1
|
Kandalgaonkar KN, Barvkar VT. Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance. MYCORRHIZA 2025; 35:13. [PMID: 39998668 DOI: 10.1007/s00572-025-01189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are an essential symbiotic partner colonizing more than 70% of land plants. In exchange for carbon sources, mycorrhizal association ameliorates plants' growth and yield and enhances stress tolerance and/or resistance. To achieve this symbiosis, plants mediate a series of biomolecular changes, including the regulation of phytohormones. This review focuses on the role of each phytohormone in establishing symbiosis. It encases phytohormone modulation, exogenous application of the hormones, and mutant studies. The review also comments on the plausible phytohormone cross-talk essential for maintaining balanced mycorrhization and preventing fungal parasitism. Finally, we briefly discuss AMF-mediated stress regulation and contribution of phytohormone modulation in plants. We must examine their interplay to understand how phytohormones act species-specific or concentration-dependent manner. The review summarizes the gaps in these studies to improve our understanding of processes underlying plant-AMF symbiosis.
Collapse
Affiliation(s)
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune - 411007, Maharashtra, India.
| |
Collapse
|
2
|
Wang S, Han L, Ren Y, Hu W, Xie X, Chen H, Tang M. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:2207-2222. [PMID: 38481316 DOI: 10.1111/nph.19677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
3
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
4
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
5
|
Giovannini L, Sbrana C, Giovannetti M, Avio L, Lanubile A, Marocco A, Turrini A. Diverse mycorrhizal maize inbred lines differentially modulate mycelial traits and the expression of plant and fungal phosphate transporters. Sci Rep 2022; 12:21279. [PMID: 36482115 PMCID: PMC9732053 DOI: 10.1038/s41598-022-25834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Food production is heavily dependent on soil phosphorus (P), a non-renewable mineral resource essential for plant growth and development. Alas, about 80% is unavailable for plant uptake. Arbuscular mycorrhizal fungi may promote soil P efficient use, although the mechanistic aspects are yet to be completely understood. In this study, plant and fungal variables involved in P acquisition were investigated in maize inbred lines, differing for mycorrhizal responsiveness and low-P tolerance, when inoculated with the symbiont Rhizoglomus irregulare (synonym Rhizophagus irregularis). The expression patterns of phosphate transporter (PT) genes in extraradical and intraradical mycelium (ERM/IRM) and in mycorrhizal and control maize roots were assessed, together with plant growth responses and ERM extent and structure. The diverse maize lines differed in plant and fungal accumulation patterns of PT transcripts, ERM phenotypic traits and plant performance. Mycorrhizal plants of the low-P tolerant maize line Mo17 displayed increased expression of roots and ERM PT genes, compared with the low-P susceptible line B73, which revealed larger ERM hyphal densities and interconnectedness. ERM structural traits showed significant correlations with plant/fungal expression levels of PT genes and mycorrhizal host benefit, suggesting that both structural and functional traits are differentially involved in the regulation of P foraging capacity in mycorrhizal networks.
Collapse
Affiliation(s)
- Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy, Via Moruzzi 1, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
6
|
Rui W, Mao Z, Li Z. The Roles of Phosphorus and Nitrogen Nutrient Transporters in the Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:11027. [PMID: 36232323 PMCID: PMC9570102 DOI: 10.3390/ijms231911027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
More than 80% of land plant species can form symbioses with arbuscular mycorrhizal (AM) fungi, and nutrient transfer to plants is largely mediated through this partnership. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake progress, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungal-root interface have been identified. In this review, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation) and focus on P and N transfer from the fungal partner to the host plant, with a highlight on a possible interplay between P and N nutrient exchanges. Transporters belonging to the plant or AM fungi can synergistically process the transmembrane transport of soil nutrients to the symbiotic interface for further plant acquisition. Although much progress has been made to elucidate the complex mechanism for the integrated roles of nutrient transfers in AM symbiosis, questions still remain to be answered; for example, P and N transporters are less studied in different species of AM fungi; the involvement of AM fungi in plant N uptake is not as clearly defined as that of P; coordinated utilization of N and P is unknown; transporters of cultivated plants inoculated with AM fungi and transcriptomic and metabolomic networks at both the soil-fungi interface and fungi-plant interface have been insufficiently studied. These findings open new perspectives for fundamental research and application of AM fungi in agriculture.
Collapse
Affiliation(s)
| | | | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
| |
Collapse
|
7
|
Zhang S, Daniels DA, Ivanov S, Jurgensen L, Müller LM, Versaw WK, Harrison MJ. A genetically encoded biosensor reveals spatiotemporal variation in cellular phosphate content in Brachypodium distachyon mycorrhizal roots. THE NEW PHYTOLOGIST 2022; 234:1817-1831. [PMID: 35274313 PMCID: PMC9790424 DOI: 10.1111/nph.18081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells. Colonized cortical cells had a higher cytosolic Pi content relative to noncolonized cortical and epidermal cells, while plastidic Pi content was highest in cells at the infection front. Pi application to the entire mycorrhizal root resulted in transient changes in cytosolic Pi that differed in direction and magnitude depending on cell type and arbuscule status; cells with mature arbuscules showed a substantial transient increase in cytosolic Pi while those with collapsed arbuscules showed a decrease. Directed Pi application to extraradical hyphae resulted in measurable changes in cytosolic Pi of colonized cells 18 h after application. Our experiments reveal that cells within a mycorrhizal root vary in Pi content and Pi response dynamics.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute533 Tower RoadIthacaNY14853USA
| | | | - Sergey Ivanov
- Boyce Thompson Institute533 Tower RoadIthacaNY14853USA
| | | | | | - Wayne K. Versaw
- Department of BiologyTexas A&M UniversityCollege StationTX77843USA
| | | |
Collapse
|
8
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
9
|
Li SQ, Li GD, Peng KM, Yang LH, Huang XF, Lu LJ, Liu J. The combined effect of Diversispora versiformis and sodium bentonite contributes on the colonization of Phragmites in cadmium-contaminated soil. CHEMOSPHERE 2022; 293:133613. [PMID: 35032512 DOI: 10.1016/j.chemosphere.2022.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
To promote the colonization of Phragmites in Cd polluted, nutrient deprived and structural damaged soil, the combined remediation using chemical and microbial modifiers were carried out in potting experiments. The co-application of Diversispora versiformis and sodium bentonite significantly improved the soil structure and phosphorus utilization of the plant, while decreasing the content of cadmium bound by diethylenetriaminepentaacetic acid by 77.72%. As a result, the Phragmites height, tillers, and photosynthetic capacity were increased by 71.60%, 38.37%, and 17.54%, respectively. Further analysis suggested the co-application increased the abundance of phosphorus-releasing microbial communities like Pseudomonassp. and Gemmatimonadetes. Results of rhizosphere metabolites also proved that the signal molecule of lysophosphatidylcholine regulated the phosphorus fixation and utilization by the plant. This work finds composite modifiers are effective in the colonization of Phragmites in Cd contaminated soil by decreasing the bioavailable Cd, increasing the abundance of functional microbial communities and regulating the phosphorus fixation.
Collapse
Affiliation(s)
- Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Gen-Dong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayan Nur, 015000, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
10
|
Sbrana C, Agnolucci M, Avio L, Giovannini L, Palla M, Turrini A, Giovannetti M. Mycorrhizal Symbionts and Associated Bacteria: Potent Allies to Improve Plant Phosphorus Availability and Food Security. Front Microbiol 2022; 12:797381. [PMID: 35082769 PMCID: PMC8784594 DOI: 10.3389/fmicb.2021.797381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristiana Sbrana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Abstract
Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (ρS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.
Collapse
|
12
|
Differential effectiveness of Arbuscular Mycorrhizae in improving Rhizobial symbiosis by modulating Sucrose metabolism and Antioxidant defense in Chickpea under As stress. Symbiosis 2022. [DOI: 10.1007/s13199-021-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Li H, Gao MY, Mo CH, Wong MH, Chen XW, Wang JJ. Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:50-67. [PMID: 34610119 DOI: 10.1093/jxb/erab444] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Rice polluted by metal(loid)s, especially arsenic (As) and cadmium (Cd), imposes serious health risks. Numerous studies have demonstrated that the obligate plant symbionts arbuscular mycorrhizal fungi (AMF) can reduce As and Cd concentrations in rice. The behaviours of metal(loid)s in the soil-rice-AMF system are of significant interest for scientists in the fields of plant biology, microbiology, agriculture, and environmental science. We review the mechanisms of As and Cd accumulation in rice with and without the involvement of AMF. In the context of the soil-rice-AMF system, we assess and discuss the role of AMF in affecting soil ion mobility, chemical forms, transport pathways (including the symplast and apoplast), and genotype variation. A potential strategy for AMF application in rice fields is considered, followed by future research directions to improve theoretical understanding and encourage field application.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Xun Wen Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Jian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Nguyen CT, Saito K. Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. FRONTIERS IN PLANT SCIENCE 2021; 12:725939. [PMID: 34616416 PMCID: PMC8488203 DOI: 10.3389/fpls.2021.725939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal fungi provide plants with soil mineral nutrients, particularly phosphorus. In this symbiotic association, the arbuscular interface is the main site for nutrient exchange. To understand phosphorus transfer at the interface, we analyzed the subcellular localization of polyphosphate (polyP) in mature arbuscules of Rhizophagus irregularis colonizing roots of Lotus japonicus wild-type (WT) and H+-ATPase ha1-1 mutant, which is defective in phosphorus acquisition through the mycorrhizal pathway. In both, the WT and the ha1-1 mutant, polyP accumulated in the cell walls of trunk hyphae and inside fine branch modules close to the trunk hyphae. However, many fine branches lacked polyP. In the mutant, most fine branch modules showed polyP signals compared to the WT. Notably, polyP was also observed in the cell walls of some fine branches formed in the ha1-1 mutant, indicating phosphorus release from fungal cells to the apoplastic regions. Intense acid phosphatase (ACP) activity was detected in the periarbuscular spaces around the fine branches. Furthermore, double staining of ACP activity and polyP revealed that these had contrasting distribution patterns in arbuscules. These observations suggest that polyP in fungal cell walls and apoplastic phosphatases may play an important role in phosphorus transfer at the symbiotic interface in arbuscules.
Collapse
Affiliation(s)
- Cuc Thi Nguyen
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Katsuharu Saito
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
15
|
Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Long-Term Fertilization in the Wheat Rhizosphere and Root Endosphere. Appl Environ Microbiol 2021; 87:e0034921. [PMID: 34160265 DOI: 10.1128/aem.00349-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are critically impacted by fertilization in agricultural ecosystems. Understanding shifts in AMF communities in and around crop roots under different fertilization regimes can provide important lessons for improving agricultural production and sustainability. Here, we compared the responses of AMF communities in the rhizosphere (RS) and root endosphere (ES) of wheat (Triticum aestivum) to different fertilization treatments, nonfertilization (control), mineral fertilization only (NPK), mineral fertilization plus wheat straw (NPKS), and mineral fertilization plus cow manure (NPKM). We employed high-throughput amplicon sequencing and investigated the diversity, community composition, and network structure of AMF communities to assess their responses to fertilization. Our results elucidated that AMF communities in the RS and ES respond differently to fertilization schemes. Long-term NPK application decreased the RS AMF alpha diversity significantly, whereas additional organic amendments (straw or manure) had no effect. In contrast, NPK fertilization increased the ES AMF alpha diversity significantly, while additional organic amendments decreased it significantly. The effect of different fertilization schemes on AMF network complexity in the RS and ES were similar to their effects on alpha diversity. Changes to AMF communities in the RS and ES correlated mainly with the pH and phosphorus level of the rhizosphere soil under long-term inorganic and organic fertilization regimes. We suggest that the AMF community in the roots should be given more consideration when studying the effects of fertilization regimes on AMF in agroecosystems. IMPORTANCE Arbuscular mycorrhizal fungi are an integral component of rhizospheres, bridging the soil and plant systems and are highly sensitive to fertilization. However, surprisingly little is known about how the response differs between the roots and the surrounding soil. Decreasing arbuscular mycorrhizal fungal diversity under fertilization has been reported, implying a potential reduction in the mutualism between plants and arbuscular mycorrhizal fungi. However, we found opposing responses to long-term fertilization managements of arbuscular mycorrhizal fungi in the wheat roots and rhizosphere soil. These results suggested that changes in the arbuscular mycorrhizal fungal community in soils do not reflect those in the roots, highlighting that the root arbuscular mycorrhizal fungal community is pertinent to understand arbuscular mycorrhizal fungi and their crop hosts' responses to anthropogenic influences.
Collapse
|
16
|
Giovannini L, Sbrana C, Avio L, Turrini A. Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 2021; 367:5733160. [PMID: 32043113 DOI: 10.1093/femsle/fnaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 11/14/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are a key group of beneficial obligate biotrophs, establishing a mutualistic symbiosis with the roots of most land plants. The molecular markers generally used for their characterization are mainly based on informative regions of nuclear rDNA (SSU-ITS-LSU), although protein-encoding genes have also been proposed. Within functional genes, those encoding for phosphate transporters (PT) are particularly important in AMF, given their primary ability to take up Pi from soil, and to differentially affect plant phosphate nutrition. In this work, we investigated the genetic diversity of PT1 gene sequences and sequences of the taxonomically relevant SSU-ITS-LSU region in two isolates of the species Funneliformis coronatus, three isolates of the species Funneliformis mosseae and two species of the genus Rhizoglomus, originated from geographically distant areas and cultured in vivo. Our results showed that partial PT1 sequences not only successfully differentiated AMF genera and species like ribosomal gene sequences but also highlighted intraspecific diversity among F. mosseae and F. coronatus isolates. The study of functional genes related to the uptake of key mineral nutrients for the assessment of AMF diversity represents a key step in the selection of efficient isolates to be used as inocula in sustainable agriculture.
Collapse
Affiliation(s)
- Luca Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Cristiana Sbrana
- CNR, Istituto di Biologia e Biotecnologia Agraria, 56124 Pisa, Italy
| | - Luciano Avio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Alessandra Turrini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
17
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
18
|
Rani M, Jogawat A, Loha A. Sugar Transporters in Plant–Fungal Symbiosis. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Paparokidou C, Leake JR, Beerling DJ, Rolfe SA. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. MYCORRHIZA 2021; 31:69-83. [PMID: 33200348 PMCID: PMC7782400 DOI: 10.1007/s00572-020-01001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
Garg N, Cheema A. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111196. [PMID: 32890948 DOI: 10.1016/j.ecoenv.2020.111196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Accumulation of As (metalloid) degrades soil by negatively affecting the activities of soil enzymes, which in turn reduce growth and yield of the inhabiting plant. Arbuscular mycorrhizal (AM) symbiosis can impart metalloid tolerance in plants by secreting glomalin-related soil protein (GRSP) which binds with As or inertly adsorb in the extraradical mycelial surface. However, profitable use of AM requires selection of the most efficient combination of host plant and fungal species. The current study, therefore designed to study the efficacy of 3 a.m. fungal species: Rhizoglomus intraradices (Ri), Funneliformis mosseae (Fm) and Claroideoglomus claroideum (Cc) in imparting arsenate As(V) and arsenite As(III) stress tolerance in Cicer arietinum (chickpea) genotypes (G) - relatively metalloid tolerant- HC 3 and sensitive- C 235. Roots were found to be more severly affected as compared to shoots which resulted into a major decline in uptake of nutrients, chlorophyll concentrations and yield with As(III) inducing more toxic effects than As(V). HC 3 established more effective mycorrhizal symbiosis and was able to extract higher nutrients from the soil than C 235. Ri was most beneficial in improving plant biomass, carbohydrate utilization and productivity followed by Fm and Cc which could be due to its capability to initiate highest percent colonization and least metalloid uptake in roots through higher glomalin production in the soil. Moreover, Ri was highly efficient in improving soil enzymes activities-phosphatases (PHAs), β-glucosidase (BGA) and invertase (INV), thereby, imparting metalloid tolerance in chickpea genotypes. The results suggested use of Ri-chickpea symbiosis as a promising strategy for ameliorating As stress in chickpea.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Amandeep Cheema
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
21
|
Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. MYCORRHIZA 2020; 30:589-600. [PMID: 32533256 DOI: 10.1007/s00572-020-00972-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, Pisa Unit, 56124, Pisa, Italy.
| |
Collapse
|
22
|
Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060815] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metal accumulation in plants is a severe environmental problem, rising at an expeditious rate. Heavy metals such as cadmium, arsenic, mercury and lead are known environmental pollutants that exert noxious effects on the morpho-physiological and biological attributes of a plant. Due to their mobile nature, they have become an extended part of the food chain and affect human health. Arbuscular mycorrhizal fungi ameliorate metal toxicity as they intensify the plant’s ability to tolerate metal stress. Mycorrhizal fungi have vesicles, which are analogous to fungal vacuoles and accumulate massive amount of heavy metals in them. With the help of a pervasive hyphal network, arbuscular mycorrhizal fungi help in the uptake of water and nutrients, thereby abating the use of chemical fertilizers on the plants. They also promote resistance parameters in the plants, secrete a glycoprotein named glomalin that reduces the metal uptake in plants by forming glycoprotein–metal complexes, and improve the quality of the soil. They also assist plants in phytoremediation by increasing the absorptive area, increase the antioxidant response, chelate heavy metals and stimulate genes for protein synthesis that reduce the damage caused by free radicals. The current manuscript focuses on the uptake of heavy metals, accumulation, and arbuscular mycorrhizal impact in ameliorating heavy metal stress in plants.
Collapse
|
23
|
Calabrese S, Cusant L, Sarazin A, Niehl A, Erban A, Brulé D, Recorbet G, Wipf D, Roux C, Kopka J, Boller T, Courty PE. Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2019; 10:1617. [PMID: 31921260 PMCID: PMC6920215 DOI: 10.3389/fpls.2019.01617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, key components of nutrient uptake and exchange are specialized transporters that facilitate nutrient transport across membranes. As phosphate is a nutrient and a regulator of nutrient exchanges, we investigated the effect of P availability to extraradical mycelium (ERM) on both plant and fungus transcriptomes and metabolomes in a symbiocosm system. By perturbing nutrient exchanges under the control of P, our objectives were to identify new fungal genes involved in nutrient transports, and to characterize in which extent the fungus differentially modulates its metabolism when interacting with two different plant species. We performed transportome analysis on the ERM and intraradical mycelium of the AM fungus Rhizophagus irregularis associated to Populus trichocarpa and Sorghum bicolor under high and low P availability in ERM, using quantitative RT-PCR and Illumina mRNA-sequencing. We observed that mycorrhizal symbiosis induces expression of specific phosphate and ammonium transporters in both plants. Furthermore, we identified new AM-inducible transporters and showed that a subset of phosphate transporters is regulated independently of symbiotic nutrient exchange. mRNA-Sequencing revealed that the fungal transportome was not similarly regulated in the two host plant species according to P availability. Mirroring this effect, many plant carbohydrate transporters were down-regulated in P. trichocarpa mycorrhizal root tissue. Metabolome analysis revealed further that AM root colonization led to a modification of root primary metabolism under low and high P availability and to a decrease of primary metabolite pools in general. Moreover, the down regulation of the sucrose transporters suggests that the plant limits carbohydrate long distance transport (i.e. from shoot to the mycorrhizal roots). By simultaneous uptake/reuptake of nutrients from the apoplast at the biotrophic interface, plant and fungus are both able to control reciprocal nutrient fluxes.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Loic Cusant
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, Castanet-Tolosan, France
| | - Alexis Sarazin
- Department of Biology at the Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Daphnée Brulé
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, Castanet-Tolosan, France
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Basel, Switzerland
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
24
|
Kameoka H, Maeda T, Okuma N, Kawaguchi M. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. PLANT & CELL PHYSIOLOGY 2019; 60:2272-2281. [PMID: 31241164 DOI: 10.1093/pcp/pcz122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of processes in AMF, such as nutrient absorption from soil, metabolism and exchange with host plants, and the genes involved. However, the spatial regulation of the genes within the structures comprising each developmental stage is not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures (BAS), immature spores and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical mycelium and arbuscule. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to nutrient transport and metabolism. Of note, the transcriptional profiles suggest distinct functions of BAS in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Nao Okuma
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
25
|
Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. THE NEW PHYTOLOGIST 2019; 223:867-881. [PMID: 30883790 DOI: 10.1111/nph.15798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Approximately 29% of all vascular plant species are unable to establish an arbuscular mycorrhizal (AM) symbiosis. Despite this, AM fungi (Rhizophagus spp.) are enriched in the root microbiome of the nonhost Arabidopsis thaliana, and Arabidopsis roots become colonized when AM networks nurtured by host plants are available. Here, we investigated the nonhost-AM fungus interaction by analyzing transcriptional changes in Rhizophagus, Arabidopsis and the host plant Medicago truncatula while growing in the same mycorrhizal network. In early interaction stages, Rhizophagus activated the Arabidopsis strigolactone biosynthesis genes CCD7 and CCD8, suggesting that detection of AM fungi is not completely impaired. However, in colonized Arabidopsis roots, fungal nutrient transporter genes GintPT, GintAMT2, GintMST2 and GintMST4, essential for AM symbiosis, were not activated. RNA-seq transcriptome analysis pointed to activation of costly defenses in colonized Arabidopsis roots. Moreover, Rhizophagus colonization caused a 50% reduction in shoot biomass, but also led to enhanced systemic immunity against Botrytis cinerea. This suggests that early signaling between AM fungi and Arabidopsis is not completely impaired and that incompatibility appears at later interaction stages. Moreover, Rhizophagus-mediated defenses coincide with reduced Arabidopsis growth, but also with systemic disease resistance, highlighting the multifunctional role of AM fungi in host and nonhost interactions.
Collapse
Affiliation(s)
- Iván Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marco Cosme
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - SaskiaC M van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Plant-Soil-Interactions, Agroscope, Zürich, 8046, Switzerland
| |
Collapse
|
26
|
A novel in vitro methodology to cultivate arbuscular mycorrhizal fungi combining soil and synthetic media. Symbiosis 2019. [DOI: 10.1007/s13199-019-00637-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
28
|
Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:441-447. [PMID: 30824024 DOI: 10.1016/j.plantsci.2018.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is a poorly available macronutrient essential for plant growth and development and consequently for successful crop yield and ecosystem productivity. To cope with P limitations plants have evolved strategies for enhancing P uptake and/or improving P efficiency use. The universal 450-million-yr-old arbuscular mycorrhizal (AM) (fungus-root) symbioses are one of the most successful and widespread strategies to maximize access of plants to available P. AM fungi biotrophically colonize the root cortex of most plant species and develop an extraradical mycelium which overgrows the nutrient depletion zone of the soil surrounding plant roots. This hyphal network is specialized in the acquisition of low mobility nutrients from soil, particularly P. During the last years, molecular biology techniques coupled to novel physiological approaches have provided fascinating contributions to our understanding of the mechanisms of symbiotic P transport. Mycorrhiza-specific plant phosphate transporters, which are required not only for symbiotic P transfer but also for maintenance of the symbiosis, have been identified. The present review provides an overview of the contribution of AM fungi to plant P acquisition and an update of recent findings on the physiological, molecular and regulatory mechanisms of P transport in the AM symbiosis.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain.
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
29
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
30
|
Luginbuehl LH, Oldroyd GED. Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Curr Biol 2018; 27:R952-R963. [PMID: 28898668 DOI: 10.1016/j.cub.2017.06.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Arbuscular mycorrhizal fungi form associations with most land plants and facilitate nutrient uptake from the soil, with the plant receiving mineral nutrients from the fungus and in return providing the fungus with fixed carbon. This nutrient exchange takes place through highly branched fungal structures called arbuscules that are formed in cortical cells of the host root. Recent discoveries have highlighted the importance of fatty acids, in addition to sugars, acting as the form of fixed carbon transferred from the plant to the fungus and several studies have begun to elucidate the mechanisms that control the plant processes necessary for fungal colonisation and arbuscule development. In this review, we analyse the mechanisms that allow arbuscule development and the processes necessary for nutrient exchange between the plant and the fungus.
Collapse
Affiliation(s)
- Leonie H Luginbuehl
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
31
|
Le Pioufle O, Declerck S. Reducing Water Availability Impacts the Development of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 and Its Ability to Take Up and Transport Phosphorus Under in Vitro Conditions. Front Microbiol 2018; 9:1254. [PMID: 29942294 PMCID: PMC6004939 DOI: 10.3389/fmicb.2018.01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 12/02/2022] Open
Abstract
Climate change scenarios predict a higher variability in rainfall and an increased risk of water deficits during summers for the coming decades. For this reason, arbuscular mycorrhizal fungi (AMF) and their mitigating effects on drought stress in plants are increasingly considered in crop management. However, the impact of a decrease in water availability on the development of AMF and their ability to take up and transport inorganic phosphorus (Pi) to their hosts remain poorly explored. Here, Medicago truncatula plantlets were grown in association with Rhizophagus irregularis MUCL 41833 in bi-compartmented Petri plates. The system consisted in associating the plant and AMF in a root compartment (RC), allowing only the hyphae to extend in a root-free hyphal compartment (HC). Water availability in the HC was then lowered by increasing the concentration of polyethylene glycol-8000 (PEG-8000) from 0 to 10, 25, and 50 g L-1 (corresponding to a slight decrease in water potential of -0.024, -0.025, -0.030, and -0.056 Mpa, respectively). Hyphal growth, spore production and germination were severely impaired at the lowest water availability. The dynamics of Pi uptake by the AMF was also impacted, although total Pi uptake evaluated after 24 h stayed unchanged. The percentage of metabolically active extraradical hyphae remained above 70%. Finally, at the lowest water availability, a higher P concentration was observed in the shoots of M. truncatula. At reduced water availability, the extraradical mycelium (ERM) development was impacted, potentially limiting its capacity to explore a higher volume of soil. Pi uptake was slowed down but not prevented. The sensitivity of R. irregularis MUCL 41833 to a, even small, decrease in water availability contrasted with several studies reporting tolerance of AMF to drought. This suggests a species or strain-dependent effect and support the necessity to compare the impact of water availability on morpho-anatomy, nutrient uptake and transport capacities of other, potentially more drought-tolerant (e.g., isolated from dry environments) AMF.
Collapse
Affiliation(s)
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Campos P, Borie F, Cornejo P, López-Ráez JA, López-García Á, Seguel A. Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping? FRONTIERS IN PLANT SCIENCE 2018; 9:752. [PMID: 29922321 PMCID: PMC5996197 DOI: 10.3389/fpls.2018.00752] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980-2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between all the directly related PAE traits and its return to the host plant.
Collapse
Affiliation(s)
- Pedro Campos
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro López-García
- Section Ecology and Evolution, Biological Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex Seguel
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
33
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Maldonado-Mendoza IE, Harrison MJ. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol 2018; 122:121-130. [DOI: 10.1016/j.funbio.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
35
|
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. MYCORRHIZA 2017; 27:639-657. [PMID: 28647757 DOI: 10.1007/s00572-017-0784-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/05/2017] [Indexed: 05/27/2023]
Abstract
At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.
Collapse
Affiliation(s)
- Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Jorge Olave
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Paula Cartes
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Fernando Borie
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Pablo Cornejo
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
36
|
Pepe A, Sbrana C, Ferrol N, Giovannetti M. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. MYCORRHIZA 2017; 27:659-668. [PMID: 28573458 DOI: 10.1007/s00572-017-0779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 μg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Nuria Ferrol
- Departamento de Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
37
|
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. MOLECULAR PLANT 2017; 10:1147-1158. [PMID: 28782719 DOI: 10.1016/j.molp.2017.07.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed.
Collapse
Affiliation(s)
- Wanxiao Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jincai Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yina Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
38
|
Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 2017; 7:4686. [PMID: 28680077 PMCID: PMC5498536 DOI: 10.1038/s41598-017-04959-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 11/23/2022] Open
Abstract
A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of it's essential role in plant growth, the finite availability of P-rock for fertilizer production and the poor plant availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were inoculated with each of 10 selected bacteria isolated from AMF spores. Root colonization by AMF produced large plant growth responses, while seven bacterial strains further facilitated root growth and P uptake by promoting the development of AMF extraradical mycelium. Among the tested strains, Streptomyces sp. W94 produced the largest increases in uptake and translocation of 33P, while Streptomyces sp. W77 highly enhanced hyphal length specific uptake of 33P. The positive relationship between AMF-mediated P absorption and shoot P content was significantly influenced by the bacteria inoculants and such results emphasize the potential importance of managing both AMF and their microbiota for improving P acquisition by crops.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy.
| | - Mette Grønlund
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, DK-2800, Kgs., Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy
| | - Iver Jakobsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, DK-2800, Kgs., Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
39
|
Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2017; 58:1003-1017. [PMID: 28387868 DOI: 10.1093/pcp/pcx044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2017] [Indexed: 05/21/2023]
Abstract
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Claire Veneault-Fourrey
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
40
|
Branco S, Bi K, Liao HL, Gladieux P, Badouin H, Ellison CE, Nguyen NH, Vilgalys R, Peay KG, Taylor JW, Bruns TD. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes. Mol Ecol 2017; 26:2063-2076. [PMID: 27761941 PMCID: PMC5392165 DOI: 10.1111/mec.13892] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023]
Abstract
Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation.
Collapse
Affiliation(s)
- Sara Branco
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Ke Bi
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy FL 32351
| | | | - Hélène Badouin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Christopher E. Ellison
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Thomas D. Bruns
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
41
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
42
|
Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, Bonfante P, Zhao B. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. MOLECULAR PLANT 2016; 9:1583-1608. [PMID: 27688206 DOI: 10.1016/j.molp.2016.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A146 (in transmembrane domain [TMD] IV) and Val357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaowei Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Congrui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Kexin Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Antian Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaohui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China.
| |
Collapse
|
43
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
44
|
Zhang L, Jiang C, Zhou J, Declerck S, Tian C, Feng G. Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. MYCORRHIZA 2016; 26:909-918. [PMID: 27468824 DOI: 10.1007/s00572-016-0722-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 05/11/2023]
Abstract
Plants associated with arbuscular mycorrhizal fungi (AMF) acquire phosphorus via roots and extraradical hyphae. How soil P level affects P accumulation within hyphae and how P in hyphae influences the accumulation of metal minerals remains little explored. A bi-compartmented in vitro cultivation system separating a root compartment (RC), containing a Ri T-DNA transformed carrot root associated to the AMF Rhizophagus irregularis DAOM 197198, from a hyphal compartment (HC), containing only the extraradical hyphae, was used. The HC contained a liquid growth medium (i.e., the modified Strullu-Romand medium containing P in the form of KH2PO4) without (0 μM) or adjusted to 35, 100, and 700 μM of KH2PO4. The accumulation of P and metal minerals (Ca, Mg, K, Na, Fe, Cu, Mn) within extraradical hyphae and AMF-colonized roots, and the expression of the phosphate transporter gene GintPT were assessed. The expression of GintPT in the extraradical hyphae did not differ in absence of KH2PO4 or in presence of 35 and 100 μM KH2PO4 in the HC but was markedly reduced in presence of 700 μM KH2PO4. Hyphal P concentration was significantly lowest in absence of KH2PO4, intermediate at 35 and 100 μM KH2PO4 and significantly highest in presence of 700 μM KH2PO4 in the HC. The concentrations of K, Mg, and Na were positively associated with the concentration of P in the extraradical hyphae developing in the HC. Similarly, P concentration in extraradical hyphae in the HC was related to P concentration in the growth medium and influenced the concentration of K, Mg, and Na. The accumulation of the metal mineral K, Mg, and Na in the extraradical hyphae developing in the HC was possibly related to their function in neutralizing the negative charges of PolyP accumulated in the hyphae.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Caiyun Jiang
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Jiachao Zhou
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, B-1348, Louvain-la-Neuve, Belgium
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences; Research Center for Resources, the Environment and Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Carrino-Kyker SR, Kluber LA, Coyle KP, Burke DJ. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis 2016. [DOI: 10.1007/s13199-016-0448-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Zheng R, Wang J, Liu M, Duan G, Gao X, Bai S, Han Y. Molecular cloning and functional analysis of two phosphate transporter genes from Rhizopogon luteolus and Leucocortinarius bulbiger, two ectomycorrhizal fungi of Pinus tabulaeformis. MYCORRHIZA 2016; 26:633-44. [PMID: 27098350 DOI: 10.1007/s00572-016-0702-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/14/2016] [Indexed: 05/23/2023]
Abstract
Inorganic phosphorus (Pi) is essential for plant growth, and phosphate (P) deficiency is a primary limiting factor in Pinus tabulaeformis development in northern China. P acquisition in mycorrhizal plants is highly dependent on the activities of phosphate transporters of their root-associated fungi. In the current study, two phosphate transporter genes, RlPT and LbPT, were isolated from Rhizopogon luteolus and Leucocortinarius bulbiger, respectively, two ectomycorrhizal fungi forming symbiotic interactions with the P. tabulaeformis. Phylogenetic analysis suggested that the sequence of the phosphate transporter of L. bulbiger is most closely related to a phosphate transporter of Hebeloma cylindrosporum, whereas the phosphate transporter of R. luteolus is most closely related to that of Piloderma croceum. The subcellular localization indicated that RlPT and LbPT were expressed in the plasma membrane. The complementation assay in yeast indicated that both RlPT and LbPT partially compensated for the absence of phosphate transporter activity in the MB192 yeast strain, with a K m value of 57.90 μmol/L Pi for RlPT and 35.87 μmol/L Pi for LbPT. qPCR analysis revealed that RlPT and LbPT were significantly up-regulated at lower P availability, which may enhance P uptake and transport under Pi starvation. Our results suggest that RlPT and LbPT presumably play a key role in Pi acquisition by P. tabulaeformis via ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rong Zheng
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010020, Inner Mongolia, China
| | - Jugang Wang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, Guangdong, China
| | - Min Liu
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Guozhen Duan
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Xiaomin Gao
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, 524091, Guangdong, China
| | - Shulan Bai
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China.
| | - Yachao Han
- Fuyang Vocational and Technical College, Fuyang, 236031, Anhui, China
| |
Collapse
|
47
|
Tsuzuki S, Handa Y, Takeda N, Kawaguchi M. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:277-86. [PMID: 26757243 DOI: 10.1094/mpmi-10-15-0234-r] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.
Collapse
Affiliation(s)
- Syusaku Tsuzuki
- 1 Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; and
- 2 Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yoshihiro Handa
- 1 Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; and
| | - Naoya Takeda
- 1 Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; and
- 2 Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Masayoshi Kawaguchi
- 1 Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; and
- 2 Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
48
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
49
|
Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C. A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Front Microbiol 2016; 7:233. [PMID: 26973612 PMCID: PMC4771724 DOI: 10.3389/fmicb.2016.00233] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/15/2016] [Indexed: 01/22/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are a diverse group of soil fungi (Glomeromycota) that form the most ancient mutualistic association termed AM symbiosis with a majority of land plants, improving their nutrition uptake and resistance to stresses. In contrast to their great ecological implications, the knowledge of the molecular biological mechanisms involved is still scant, partly due to the limited genomic resources available. Here, we describe the gene repertoire of a new AM fungus Gigaspora rosea (Diversisporales). Among the 86332 non-redundant virtual transcripts assembled, 15346 presented similarities with proteins in the Refseq database and 10175 were assigned with GO terms. KOG and Interpro domain annotations clearly showed an enrichment of genes involved in signal transduction in G. rosea. KEGG pathway analysis indicates that most primary metabolic processes are active in G. rosea. However, as for Rhizophagus irregularis, several metabolic genes were not found, including the fatty acid synthase (FAS) gene. This finding supports the hypothesis that AM fungi depend on the lipids produced by their hosts. Furthermore, the presence of a large number of transporters and 100s of secreted proteins, together with the reduced number of plant cell wall degrading enzymes could be interpreted as an evolutionary adaptation to its mutualistic obligate biotrophy. The detection of meiosis-related genes suggests that G. rosea might use a cryptic sexual process. Lastly, a phylogeny of basal fungi clearly shows Glomeromycota as a sister clade to Mucoromycotina, not only to the Mucorales or Mortierellales. The characterization of the gene repertoire from an AM fungal species belonging to the order of Diversisporales and its comparison with the gene sets of R. irregularis (Glomerales) and Gigaspora margarita (Diversisporales), reveal that AM fungi share several features linked to mutualistic obligate biotrophy. This work contributes to lay the foundation for forthcoming studies into the genomics of Diversisporales, and also illuminates the utility of comparing gene repertoires of species from Diversisporales and other clades of Glomeromycota to gain more insights into the genetics and evolution of this fungal group.
Collapse
Affiliation(s)
- Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Hélène San Clemente
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Sébastien Roy
- AGRONUTRITION Laboratoire de BiotechnologiesToulouse, France
| | - Guillaume Bécard
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Christophe Roux
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| |
Collapse
|
50
|
Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. THE ISME JOURNAL 2016; 10:130-44. [PMID: 26046255 PMCID: PMC4681866 DOI: 10.1038/ismej.2015.91] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) occur in the rhizosphere and in plant tissues as obligate symbionts, having key roles in plant evolution and nutrition. AMF possess endobacteria, and genome sequencing of the endobacterium Candidatus Glomeribacter gigasporarum revealed a reduced genome and a dependence on the fungal host. To understand the effect of bacteria on fungal fitness, we used next-generation sequencing to analyse the transcriptional profile of Gigaspora margarita in the presence and in the absence of its endobacterium. Genomic data on AMF are limited; therefore, we first generated a gene catalogue for G. margarita. Transcriptome analysis revealed that the endobacterium has a stronger effect on the pre-symbiotic phase of the fungus. Coupling transcriptomics with cell biology and physiological approaches, we demonstrate that the bacterium increases the fungal sporulation success, raises the fungal bioenergetic capacity, increasing ATP production, and eliciting mechanisms to detoxify reactive oxygen species. By using TAT peptide to translocate the bioluminescent calcium reporter aequorin, we demonstrated that the line with endobacteria had a lower basal intracellular calcium concentration than the cured line. Lastly, the bacteria seem to enhance the fungal responsiveness to strigolactones, the plant molecules that AMF perceive as branching factors. Although the endobacterium exacts a nutritional cost on the AMF, endobacterial symbiosis improves the fungal ecological fitness by priming mitochondrial metabolic pathways and giving the AMF more tools to face environmental stresses. Thus, we hypothesise that, as described for the human microbiota, endobacteria may increase AMF innate immunity.
Collapse
Affiliation(s)
- Alessandra Salvioli
- Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP) – CNR, Torino, Italy
| | - Mara Novero
- Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | | | - Francesco Venice
- Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Paolo Bagnaresi
- Research Center for Genomics and Postgenomics, CRA-Fiorenzuola d'Arda, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|