla australis) and the longfin eel (Anguilla dieffenbachii), both of which are fished culturally by Māori (the indigenous population of New Zealand) and commercially. Through a total RNA metatranscriptomic analysis of longfin and shortfin eels across three different geographic locations in the South Island of New Zealand, we aimed to determine whether viruses had jumped between the two eel species and whether eel virome composition was impacted by life stage, species, and geographic location. We identified nine viral species spanning eight different families, thereby enhancing our understanding of eel virus diversity in New Zealand and the host range of these viral families. Viruses of the family Flaviviridae (genus Hepacivirus) were widespread and found in both longfin and shortfin eels, indicative of cross-species transmission or virus-host co-divergence. Notably, both host specificity and geographic location appeared to influence eel virome composition, highlighting the complex interaction between viruses, hosts, and their ecosystems. This study broadens our understanding of viromes in aquatic hosts and highlights the importance of gaining baseline knowledge of fish viral abundance and diversity, particularly in aquatic species that are facing population declines.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Eimear Egan
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Shannan Crow
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Anthony Charsley
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Erica K Williams
- National Institute of Water and Atmospheric Research, Auckland, 1010, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, New Zealand.
| |
Collapse
|
3
|
Harvey E, Mifsud JCO, Holmes EC, Mahar JE. Divergent hepaciviruses, delta-like viruses, and a chu-like virus in Australian marsupial carnivores (dasyurids). Virus Evol 2023; 9:vead061. [PMID: 37941997 PMCID: PMC10630069 DOI: 10.1093/ve/vead061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.
Collapse
Affiliation(s)
- Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, Webster JP, Li YY, Li HT, Vergote V, Maes P, Chong YL, Laudisoit A, Baelo P, Ngoy S, Mbalitini SG, Gembu GC, Musaba AP, Goüy de Bellocq J, Leirs H, Verheyen E, Pybus OG, Katzourakis A, Alagaili AN, Gryseels S, Li YC, Suchard MA, Bletsa M, Lemey P. The evolutionary history of hepaciviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547218. [PMID: 37425679 PMCID: PMC10327235 DOI: 10.1101/2023.06.30.547218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
Collapse
Affiliation(s)
- YQ Li
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - M Ghafari
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AJ Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - I Boonen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - N Amor
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Catalano
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - JP Webster
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - YY Li
- College of Life Sciences, Linyi University, Linyi, 276000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - HT Li
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - V Vergote
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - P Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - YL Chong
- Animal Resource Science and Management Group, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Malaysia
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 999077, China
| | - A Laudisoit
- EcoHealth Alliance, New York, NY 10018, USA
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - P Baelo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - S Ngoy
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - SG Mbalitini
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - GC Gembu
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Akawa P Musaba
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - J Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - H Leirs
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - E Verheyen
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - OG Pybus
- Department of Biology, University of Oxford, Oxford, OX1, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - A Katzourakis
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AN Alagaili
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Gryseels
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - YC Li
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - MA Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - M Bletsa
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - P Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
5
|
Yuan S, Yao XY, Lian CY, Kong S, Shao JW, Zhang XL. Molecular detection and genetic characterization of bovine hepacivirus identified in ticks collected from cattle in Harbin, northeastern China. Front Vet Sci 2023; 10:1093898. [PMID: 36937022 PMCID: PMC10016144 DOI: 10.3389/fvets.2023.1093898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Bovine hepacivirus (BovHepV) is a member of the genus Hepacivirus of the family Flaviviridae, which can cause acute or persistent infections in cattle. Currently, BovHepV strains identified in cattle populations worldwide can be classified into two genotypes with eight subtypes in genotype 1. BovHepV has been identified in a wide geographic area in China. Interestingly, the viral RNA of BovHepV has also been detected in ticks in Guangdong province, China. In this study, Rhipicephalus microplus tick samples were collected in Heilongjiang province, northeastern China, and BovHepV was screened with an overall positive rate of 10.9%. Sequence comparison and phylogenetic analysis showed that the BovHepV strains detected in this study belong to the subtype G. This is the first report about the detection of BovHepV in ticks in Heilongjiang province, China, which expands our knowledge that ticks may be a transmission vector of BovHepV.
Collapse
Affiliation(s)
- Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chun-Yang Lian
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Sa Kong
- Beijing Biomedical Technology Center of Jofunhwa Biotechnology (Nanjing) Co., Ltd., Beijing, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xue-Lian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Xue-Lian Zhang
| |
Collapse
|
6
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
7
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
8
|
Bamford CGG, de Souza WM, Parry R, Gifford RJ. Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae). Virus Evol 2022; 8:veac085. [PMID: 36533146 PMCID: PMC9752770 DOI: 10.1093/ve/veac085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 01/24/2023] Open
Abstract
Flavivirids (family Flaviviridae) are a group of positive-strand ribonucleic acid (RNA) viruses that pose serious risks to human and animal health on a global scale. Here, we use flavivirid-derived deoxyribonucleic acid (DNA) sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution, and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the 'classical flaviviruses' of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in haematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research.
Collapse
|
9
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
10
|
Stapleton JT. Human Pegivirus Type 1: A Common Human Virus That Is Beneficial in Immune-Mediated Disease? Front Immunol 2022; 13:887760. [PMID: 35707535 PMCID: PMC9190258 DOI: 10.3389/fimmu.2022.887760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022] Open
Abstract
Two groups identified a novel human flavivirus in the mid-1990s. One group named the virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence analyses found these two isolates to be the same virus, and subsequent studies found that the virus does not cause hepatitis despite sharing genome organization with hepatitis C virus. Although HGV/GBV-C infection is common and may cause persistent infection in humans, the virus does not appear to directly cause any other known disease state. Thus, the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1 infection associated with prolonged survival in people living with HIV. Co-infection of human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to reduced HIV-related mortality appear to result from a global reduction in immune activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1 immunomodulatory effects are associated with beneficial outcomes in other diseases including Ebola virus infection and possibly graft-versus-host-disease following stem cell transplantation. Better understanding of HPgV-1 immune escape and mechanisms of inflammation may identify novel therapies for immune-based diseases.
Collapse
Affiliation(s)
- Jack T. Stapleton
- Medicine Service, Iowa City Veterans Administration Healthcare, Iowa City, IA, United States
- Departments of Internal Medicine, Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Jack T. Stapleton,
| |
Collapse
|
11
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
12
|
Zhu W, Yang J, Lu S, Huang Y, Jin D, Pu J, Liu L, Li Z, Shi M, Xu J. Novel pegiviruses infecting wild birds and rodents. Virol Sin 2022; 37:208-214. [PMID: 35234631 PMCID: PMC9170927 DOI: 10.1016/j.virs.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Pegivirus (family Flaviviridae) is a genus of small enveloped RNA viruses that mainly causes blood infections in various mammals including human. Herein, we carried out an extensive survey of pegiviruses from a wide range of wild animals mainly sampled in the Qinghai-Tibet Plateau of China. Three novel pegiviruses, namely Passer montanus pegivirus, Leucosticte brandti pegivirus and Montifringilla taczanowskii pegivirus, were identified from different wild birds, and one new rodent pegivirus, namely Phaiomys leucurus pegivirus, was identified from Blyth's vole. Interestingly, the pegiviruses of non-mammalian origin discovered in this study substantially broaden the host range of Pegivirus to avian species. Co-evolutionary analysis showed virus-host co-divergence over long evolutionary timescales, and indicated that pegiviruses largely followed a virus-host co-divergence relationship. Overall, this work extends the biodiversity of the Pegivirus genus to those infecting wild birds and hence revises the host range and evolutionary history of genus Pegivirus. Novel pegiviruses were identified from wild-life animals in Qinghai-Tibet Plateau. The three divergent species of bird pegiviruses substantially broaden the host range of Pegivirus. A long-term evolutionary relationship was established between pegiviruses and their vertebrate hosts.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Shenzhen, 510006, China.
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China; Research Institute of Public Heath, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Chang WS, Rose K, Holmes EC. Meta-transcriptomic analysis of the virome and microbiome of the invasive Indian myna ( Acridotheres tristis) in Australia. One Health 2021; 13:100360. [PMID: 34917744 PMCID: PMC8666354 DOI: 10.1016/j.onehlt.2021.100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Invasive species exert a serious impact on native fauna and flora and have become the target of eradication and management efforts worldwide. Invasive avian species can also be important pathogen reservoirs, although their viromes and microbiomes have rarely been studied. As one of the top 100 invasive pest species globally, the expansion of Indian mynas (Acridotheres tristis) into peri-urban and rural environments, in conjunction with increasing free-ranging avian agricultural practices, may increase the risk of microbial pathogens jumping species boundaries. Herein, we used a meta-transcriptomic approach to explore the microbes present in brain, liver and large intestine of 16 invasive Indian myna birds in Sydney, Australia. From this, we discovered seven novel viruses from the families Adenoviridae, Caliciviridae, Flaviviridae, Parvoviridae and Picornaviridae. Interestingly, each of the novel viruses identified shared less than 80% genomic similarity with their closest relatives from other avian species, indicative of a lack of detectable virus transmission between invasive mynas to native or domestic species. Of note, we also identified two coccidian protozoa, Isospora superbusi and Isospora greineri, from the liver and gut tissues of mynas. Overall, these data demonstrate that invasive mynas can harbor a diversity of viruses and other microorganisms such that ongoing pathogen surveillance in this species is warranted.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karrie Rose
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Shao JW, Guo LY, Yuan YX, Ma J, Chen JM, Liu Q. A Novel Subtype of Bovine Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine Hepacivirus. Viruses 2021; 13:v13112206. [PMID: 34835012 PMCID: PMC8623979 DOI: 10.3390/v13112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. New members of the genus Hepacivirus in the family Flaviviridae have recently been identified in a wide variety of host species worldwide. Similar to the Hepatitis C virus (HCV), bovine hepacivirus (BovHepV) is hepatotropic and causes acute or persistent infections in cattle. BovHepVs are distributed worldwide and classified into two genotypes with seven subtypes in genotype 1. In this study, three BovHepV strains were identified in the samples of ticks sucking blood on cattle in the Guangdong province of China, through unbiased high-throughput sequencing. Genetic analysis revealed the polyprotein-coding gene of these viral sequences herein shared 67.7–84.8% nt identity and 76.1–95.6% aa identity with other BovHepVs identified worldwide. As per the demarcation criteria adopted for the genotyping and subtyping of HCV, these three BovHepV strains belonged to a novel subtype within the genotype 1. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of BovHepV, and genetic recombination was not common among BovHepVs. These results expand the knowledge about the genetic diversity and evolution of BovHepV distributed globally, and also indicate genetically divergent BovHepV strains were co-circulating in cattle populations in China.
Collapse
|
15
|
Porter AF, Cobbin J, Li CX, Eden JS, Holmes EC. Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses 2021; 13:v13112122. [PMID: 34834931 PMCID: PMC8625350 DOI: 10.3390/v13112122] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic next-generation sequencing has transformed the discovery and diagnosis of infectious disease, with the power to characterise the complete 'infectome' (bacteria, viruses, fungi, parasites) of an individual host organism. However, the identification of novel pathogens has been complicated by widespread microbial contamination in commonly used laboratory reagents. Using total RNA sequencing ("metatranscriptomics") we documented the presence of contaminant viral sequences in multiple 'blank' negative control sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several circular replication-associated protein encoding (CRESS) DNA virus-like sequences were recovered in the blank control libraries, as well as contaminating sequences from the Totiviridae, Tombusviridae and Lentiviridae families of RNA virus. These data suggest that viral contamination of common laboratory reagents is likely commonplace and can comprise a wide variety of viruses.
Collapse
Affiliation(s)
- Ashleigh F. Porter
- The Peter Doherty Institute of Immunity and Infection, Department of Microbiology and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna Cobbin
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ci-Xiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
| | - John-Sebastian Eden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
16
|
Paraskevopoulou S, Käfer S, Zirkel F, Donath A, Petersen M, Liu S, Zhou X, Drosten C, Misof B, Junglen S. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol 2021; 7:veab030. [PMID: 34026271 PMCID: PMC8129625 DOI: 10.1093/ve/veab030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects are the most diversified and species-rich group of animals and harbor an immense diversity of viruses. Several taxa in the flavi-like superfamily, such as the genus Flavivirus, are associated with insects; however, systematic studies on insect virus genetic diversity are lacking, limiting our understanding of the evolution of the flavi-like superfamily. Here, we examined the diversity of flavi-like viruses within the most complete and up-to-date insect transcriptome collection comprising 1,243 insect species by employing a Flaviviridae RdRp profile hidden Markov model search. We identified seventy-six viral sequences in sixty-one species belonging to seventeen insect, one entognathan, and one arachnidan orders. Phylogenetic analyses revealed that twenty-seven sequences fell within the Flaviviridae phylogeny but did not group with established genera. Despite the large diversity of insect hosts studied, we only detected one virus in a blood-feeding insect, which branched within the genus Flavivirus, indicating that this genus likely diversified only in hematophagous arthropods. Nine new jingmenviruses with novel host associations were identified. One of the jingmenviruses established a deep rooting lineage additional to the insect- and tick-associated clades. Segment co-segregation phylogenies support the separation of tick- and insect-associated groups within jingmenviruses, with evidence for segment reassortment. In addition, fourteen viruses grouped with unclassified flaviviruses encompassing genome length of up to 20 kb. Species-specific clades for Hymenopteran- and Orthopteran-associated viruses were identified. Forty-nine viruses populated three highly diversified clades in distant relationship to Tombusviridae, a plant-infecting virus family, suggesting the detection of three previously unknown insect-associated families that contributed to tombusvirus evolution.
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Simon Käfer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Malte Petersen
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, 17 Qinghua E Rd, Haidian District, Beijing, China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 17 Qinghua E Rd, Haidian District, Beijing, China
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), partner site Charité, Chariteplatz 1, 10117 Berlin, Germany
| | - Bernhard Misof
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), partner site Charité, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Alfsnes K, Lagerqvist N, Vene S, Bohlin J, Verner-Carlsson J, Ekqvist D, Bråve A, Holmes EC, Shi W, Pettersson JHO. Retrospective meta-transcriptomic identification of severe dengue in a traveller returning from Africa to Sweden, 1990. One Health 2021; 12:100217. [PMID: 33553563 PMCID: PMC7851179 DOI: 10.1016/j.onehlt.2021.100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens associated with haemorrhagic fever commonly have zoonotic origins. The first documented imported case of likely viral severe haemorrhagic fever in Sweden occurred in 1990. Despite extensive study, no aetiological agent was identified. Following retrospective investigation with total RNA-sequencing of samples collected between 7 and 36 days from onset of symptoms we identified dengue virus 3 (DENV-3) and a human pegivirus (HPgV). We conclude that the patient likely suffered from haemorrhagic symptoms due to an atypical severe and undiagnosed dengue infection.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Lagerqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82 Solna, Sweden
| | - Sirkka Vene
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82 Solna, Sweden
| | - Jon Bohlin
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - David Ekqvist
- Department of Infectious Diseases, University Hospital Linköping, Sweden
| | - Andreas Bråve
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82 Solna, Sweden
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - John H-O Pettersson
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82 Solna, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| |
Collapse
|
18
|
Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja J, Makundi R, Meheretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Těšíková J, Wollants E, Van Ranst M, Pybus OG, Drexler JF, Verheyen E, Leirs H, Gouy de Bellocq J, Lemey P. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol 2021; 7:veab036. [PMID: 34221451 PMCID: PMC8242229 DOI: 10.1093/ve/veab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
Collapse
Affiliation(s)
- Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Antonios Fikatas
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Rhodes Makundi
- Pest Management Center -Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yonas Meheretu
- Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Frederik Van de Perre
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Natalie Van Houtte
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Jan Felix Drexler
- Charite-Universitatsmedizin Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Erik Verheyen
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny-Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|