1
|
Singh AA, Singh AK. Role of bacterial quorum sensing in plant growth promotion. World J Microbiol Biotechnol 2024; 41:18. [PMID: 39724256 DOI: 10.1007/s11274-024-04232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.
Collapse
Affiliation(s)
- Aparna Anil Singh
- Department of Microbiology, Tolani College of Arts and Science, Adipur, Kachchh, 370205, Gujarat, India.
| | - Anil Kumar Singh
- Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India
| |
Collapse
|
2
|
Engelhardt IC, Holden N, Daniell TJ, Dupuy LX. Mobility and growth in confined spaces are important mechanisms for the establishment of Bacillus subtilis in the rhizosphere. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001477. [PMID: 39106481 PMCID: PMC11574552 DOI: 10.1099/mic.0.001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024]
Abstract
The rhizosphere hosts complex and abundant microbiomes whose structure and composition are now well described by metagenomic studies. However, the dynamic mechanisms that enable micro-organisms to establish along a growing plant root are poorly characterized. Here, we studied how a motile bacterium utilizes the microhabitats created by soil pore space to establish in the proximity of plant roots. We have established a model system consisting of Bacillus subtilis and lettuce seedlings co-inoculated in transparent soil microcosms. We carried out live imaging experiments and developed image analysis pipelines to quantify the abundance of the bacterium as a function of time and position in the pore space. Results showed that the establishment of the bacterium in the rhizosphere follows a precise sequence of events where small islands of mobile bacteria were first seen forming near the root tip within the first 12-24 h of inoculation. Biofilm was then seen forming on the root epidermis at distances of about 700-1000 µm from the tip. Bacteria accumulated predominantly in confined pore spaces within 200 µm from the root or the surface of a particle. Using probabilistic models, we could map the complete sequence of events and propose a conceptual model of bacterial establishment in the pore space. This study therefore advances our understanding of the respective role of growth and mobility in the efficient colonization of bacteria in the rhizosphere.
Collapse
Affiliation(s)
| | - Nicola Holden
- Department of Rural Land Use, Scotland’s Rural College, Aberdeen AB21 9YA, UK
| | - Tim J. Daniell
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lionel X. Dupuy
- Department of Conservation of Natural Resources, Neiker, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
3
|
Tienda S, Vida C, Villar-Moreno R, de Vicente A, Cazorla FM. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiol Res 2024; 285:127761. [PMID: 38761488 DOI: 10.1016/j.micres.2024.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Rafael Villar-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain.
| |
Collapse
|
4
|
Pacwa-Płociniczak M, Kumor A, Bukowczan M, Sinkkonen A, Roslund M, Płociniczak T. The potential of enhanced phytoremediation to clean up multi-contaminated soil - insights from metatranscriptomics. Microbiol Res 2024; 284:127738. [PMID: 38692035 DOI: 10.1016/j.micres.2024.127738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.
Collapse
Affiliation(s)
- Magdalena Pacwa-Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Agata Kumor
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Marta Bukowczan
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Itäinen Pitkäkatu 4A, Turku, Finland.
| | - Marja Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Itäinen Pitkäkatu 4A, Turku, Finland.
| | - Tomasz Płociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, Katowice 40-032, Poland.
| |
Collapse
|
5
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Franco Meléndez K, Schuster L, Donahey MC, Kairalla E, Jansen MA, Reisch C, Rivers AR. MicroMPN: methods and software for high-throughput screening of microbe suppression in mixed populations. Microbiol Spectr 2024; 12:e0357823. [PMID: 38353567 PMCID: PMC10923211 DOI: 10.1128/spectrum.03578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities. Screening assays performed using soil or other complex matrices present additional challenges for screening. Here, we develop an experimental workflow based on the most probable number (MPN) assay for testing the ability of synthetic microbial communities to suppress a soil-borne pathogen. Our approach, fluorMPN, uses a fluorescently labeled pathogen and microplate format to enable high-throughput comparative screening. In parallel, we developed a command-line tool, MicroMPN, which significantly reduces the complexity of calculating MPN values from microplates. We compared the performance of the fluorMPN assay with spotting on agar and found that both methods produced strongly correlated counts of equal precision. The suppressive effect of synthetic communities on the pathogen was equally recoverable by both methods. The application of this workflow for discriminating which communities lead to pathogen reduction helps narrow down candidates for additional characterization. Together, the resources offered here are meant to facilitate and simplify the application of MPN-based assays for comparative screening projects. IMPORTANCE We created a unified set of software and laboratory protocols for screening microbe libraries to assess the suppression of a pathogen in a mixed microbial community. Existing methods of fluorescent labeling were combined with the most probable number (MPN) assay in a microplate format to enumerate the reduction of a pathogenic soil microbe from complex soil matrices. This work provides a fluorescent expression vector available from Addgene, step-by-step laboratory protocols hosted by protocols.io, and MicroMPN, a command-line software for processing plate reader outputs. MicroMPN simplifies MPN estimation from 96- and 384-well microplates. The microplate screening assay is amenable to robotic automation with standard liquid handling robots, further reducing the hands-on processing time. This tool was designed to evaluate synthetic microbial communities for use as microbial inoculates or probiotics. The fluorMPN method is also useful for screening chemical and antimicrobial libraries for pathogen suppression in complex bacterial communities like soil.
Collapse
Affiliation(s)
- Karla Franco Meléndez
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| | - Layla Schuster
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Melinda Chue Donahey
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Emily Kairalla
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - M. Andrew Jansen
- United States Department of Agriculture, Agricultural Research Service, Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville, Maryland, USA
| | - Christopher Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Adam R. Rivers
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| |
Collapse
|
7
|
Labarthe MM, Maroniche GA, Lamattina L, Creus CM. Nitric oxide synthase expression in Pseudomonas koreensis MME3 improves plant growth promotion traits. Appl Microbiol Biotechnol 2024; 108:212. [PMID: 38358431 PMCID: PMC10869383 DOI: 10.1007/s00253-024-13029-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.
Collapse
Affiliation(s)
- María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- IIB, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Schmidt H, Gorka S, Seki D, Schintlmeister A, Woebken D. Gold-FISH enables targeted NanoSIMS analysis of plant-associated bacteria. THE NEW PHYTOLOGIST 2023; 240:439-451. [PMID: 37381111 PMCID: PMC10962543 DOI: 10.1111/nph.19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bacteria colonize plant roots and engage in reciprocal interactions with their hosts. However, the contribution of individual taxa or groups of bacteria to plant nutrition and fitness is not well characterized due to a lack of in situ evidence of bacterial activity. To address this knowledge gap, we developed an analytical approach that combines the identification and localization of individual bacteria on root surfaces via gold-based in situ hybridization with correlative NanoSIMS imaging of incorporated stable isotopes, indicative of metabolic activity. We incubated Kosakonia strain DS-1-associated, gnotobiotically grown rice plants with 15 N-N2 gas to detect in situ N2 fixation activity. Bacterial cells along the rhizoplane showed heterogeneous patterns of 15 N enrichment, ranging from the natural isotope abundance levels up to 12.07 at% 15 N (average and median of 3.36 and 2.85 at% 15 N, respectively, n = 697 cells). The presented correlative optical and chemical imaging analysis is applicable to a broad range of studies investigating plant-microbe interactions. For example, it enables verification of the in situ metabolic activity of host-associated commercialized strains or plant growth-promoting bacteria, thereby disentangling their role in plant nutrition. Such data facilitate the design of plant-microbe combinations for improvement of crop management.
Collapse
Affiliation(s)
- Hannes Schmidt
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Doctoral School in Microbiology and Environmental ScienceUniversity of ViennaVienna1030Austria
| | - David Seki
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| |
Collapse
|
9
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
10
|
Czymmek KJ, Duncan KE, Berg H. Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:245-255. [PMID: 36947723 DOI: 10.1094/mpmi-10-22-0208-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Keith E Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Howard Berg
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| |
Collapse
|
11
|
Evaluation of the Defined Bacterial Consortium Efficacy in the Biodegradation of NSAIDs. Molecules 2023; 28:molecules28052185. [PMID: 36903430 PMCID: PMC10004385 DOI: 10.3390/molecules28052185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Due to the increasing pollution of wastewater with non-steroidal anti-inflammatory drugs, preparations need to be developed to decompose these drugs. This work aimed to develop a bacterial consortium with a defined composition and boundary conditions for the degradation of paracetamol and selected non-steroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, naproxen, and diclofenac. The defined bacterial consortium consisted of Bacillus thuringiensis B1(2015b) and Pseudomonas moorei KB4 strains in a ratio of 1:2. During the tests, it was shown that the bacterial consortium worked in the pH range from 5.5 to 9 and temperatures of 15-35 °C, and its great advantage was its resistance to toxic compounds present in sewage, such as organic solvents, phenols, and metal ions. The degradation tests showed that, in the presence of the defined bacterial consortium in the sequencing batch reactor (SBR), drug degradation occurred at rates of 4.88, 10, 0.1, and 0.05 mg/day for ibuprofen, paracetamol, naproxen, and diclofenac, respectively. In addition, the presence of the tested strains was demonstrated during the experiment as well as after its completion. Therefore, the advantage of the described bacterial consortium is its resistance to the antagonistic effects of the activated sludge microbiome, which will enable it to be tested in real activated sludge conditions.
Collapse
|
12
|
Díaz PR, Romero M, Pagnussatt L, Amenta M, Valverde CF, Cámara M, Creus CM, Maroniche GA. Azospirillum baldaniorum Sp245 exploits Pseudomonas fluorescens A506 biofilm to overgrow in dual-species macrocolonies. Environ Microbiol 2022; 24:5707-5720. [PMID: 36063363 DOI: 10.1111/1462-2920.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Biofilms are essential for plant-associated bacteria to colonize their host. In this work, we analysed the interaction of Azospirillum baldaniorum Sp245 and Pseudomonas fluorescens A506 in mixed macrocolony biofilms. We identified certain culture conditions where A. baldaniorum Sp245 exploits P. fluorescens A506 to boost its growth. Azospirillum growth increased proportionally to the initial number of pseudomonads building the biofilm, which in turn were negatively affected in their growth. Physical contact with P. fluorescens A506 was essential for A. baldaniorum Sp245 growth increase. Biofilm ultrastructure analysis revealed that Pseudomonas produces a thick structure that hosts Azospirillum cells in its interior. Additional experimentation demonstrated that Azospirillum growth boost is compromised when interacting with biofilm-deficient Pseudomonas mutants, and that a low oxygen concentration strongly induce A. baldaniorum Sp245 growth, overriding Pseudomonas stimulation. In this line, we used a microaerophilia reporter strain of A. baldaniorum Sp245 to confirm that dual-species macrocolonies contain a higher number of cells under microaerophilic conditions. Taking all the results into consideration, we propose that A. baldaniorum Sp245 can benefit from P. fluorescens A506 partnership in mixed biofilms by taking advantage of the low oxygen concentration and scaffold made up of Pseudomonas-derived matrix, to expand its growth.
Collapse
Affiliation(s)
- Pablo R Díaz
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata (UNMdP), Buenos Aires, Argentina
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Luciana Pagnussatt
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata (UNMdP), Buenos Aires, Argentina
| | - Melina Amenta
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata (UNMdP), Buenos Aires, Argentina
| | - Claudio F Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ)-CONICET, Buenos Aires, Argentina
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata (UNMdP), Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata (UNMdP), Buenos Aires, Argentina
| |
Collapse
|
13
|
The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization. PLoS One 2022; 17:e0278036. [PMID: 36417483 PMCID: PMC9683572 DOI: 10.1371/journal.pone.0278036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Azospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host. Here, we present in silico analysis and experimental characterization of the function of CdgB (AZOBR_p410089), a predicted MHYT-PAS-GGDEF-EAL multidomain protein from A. baldaniorum Sp245. When overproduced, CdgB behaves predominantly as a c-di-GMP phosphodiesterase (PDE) in A. baldaniorum Sp245. It inhibits biofilm formation and extracellular polymeric substances production and promotes swimming motility. However, a CdgB variant with a degenerate PDE domain behaves as diguanylate cyclase (DGC). This strongly suggest that CdgB is capable of dual activity. Variants with alterations in the DGC domain and the MHYT domain negatively affects extracellular polymeric substances production and induction of swimming motility. Surprisingly, we observed that overproduction of CdgB results in increased c-di-GMP accumulation in the heterologous host Escherichia coli, suggesting under certain conditions, the WT CdgB variant can behave predominantly as a DGC. Furthermore, we also demonstrated that CdgB is anchored to the cell membrane and localizes potentially to the cell poles. This localization is dependent on the presence of the MHYT domain. In summary, our results suggest that CdgB can provide versatility to signaling modules that control motile and sessile lifestyles in response to key environmental signals in A. baldaniorum.
Collapse
|
14
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
16
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
17
|
Biofungicidal Properties of Rhizobacteria for Plant Growth Promotion and Plant Disease Resistance. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Bianco C, Andreozzi A, Romano S, Fagorzi C, Cangioli L, Prieto P, Cisse F, Niangado O, Sidibé A, Pianezze S, Perini M, Mengoni A, Defez R. Endophytes from African Rice ( Oryza glaberrima L.) Efficiently Colonize Asian Rice ( Oryza sativa L.) Stimulating the Activity of Its Antioxidant Enzymes and Increasing the Content of Nitrogen, Carbon, and Chlorophyll. Microorganisms 2021; 9:microorganisms9081714. [PMID: 34442793 PMCID: PMC8398951 DOI: 10.3390/microorganisms9081714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial endophytes support the adaptation of host plants to harsh environments. In this study, culturable bacterial endophytes were isolated from the African rice Oryza glaberrima L., which is well-adapted to grow with poor external inputs in the tropical region of Mali. Among these, six N-fixer strains were used to inoculate O. glaberrima RAM133 and the Asian rice O. sativa L. cv. Baldo, selected for growth in temperate climates. The colonization efficiency and the N-fixing activity were evaluated and compared for the two rice varieties. Oryza sativa-inoculated plants showed a fairly good colonization efficiency and nitrogenase activity. The inoculation of Oryza sativa with the strains Klebsiella pasteurii BDA134-6 and Phytobacter diazotrophicus BDA59-3 led to the highest nitrogenase activity. In addition, the inoculation of ‘Baldo’ plants with the strain P. diazotrophicus BDA59-3 led to a significant increase in nitrogen, carbon and chlorophyll content. Finally, ‘Baldo’ plants inoculated with Kl. pasteurii BDA134-6 showed the induction of antioxidant enzymes activity and the maintenance of nitrogen-fixation under salt stress as compared to the unstressed controls. As these endophytes efficiently colonize high-yielding crop varieties grown in cold temperate climates, they become good candidates to promote their growth under unfavorable conditions.
Collapse
Affiliation(s)
- Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
- Correspondence: ; Tel.: +39-081-613-2610
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Silvia Romano
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Pilar Prieto
- Departamento de Mejora Genética, Campus ‘Alamedadel Obispo’, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Fousseyni Cisse
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Oumar Niangado
- Syngenta Foundation for Sustainable Agriculture, Bamako B.P.E. 1449, Mali;
| | - Amadou Sidibé
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Silvia Pianezze
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
- Environmental and Animal Sciences DI4A, Università degli Studi di Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Matteo Perini
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Roberto Defez
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| |
Collapse
|
19
|
Knights HE, Jorrin B, Haskett TL, Poole PS. Deciphering bacterial mechanisms of root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:428-444. [PMID: 33538402 PMCID: PMC8651005 DOI: 10.1111/1758-2229.12934] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Bacterial colonization of the rhizosphere is critical for the establishment of plant-bacteria interactions that represent a key determinant of plant health and productivity. Plants influence bacterial colonization primarily through modulating the composition of their root exudates and mounting an innate immune response. The outcome is a horizontal filtering of bacteria from the surrounding soil, resulting in a gradient of reduced bacterial diversity coupled with a higher degree of bacterial specialization towards the root. Bacteria-bacteria interactions (BBIs) are also prevalent in the rhizosphere, influencing bacterial persistence and root colonization through metabolic exchanges, secretion of antimicrobial compounds and other processes. Traditionally, bacterial colonization has been examined under sterile laboratory conditions that mitigate the influence of BBIs. Using simplified synthetic bacterial communities combined with microfluidic imaging platforms and transposon mutagenesis screening approaches, we are now able to begin unravelling the molecular mechanisms at play during the early stages of root colonization. This review explores the current state of knowledge regarding bacterial root colonization and identifies key tools for future exploration.
Collapse
Affiliation(s)
| | - Beatriz Jorrin
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | | | - Philip S. Poole
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
20
|
Puente ML, Maroniche GA, Panepucci M, Sabio Y García J, García JE, Criado MV, Molina R, Cassán F. Localization and survival of Azospirillum brasilense Az39 in soybean leaves. Lett Appl Microbiol 2021; 72:626-633. [PMID: 33354785 DOI: 10.1111/lam.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022]
Abstract
In recent years, foliar inoculation has gained acceptance among the available methods to deliver plant beneficial micro-organisms to crops under field conditions. Colonization efficiency by such micro-organisms largely depends on their ability to survive when applied on the leaves. In this work, we evaluated the survival and localization of Azospirillum brasilense Az39 (Az39) in excised soybean leaves. Scanning electron microscopy and confocal laser scanning microscopy of a red fluorescent-transformed variant of Az39 were used to determine bacterial localization, while the most probable number and plate count methods were applied for bacterial quantification. Microscopic observations indicated a decrease in the number of Az39 cells on the leaf surface at 24 h after treatment, whereas midribs and cell-cell junctions of the inner leaf epidermis became highly populated zones. The presence of Az39 inside xylem vessels was corroborated at 6 h after bacterization. Az39 population did not significantly decrease throughout 24 h. We could visualize Az39 cells on the surface and in internal tissues of soybean leaves and recover them through culture methodologies. These results evidence the survival capacity of Az39 on and inside leaves and suggest a previously unnoticed endophytic potential for this well-known plant growth-promoting rhizobacteria strain.
Collapse
Affiliation(s)
- M L Puente
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA-IMYZA), Castelar, Argentina
| | - G A Maroniche
- Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - M Panepucci
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J Sabio Y García
- Instituto de Biotecnología-IABIMO, INTA-CONICET, INTA Castelar, Buenos Aires, Argentina
| | - J E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA-IMYZA), Castelar, Argentina
| | - M V Criado
- Facultad de Agronomía, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - R Molina
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas, INIAB-CONICET, Río Cuarto, Argentina
| | - F Cassán
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas, INIAB-CONICET, Río Cuarto, Argentina
| |
Collapse
|
21
|
Singha LP, Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit Rev Biotechnol 2021; 41:749-766. [PMID: 33626996 DOI: 10.1080/07388551.2021.1888066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.
Collapse
Affiliation(s)
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
22
|
Massot F, Gkorezis P, Van Hamme J, Marino D, Trifunovic BS, Vukovic G, d'Haen J, Pintelon I, Giulietti AM, Merini L, Vangronsveld J, Thijs S. Isolation, Biochemical and Genomic Characterization of Glyphosate Tolerant Bacteria to Perform Microbe-Assisted Phytoremediation. Front Microbiol 2021; 11:598507. [PMID: 33519737 PMCID: PMC7840833 DOI: 10.3389/fmicb.2020.598507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.
Collapse
Affiliation(s)
- Francisco Massot
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | - Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Damian Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | | | - Gorica Vukovic
- Department of Phytomedicine, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jan d'Haen
- Institute for Materials Research (IMO-IMEC), Hasselt University, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ana María Giulietti
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | | | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
23
|
Chlebek D, Pinski A, Żur J, Michalska J, Hupert-Kocurek K. Genome Mining and Evaluation of the Biocontrol Potential of Pseudomonas fluorescens BRZ63, a New Endophyte of Oilseed Rape ( Brassica napus L.) against Fungal Pathogens. Int J Mol Sci 2020; 21:ijms21228740. [PMID: 33228091 PMCID: PMC7699435 DOI: 10.3390/ijms21228740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.
Collapse
Affiliation(s)
- Daria Chlebek
- Correspondence: (D.C.); (K.H.-K.); Tel.: +48-32-2009-462 (K.H.-K.)
| | | | | | | | | |
Collapse
|
24
|
Heredia-Ponce Z, Gutiérrez-Barranquero JA, Purtschert-Montenegro G, Eberl L, Cazorla FM, de Vicente A. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. NPJ Biofilms Microbiomes 2020; 6:37. [PMID: 33046713 PMCID: PMC7550585 DOI: 10.1038/s41522-020-00148-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas syringae is a phytopathogenic model bacterium that is used worldwide to study plant-bacteria interactions and biofilm formation in association with a plant host. Within this species, the syringae pathovar is the most studied due to its wide host range, affecting both, woody and herbaceous plants. In particular, Pseudomonas syringae pv. syringae (Pss) has been previously described as the causal agent of bacterial apical necrosis on mango trees. Pss exhibits major epiphytic traits and virulence factors that improve its epiphytic survival and pathogenicity in mango trees. The cellulose exopolysaccharide has been described as a key component in the development of the biofilm lifestyle of the P. syringae pv. syringae UMAF0158 strain (PssUMAF0158). PssUMAF0158 contains two additional genomic regions that putatively encode for exopolysaccharides such as alginate and a Psl-like polysaccharide. To date, the Psl polysaccharide has only been studied in Pseudomonas aeruginosa, in which it plays an important role during biofilm development. However, its function in plant-associated bacteria is still unknown. To understand how these exopolysaccharides contribute to the biofilm matrix of PssUMAF0158, knockout mutants of genes encoding these putative exopolysaccharides were constructed. Flow-cell chamber experiments revealed that cellulose and the Psl-like polysaccharide constitute a basic scaffold for biofilm architecture in this bacterium. Curiously, the Psl-like polysaccharide of PssUMAF0158 plays a role in virulence similar to what has been described for cellulose. Finally, the impaired swarming motility of the Psl-like exopolysaccharide mutant suggests that this exopolysaccharide may play a role in the motility of PssUMAF0158 over the mango plant surface.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Jose Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich. Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|
25
|
Arrebola E, Cazorla FM. Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Front Microbiol 2020; 11:1560. [PMID: 32754135 PMCID: PMC7367214 DOI: 10.3389/fmicb.2020.01560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a rhizobacterium isolated from avocado roots, which is a favorable niche for its development. This strain extensively interacts with plant roots and surrounding microbes and is considered a biocontrol rhizobacterium. Genome sequencing has shown the presence of thirty-one potential methyl-accepting chemotaxis proteins (MCPs). Among these MCPs, two candidates are putative functional aerotaxis receptors, encoded at locus PCL1606_41090 (aer1-1) and locus PLC1606_20530 (aer1-2), that are homologous to the Aer receptor of Pseudomonas aeruginosa strain PaO1. Single- and double-deletion mutants in one or both genes have led to motility deficiencies in oxygen-rich areas, particularly reduced swimming motility compared with that of wildtype PcPCL1606. No differences in swarming tests were detected, and less adhesion by the aer double mutant was observed. However, the single and double mutants on avocado plant roots showed delayed biocontrol ability. During the first days of the biocontrol experiment, the aer-defective mutants also showed delayed root colonization. The current research characterizes the presence of aer transductors on P. chlororaphis. Thus, the functions of the PCL1606_41090 and PCL1606_20530 loci, corresponding to genes aer1-1 and aer1-2, respectively, are elucidated.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
26
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
27
|
Feng Z, Zhang L, Wu Y, Wang L, Xu M, Yang M, Li Y, Wei G, Chou M. The Rpf84 gene, encoding a ribosomal large subunit protein, RPL22, regulates symbiotic nodulation in Robinia pseudoacacia. PLANTA 2019; 250:1897-1910. [PMID: 31485773 DOI: 10.1007/s00425-019-03267-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.
Collapse
Affiliation(s)
- Zhao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yuanyuan Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mingying Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mo Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
28
|
Andreozzi A, Prieto P, Mercado-Blanco J, Monaco S, Zampieri E, Romano S, Valè G, Defez R, Bianco C. Efficient colonization of the endophytes Herbaspirillum huttiense RCA24 and Enterobacter cloacae RCA25 influences the physiological parameters of Oryza sativa L. cv. Baldo rice. Environ Microbiol 2019; 21:3489-3504. [PMID: 31106946 DOI: 10.1111/1462-2920.14688] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022]
Abstract
Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity and production of siderophores and phytohormones, can be assessed as plant growth promotion traits. Our aim was to evaluate the effects of nitrogen fixing and indole-3-acetic acid (IAA) producing endophytes in two Oryza sativa cultivars (Baldo and Vialone Nano). Three bacteria, Herbaspirillum huttiense RCA24, Enterobacter asburiae RCA23 and Staphylococcus sp. 377, producing different IAA levels, were tested for their ability to enhance nifH gene expression and nitrogenase activity in Enterobacter cloacae RCA25. Results showed that H. huttiense RCA24 performed best. Improvement in nitrogen fixation and changes in physiological parameters such as chlorophyll, nitrogen content and shoot dry weight were observed for plants co-inoculated with strains RCA25 and RCA24 in a 10:1 ratio. Based on confocal laser scanning microscopy analysis, strain RCA24 was the best colonizer of the root interior and the only IAA producer located in the same root niche occupied by RCA25 cells. This work shows that the choice of a bio-inoculum having the right composition is one of the key aspects to be considered for the inoculation of a specific host plant cultivar with microbial consortia.
Collapse
Affiliation(s)
- Anna Andreozzi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus 'Alameda del Obispo', Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Stefano Monaco
- CREA - CI, Research Centre for Cereal and Industrial Crops, 13100, Vercelli, Italy
| | - Elisa Zampieri
- CREA - CI, Research Centre for Cereal and Industrial Crops, 13100, Vercelli, Italy
| | - Silvia Romano
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Gianpiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, I-13100 Vercelli, Italy
| | - Roberto Defez
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Carmen Bianco
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
29
|
Chou M, Sun Y, Yang J, Wang Y, Li Y, Yuan G, Zhang D, Wang J, Wei G. Comprehensive analysis of phenotype, microstructure and global transcriptional profiling to unravel the effect of excess copper on the symbiosis between nitrogen-fixing bacteria and Medicago lupulina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1346-1357. [PMID: 30625663 DOI: 10.1016/j.scitotenv.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu). The results showed that the early infection process was inhibited and the nodule ultrastructure was changed under 200 mg kg-1 Cu stress. Most infection threads (ITs) were prevented from entering the nodule cells, and few rhizobia were released into the host cells, in which thickening of the plant cell wall and IT wall was observed, demonstrating that rhizobial invasion was inhibited under Cu stress. RNA-seq analysis indicated that a strong shift in gene expression occurred (3257 differentially expressed genes, DEGs). The most pronounced effect was the upregulation of a set of 71 of 73 DEGs for nodule-specific cysteine-rich peptides, which have been shown to control the terminal differentiation of rhizobia in the nodules and to have antimicrobial activity. Various genes for metal transport, chelation binding and antioxidant defence were regulated. In particular, the DEGs for Cu trafficking and detoxification were induced during nodule formation. The DEGs for ethylene (ET) biosynthesis and signalling were also differentially expressed during nodulation, suggesting that the inhibition of nodulation by Cu occurred partially through ET signalling. Furthermore, the genes related to the cell wall were mostly upregulated and most likely involved in cell wall thickening. These findings provide an integrated understanding of the effects of Cu on legume nodule symbiosis at the molecular and phenotypic levels.
Collapse
Affiliation(s)
- Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Guijie Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jiamei Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
30
|
Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O, Renaud J, Yuan ZC. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol 2019; 19:5. [PMID: 30621587 PMCID: PMC6325804 DOI: 10.1186/s12866-018-1380-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/25/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacillus velezensis is an endospore-forming, free-living soil bacterium with potential as a biopesticide against a broad spectrum of microbial pathogens of plants. Its potential for commercial development is enhanced by rapid replication and resistance to adverse environmental conditions, typical of Bacillus species. However, the use of beneficial microbes against phytopathogens has not gained dominance due to limitations that may be overcome with new biopesticidal strains and/or new biological knowledge. RESULTS Here, we isolated B. velezensis strain 9D-6 and showed that it inhibits the in vitro growth of prokaryotic and eukaryotic pathogens, including the bacteria Bacillus cereus , Clavibacter michiganensis, Pantoea agglomerans, Ralstonia solanacearum, Xanthomonas campestris, and Xanthomonas euvesicatoria; and the fungi Alternaria solani, Cochliobolus carbonum, Fusarium oxysporum, Fusarium solani, Gibberella pulicaris, Gibberella zeae, Monilinia fructicola, Pyrenochaeta terrestris and Rhizoctonia solani. Antimicrobial compounds with activity against Clavibacter michiganensis were isolated from B. velezensis 9D-6 and characterized by high resolution LC-MS/MS, yielding formulae of C52H91N7O13 and C53H93N7O13, which correspond to [Leu7] surfactins C14 and C15 (also called surfactin B and surfactin C), respectively. We further sequenced the B. velezensis 9D-6 genome which consists of a single circular chromosome and revealed 13 gene clusters expected to participate in antimicrobial metabolite production, including surfactin and two metabolites that have not typically been found in this species - ladderane and lantipeptide. Despite being unable to inhibit the growth of Pseudomonas syringae DC3000 in an in vitro plate assay, B. velezensis 9D-6 significantly reduced root colonization by DC3000, suggesting that 9D-6 uses methods other than antimicrobials to control phytopathogens in the environment. Finally, using in silico DNA-DNA hybridization (isDDH), we confirm previous findings that many strains currently classified as B. amyloliquefaciens are actually B. velezensis. CONCLUSIONS The data presented here suggest B. velezensis 9D-6 as a candidate plant growth promoting bacterium (PGPB) and biopesticide, which uses a unique complement of antimicrobials, as well as other mechanisms, to protect plants against phytopathogens. Our results may contribute to future utilization of this strain, and will contribute to a knowledge base that will help to advance the field of microbial biocontrol.
Collapse
Affiliation(s)
- Elliot Nicholas Grady
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Jacqueline MacDonald
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Margaret T. Ho
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ori Solomon
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ze-Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| |
Collapse
|
31
|
Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Muñoz-Lintz DA, Dobson RCJ, Remus DM, Remus-Emsermann MNP. Chromatic Bacteria - A Broad Host-Range Plasmid and Chromosomal Insertion Toolbox for Fluorescent Protein Expression in Bacteria. Front Microbiol 2018; 9:3052. [PMID: 30631309 PMCID: PMC6315172 DOI: 10.3389/fmicb.2018.03052] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Differential fluorescent labeling of bacteria has become instrumental for many aspects of microbiological research, such as the study of biofilm formation, bacterial individuality, evolution, and bacterial behavior in complex environments. We designed a variety of plasmids, each bearing one of eight unique, constitutively expressed fluorescent protein genes in conjunction with one of four different antibiotic resistance combinations. The fluorophores mTagBFP2, mTurquoise2, sGFP2, mClover3, sYFP2, mOrange2, mScarlet-I, and mCardinal, encoding for blue, cyan, green, green-yellow, yellow, orange, red, and far-red fluorescent proteins, respectively, were combined with selectable markers conferring tetracycline, gentamicin, kanamycin, and/or chloramphenicol resistance. These constructs were cloned into three different plasmid backbones: a broad host-range plasmid, a Tn5 transposon delivery plasmid, and a Tn7 transposon delivery plasmid. The utility of the plasmids and transposons was tested in bacteria from the phyla Actinobacteria, Proteobacteria, and Bacteroidetes. We were able to tag representatives from the phylum Proteobacteria at least via our Tn5 transposon delivery system. The present study enables labeling bacteria with a set of plasmids available to the community. One potential application of fluorescently-tagged bacterial species is the study of bacteria-bacteria, bacteria-host, and bacteria-environment interactions.
Collapse
Affiliation(s)
- Rudolf O. Schlechter
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Hyunwoo Jun
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michał Bernach
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Simisola Oso
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Erica Boyd
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Dian A. Muñoz-Lintz
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniela M. Remus
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mitja N. P. Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
32
|
Wheatley RM, Poole PS. Mechanisms of bacterial attachment to roots. FEMS Microbiol Rev 2018; 42:448-461. [PMID: 29672765 DOI: 10.1093/femsre/fuy014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/14/2018] [Indexed: 11/13/2022] Open
Abstract
The attachment of bacteria to roots constitutes the first physical step in many plant-microbe interactions. These interactions exert both positive and negative influences on agricultural systems depending on whether a growth-promoting, symbiotic or pathogenic relationship transpires. A common biphasic mechanism of root attachment exists across agriculturally important microbial species, including Rhizobium, Agrobacterium, Pseudomonas, Azospirillum and Salmonella. Attachment studies have revealed how plant-microbe interactions develop, and how to manipulate these relationships for agricultural benefit. Here, we review our current understanding of the molecular mechanisms governing plant-microbe root attachment and draw together a common biphasic model.
Collapse
Affiliation(s)
- Rachel M Wheatley
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
33
|
Ramirez-Mata A, Pacheco MR, Moreno SJ, Xiqui-Vazquez ML, Baca BE. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Microbiol Res 2018; 215:155-163. [PMID: 30172303 DOI: 10.1016/j.micres.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022]
Abstract
This study reports the introduction of egfp or mCherry markers to the Sp245, Sp7, and M40 wild-type strains of Azospirillum brasilense and the hhkB (encoding for a putative hybrid histidine kinase) minus mutant an isogenic strain of A. brasilense Sp245 to monitor colonization of wheat (Triticum aestivum). Two plasmids were constructed: (1) the pJMS-2 suicide plasmid derived from pSUP202 and harboring the mCherry gene expressed under the constitutive kanamycin resistance promoter to create a cis tag and (2) the broad-range plasmid pMP2449-5 that carries the mCherry gene under the lac promoter, which is derived from the plasmid pMP2444; to create the in trans tag. The stability of the plasmids encoding egfp and mCherry were confirmed in vitro for seven days of bacterial growth, and then, the A. brasilense strains harboring the plasmids were studied under nonselective conditions for adherence to seeds and, at seven or 14 days post-inoculation, for wheat root colonization. The utility of the labeled strains was proven by observation, using fluorescence microscopy and confocal laser scanning microscopy (CLSM) in wheat plants inoculated with the labeled strains and compared with the CFU g-1 for seed and wheat root. The method was suitable for observation of the in situ formation of mini-colonies, enabled visualization of bacterial colonization sites on large root fragments, and showed adherence to germinated seeds and root colonization of all strains by cell counts and direct microscopic examination. Thus, we are able to quantify the structures of the biofilms formed by each strain.
Collapse
Affiliation(s)
- Alberto Ramirez-Mata
- Centro de Investigaciones en Ciencias Microbiologicas, Benemerita Universidad Autonoma de Puebla. Edif. IC11, Ciudad Universitaria, Puebla, Puebla 72570, Mexico
| | - Miguel Ramales Pacheco
- Centro de Investigaciones en Ciencias Microbiologicas, Benemerita Universidad Autonoma de Puebla. Edif. IC11, Ciudad Universitaria, Puebla, Puebla 72570, Mexico
| | - Saul Jijon Moreno
- Centro de Investigaciones en Ciencias Microbiologicas, Benemerita Universidad Autonoma de Puebla. Edif. IC11, Ciudad Universitaria, Puebla, Puebla 72570, Mexico
| | - Maria Luisa Xiqui-Vazquez
- Centro de Investigaciones en Ciencias Microbiologicas, Benemerita Universidad Autonoma de Puebla. Edif. IC11, Ciudad Universitaria, Puebla, Puebla 72570, Mexico
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiologicas, Benemerita Universidad Autonoma de Puebla. Edif. IC11, Ciudad Universitaria, Puebla, Puebla 72570, Mexico.
| |
Collapse
|
34
|
Khandekar S, Liebens V, Fauvart M, Tulkens PM, Michiels J, Van Bambeke F. The Putative De- N-acetylase DnpA Contributes to Intracellular and Biofilm-Associated Persistence of Pseudomonas aeruginosa Exposed to Fluoroquinolones. Front Microbiol 2018; 9:1455. [PMID: 30042739 PMCID: PMC6048251 DOI: 10.3389/fmicb.2018.01455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022] Open
Abstract
Persisters are the fraction of antibiotic-exposed bacteria transiently refractory to killing and are recognized as a cause of antibiotic treatment failure. The putative de-N-acetylase DnpA increases persister levels in Pseudomonas aeruginosa upon exposure to fluoroquinolones in broth. In this study the wild-type PAO1 and its dnpA insertion mutant (dnpA::Tn) were used in parallel and compared for their capacity to generate persisters in broth (surviving fraction after exposure to high antibiotic concentrations) and their susceptibility to antibiotics in models of intracellular infection of THP-1 monocytes and of biofilms grown in microtiter plates. Multiplication in monocytes was evaluated by fluorescence dilution of GFP (expressed under the control of an inducible promoter) using flow cytometry. Gene expression was measured by quantitative RT-PCR. When exposed to fluoroquinolones (ciprofloxacin or levofloxacin) but not to meropenem or amikacin, the dnpA::Tn mutant showed a 3- to 10-fold lower persister fraction in broth. In infected monocytes, fluoroquinolones (but not the other antibiotics) were more effective (difference in Emax: 1.5 log cfu) against the dnpA::Tn mutant than against the wild-type PAO1. Dividing intracellular bacteria were more frequently seen (1.5 to 1.9-fold) with the fluoroquinolone-exposed dnpA::Tn mutant than with its parental strain. Fluoroquinolones (but not the other antibiotics) were also 3-fold more potent to prevent biofilm formation by the dnpA::Tn mutant than by PAO1 as well as to act upon biofilms (1–3 days of maturity) formed by the mutant than by the parental strain. Fluoroquinolones induced the expression of gyrA (4.5–7 fold) and mexX (3.6–5.4 fold) in the parental strain but to a lower extent (3–4-fold for gyrA and 1.8–2.8-fold for mexX, respectively) in the dnpA::Tn mutant. Thus, our data show that a dnpA insertion mutant of P. aeruginosa is more receptive to fluoroquinolone antibacterial effects than its parental strain in infected monocytes or in biofilms. The mechanism of this higher responsiveness could involve a reduced overexpression of the fluoroquinolone target.
Collapse
Affiliation(s)
- Shaunak Khandekar
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Veerle Liebens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,imec, Leuven, Belgium
| | - Paul M Tulkens
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
36
|
Yi Y, Frenzel E, Spoelder J, Elzenga JTM, van Elsas JD, Kuipers OP. Optimized fluorescent proteins for the rhizosphere-associated bacterium Bacillus mycoides with endophytic and biocontrol agent potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:57-74. [PMID: 29195004 DOI: 10.1111/1758-2229.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Tracking of fluorescent protein (FP)-labelled rhizobacteria is a key prerequisite to gain insights into plant-bacteria interaction mechanisms. However, the performance of FPs mostly has to be optimized for the bacterial host and for the environment of intended application. We report on the construction of mutational libraries of the superfolder green fluorescent protein sfGFP and the red fluorescent protein mKate2 in the bacterium B. mycoides, which next to its potential as plant-biocontrol agent occasionally enters an endophytic lifestyle. By fluorescence-activated cell sorting and comparison of signal intensities at the colony and single-cell level, the variants sfGFP(SPS6) and mKate (KPS12) with significantly increased brightness were isolated. Their high applicability for plant-bacteria interaction studies was shown by confocal laser scanning microscopy tracking of FP-tagged B. mycoides strains after inoculation to Chinese cabbage plants in a hydroponic system. During the process of colonization, strain EC18 rapidly attached to plant roots and formed a multicellular matrix, especially at the branching regions of the root hair, which probably constitute entrance sites to establish an endophytic lifestyle. The universal applicability of the novels FPs was proven by expression from a weak promoter, dual-labelling of B. mycoides, and by excellent expression and detectability in additional soil- and rhizosphere-associated Bacillus species.
Collapse
Affiliation(s)
- Yanglei Yi
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jan Spoelder
- Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Theo M Elzenga
- Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Fukami J, Ollero FJ, Megías M, Hungria M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 2017; 7:153. [PMID: 28724262 PMCID: PMC5514007 DOI: 10.1186/s13568-017-0453-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022] Open
Abstract
Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth—a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on seeds or by leaf spray, as well as of leaf spraying of Azospirillum metabolites, are strongly correlated with the synthesis of phytohormones and by eliciting genes related to plant-stress tolerance and defense against pathogens.
Collapse
|
38
|
Montalbán B, Thijs S, Lobo MC, Weyens N, Ameloot M, Vangronsveld J, Pérez-Sanz A. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn. Int J Mol Sci 2017; 18:E2026. [PMID: 28934107 PMCID: PMC5666708 DOI: 10.3390/ijms18102026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 02/04/2023] Open
Abstract
Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.
Collapse
Affiliation(s)
- Blanca Montalbán
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Mª Carmen Lobo
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Marcel Ameloot
- Biomedical Research Department, Hasselt University, Agoralaan building D, BE3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Araceli Pérez-Sanz
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
39
|
Jaaffar AKM, Parejko JA, Paulitz TC, Weller DM, Thomashow LS. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp. PHYTOPATHOLOGY 2017; 107:692-703. [PMID: 28383281 DOI: 10.1094/phyto-07-16-0257-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rhizoctonia solani anastomosis groups (AG)-8 and AG-2-1 and R. oryzae are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest and commonly infect wheat. AG-8 and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are most commonly found in fields in the low-precipitation zone, whereas R. solani AG-2-1 is much less virulent on wheat and is distributed in fields throughout the low-, intermediate-, and high-precipitation zones. Fluorescent Pseudomonas spp. that produce the antibiotic phenazine-1-carboxylic acid (PCA) also are abundant in the rhizosphere of crops grown in the low-precipitation zone but their broader geographic distribution and effect on populations of Rhizoctonia is unknown. To address these questions, we surveyed the distribution of PCA producers (Phz+) in 59 fields in cereal-based cropping systems throughout the Columbia Plateau. Phz+ Pseudomonas spp. were detected in 37 of 59 samples and comprised from 0 to 12.5% of the total culturable heterotrophic aerobic rhizosphere bacteria. The frequency with which individual plants were colonized by Phz+ pseudomonads ranged from 0 to 100%. High and moderate colonization frequencies of Phz+ pseudomonads were associated with roots from fields located in the driest areas whereas only moderate and low colonization frequencies were associated with crops where higher annual precipitation occurs. Thus, the geographic distribution of Phz+ pseudomonads overlaps closely with the distribution of R. solani AG-8 but not with that of R. oryzae or R. solani AG-2-1. Moreover, linear regression analysis demonstrated a highly significant inverse relationship between annual precipitation and the frequency of rhizospheres colonized by Phz+ pseudomonads. Phz+ pseudomonads representative of the four major indigenous species (P. aridus, P. cerealis, P. orientalis, and P. synxantha) suppressed Rhizoctonia root rot of wheat when applied as seed treatments. In vitro, mean 50% effective dose values for isolates of AG-8 and AG-2-1 from fields with high and low frequencies of phenazine producers did not differ significantly, nor was there a correlation between virulence of an isolate and sensitivity to PCA, resulting in rejection of the hypothesis that tolerance in Rhizoctonia spp. to PCA develops in nature upon exposure to Phz+ pseudomonads.
Collapse
Affiliation(s)
- Ahmad Kamil Mohd Jaaffar
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - James A Parejko
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Timothy C Paulitz
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - David M Weller
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Linda S Thomashow
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
40
|
Lòpez-Fernàndez S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A. A Phloem-Feeding Insect Transfers Bacterial Endophytic Communities between Grapevine Plants. Front Microbiol 2017; 8:834. [PMID: 28555131 PMCID: PMC5430944 DOI: 10.3389/fmicb.2017.00834] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes colonize the inner tissues of host plants through the roots or through discontinuities on the plant surface, including wounds and stomata. Little is known regarding a possible role of insects in acquiring and transmitting non-phytopathogenic microorganisms from plant to plant, especially those endophytes that are beneficial symbionts providing plant protection properties and homeostatic stability to the host. To understand the ecological role of insects in the transmission of endophytic bacteria, we used freshly hatched nymphs of the American sap-feeding leafhopper Scaphoideus titanus (vector) to transfer microorganisms across grapevine plants. After contact with the vector, sink plants were colonized by a complex endophytic community dominated by Proteobacteria, highly similar to that present in source plants. A similar bacterial community, but with a higher ratio of Firmicutes, was found on S. titanus. Insects feeding only on sink plants transferred an entirely different bacterial community dominated by Actinobacteria, where Mycobacterium sp., played a major role. Despite the fact that insects dwelled mostly on plant stems, the bacterial communities in plant roots resembled more closely those inside and on insects, when compared to those of above-ground plant organs. We prove here the potential of insect vectors to transfer entire endophytic bacterial communities between plants. We also describe the role of plants and bacterial endophytes in establishing microbial communities in plant-feeding insects.
Collapse
Affiliation(s)
- Sebastiàn Lòpez-Fernàndez
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Infection Biology Department, Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Federico Pedrazzoli
- Technology Transfer Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Center Agriculture Food Environment, University of TrentoTrento, Italy
| | - Andrea Campisano
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| |
Collapse
|
41
|
Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces. Sci Rep 2017; 7:43726. [PMID: 28262696 PMCID: PMC5338011 DOI: 10.1038/srep43726] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10–100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems.
Collapse
|
42
|
Wilton R, Ahrendt AJ, Shinde S, Sholto-Douglas DJ, Johnson JL, Brennan MB, Kemner KM. A New Suite of Plasmid Vectors for Fluorescence-Based Imaging of Root Colonizing Pseudomonads. FRONTIERS IN PLANT SCIENCE 2017; 8:2242. [PMID: 29449848 PMCID: PMC5799272 DOI: 10.3389/fpls.2017.02242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 05/04/2023]
Abstract
In the terrestrial ecosystem, plant-microbe symbiotic associations are ecologically and economically important processes. To better understand these associations at structural and functional levels, different molecular and biochemical tools are applied. In this study, we have constructed a suite of vectors that incorporates several new elements into the rhizosphere stable, broad-host vector pME6031. The new vectors are useful for studies requiring multi-color tagging and visualization of plant-associated, Gram-negative bacterial strains such as Pseudomonas plant growth promotion and biocontrol strains. A number of genetic elements, including constitutive promoters and signal peptides that target secretion to the periplasm, have been evaluated. Several next generation fluorescent proteins, namely mTurquoise2, mNeonGreen, mRuby2, DsRed-Express2 and E2-Crimson have been incorporated into the vectors for whole cell labeling or protein tagging. Secretion of mTurquoise2 and mNeonGreen into the periplasm of Pseudomonas fluorescens SBW25 has also been demonstrated, providing a vehicle for tagging proteins in the periplasmic compartment. A higher copy number version of select plasmids has been produced by introduction of a previously described repA mutation, affording an increase in protein expression levels. The utility of these plasmids for fluorescence-based imaging is demonstrated by root colonization of Solanum lycopersicum seedlings by P. fluorescens SBW25 in a hydroponic growth system. The plasmids are stably maintained during root colonization in the absence of selective pressure for more than 2 weeks.
Collapse
Affiliation(s)
- Rosemarie Wilton
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
- *Correspondence: Rosemarie Wilton,
| | - Angela J. Ahrendt
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Deirdre J. Sholto-Douglas
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, United States
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Melissa B. Brennan
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| |
Collapse
|
43
|
Moleleki LN, Pretorius RG, Tanui CK, Mosina G, Theron J. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. MOLECULAR PLANT PATHOLOGY 2017; 18:32-44. [PMID: 26788858 PMCID: PMC6638202 DOI: 10.1111/mpp.12372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/13/2023]
Abstract
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain.
Collapse
Affiliation(s)
- Lucy Novungayo Moleleki
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
- Department of Microbiology and Plant PathologyUniversity of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Rudolph Gustav Pretorius
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Collins Kipngetich Tanui
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Gabolwelwe Mosina
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Jacques Theron
- Department of Microbiology and Plant PathologyUniversity of PretoriaLunnon RoadPretoriaSouth Africa0028
| |
Collapse
|
44
|
Sabuquillo P, Gea A, Matas IM, Ramos C, Cubero J. The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Arch Microbiol 2016; 199:581-590. [PMID: 27995281 DOI: 10.1007/s00203-016-1327-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 01/23/2023]
Abstract
Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.
Collapse
Affiliation(s)
- Pilar Sabuquillo
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Adela Gea
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Isabel M Matas
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.,Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, 31192, Mutilva, Navarra, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jaime Cubero
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
45
|
Remus-Emsermann MNP, Gisler P, Drissner D. MiniTn7-transposon delivery vectors for inducible or constitutive fluorescent protein expression in Enterobacteriaceae. FEMS Microbiol Lett 2016; 363:fnw178. [PMID: 27445318 PMCID: PMC4972447 DOI: 10.1093/femsle/fnw178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
Here we present the generation and function of two sets of bacterial plasmids that harbor fluorescent genes encoding either blue, cyan, yellow or red fluorescent proteins. In the first set, protein expression is controlled by the strong and constitutive nptII promoter whereas in the second set, the strong tac promoter was chosen that underlies LacI(q) regulation. Furthermore, the plasmids are mobilizable, contain Tn7 transposons and a temperature-sensitive origin of replication. Using Escherichia coli S17-1 as donor strain, the plasmids allow fast and convenient Tn7-transposon delivery into many enterobacterial hosts, such as the here-used E. coli O157:H7. This procedure omits the need of preparing competent recipient cells and antibiotic resistances are only transiently conferred to the recipients. As the fluorescence proteins show little to no overlap in fluorescence emission, the constructs are well suited for the study of multicolored synthetic bacterial communities during biofilm production or in host colonization studies, e.g. of plant surfaces. Furthermore, tac promoter-reporter constructs allow the generation of so-called reproductive success reporters, which allow to estimate past doublings of bacterial individuals after introduction into environments, emphasizing the role of individual cells during colonization.
Collapse
Affiliation(s)
- Mitja N P Remus-Emsermann
- Agroscope, Institute for Food Sciences IFS, Schloss 1, 8820 Wädenswil, Switzerland School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Pascal Gisler
- Agroscope, Institute for Food Sciences IFS, Schloss 1, 8820 Wädenswil, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences IFS, Schloss 1, 8820 Wädenswil, Switzerland
| |
Collapse
|
46
|
Fox AR, Soto G, Valverde C, Russo D, Lagares A, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R, Ayub ND. Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 2016; 18:3522-3534. [PMID: 27198923 DOI: 10.1111/1462-2920.13376] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A main goal of biological nitrogen fixation research has been to expand the nitrogen-fixing ability to major cereal crops. In this work, we demonstrate the use of the efficient nitrogen-fixing rhizobacterium Pseudomonas protegens Pf-5 X940 as a chassis to engineer the transfer of nitrogen fixed by BNF to maize and wheat under non-gnotobiotic conditions. Inoculation of maize and wheat with Pf-5 X940 largely improved nitrogen content and biomass accumulation in both vegetative and reproductive tissues, and this beneficial effect was positively associated with high nitrogen fixation rates in roots. 15 N isotope dilution analysis showed that maize and wheat plants obtained substantial amounts of fixed nitrogen from the atmosphere. Pf-5 X940-GFP-tagged cells were always reisolated from the maize and wheat root surface but never from the inner root tissues. Confocal laser scanning microscopy confirmed root surface colonization of Pf-5 X940-GFP in wheat plants, and microcolonies were mostly visualized at the junctions between epidermal root cells. Genetic analysis using biofilm formation-related Pseudomonas mutants confirmed the relevance of bacterial root adhesion in the increase in nitrogen content, biomass accumulation and nitrogen fixation rates in wheat roots. To our knowledge, this is the first report of robust BNF in major cereal crops.
Collapse
Affiliation(s)
- Ana Romina Fox
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Instituto de Genética Ewald A. Favret (CICVyA-INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Instituto de Genética Ewald A. Favret (CICVyA-INTA), Buenos Aires, Argentina
| | - Claudio Valverde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniela Russo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina
| | - Antonio Lagares
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Ángeles Zorreguieta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina
| | - Karina Alleva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Pascuan
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Instituto de Genética Ewald A. Favret (CICVyA-INTA), Buenos Aires, Argentina
| | - Romina Frare
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Instituto de Genética Ewald A. Favret (CICVyA-INTA), Buenos Aires, Argentina
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Nicolás Daniel Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Buenos Aires, Argentina. .,Instituto de Genética Ewald A. Favret (CICVyA-INTA), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Mercado-Blanco J, Alós E, Rey MD, Prieto P. Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol Ecol 2016; 92:fiw092. [PMID: 27130938 DOI: 10.1093/femsec/fiw092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas fluorescens PICF7, an indigenous inhabitant of olive roots, displays an endophytic lifestyle in this woody crop and exerts biocontrol against the fungal phytopathogen Verticillium dahliae Here we report microscopy evidence that the strain PICF7 is also able to colonize and persist on or in wheat and barley root tissues. Root colonization of both cereal species followed a similar pattern to that previously reported in olive, including inner colonization of the root hairs. This demonstrates that strain PICF7 can colonize root systems of distant botanical species. Barley plants germinated from PICF7-treated seeds showed enhanced vegetative growth. Moreover, significant increases in the number of grains (up to 19.5%) and grain weight (up to 20.5%) per plant were scored in this species. In contrast, growth and yield were not significantly affected in wheat plants by the presence of PICF7. Proteomics analysis of the root systems revealed that different proteins were exclusively found depending on the presence or absence of PICF7 and only one protein with hydrogen ion transmembrane transporter activity was exclusively found in both PICF7-inoculated barley and wheat plants but not in the controls.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Departments of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Enriqueta Alós
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - María Dolores Rey
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda Menéndez Pidal s/n, Campus Alameda del Obispo s/n, E-14004 Córdoba, Spain
| |
Collapse
|
48
|
Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 2016; 6:23310. [PMID: 26984671 PMCID: PMC4794740 DOI: 10.1038/srep23310] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Richard Tafner
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - María V Moreno
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Sebastian A Stenglein
- Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina.,Cátedra de Microbiología, Facultad de Agronomía de Azul-UNCPBA, Av. República de Italia 780, 7300 Azul, Buenos Aires, Argentina
| | - Inés E García de Salamone
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires 1417, Argentina
| | - Louise M Nelson
- Department of Biology, Irving K Barber School of Arts and Sciences, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR &Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eric van der Graaff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark.,Department of Plant Physiology, Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria.,Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
49
|
Chou M, Xia C, Feng Z, Sun Y, Zhang D, Zhang M, Wang L, Wei G. A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia. PLANT MOLECULAR BIOLOGY 2016; 90:389-402. [PMID: 26711634 DOI: 10.1007/s11103-015-0424-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Translationally controlled tumor protein (TCTP) is fundamental for the regulation of development and general growth in eukaryotes. Its multiple functions have been deduced from its involvement in several cell pathways, but its potential involvement in symbiotic nodulation of legumes cannot be suggested a priori. In the present work, we identified and characterized from the woody leguminous tree Robinia pseudoacacia a homolog of TCTP, Rpf41, which was up-regulated in the infected roots at 15 days post-inoculation but decreased in the matured nodules. Subcellular location assay showed that Rpf41 protein was located in the plasma membrane, cytoplasm, nucleus, and also maybe in cytoskeleton. Knockdown of Rpf41 via RNA interference (RNAi) resulted in the impaired development of both nodule and root hair. Compared with wild plants, the root and stem length, fresh weight and nodule number per plant was decreased dramatically in Rpf41 RNAi plants. The number of ITs or nodule primordia was also significantly reduced in the Rpf41 RNAi roots. The analyses of nodule ultrastructure showed that the infected cell development in Rpf41 RNAi nodules remained in zone II, which had fewer infected cells. Furthermore, the symbiosomes displayed noticeable shrinkage of bacteroid and peribacteroid space enlargement in the infected cells of Rpf41 RNAi nodules. In the deeper cell layers, a more remarkable aberration of the infected cell ultrastructure was observed, and electron-transparent lesions in the bacteroid cytoplasm were detected. These results identify TCTP as an important regulator of symbiotic nodulation in legume for the first time, and it may be involved in symbiotic cell differentiation and preventing premature aging of the young nodules in R. pseudoacacia.
Collapse
Affiliation(s)
- Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Congcong Xia
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mingzhe Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
50
|
Ramírez-Mata A, López-Lara LI, Xiqui-Vázquez ML, Jijón-Moreno S, Romero-Osorio A, Baca BE. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense. Res Microbiol 2015; 167:190-201. [PMID: 26708984 DOI: 10.1016/j.resmic.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
Abstract
In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.
Collapse
Affiliation(s)
- Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Lilia I López-Lara
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Ma Luisa Xiqui-Vázquez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Saúl Jijón-Moreno
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Angelica Romero-Osorio
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| | - Beatriz E Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 103J, Av. San Claudio S/N, Col. San Manuel, Puebla Pue CP 72570, Mexico.
| |
Collapse
|