1
|
Duyvestyn JM, Bredenbeek PJ, Gruters MJ, Tas A, Nelemans T, Kikkert M, van Hemert MJ. Attenuating Mutations in Usutu Virus: Towards Understanding Orthoflavivirus Virulence Determinants and Live Attenuated Vaccine Design. Vaccines (Basel) 2025; 13:495. [PMID: 40432107 PMCID: PMC12115599 DOI: 10.3390/vaccines13050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Understanding virulence determinants can inform safer and more efficacious live attenuated vaccine design. However, applying this knowledge across related viruses does not always result in conserved phenotypes from similar mutants. METHODS Using Usutu virus (USUV), an emerging orthoflavivirus spreading through Europe, we assessed whether the attenuating effect of the mutations described for related orthoflaviviruses is conserved. Candidate attenuating mutations were selected based on previous studies in other orthoflaviviruses and incorporated into USUV. RESULTS Nine variants, with mutations in the USUV envelope, non-structural (NS) proteins NS1, NS2A, or NS4B were stable and selected for further characterisation. The variants with an attenuating phenotype in cell culture were then compared to the wild-type virus in an Ifnar-/- mouse model. Mutations of the envelope glycosylation sites and glycosaminoglycan binding sites, which were recognised as more-conserved mechanisms of orthoflavivirus attenuation, were attenuating in USUV as well. However, not all the mutations explored in the USUV non-structural proteins exhibited an attenuated phenotype. Instead, the attenuation was either less pronounced, or there was no change in phenotype relative to the wild-type virus at all. CONCLUSIONS In addition to improving our understanding of USUV virulence determinants, these results add to a growing body of literature highlighting the most promising mechanisms to target for the design of safe live attenuated vaccines against emerging orthoflaviviruses.
Collapse
|
2
|
Suzuki Okutani M, Okamura S, Gis T, Sasaki H, Lee S, Kashiwabara A, Goto S, Matsumoto M, Yamawaki M, Miyazaki T, Nakagawa T, Ikawa M, Kamitani W, Takekawa S, Yamanishi K, Ebina H. Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple attenuation mechanisms. eLife 2025; 13:RP97532. [PMID: 39932490 PMCID: PMC11813227 DOI: 10.7554/elife.97532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
mRNA vaccines against SARS-CoV-2 were rapidly developed and were effective during the pandemic. However, some limitations remain to be resolved, such as the short-lived induced immune response and certain adverse effects. Therefore, there is an urgent need to develop new vaccines that address these issues. While live-attenuated vaccines are a highly effective modality, they pose a risk of adverse effects, including virulence reversion. In the current study, we constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring virulence-attenuating mutations in the NSP14, NSP1, spike, and ORF7-8 coding regions. Intranasal inoculation with BK2102 induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the lungs, leading to protection against a SARS-CoV-2 D614G and an Omicron BA.5 strains. The neutralizing antibodies induced by BK2102 persisted for up to 364 days, which indicated that they confer long-term protection against infection. Furthermore, we confirmed the safety of BK2102 using transgenic (Tg) mice expressing human ACE2 (hACE2) that are highly susceptible to SARS-CoV-2. BK2102 did not kill the Tg mice, even when virus was administered at a dose of 106 plaque-forming units (PFUs), while 102 PFU of the D614G strain or an attenuated strain lacking the furin cleavage site of the spike was sufficient to kill mice. These results suggest that BK2102 is a promising live-vaccine candidate strain that confers long-term protection without significant virulence.
Collapse
MESH Headings
- Animals
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/pathogenicity
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mesocricetus
- Humans
- Mice, Transgenic
- Immunogenicity, Vaccine
- Cricetinae
- Female
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Mie Suzuki Okutani
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Tang Gis
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hitomi Sasaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Suni Lee
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Akiho Kashiwabara
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Simon Goto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mai Matsumoto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mayuko Yamawaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Toshiaki Miyazaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Tatsuya Nakagawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of MedicineMaebashiJapan
| | - Shiro Takekawa
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Koichi Yamanishi
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka UniversitySuitaJapan
| |
Collapse
|
3
|
Cheng Z, Ma J, Zhao C. Advantages of Broad-Spectrum Influenza mRNA Vaccines and Their Impact on Pulmonary Influenza. Vaccines (Basel) 2024; 12:1382. [PMID: 39772044 PMCID: PMC11680418 DOI: 10.3390/vaccines12121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Influenza poses a significant global health challenge due to its rapid mutation and antigenic variability, which often leads to seasonal epidemics and frequent outbreaks. Traditional vaccines struggle to offer comprehensive protection because of mismatches with circulating viral strains. The development of a broad-spectrum vaccine is therefore crucial. This paper explores the potential of mRNA vaccine technology to address these challenges by providing a swift, adaptable, and broad protective response against evolving influenza strains. We detail the mechanisms of antigenic variation in influenza viruses and discuss the rapid design and production, enhanced immunogenicity, encoding of multiple antigens, and safety and stability of mRNA vaccines compared to traditional methods. By leveraging these advantages, mRNA vaccines represent a revolutionary approach in influenza prevention, potentially offering broad-spectrum protection and significantly improving global influenza management and response strategies.
Collapse
Affiliation(s)
- Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| |
Collapse
|
4
|
Tobin GJ, Tobin JK, Wiggins TJ, Bushnell RV, Kozar AV, Maale MF, MacLeod DA, Meeks HN, Daly MJ, Dollery SJ. A highly immunogenic UVC inactivated Sabin based polio vaccine. NPJ Vaccines 2024; 9:217. [PMID: 39543143 PMCID: PMC11564903 DOI: 10.1038/s41541-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Despite their efficacy, the currently available polio vaccines, oral polio vaccine (OPV) and inactivated polio vaccine (IPV), possess inherent flaws posing significant challenges in the global eradication of polio. OPV, which uses live Sabin attenuated strains, carries the risk of reversion to pathogenic forms and causing vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polio disease (VDPD) in incompletely vaccinated or immune-compromised individuals. Conventional IPVs, which are non-replicative, are more expensive to manufacture and introduce biohazard and biosecurity risks due to the use of neuropathogenic strains in production. These types of limitations have led to a call by the Global Polio Eradication Initiative and others for the development of updated polio vaccines. We are developing a novel Ultraviolet-C radiation (UVC) inactivation method that preserves immunogenicity and is compatible with attenuated strains of polio. The method incorporates an antioxidant complex, manganese-decapeptide-phosphate (MDP), derived from the radioresistant bacterium Deinococcus radiodurans. The inclusion of MDP protects the immunogenic neutralizing epitopes from damage during UVC inactivation. The novel vaccine candidate, ultraIPVTM, produced using these methods demonstrates three crucial attributes: complete inactivation, which precludes the risk of vaccine-associated disease; use of non-pathogenic strains to reduce production risks; and significantly enhanced yield of doses per milligram of input virus, which could increase vaccine supply while reducing costs. Additionally, ultraIPVTM retains antigenicity post-freeze-thaw cycles, a testament to its robustness.
Collapse
Affiliation(s)
- Gregory J Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| | - John K Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | | | - Ruth V Bushnell
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Arina V Kozar
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Matthew F Maale
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - David A MacLeod
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Heather N Meeks
- Defense Threat Reduction Agency, 8725 John J. Kingman Rd #6201,Ft, Belvoir, VA, 22060, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., 20814, Bethesda, MD, USA
| | - Stephen J Dollery
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| |
Collapse
|
5
|
Miller LM, Draper BE, Wang JCY, Jarrold MF. Charge Detection Mass Spectrometry Reveals Favored Structures in the Assembly of Virus-Like Particles: Polymorphism in Norovirus GI.1. Anal Chem 2024; 96:13150-13157. [PMID: 39074122 DOI: 10.1021/acs.analchem.4c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The main capsid protein (CP) of norovirus, the leading cause of gastroenteritis, is expected to self-assemble into virus-like particles with the same structure as the wild-type virus, a capsid with 180 CPs in a T = 3 icosahedron. Using charge detection mass spectrometry (CD-MS), we find that the norovirus GI.1 variant is structurally promiscuous, forming a wide variety of well-defined structures, some that are icosahedral capsids and others that are not. The structures that are present evolve with time and vary with solution conditions. The presence of icosahedral T = 3 and T = 4 capsids (240 CPs) under some conditions was confirmed by cryo-electron microscopy (cryo-EM). The cryo-EM studies also confirmed the presence of an unexpected prolate geometry based on an elongated T = 4 capsid with 300 CPs. In addition, CD-MS measurements indicate the presence of well-defined peaks with masses corresponding to 420, 480, 600, and 700 CPs. The peak corresponding to 420 CPs is probably due to an icosahedral T = 7 capsid, but this could not be confirmed by cryo-EM. It is possible that the T = 7 particles are too fragile to survive vitrification. There are no mass peaks associated with the T = 9 and T = 12 icosahedra with 540 and 720 CPs. The larger structures with 480, 600, and 700 CPs are not icosahedral; however, their measured charges suggest that they are hollow shells. The use of CD-MS to monitor virus-like particles assembly may have important applications in vaccine development and quality control.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc, 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
7
|
Snyder AJ, Agbemabiese CA, Patton JT. Production of OSU G5P[7] Porcine Rotavirus Expressing a Fluorescent Reporter via Reverse Genetics. Viruses 2024; 16:411. [PMID: 38543776 PMCID: PMC10974435 DOI: 10.3390/v16030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.
Collapse
Affiliation(s)
- Anthony J. Snyder
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
| | - Chantal A. Agbemabiese
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra 00233, Ghana
| | - John T. Patton
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Simon Hall 011, Bloomington, IN 47405, USA; (A.J.S.); (C.A.A.)
| |
Collapse
|
8
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
9
|
Meseko C, Ameji NO, Kumar B, Culhane M. Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice. Arch Virol 2023; 168:263. [PMID: 37775596 DOI: 10.1007/s00705-023-05888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/01/2023]
Abstract
Since 2006, highly pathogenic avian influenza (HPAI) subtypes H5Nx have adversely affected poultry production in Nigeria. Successive waves of infections in the last two decades have raised concerns about the ability to contain infections by biosecurity alone, and evidence of recurrent outbreaks suggests a need for adoption of additional control measures such as vaccination. Although vaccination can be used to control virus spread and reduce the morbidity and mortality caused by HPAI, no country using vaccination alone as a control measure against HPAI has been able to eliminate or prevent re-infection. To inform policy in Nigeria, we examined the intricacies of HPAI vaccination, government regulations, and scientific data regarding what kind of vaccines can be used based on subtype, whether inactivated or live attenuated should be used, when to deliver vaccine either proactively or reactively, where to apply vaccination either in disease control zones, regionally, or nationally, and how to vaccinate the targeted poultry population for optimum success. A resurgence of HPAI outbreaks in Nigeria since 2018, after the country was declared free of the epidemic following the first outbreak in 2006, has led to enhanced intervention. Controlled vaccination entails monitoring the application of vaccines, the capacity to differentiate vaccinated from infected (DIVA) flocks, and assessing seroconversion or other immune correlates of protection. Concurrent surveillance for circulating avian influenza virus (AIV) and analyzing AIV isolates obtained via surveillance efforts for genetic and/or antigenic mismatch with vaccine strains are also important. Countries with high investment in commercial poultry farms like Nigeria may identify and zone territories where vaccines can be applied. This may include ring vaccination to control HPAI in areas or production systems at risk of infection. Before adoption of vaccination as an additional control measure on commercial poultry farms, two outcomes must be considered. First, vaccination is an admission of endemicity. Secondly, vaccinated flocks may no longer be made accessible to international poultry markets in accordance with WOAH trade regulations. Vaccination must therefore be approached with utmost caution and be guided by science-based evidence throughout the implementation strategy after thorough risk assessment. Influenza vaccine research, development, and controlled application in addition to biosecurity may be a precautionary measure in the evolving HPAI scenario in Nigeria.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza and Transboundary Diseases, National Veterinary Research Institute, vom plateau, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria.
| | - Negedu Onogu Ameji
- Department of Veterinary Medicine, Surgery and Radiology, University of Jos, Jos, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
10
|
Tretyakova I, Joh J, Lukashevich IS, Alejandro B, Gearon M, Chung D, Pushko P. Live-Attenuated CHIKV Vaccine with Rearranged Genome Replicates in vitro and Induces Immune Response in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558061. [PMID: 37745520 PMCID: PMC10516039 DOI: 10.1101/2023.09.16.558061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. There is no approved vaccine and CHIKV is considered a priority pathogen by CEPI and WHO. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo . Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome for improved safety. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. To secure safety profile, attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
|
11
|
Maganga GD, Labouba I, Milendz Ikapi SZ, Nkili-Meyong AA, Ngonga Dikongo AM, Boundenga L, Ngoubangoye B, Memvie C, Kumulungui BS. Molecular Characterization of Canine Parvovirus Variants CPV-2a and CPV-2c, Associated with Vaccinated Dogs at Libreville, Gabon. Viruses 2023; 15:v15051169. [PMID: 37243255 DOI: 10.3390/v15051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The first detection of canine parvovirus type-2 (CPV-2) was in the early 1970s, when it was known to cause severe gastroenteritis in dogs. However, it has evolved over the years into CPV-2a within 2 years, into CPV-2b after 14 years, into CPV-2c after 16 years and more recently CPV-2a-, 2b- and 2c-like variants reported in 2019, with a global distribution. Reports on the molecular epidemiology of this virus are missing in most African countries. The report of clinical cases among vaccinated dogs in Libreville in Gabon triggered the execution of this study. The objective of this study was to characterize circulating variants from dogs showing clinical signs suggestive of CPV that were examined by a veterinarian. A total of eight (8) fecal swab samples were collected, and all had positive PCR results. Sequencing, Blast analysis and assembly of two whole genomes and eight partial VP2 sequences were performed, and the sequences submitted to GenBank. Genetic characterization revealed the presence of CPV-2a and CPV-2c variants with predominance of the former. Phylogenetically, the Gabonese CPVs formed distinct groups similar to Zambian CPV-2c and Australian CPV-2a sequences. The antigenic variants CPV-2a and CPV-2c have not yet been reported in Central Africa. However, these CPV-2 variants circulate in young, vaccinated dogs in Gabon. These results suggest additional epidemiological and genomic studies are required in order to evaluate the occurrence of different CPV variants in Gabon and effectiveness of the commercial vaccines used against protoparvovirus in the country.
Collapse
Affiliation(s)
- Gael Darren Maganga
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
- Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 913, Gabon
| | - Ingrid Labouba
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Serda Zita Milendz Ikapi
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | | | | | - Larson Boundenga
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Barthelemy Ngoubangoye
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | | | - Brice Serge Kumulungui
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
- Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), Université des Sciences et Techniques de Masuku (USTM), Franceville BP 913, Gabon
| |
Collapse
|
12
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Evaluation and Determination of a Suitable Passage Number of Codon Pair Deoptimized PRRSV-1 Vaccine Candidate in Pigs. Viruses 2023; 15:v15051071. [PMID: 37243157 DOI: 10.3390/v15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is major economic problem given its effects on swine health and productivity. Therefore, we evaluated the genetic stability of a codon pair de-optimized (CPD) PRRSV, E38-ORF7 CPD, as well as the master seed passage threshold that elicited an effective immune response in pigs against heterologous virus challenge. The genetic stability and immune response of every 10th passage (out of 40) of E38-ORF7 CPD was analyzed through whole genome sequencing and inoculation in 3-week-old pigs. E38-ORF7 CPD passages were limited to 20 based on the full-length mutation analysis and animal test results. After 20 passages, the virus could not induce antibodies to provide effective immunity and mutations accumulated in the gene, which differed from the CPD gene, presenting a reason for low infectivity. Conclusively, the optimal passage number of E38-ORF7 CPD is 20. As a vaccine, this may help overcome the highly diverse PRRSV infection with substantially enhanced genetic stability.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Veterinary Development, BioPOA, Hwaseong-si 18469, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
13
|
Griffiths ME, Meza DK, Haydon DT, Streicker DG. Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proc Natl Acad Sci U S A 2023; 120:e2216667120. [PMID: 36877838 PMCID: PMC10089182 DOI: 10.1073/pnas.2216667120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Transmissible vaccines are an emerging biotechnology that hold prospects to eliminate pathogens from wildlife populations. Such vaccines would genetically modify naturally occurring, nonpathogenic viruses ("viral vectors") to express pathogen antigens while retaining their capacity to transmit. The epidemiology of candidate viral vectors within the target wildlife population has been notoriously challenging to resolve but underpins the selection of effective vectors prior to major investments in vaccine development. Here, we used spatiotemporally replicated deep sequencing to parameterize competing epidemiological mechanistic models of Desmodus rotundus betaherpesvirus (DrBHV), a proposed vector for a transmissible vaccine targeting vampire bat-transmitted rabies. Using 36 strain- and location-specific time series of prevalence collected over 6 y, we found that lifelong infections with cycles of latency and reactivation, combined with a high R0 (6.9; CI: 4.39 to 7.85), are necessary to explain patterns of DrBHV infection observed in wild bats. These epidemiological properties suggest that DrBHV may be suited to vector a lifelong, self-boosting, and transmissible vaccine. Simulations showed that inoculating a single bat with a DrBHV-vectored rabies vaccine could immunize >80% of a bat population, reducing the size, frequency, and duration of rabies outbreaks by 50 to 95%. Gradual loss of infectious vaccine from vaccinated individuals is expected but can be countered by inoculating larger but practically achievable proportions of bat populations. Parameterizing epidemiological models using accessible genomic data brings transmissible vaccines one step closer to implementation.
Collapse
Affiliation(s)
- Megan E. Griffiths
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Diana K. Meza
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel T. Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| | - Daniel G. Streicker
- Medical Research Council–University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, United Kingdom
| |
Collapse
|
14
|
Evaluation of Potential In Vitro Recombination Events in Codon Deoptimized FMDV Strains. Viruses 2023; 15:v15030670. [PMID: 36992379 PMCID: PMC10052203 DOI: 10.3390/v15030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Codon deoptimization (CD) has been recently used as a possible strategy to derive foot-and-mouth disease (FMD) live-attenuated vaccine (LAV) candidates containing DIVA markers. However, reversion to virulence, or loss of DIVA, from possible recombination with wild-type (WT) strains has yet to be analyzed. An in vitro assay was developed to quantitate the levels of recombination between WT and a prospective A24-P2P3 partially deoptimized LAV candidate. By using two genetically engineered non-infectious RNA templates, we demonstrate that recombination can occur within non-deoptimized viral genomic regions (i.e., 3′end of P3 region). The sequencing of single plaque recombinants revealed a variety of genome compositions, including full-length WT sequences at the consensus level and deoptimized sequences at the sub-consensus/consensus level within the 3′end of the P3 region. Notably, after further passage, two recombinants that contained deoptimized sequences evolved to WT. Overall, recombinants featuring large stretches of CD or DIVA markers were less fit than WT viruses. Our results indicate that the developed assay is a powerful tool to evaluate the recombination of FMDV genomes in vitro and should contribute to the improved design of FMDV codon deoptimized LAV candidates.
Collapse
|
15
|
The Development of a Real-Time PCR Assay for Specific Detection of the NISKHI Sheep Pox Vaccine Virus Strain DNA. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sheep pox (SPP) constitutes a global animal health scourge, despite the numerous efforts targeting the eradication of the disease implemented in affected countries. An efficient control and eradication strategy incorporates the use of live attenuated vaccines, which in turn requires a method for differentiation between vaccinated and infected sheep. The NISKHI live attenuated SPP vaccine (LAV) is abundantly used in Russia, Kazakhstan and other Central Asian countries. This study describes the development and evaluation of a real-time PCR with a high-resolution melting assay, capable of differentiating the NISKHI vaccine virus from circulating virulent field strains. The RNA polymerase subunit RPO132 gene contains a unique single nucleotide polymorphism (SNP) capable of altering the melting curves of amplicons from LAV and virulent field isolates circulating in the region. The melting temperature (Tm) of field isolates ranged from 75.47 °C ± 0.04 to 75.86 °C ± 0.08, while the vaccine strain averaged 76.46 °C ± 0.12. Subsequent evaluation of this assay demonstrated that the recent SPP outbreaks in central Russia may be attributed to virulent field isolates. This robust assay was proven to consistently and differentially detect the NISKHI LAV strain when analyzing clinical samples from affected sheep.
Collapse
|
16
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Vaccines platforms and COVID-19: what you need to know. Trop Dis Travel Med Vaccines 2022; 8:20. [PMID: 35965345 PMCID: PMC9537331 DOI: 10.1186/s40794-022-00176-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The novel SARS-CoV-2, responsible for the COVID-19 pandemic, is the third zoonotic coronavirus since the beginning of the 21 first century, and it has taken more than 6 million human lives because of the lack of immunity causing global economic losses. Consequently, developing a vaccine against the virus represents the fastest way to finish the threat and regain some "normality." OBJECTIVE Here, we provide information about the main features of the most important vaccine platforms, some of them already approved, to clear common doubts fostered by widespread misinformation and to reassure the public of the safety of the vaccination process and the different alternatives presented. METHODS Articles published in open access databases until January 2022 were identified using the search terms "SARS-CoV-2," "COVID-19," "Coronavirus," "COVID-19 Vaccines," "Pandemic," COVID-19, and LMICs or their combinations. DISCUSSION Traditional first-generation vaccine platforms, such as whole virus vaccines (live attenuated and inactivated virus vaccines), as well as second-generation vaccines, like protein-based vaccines (subunit and viral vector vaccines), and third-generation vaccines, such as nanoparticle and genetic vaccines (mRNA vaccines), are described. CONCLUSIONS SARS-CoV-2 sequence information obtained in a record time provided the basis for the fast development of a COVID-19 vaccine. The adaptability characteristic of the new generation of vaccines is changing our capability to react to emerging threats to future pandemics. Nevertheless, the slow and unfair distribution of vaccines to low- and middle-income countries and the spread of misinformation are a menace to global health since the unvaccinated will increase the chances for resurgences and the surge of new variants that can escape the current vaccines.
Collapse
|
18
|
Griffiths ME, Broos A, Bergner LM, Meza DK, Suarez NM, da Silva Filipe A, Tello C, Becker DJ, Streicker DG. Longitudinal deep sequencing informs vector selection and future deployment strategies for transmissible vaccines. PLoS Biol 2022; 20:e3001580. [PMID: 35439242 PMCID: PMC9017877 DOI: 10.1371/journal.pbio.3001580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination is a powerful tool in combating infectious diseases of humans and companion animals. In most wildlife, including reservoirs of emerging human diseases, achieving sufficient vaccine coverage to mitigate disease burdens remains logistically unattainable. Virally vectored "transmissible" vaccines that deliberately spread among hosts are a potentially transformative, but still theoretical, solution to the challenge of immunising inaccessible wildlife. Progress towards real-world application is frustrated by the absence of frameworks to guide vector selection and vaccine deployment prior to major in vitro and in vivo investments in vaccine engineering and testing. Here, we performed deep sequencing on field-collected samples of Desmodus rotundus betaherpesvirus (DrBHV), a candidate vector for a transmissible vaccine targeting vampire bat-transmitted rabies. We discovered 11 strains of DrBHV that varied in prevalence and geographic distribution across Peru. The phylogeographic structure of DrBHV strains was predictable from both host genetics and landscape topology, informing long-term DrBHV-vectored vaccine deployment strategies and identifying geographic areas for field trials where vaccine spread would be naturally contained. Multistrain infections were observed in 79% of infected bats. Resampling of marked individuals over 4 years showed within-host persistence kinetics characteristic of latency and reactivation, properties that might boost individual immunity and lead to sporadic vaccine transmission over the lifetime of the host. Further, strain acquisitions by already infected individuals implied that preexisting immunity and strain competition are unlikely to inhibit vaccine spread. Our results support the development of a transmissible vaccine targeting a major source of human and animal rabies in Latin America and show how genomics can enlighten vector selection and deployment strategies for transmissible vaccines.
Collapse
Affiliation(s)
- Megan E. Griffiths
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alice Broos
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Bergner
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Diana K. Meza
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Nicolas M. Suarez
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima, Peru
- Yunkawasi, Lima, Peru
| | - Daniel J. Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Daniel G. Streicker
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Tretyakova I, Tomai M, Vasilakos J, Pushko P. Live-Attenuated VEEV Vaccine Delivered by iDNA Using Microneedles Is Immunogenic in Rabbits. FRONTIERS IN TROPICAL DISEASES 2022; 3:813671. [PMID: 37854093 PMCID: PMC10583749 DOI: 10.3389/fitd.2022.813671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Effective and simple delivery of DNA vaccines remains a key to successful clinical applications. Previously, we developed a novel class of DNA vaccines, sometimes called iDNA, which encodes the whole live-attenuated vaccine viruses. Compared to a standard DNA vaccine, an iDNA vaccine required a low dose to launch a live-attenuated vaccine in vitro or in vivo. The goal of this pilot study was to investigate if iDNA vaccine encoding live-attenuated Venezuelan equine encephalitis virus (VEEV) can be efficiently delivered in vivo by a microneedle device using a single-dose vaccination with naked iDNA plasmid. For this purpose, we used pMG4020 plasmid encoding live-attenuated V4020 vaccine of VEE virus. The V4020 virus contains structural gene rearrangement, as well as attenuating mutations genetically engineered to prevent reversion mutations. The pMG4020 was administered to experimental rabbits by using a hollow microstructured transdermal system (hMTS) microneedle device. No adverse events to vaccination were noted. Animals that received pMG4020 plasmid have successfully seroconverted, with high plaque reduction neutralization test (PRNT) antibody titers, similar to those observed in animals that received V4020 virus in place of the pMG4020 iDNA plasmid. We conclude that naked iDNA vaccine can be successfully delivered in vivo by using a single-dose vaccination with a microneedle device.
Collapse
|
20
|
Tuteja D, Banu K, Mondal B. Canine parvovirology - A brief updated review on structural biology, occurrence, pathogenesis, clinical diagnosis, treatment and prevention. Comp Immunol Microbiol Infect Dis 2022; 82:101765. [PMID: 35182832 DOI: 10.1016/j.cimid.2022.101765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Canine parvovirus (CPV) is a major cause of hemorrhagic diarrhea and mortality in puppies worldwide. There are 2 types of Parvovirus which affects canines: Canine parvovirus 2 (CPV-2) and Canine parvovirus 1 (CPV-1) or the Minute Virus of Canine (MVC). CPV-2 originated from Feline panleukopenia virus and has undergone genetic variation to give rise to its three variants (CPV-2a, CPV-2b and CPV-2c). Amino acid substitutions in VP2 capsid protein have led virus to adapt new host range. The original CPV-2 was known to be dominant in Japan, Belgium, Australia as well as USA and later circulated throughout the world. Clinically, CPV-2 infection is characterized by anorexia, lethargy, depression, vomiting, leukopenia and severe hemorrhagic diarrhea. Several diagnostic tests have been developed to detect parvoviral infections which are categorized into immunological tests (latex agglutination test, SIT-SAT and ELISA etc.) and molecular based tests (PCR, mPCR and RT-PCR etc.). To control and manage the disease several treatments like fluid therapies, antibiotics, and adjunctive treatments are available and some are in various stages of development. Apart from this, many vaccines are also commercially available and some are in developmental stages. The present review contains detailed information regarding structural biology, occurrence, pathogenesis, clinical diagnosis, treatments and prevention in order to understand the need and the growing importance of CPV-2.
Collapse
Affiliation(s)
- Deepika Tuteja
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India
| | - Kauser Banu
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India
| | - Bhairab Mondal
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India.
| |
Collapse
|
21
|
Simnani FZ, Singh D, Kaur R. COVID-19 phase 4 vaccine candidates, effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and nano-based vaccine platforms: a review. 3 Biotech 2022; 12:15. [PMID: 34926119 PMCID: PMC8665991 DOI: 10.1007/s13205-021-03076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has endangered world health and the economy. As the number of cases is increasing, different companies have started developing potential vaccines using both traditional and nano-based platforms to overcome the pandemic. Several countries have approved a few vaccine candidates for emergency use authorization (EUA), showing significant effectiveness and inducing a robust immune response. Oxford-AstraZeneca, Pfizer-BioNTech's BNT162, Moderna's mRNA-1273, Sinovac's CoronaVac, Johnson & Johnson, Sputnik-V, and Sinopharm's vaccine candidates are leading the race. However, the SARS-CoV-2 is constantly mutating, making the vaccines less effective, possibly by escaping immune response for some variants. Besides, some EUA vaccines have been reported to induce rare side effects such as blood clots, cardiac injury, anaphylaxis, and some neurological effects. Although the COVID-19 vaccine candidates promise to overcome the pandemic, a more significant and clear understanding is needed. In this review, we brief about the clinical trial of some leading candidates, their effectiveness, and their neutralizing effect on SARS-CoV-2 variants. Further, we have discussed the rare side effects, different traditional and nano-based platforms to understand the scope of future development.
Collapse
Affiliation(s)
| | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Ramneet Kaur
- Department of Life Sciences, RIMT University, Ludhiana, Punjab India
| |
Collapse
|
22
|
Barasona JA, Cadenas-Fernández E, Kosowska A, Barroso-Arévalo S, Rivera B, Sánchez R, Porras N, Gallardo C, Sánchez-Vizcaíno JM. Safety of African Swine Fever Vaccine Candidate Lv17/WB/Rie1 in Wild Boar: Overdose and Repeated Doses. Front Immunol 2021; 12:761753. [PMID: 34917082 PMCID: PMC8669561 DOI: 10.3389/fimmu.2021.761753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
African swine fever (ASF) is a highly lethal infectious disease that affects domestic pigs and wild boar. Outbreaks of ASF have grown considerably in the last decade causing important economic consequences for the swine industry. Its control is hampered by the lack of an effective treatment or vaccine. In Europe, the wild boar is a key wild reservoir for ASF. The results of the oral vaccination trial of wild boar with Lv17/WB/Rie1 are hope for this problem. However, this vaccine candidate has certain safety concerns, since it is a naturally attenuated vaccine. Therefore, the current study aims to evaluate the safety of this vaccine candidate in terms of overdose (high dose) and repeated doses (revaccination) in wild boar. Low-dose orally vaccinated animals developed only a slight transient fever after vaccination and revaccination. This was also the case for most of the high-dose vaccinated wild boar, except for one of them which succumbed after revaccination. Although this fatality was related to hierarchical fights between animals, we consider that further studies are required for clarification. Considering these new results and the current epidemiological situation of ASF in wild boar, this vaccine prototype is a promising tool for the control of the disease in these wild populations, although further studies are needed.
Collapse
Affiliation(s)
- Jose A Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Rocío Sánchez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Néstor Porras
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
23
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
24
|
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. NANO TODAY 2021; 40:101280. [PMID: 34512795 PMCID: PMC8418322 DOI: 10.1016/j.nantod.2021.101280] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
25
|
Daemi HB, Kulyar MFEA, He X, Li C, Karimpour M, Sun X, Zou Z, Jin M. Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies. Viruses 2021; 13:1145. [PMID: 34203647 PMCID: PMC8232279 DOI: 10.3390/v13061145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.
Collapse
Affiliation(s)
- Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | | | - Xinlin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Morteza Karimpour
- Department of Biology, Azad University of Rasht, Rasht 4147654919, Iran;
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
26
|
Jiang J. Cell-penetrating Peptide-mediated Nanovaccine Delivery. Curr Drug Targets 2021; 22:896-912. [PMID: 33538670 DOI: 10.2174/1389450122666210203193225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Vaccination with small antigens, such as proteins, peptides, or nucleic acids, is used to activate the immune system and trigger the protective immune responses against a pathogen. Currently, nanovaccines are undergoing development instead of conventional vaccines. The size of nanovaccines is in the range of 10-500 nm, which enables them to be readily taken up by cells and exhibit improved safety profiles. However, low-level immune responses, as the removal of redundant pathogens, trigger counter-effective activation of the immune system invalidly and present a challenging obstacle to antigen recognition and its uptake via antigen-presenting cells (APCs). In addition, toxicity can be substantial. To overcome these problems, a variety of cell-penetrating peptide (CPP)-mediated vaccine delivery systems based on nanotechnology have been proposed, most of which are designed to improve the stability of antigens in vivo and their delivery into immune cells. CPPs are particularly attractive components of antigen delivery. Thus, the unique translocation property of CPPs ensures that they remain an attractive carrier with the capacity to deliver cargo in an efficient manner for the application of drugs, gene transfer, protein, and DNA/RNA vaccination delivery. CPP-mediated nanovaccines can enhance antigen uptake, processing, and presentation by APCs, which are the fundamental steps in initiating an immune response. This review describes the different types of CPP-based nanovaccines delivery strategies.
Collapse
Affiliation(s)
- Jizong Jiang
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021; 170:1-25. [PMID: 33359141 PMCID: PMC7759095 DOI: 10.1016/j.addr.2020.12.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Melissa N Thone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States of America; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
28
|
Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17:e1008602. [PMID: 33524036 PMCID: PMC7877766 DOI: 10.1371/journal.pcbi.1008602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/11/2021] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus’s ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus. Live attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Collapse
|
29
|
Fok JA, Mayer C. Genetic-Code-Expansion Strategies for Vaccine Development. Chembiochem 2020; 21:3291-3300. [PMID: 32608153 PMCID: PMC7361271 DOI: 10.1002/cbic.202000343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/16/2022]
Abstract
By providing long-term protection against infectious diseases, vaccinations have significantly reduced death and morbidity worldwide. In the 21st century, (bio)technological advances have paved the way for developing prophylactic vaccines that are safer and more effective as well as enabling the use of vaccines as therapeutics to treat human diseases. Here, we provide a focused review of the utility of genetic code expansion as an emerging tool for the development of vaccines. Specifically, we discuss how the incorporation of immunogenic noncanonical amino acids can aid in eliciting immune responses against adverse self-proteins and highlight the potential of an expanded genetic code for the construction of replication-incompetent viruses. We close the review by discussing the future prospects and remaining challenges for the application of these approaches in the development of both prophylactic and therapeutic vaccines in the near future.
Collapse
Affiliation(s)
- Jelle A. Fok
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| |
Collapse
|
30
|
Griffiths ME, Bergner LM, Broos A, Meza DK, Filipe ADS, Davison A, Tello C, Becker DJ, Streicker DG. Epidemiology and biology of a herpesvirus in rabies endemic vampire bat populations. Nat Commun 2020; 11:5951. [PMID: 33230120 PMCID: PMC7683562 DOI: 10.1038/s41467-020-19832-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Rabies is a viral zoonosis transmitted by vampire bats across Latin America. Substantial public health and agricultural burdens remain, despite decades of bats culls and livestock vaccinations. Virally vectored vaccines that spread autonomously through bat populations are a theoretically appealing solution to managing rabies in its reservoir host. We investigate the biological and epidemiological suitability of a vampire bat betaherpesvirus (DrBHV) to act as a vaccine vector. In 25 sites across Peru with serological and/or molecular evidence of rabies circulation, DrBHV infects 80-100% of bats, suggesting potential for high population-level vaccine coverage. Phylogenetic analysis reveals host specificity within neotropical bats, limiting risks to non-target species. Finally, deep sequencing illustrates DrBHV super-infections in individual bats, implying that DrBHV-vectored vaccines might invade despite the highly prevalent wild-type virus. These results indicate DrBHV as a promising candidate vector for a transmissible rabies vaccine, and provide a framework to discover and evaluate candidate viral vectors for vaccines against bat-borne zoonoses.
Collapse
Affiliation(s)
- Megan E Griffiths
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Laura M Bergner
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alice Broos
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Diana K Meza
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima, Perú
- Yunkawasi, Lima, Perú
| | - Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Daniel G Streicker
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
31
|
Nuismer SL, Bull JJ. Self-disseminating vaccines to suppress zoonoses. Nat Ecol Evol 2020; 4:1168-1173. [PMID: 32719452 DOI: 10.1038/s41559-020-1254-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 epidemic is merely the most recent demonstration that our current approach to emerging zoonotic infectious disease is ineffective. SARS, MERS, Ebola, Nipah and an array of arenavirus infections sporadically spillover into human populations and are often contained only as a result of their poor transmission in human hosts, coupled with intense public health control efforts in the early stages of an emerging epidemic. It is now more apparent than ever that we need a better and more proactive approach. One possibility is to eliminate the threat of spillover before it occurs using vaccines capable of autonomously spreading through wild animal reservoirs. We are now poised to begin developing self-disseminating vaccines targeting a wide range of human pathogens, but important decisions remain about how they can be most effectively designed and used to target pathogens with a high risk of spillover and/or emergence. In this Perspective, we first review the basic epidemiological theory establishing the feasibility and utility of self-disseminating vaccines. We then outline a road map for overcoming remaining technical challenges: identifying high-risk pathogens before they emerge, optimizing vaccine design with an eye to evolution, behaviour and epidemiology, and minimizing the risk of unintended consequences.
Collapse
Affiliation(s)
- Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA. .,Department of Mathematics, University of Idaho, Moscow, ID, USA.
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
32
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
33
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
34
|
Zheng K, Jiang FF, Su L, Wang X, Chen YX, Chen HC, Liu ZF. Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein. Virol Sin 2019; 35:191-199. [PMID: 31792738 PMCID: PMC7198655 DOI: 10.1007/s12250-019-00175-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/09/2019] [Indexed: 02/04/2023] Open
Abstract
Viruses evolve rapidly and continuously threaten animal health and economy, posing a great demand for rapid and efficient genome editing technologies to study virulence mechanism and develop effective vaccine. We present a highly efficient viral genome manipulation method using CRISPR-guided cytidine deaminase. We cloned pseudorabies virus genome into bacterial artificial chromosome, and used CRISPR-guided cytidine deaminase to directly convert cytidine (C) to uridine (U) to induce premature stop mutagenesis in viral genes. The editing efficiencies were 100%. Comprehensive bioinformatic analysis revealed that a large number of editable sites exist in pseudorabies virus (PRV) genomes. Notably, in our study viral genome exists as a plasmid in E. coli, suggesting that this method is virus species-independent. This application of base-editing provided an alternative approach to generate mutant virus and might accelerate study on virulence and vaccine development.
Collapse
Affiliation(s)
- Ke Zheng
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Fang-Fang Jiang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Le Su
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xin Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Felix CR, Siedler BS, Barbosa LN, Timm GR, McFadden J, McBride AJA. An overview of human leptospirosis vaccine design and future perspectives. Expert Opin Drug Discov 2019; 15:179-188. [PMID: 31777290 DOI: 10.1080/17460441.2020.1694508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: It's been 20 years since the first report of a recombinant vaccine that protected against leptospirosis. Since then, numerous recombinant vaccines have been evaluated; however, no recombinant vaccine candidate has advanced to clinical trials. With the ever-increasing burden of leptospirosis, there is an urgent need for a universal vaccine against leptospirosis.Areas covered: This review covers the most promising vaccine candidates that induced significant, reproducible, protection and how advances in the field of bioinformatics has led to the discovery of hundreds of novel protein targets. The authors also discuss the most recent findings regarding the innate immune response and host-pathogen interactions and their impact on the discovery of novel vaccine candidates. In addition, the authors have identified what they believe are the most challenging problems for the discovery and development of a universal vaccine and their potential solutions.Expert opinion: A universal vaccine for leptospirosis will likely only be achieved using a recombinant vaccine as the bacterins are of limited use due to the lack of a cross-protective immune response. Although there are hundreds of novel targets, due to the lack of immune correlates and the need for more research into the basic microbiology of Leptospira spp., a universal vaccine is 10-15 years away.
Collapse
Affiliation(s)
- Carolina R Felix
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Bianca S Siedler
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil.,School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Liana N Barbosa
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Gabriana R Timm
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alan J A McBride
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
36
|
Bull JJ, Nuismer SL, Antia R. Recombinant vector vaccine evolution. PLoS Comput Biol 2019; 15:e1006857. [PMID: 31323032 PMCID: PMC6668849 DOI: 10.1371/journal.pcbi.1006857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/31/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
Replicating recombinant vector vaccines consist of a fully competent viral vector backbone engineered to express an antigen from a foreign transgene. From the perspective of viral replication, the transgene is not only dispensable but may even be detrimental. Thus vaccine revertants that delete or inactivate the transgene may evolve to dominate the vaccine virus population both during the process of manufacture of the vaccine as well as during the course of host infection. A particular concern is that this vaccine evolution could reduce its antigenicity—the immunity elicited to the transgene. We use mathematical and computational models to study vaccine evolution and immunity. These models include evolution arising during the process of manufacture, the dynamics of vaccine and revertant growth, plus innate and adaptive immunity elicited during the course of infection. Although the selective basis of vaccine evolution is easy to comprehend, the immunological consequences are not. One complication is that the opportunity for vaccine evolution is limited by the short period of within-host growth before the viral population is cleared. Even less obvious, revertant growth may only weakly interfere with vaccine growth in the host and thus have a limited effect on immunity to vaccine. Overall, we find that within-host vaccine evolution can sometimes compromise vaccine immunity, but only when the extent of evolution during vaccine manufacture is severe, and this evolution can be easily avoided or mitigated. Recombinant vector vaccines are live replicating viruses that are engineered to carry extra genes derived from a pathogen—and these extra genes produce proteins against which we want to generate immunity. These vaccine genomes may evolve to lose the extra genes during the process of manufacture of the vaccine or during replication within an individual, and there is a concern that this evolution might severely limit the vaccine’s efficacy. The dynamics of this process are studied here with mathematical models. The potential for vaccine evolution within the host is somewhat limited by the short-term growth of the vaccine population before it is suppressed by the immune response. We find that evolution is a problem only when the process of manufacture results in the majority of the vaccine virus being revertant. We show that increasing the vaccine inoculum size or reducing the level of revertant in the vaccine inoculum can largely avoid the loss of immunity arising from evolution.
Collapse
Affiliation(s)
- James J. Bull
- Department Integrative Biology, University of Texas, Austin, Texas, United States of America
- * E-mail:
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Altanta, Georgia, United States of America
| |
Collapse
|
37
|
Le Nouën C, Collins PL, Buchholz UJ. Attenuation of Human Respiratory Viruses by Synonymous Genome Recoding. Front Immunol 2019; 10:1250. [PMID: 31231383 PMCID: PMC6558635 DOI: 10.3389/fimmu.2019.01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Using computer algorithms and commercial DNA synthesis, one or more ORFs of a microbial pathogen such as a virus can be recoded and deoptimized by several strategies that may involve the introduction of up to thousands of nucleotide (nt) changes without affecting amino acid (aa) coding. The synonymous recoding strategies that have been applied to RNA viruses include: deoptimization of codon or codon-pair usage, which may reduce protein expression among other effects; increased content of immunomodulatory CpG and UpA RNA, which increase immune responses and thereby restrict viral replication; and substitution of serine and leucine codons with synonymous codons for which single-nt substitutions can yield nonsense codons, thus limiting evolutionary potential. This can reduce pathogen fitness and create potential live-attenuated vaccines that may have improved properties. The combined approach of genome recoding, synthetic biology, and reverse genetics offers several advantages for the generation of attenuated RNA viruses. First, synonymous recoding involves many mutations, which should reduce the rate and magnitude of de-attenuation. Second, increasing the amount of recoding can provide increased attenuation. Third, because there are no changes at the aa level, all of the relevant epitopes should be expressed. Fourth, attenuation frequently does not compromise immunogenicity, suggesting that the recoded viruses have increased immunogenicity per infectious particle. Synonymous deoptimization approaches have been applied to two important human viral pathogens, namely respiratory syncytial virus (RSV) and influenza A virus (IAV). This manuscript will briefly review the use of these different methods of synonymous recoding to generate attenuated RSV and IAV strains. It also will review the characterization of these vaccine candidates in vitro and in animal models, and describe several surprising findings with respect to phenotypic and genetic instability of some of these candidates.
Collapse
Affiliation(s)
- Cyril Le Nouën
- RNA Viruses Section, LID, NIAID, NIH, Bethesda, MD, United States
| | - Peter L Collins
- RNA Viruses Section, LID, NIAID, NIH, Bethesda, MD, United States
| | | |
Collapse
|
38
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
39
|
Sprygin A, Babin Y, Pestova Y, Kononova S, Wallace DB, Van Schalkwyk A, Byadovskaya O, Diev V, Lozovoy D, Kononov A. Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS One 2018; 13:e0207480. [PMID: 30540759 PMCID: PMC6291113 DOI: 10.1371/journal.pone.0207480] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023] Open
Abstract
Wide spread incidences of vaccine-like strains of lumpy skin disease virus (LSDV) have recently been reported in a Russian region with a neighboring country that actively vaccinate with a live attenuated LSD vaccine. The use of live-attenuated viruses (LAVs) as vaccines during an active outbreak, creates potential ground for coinfection of hosts and emergence of a strain combining genetic fragments of both parental vaccine and field strains. In this study, we analyse the vaccine-like strain LSDV RUSSIA/Saratov/2017 detected in Saratovskaya oblast, a region sharing border with Kazakhstan. To gain insight into possible recombination signals, a full-genome next-generation sequencing of the viral genome was performed using the Illumina platform. The genome contains the backbone of a live-attenuated vaccine with a patchwork of wild-type field virus DNA fragments located throughout. A total of 27 recombination events were identified. The average distance between the recombination sites was 3400 base pairs (bp). The impact of the recombination events on the virulence and transmission capacity of the identified virus remains to be clarified. These findings provide evidence for the first time of genetic exchanges between closely related strains of capripoxviruses in the field and a vaccine strain, and prompt a revisiting of the vaccination issue for a safe and efficacious prevention and control strategy of LSD.
Collapse
Affiliation(s)
| | - Yurii Babin
- Federal Budget Institution of Science "Central Research Institute of Epidemiology”, Moscow, Russia
| | - Yana Pestova
- Federal Center for Animal Health, Vladimir, Russia
| | | | - David B. Wallace
- ARC-Onderstepoort Veterinary Research institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Live viral vaccines rely on attenuated viruses that can successfully infect their host but have reduced fitness or virulence. Such attenuated viruses were originally developed through trial and error, typically by adaptation of the wild-type virus to novel conditions. That method was haphazard, with no way of controlling the degree of attenuation or the number of attenuating mutations or preventing evolutionary reversion. Synthetic biology now enables rational design and engineering of viral attenuation, but rational design must be informed by biological principles to achieve stable, quantitative attenuation. This work shows that in a model system for viral attenuation, bacteriophage T7, attenuation can be obtained from rational design principles, and multiple different attenuation approaches can be combined for enhanced overall effect. Attenuated viruses have numerous applications, in particular in the context of live viral vaccines. However, purposefully designing attenuated viruses remains challenging, in particular if the attenuation is meant to be resistant to rapid evolutionary recovery. Here we develop and analyze a new attenuation method, promoter ablation, using an established viral model, bacteriophage T7. Ablation of promoters of the two most highly expressed T7 proteins (scaffold and capsid) led to major reductions in transcript abundance of the affected genes, with the effect of the double knockout approximately additive of the effects of single knockouts. Fitness reduction was moderate and also approximately additive; fitness recovery on extended adaptation was partial and did not restore the promoters. The fitness effect of promoter knockouts combined with a previously tested codon deoptimization of the capsid gene was less than additive, as anticipated from their competing mechanisms of action. In one design, the engineering created an unintended consequence that led to further attenuation, the effect of which was studied and understood in hindsight. Overall, the mechanisms and effects of genome engineering on attenuation behaved in a predictable manner. Therefore, this work suggests that the rational design of viral attenuation methods is becoming feasible. IMPORTANCE Live viral vaccines rely on attenuated viruses that can successfully infect their host but have reduced fitness or virulence. Such attenuated viruses were originally developed through trial and error, typically by adaptation of the wild-type virus to novel conditions. That method was haphazard, with no way of controlling the degree of attenuation or the number of attenuating mutations or preventing evolutionary reversion. Synthetic biology now enables rational design and engineering of viral attenuation, but rational design must be informed by biological principles to achieve stable, quantitative attenuation. This work shows that in a model system for viral attenuation, bacteriophage T7, attenuation can be obtained from rational design principles, and multiple different attenuation approaches can be combined for enhanced overall effect.
Collapse
|
41
|
Kula A, Saelens J, Cox J, Schubert AM, Travisano M, Putonti C. The Evolution of Molecular Compatibility between Bacteriophage ΦX174 and its Host. Sci Rep 2018; 8:8350. [PMID: 29844443 PMCID: PMC5974221 DOI: 10.1038/s41598-018-25914-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/05/2022] Open
Abstract
Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.
Collapse
Affiliation(s)
- Alexander Kula
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Joseph Saelens
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jennifer Cox
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Alyxandria M Schubert
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA. .,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Abstract
Experimental evolution is a method in which populations of organisms, often microbes, are founded by one or more ancestors of known genotype and then propagated under controlled conditions to study the evolutionary process. These evolving populations are influenced by all population genetic forces, including selection, mutation, drift, and recombination, and the relative contributions of these forces may be seen as mysterious. Here, I describe why the outcomes of experimental evolution should be viewed with greater certainty because the force of selection typically dominates. Importantly, any mutant rising rapidly to high frequency in large populations must have acquired adaptive traits in the selective environment. Sequencing the genomes of these mutants can identify genes or pathways that contribute to an adaptation. I review the logic and simple mathematics why this evolve-and-resequence approach is a powerful way to find the mutations or mutation combinations that best increase fitness in any new environment.
Collapse
Affiliation(s)
- Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Garry DJ, Ellington AD, Molineux IJ, Bull JJ. Viral attenuation by engineered protein fragmentation. Virus Evol 2018; 4:vey017. [PMID: 29942657 PMCID: PMC6009699 DOI: 10.1093/ve/vey017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A possible but untested method of viral attenuation is protein fragmentation, engineering wild-type proteins as two or more peptides that self-assemble after translation. Here, the bacteriophage T7 was engineered to encode its essential RNA polymerase as two peptides. Initial fitness was profoundly suppressed. Subjecting the engineered virus to over 100 generations of adaptation by serial transfer resulted in a large fitness increase, still remaining below that of evolved wild-type. The fitness increase was accompanied by three substitutions in the fragmented peptides as well as six mutations in other parts of the genome, but the fragmentation was retained. This study thereby demonstrates the feasibility of using gene fragmentation as a possibly permanent method of attenuation, but the initial fitness of the engineered genome may be a poor measure of its fitness on extended adaptation.
Collapse
Affiliation(s)
- Daniel J Garry
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Ian J Molineux
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - James J Bull
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
44
|
Heilingloh CS, Krawczyk A. Role of L-Particles during Herpes Simplex Virus Infection. Front Microbiol 2017; 8:2565. [PMID: 29312245 PMCID: PMC5742154 DOI: 10.3389/fmicb.2017.02565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022] Open
Abstract
Infection of eukaryotic cells with α-herpesviruses results in the formation and secretion of infectious heavy particles (virions; H-particles) and non-infectious light particles (L-particles). Herpes simplex virus type 1 (HSV-1) H-particles consist of a genome-containing capsid surrounded by tegument proteins and a glycoprotein-rich lipid bilayer. Non-infectious L-particles are composed mainly of envelope and tegument proteins and are devoid of capsids and viral DNA. L-particles were first described in the early nineties and from then on investigated for their formation and role during virus infection. The development and secretion of L-particles occur simultaneously to the assembly of complete viral particles. HSV-1 L-particles are assembled by budding of condensed tegument into Golgi-delivered vesicles and are capable of delivering their functional content to non-infected cells. Thereby, HSV-1 L-particles contribute to viral pathogenesis within the infected host by enhancing virion infectivity and providing immune evasion functions. In this review we discuss the emergence of HSV-1 L-particles during virus replication and their biological functions described thus far.
Collapse
Affiliation(s)
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Nuismer SL, Althouse BM, May R, Bull JJ, Stromberg SP, Antia R. Eradicating infectious disease using weakly transmissible vaccines. Proc Biol Sci 2017; 283:rspb.2016.1903. [PMID: 27798311 DOI: 10.1098/rspb.2016.1903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023] Open
Abstract
Viral vaccines have had remarkable positive impacts on human health as well as the health of domestic animal populations. Despite impressive vaccine successes, however, many infectious diseases cannot yet be efficiently controlled or eradicated through vaccination, often because it is impossible to vaccinate a sufficient proportion of the population. Recent advances in molecular biology suggest that the centuries-old method of individual-based vaccine delivery may be on the cusp of a major revolution. Specifically, genetic engineering brings to life the possibility of a live, transmissible vaccine. Unfortunately, releasing a highly transmissible vaccine poses substantial evolutionary risks, including reversion to high virulence as has been documented for the oral polio vaccine. An alternative, and far safer approach, is to rely on genetically engineered and weakly transmissible vaccines that have reduced scope for evolutionary reversion. Here, we use mathematical models to evaluate the potential efficacy of such weakly transmissible vaccines. Our results demonstrate that vaccines with even a modest ability to transmit can significantly lower the incidence of infectious disease and facilitate eradication efforts. Consequently, weakly transmissible vaccines could provide an important tool for controlling infectious disease in wild and domestic animal populations and for reducing the risks of emerging infectious disease in humans.
Collapse
Affiliation(s)
- Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA .,Department of Mathematics, University of Idaho, Moscow, ID 83844, USA
| | - Benjamin M Althouse
- Institute for Disease Modeling, Bellevue, WA 98005, USA.,Santa Fe Institute, Santa Fe, NM 87501, USA.,New Mexico State University, Las Cruces, NM 88003, USA
| | - Ryan May
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA
| | - James J Bull
- Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Sean P Stromberg
- Bioinformatics, Omniome Inc., 10575 Roselle Street, San Diego, CA 92121, USA
| | - Rustom Antia
- Department of Biology, Emory University, Altanta, GA 30322, USA
| |
Collapse
|
46
|
Bull JJ, Smithson MW, Nuismer SL. Transmissible Viral Vaccines. Trends Microbiol 2017; 26:6-15. [PMID: 29033339 PMCID: PMC5777272 DOI: 10.1016/j.tim.2017.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 09/22/2017] [Indexed: 12/28/2022]
Abstract
Genetic engineering now enables the design of live viral vaccines that are potentially transmissible. Some designs merely modify a single viral genome to improve on the age-old method of attenuation whereas other designs create chimeras of viral genomes. Transmission has the benefit of increasing herd immunity above that achieved by direct vaccination alone but also increases the opportunity for vaccine evolution, which typically undermines vaccine utility. Different designs have different epidemiological consequences but also experience different evolution. Approaches that integrate vaccine engineering with an understanding of evolution and epidemiology will reap the greatest benefit from vaccine transmission.
Collapse
Affiliation(s)
- James J Bull
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712 USA.
| | - Mark W Smithson
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Scott L Nuismer
- Department of Biological Sciences, Department of Mathematics, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
47
|
Abstract
Evolution in the form of selective breeding has long been harnessed as a useful tool by humans. However, rapid evolution can also be a danger to our health and a stumbling block for biotechnology. Unwanted evolution can underlie the emergence of drug and pesticide resistance, cancer, and weeds. It makes live vaccines and engineered cells inherently unreliable and unpredictable, and therefore potentially unsafe. Yet, there are strategies that have been and can possibly be used to stop or slow many types of evolution. We review and classify existing population genetics-inspired methods for arresting evolution. Then, we discuss how genome editing techniques enable a radically new set of approaches to limit evolution.
Collapse
|
48
|
Le Nouën C, McCarty T, Brown M, Smith ML, Lleras R, Dolan MA, Mehedi M, Yang L, Luongo C, Liang B, Munir S, DiNapoli JM, Mueller S, Wimmer E, Collins PL, Buchholz UJ. Genetic stability of genome-scale deoptimized RNA virus vaccine candidates under selective pressure. Proc Natl Acad Sci U S A 2017; 114:E386-E395. [PMID: 28049853 PMCID: PMC5255620 DOI: 10.1073/pnas.1619242114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown. We evaluated phenotypic reversion of deoptimized human respiratory syncytial virus (RSV) vaccine candidates in the context of strong selective pressure. Codon pair deoptimized (CPD) versions of RSV were attenuated and temperature-sensitive. During serial passage at progressively increasing temperature, a CPD RSV containing 2,692 synonymous mutations in 9 of 11 ORFs did not lose temperature sensitivity, remained genetically stable, and was restricted at temperatures of 34 °C/35 °C and above. However, a CPD RSV containing 1,378 synonymous mutations solely in the polymerase L ORF quickly lost substantial attenuation. Comprehensive sequence analysis of virus populations identified many different potentially deattenuating mutations in the L ORF as well as, surprisingly, many appearing in other ORFs. Phenotypic analysis revealed that either of two competing mutations in the virus transcription antitermination factor M2-1, outside of the CPD area, substantially reversed defective transcription of the CPD L gene and substantially restored virus fitness in vitro and in case of one of these two mutations, also in vivo. Paradoxically, the introduction into Min L of one mutation each in the M2-1, N, P, and L proteins resulted in a virus with increased attenuation in vivo but increased immunogenicity. Thus, in addition to providing insights on the adaptability of genome-scale deoptimized RNA viruses, stability studies can yield improved synthetic RNA virus vaccine candidates.
Collapse
Affiliation(s)
- Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892;
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | | | | | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Masfique Mehedi
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Bo Liang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Joshua M DiNapoli
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
49
|
Abstract
Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e., growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated with reduced levels of the rpsT transcript and S20 protein. In an adaptive evolution experiment, these fitness impairments could be compensated by mutations that either caused up-regulation of S20 through increased gene dosage (due to duplications), increased transcription of the rpsT gene (due to an rpoD mutation or mutations in rpsT), or increased translation from the rpsT transcript (due to rpsT mutations). We suggest that the reduced levels of S20 in the synonymous mutants result in production of a defective subpopulation of 30S subunits lacking S20 that reduce protein synthesis and bacterial growth and that the compensatory mutations restore S20 levels and the number of functional ribosomes. Our results demonstrate how specific synonymous mutations can cause substantial fitness reductions and that many different types of intra- and extragenic compensatory mutations can efficiently restore fitness. Furthermore, this study highlights that also synonymous sites can be under strong selection, which may have implications for the use of dN/dS ratios as signature for selection.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|