1
|
Yang J, Wang Y, Li Z, Han S, Li B, Wu Y. Mycoviral Diversity of Fusarium oxysporum f. sp. niveum in Three Major Watermelon-Production Areas in China. Microorganisms 2025; 13:906. [PMID: 40284742 PMCID: PMC12029418 DOI: 10.3390/microorganisms13040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world's total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum f. sp. niveum (FoN), which has caused serious damage to the watermelon-planting industry. Some mycoviruses can reduce the pathogenicity of host pathogens and have the potential for biocontrol, so their application potential in the biological control of plant fungal diseases has attracted much attention. In this study, high-throughput sequencing was performed on 150 FoN strains isolated from three major watermelon-production areas (northern semi-arid area, northwestern arid area, and southern humid area) to detect the diversity of mycoviruses and to uncover new mycoviruses. The analysis identified 25 partial or complete genome segments representing eight previously undescribed mycoviruses. The existence of six mycoviruses was verified via RT-PCR. The southern humid area had the highest diversity of mycoviruses, with 15 species identified. Among these, 40% are dsRNA viruses and 33.3% belong to the family Chrysoviridae, representing the predominant viral type and family. In the northern semi-arid area, a total of 12 viral species were identified, among these 41.7% were +ssRNA viruses and 25% belonged to the family Mymonaviridae, constituting the main viral types and family. The northwestern arid area showed relatively low viral diversity, only containing three species. Two of these were +ssRNA viruses classified under the Mitoviridae and Potyviridae families. Notably, only one virus, Fusarium oxysporum f. sp. niveum Potyvirus 1 (FoNPTV1), was shared across all three areas. These findings reveal significant regional differences in the mycoviral species composition and distribution, highlighting the complex interactions between mycoviruses and FoN in different environments. By uncovering new mycoviruses associated with FoN, this study provides valuable resources for the potential biocontrol of Fusarium wilt in watermelon, contributing to sustainable disease management and improving the quality and safety of watermelon production in China.
Collapse
Affiliation(s)
- Jiawang Yang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| | - Zihao Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| | - Bo Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China;
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.Y.); (Y.W.); (S.H.)
| |
Collapse
|
2
|
Zhang W, Zhong J, Zhu JZ, Chen Y, Wang YR. Two novel mitoviruses coinfecting the fungus Colletotrichum karstii. Arch Virol 2025; 170:100. [PMID: 40216691 DOI: 10.1007/s00705-025-06290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Here, we isolated two novel mycoviruses coinfecting the fugus Colletotrichum karstii, which were designated as "Colletotrichum karstii mitovirus 1" (CkMV1) and "Colletotrichum karstii mitovirus 2" (CkMV2). The length of the complete genome of CkMV1 is 2,441 nucleotides, and that of CkMV2 is 2,391 nucleotides. Both contain a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). BLAST searches showed that the amino acids (aa) sequences of CkMV1 and CkMV2 had the highest amino acid sequence identity of 35.41% and 52.37% to the RdRp of Pleurotus pulmonarius duamitovirus 1 and Fusarium oxysporum f. sp. cubense mitovirus 4, respectively. Phylogenetic analysis based on RdRp sequences revealed that CkMV1 grouped with members of the genus Duamitovirus and that CkMV2 grouped with members of the genus Unuamitovirus, both within the family Mitoviridae.
Collapse
Affiliation(s)
- Wei Zhang
- College of Agronomy, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunmin, Yunnan Province, 650021, P.R. China.
| | - Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, Hunan Province, 410128, P.R. China.
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, College of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Gao L, Li W, Jia J, Cheng J, Fu Y, Xiao X, Cai Q, Lin Y, Chen T, Li B, Yu X, Hsiang T, Jiang D, Xie J. Exploration of mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum potentially uncovers mycovirus cross-taxa transmission. Virus Res 2025; 354:199552. [PMID: 40021014 PMCID: PMC11925586 DOI: 10.1016/j.virusres.2025.199552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Sclerotinia sclerotiorum is a worldwide plant pathogenic fungus. Identifying novel mycoviruses in this fungus can aid in developing fungal disease control strategies and enhance our understanding of viral evolution. Here, we analyzed mycovirus composition in S. sclerotiorum strain XZ69, and identified six ssRNA mycoviruses, including five known mycoviruses and one unassigned mycovirus. The newly identified mycovirus, tentatively named Sclerotinia sclerotiorum narna-like virus 1 (SsNLV1/XZ69), possesses a full-length genome of 3534 nucleotides, containing a single ORF that encodes an RNA-dependent RNA polymerase (RdRp) of 1090 amino acids. The RdRp encoded by SsNLV1/XZ69 shares 60.4 % identity with that encoded by Monilinia narnavirus H. SsNLV1/XZ69 phylogenetically clusters with unclassified narna-like viruses potentially infecting fungi, plants, and animals, and they form an independent branch that is distant from established families, therefore supporting the establishment of a new family to accommodate these viruses. Sclerotinia sclerotiorum fusarivirus 3 (SsFV3/XZ69) share 97 % amino acid identities with preciously reported Botrytis cinerea fusarivirus 8 (BcFV8). This last mycovirus originated from Botrytis cinerea, and hence this reveals that cross-genus transmission of SsFV3 or BcFV8 between B. cinerea and S. sclerotiorum may have potentially occurred. Mycovirus elimination, horizontal transmission, and RNA transfection experiments revealed that Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1/XZ69), SsNSRV2/XZ69, and SsFV3/XZ69 may be associated with hypovirulence in S. sclerotiorum, and strain XZ69 exhibits potential disease biocontrol on rapeseed seedlings. Our study expands our understanding of viral evolution, and may provide new potential biocontrol agents for S. sclerotiorum.
Collapse
Affiliation(s)
- Lixia Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weimeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jichun Jia
- College of Plant Protection, Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Badiwe M, Fialho RO, Stevens C, Lombard PH, van Niekerk J. Fusarium Species Associated with Diseases of Citrus: A Comprehensive Review. J Fungi (Basel) 2025; 11:263. [PMID: 40278084 PMCID: PMC12028395 DOI: 10.3390/jof11040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The citrus industry contributes to the cultivation of one of the most important fruit crops globally. However, citrus trees are susceptible to numerous Bisifusarium, Fusarium, and Neocosmospora-linked diseases, with dry root rot posing a serious threat to citrus orchards worldwide. These infections are exacerbated by biotic and abiotic stresses, leading to increased disease incidence. Healthy trees unexpectedly wilt and fall, exhibiting symptoms such as chlorosis, dieback, necrotic roots, root rot, wood discolouration, and eventual decline. Research indicates that the disease is caused by a complex of species from the Nectriaceae family, with Neocosmospora solani being the most prominent. To improve treatment and management strategies, further studies are needed to definitively identify these phytopathogens and understand the conditions and factors associated with Bisifusarium, Fusarium, and Neocosmospora-related diseases in citrus. This review focuses on the epidemiology and symptomatology of Fusarium and Neocosmospora species, recent advances in molecular techniques for accurate phytopathogen identification, and the molecular mechanisms of pathogenicity and resistance underlying Fusarium and Neocosmospora-citrus interactions. Additionally, the review highlights novel alternative methods, including biological control agents, for disease control to promote environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Mihlali Badiwe
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Régis Oliveira Fialho
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Charles Stevens
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| | - Paul-Henri Lombard
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
| | - Jan van Niekerk
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (R.O.F.); (P.-H.L.); (J.v.N.)
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| |
Collapse
|
5
|
Pan X, Xie Y, Yan S, Zhang X, Liu X, Jiao Y, Gao F. Characterization of two novel mitoviruses co infecting a single strain of Fusarium pseudograminearum causing wheat crown rot. Arch Virol 2025; 170:83. [PMID: 40108005 DOI: 10.1007/s00705-025-06242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/07/2025] [Indexed: 03/22/2025]
Abstract
Wheat crown rot (WCR), caused by Fusarium pseudograminearum, poses a threat to wheat production worldwide. Two mycoviruses, designated as "Fusarium pseudograminearum mitovirus 2" (FupgMV2) and "Fusarium pseudograminearum mitovirus 3" (FupgMV3), were identified in F. pseudograminearum strain YY514-10-2. The two viral genomes are 2,429 and 2,450 nucleotides long, each containing a single open reading frame (ORF) encoding a 724-amino-acid-long RNA-dependent RNA polymerase (RdRp), with 31.98% amino acid sequence identity to each other. BLASTp analysis revealed that the RdRp of FupgMV2 exhibits at least 88.84% amino acid sequence identity to that of Fusarium mitovirus 1, while the RdRp of FupgMV3 shows 80.19% amino acid sequence identity to that of Fusarium mitovirus 2. Phylogenetic analysis indicated that FupgMV2 and FupgMV3 both belong to the genus Unuamitovirus of the family Mitoviridae. This is the first report of two mitoviruses hosted by the same strain of the plant-pathogenic fungus F. pseudograminearum.
Collapse
Affiliation(s)
- Xin Pan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuwei Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoting Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinxin Liu
- College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Youzhou Jiao
- Henan University of Engineering, Zhengzhou, 451191, China.
| | - Fei Gao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Rueda-Maíllo F, Garrido-Jurado I, Kotta-Loizou I, Quesada-Moraga E. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 2025; 209:108251. [PMID: 39644991 DOI: 10.1016/j.jip.2024.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.
Collapse
Affiliation(s)
- F Rueda-Maíllo
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain
| | - I Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, Hatfield, United Kingdom; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, United Kingdom
| | - E Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus Universitario Rabanales 14071, Cordoba, Spain.
| |
Collapse
|
7
|
Kashyap PL, Kumar S, Khanna A, Jasrotia P, Singh G. Sustainable microbial solutions for managing fungal threats in wheat: progress and future directions. World J Microbiol Biotechnol 2025; 41:79. [PMID: 40011267 DOI: 10.1007/s11274-025-04286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Biotrophic and necrotrophic fungi are responsible for causing a range of diseases in wheat, resulting in significant economic losses and a decline in quality. Effective management of these diseases generally involves a combination of resistance breeding, chemical treatments, and cultural practices. However, traditional breeding methods have made limited progress due to the slow pace of genetic improvements, the complexity of the wheat genome, and the quantitative nature of disease resistance traits, along with the constantly evolving virulence of pathogens. This situation has prompted research into more effective and eco-friendly alternatives, such as biological control. Recent studies have concentrated on using antagonistic microbes to decrease the reliance on chemical pesticides while enhancing wheat health and productivity. A comprehensive overview of current knowledge on wheat disease outbreaks is being developed, with a focus on advancements in biological control strategies. The review will first discuss the key fungal pathogens and their associated diseases, followed by a summary of biological control methods, particularly emphasizing potential microbial antagonists. Additionally, it will explore strategies to improve the efficacy of biocontrol agents, which are crucial for a holistic and sustainable approach to wheat disease management. Ultimately, the article will highlight the role of biological control in promoting more sustainable agricultural practices, particularly concerning wheat diseases, in alignment with the UN sustainable development goals.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Sudheer Kumar
- Regional Center, ICAR-Indian Institute of Pulses Research, Bikaner, Rajasthan, 334001, India
| | - Annie Khanna
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| |
Collapse
|
8
|
Wu C, Zhou S, Xie C, Chen D, Zheng L. Molecular characterization of a novel deltaflexivirus from the plant-pathogenic fungus Neopestalotiopsis nebuloides strain N-7. Arch Virol 2025; 170:50. [PMID: 39922962 DOI: 10.1007/s00705-025-06219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/21/2024] [Indexed: 02/10/2025]
Abstract
The full genome sequence of a positive-sense (+) single-stranded (ss) RNA virus, which we have named "Neopestalotiopsis nebuloides deltaflexivirus 1" (NnDFV1), from Neopestalotiopsis nebuloides strain N-7 was sequenced and analyzed. The NnDFV1 genome is 7,719 nucleotides in length with a GC content of 49%, excluding the poly(A) tail, and contains a large open reading frame (ORF1) and three smaller ORFs (2-4). ORF1 encodes a replication-associated polyprotein (RP) consisting of three conserved domains: viral methyltransferase (Mtr), viral helicase (Hel), and RNA-dependent RNA polymerase (RdRp), whereas ORFs 2-4 encode three hypothetical proteins (18-20 kDa). Phylogenetic analysis showed that NnDFV1 formed a distinct clade together with Pestalotiopsis deltaflexivirus 1 (PDFV1), which is a new member of the genus Deltaflexivirus within the family Deltaflexiviridae. This is the first report of a novel deltaflexivirus found in the phytopathogenic fungus Neopestalotiopsis nebuloides.
Collapse
Affiliation(s)
- Caiming Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Siyu Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Changping Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Daipeng Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, School of Tropical Agriculture and Forestry, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China.
| | - Li Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, 572025, China.
| |
Collapse
|
9
|
Mi Y, Chen S, Liu K, Tie Z, Ren J, Zhang M, Liu Z, Zhao S, Xi H, Zhang X. Identification of Mycoviruses in Cytospora chrysosperma: Potential Biocontrol Agents for Walnut Canker. Viruses 2025; 17:180. [PMID: 40006935 PMCID: PMC11860865 DOI: 10.3390/v17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Walnut canker is a common disease in the Xinjiang Uygur autonomous region of China, which is caused by Cytospora chrysosperma. To date, there is no effective control measure for this disease. Infection with mycoviruses has been widely proven to reduce the virulence of plant pathogenic fungi, with some mycoviruses even serving as potential biological control agents for plant diseases. In this study, mycoviruses associated with 31 strains of C. chrysosperma from Xinjiang Uygur autonomous region were identified by metatranscriptomic sequencing. Seven new mycoviruses were identified by BLAST and RT-PCR analysis, which were Botrytis cinerea partitivirus 5 (BcPV5), Gammapartitivirus sp-XJ1 (GVsp-XJ1), Botoulivirus sp-XJ2 (BVsp-XJ2), Luoyang Fusar tick virus 2 (LfTV2), Leptosphaeria biglobosa narnavirus 17 (LbNV17), Sclerotinia sclerotiorum narnavirus 6 (SsNV6), and Cytospora ribis mitovirus (CrMV3). Among these, BcPV5, GVsp-XJ1, BVsp-XJ2, CrMV3, and LfTV2 were found to co-infect C. chrysosperma strain WS-11 and significantly reduce both the colony growth rate and virulence of the host. After co-culturing the virus-free WS-FV strain with WS-11, the colony growth rate and virulence of the derivative strain were also decreased. These results provide potential biocontrol resources for the control of walnut canker.
Collapse
Affiliation(s)
- Yingjie Mi
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Shaohua Chen
- Xinjiang Jiangjun Weinong Biotechnology Development Co., Ltd., Shihezi 832003, China;
| | - Kexin Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Zhanjiang Tie
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Junchao Ren
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Mingli Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Zheng Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Hui Xi
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| | - Xuekun Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (Y.M.); (K.L.); (Z.T.); (J.R.); (M.Z.); (Z.L.); (S.Z.)
| |
Collapse
|
10
|
Grybchuk D, Kostygov AY, Yurchenko V. Analysis of Leishbuviridae from Trypanosomatids. Methods Mol Biol 2025; 2893:151-167. [PMID: 39671036 DOI: 10.1007/978-1-0716-4338-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Over the last decade, considerable progress has been made in unraveling RNA virus diversity. This has contributed to our understanding of the evolution of these viruses, which include emerging zoonotic human pathogens. Current success has been greatly facilitated by the development of next-generation sequencing platforms instrumental for meta-transcriptomic studies. However, due to the rapid evolution of RNA viruses, there are numerous "blind spots" waiting to be explored; one of those is the RNA virome of unicellular eukaryotes. Here, we present the pipeline, which has been successfully used to characterize various types of RNA viruses, including Leishbuviridae (Bunyaviricetes, Hareavirales) in the parasitic flagellates of the family Trypanosomatidae. The pipeline relies on axenic in vitro cell culture and double-stranded RNA enrichment, followed by direct RNA-sequencing. A detailed procedure description starting from the initial total RNA preparation to the final assembly of the viral segments is provided.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
11
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Hough B, Wingfield B, Read D. Identification and characterization of mycoviruses in transcriptomes from the fungal family ceratocystidaceae. Virus Genes 2024; 60:696-710. [PMID: 39378002 PMCID: PMC11568016 DOI: 10.1007/s11262-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.
Collapse
Affiliation(s)
- Bianca Hough
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - David Read
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
14
|
Wang YR, Zhong J, Liu TB, Xiao YS. Genomic characteristics of a novel non-segmented double-stranded RNA mycovirus from the fungus Nigrospora oryzae. Arch Virol 2024; 169:249. [PMID: 39560795 DOI: 10.1007/s00705-024-06178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 11/20/2024]
Abstract
In this study, a novel virus isolated from Nigrospora oryzae, tentatively named "Nigrospora oryzae mycovirus 1" (NoMyV1), was identified. NoMyV1 has a non-segmented dsRNA genome that is 2891 bp in length and contains two non-overlapping open reading frames (ORF1 and 2). ORF1 encodes a protein with sequence similarity to the putative capsid proteins or hypothetical proteins of other unclassified viruses, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp). Sequence comparisons showed that NoMyV1 was most similar to Penicillium janczewskii Beauveria bassiana-like virus 1 (PjBblV1), with 76.12% amino acid sequence identity in the RdRp. In a phylogenetic analysis based on RdRp sequences, NoMyV1 was found to cluster with several other unclassified viruses for which a new genus, "Unirnavirus", which is distinct from the family Partitiviridae, has been proposed. Thus, we conclude that NoMyV1 is a novel member of the proposed genus "Unirnavirus".
Collapse
Affiliation(s)
- Ya Rong Wang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Colleage of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Tian Bo Liu
- Tobacco Research Institute of Hunan Province, Changsha City, Hunan Province, 410004, P.R. China.
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou City, Hunan Province, 423000, P.R. China.
| |
Collapse
|
15
|
Buivydaitė Ž, Winding A, Jørgensen LN, Zervas A, Sapkota R. New insights into RNA mycoviruses of fungal pathogens causing Fusarium head blight. Virus Res 2024; 349:199462. [PMID: 39260572 PMCID: PMC11417338 DOI: 10.1016/j.virusres.2024.199462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Fusarium head blight (FHB) continues to be a major problem in wheat production and is considered a disease complex caused by several fungal pathogens including Fusarium culmorum, F. graminearum and F. equiseti. With the objective of investigating diversity of mycoviruses in FHB-associated pathogens, we isolated Fusarium spp. from six wheat (Triticum aestivum) cultivars. In total, 56 Fusarium isolates (29 F. culmorum, 24 F. graminearum, one F. equiseti) were screened for mycoviruses by extracting and sequencing double-stranded RNA. We found that a large proportion of Fusarium isolates (46 %) were infected with mycoviruses. F. culmorum, previously described to harbor only one mycovirus, tended to host more viruses than F. graminearum, with a few isolates harboring seven mycoviruses simultaneously. Based on the RNA-dependent RNA polymerase domain analysis, ten were positive-sense single-stranded RNA viruses (related to viruses from families Mitoviridae, Botourmiaviridae, Narnaviridae, Tymoviridae, Gammaflexiviridae, as well as proposed Ambiguiviridae and ormycovirus viral group), one was double-stranded RNA virus (Partitiviridae), and five were negative-sense single-stranded RNA viruses (related to members in the families of Yueviridae, Phenuiviridae, Mymonaviridae, as well as proposed Mycoaspiviridae). Five mycoviruses were shared between F. graminearum and F. culmorum. These results increase our general understanding of mycovirology. To our knowledge, this is the first in-depth report of the mycovirome in F. culmorum and the first report on the diversity of mycoviruses from Danish isolates of FHB-causing fungi in general.
Collapse
Affiliation(s)
- Živilė Buivydaitė
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | | | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
16
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
17
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
18
|
Muñoz-Suárez H, Ruiz-Padilla A, Donaire L, Benito EP, Ayllón MA. Reexamining the Mycovirome of Botrytis spp. Viruses 2024; 16:1640. [PMID: 39459972 PMCID: PMC11512270 DOI: 10.3390/v16101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Botrytis species cause gray mold disease in more than 200 crops worldwide. To control this disease, chemical fungicides are usually applied. However, more sustainable control alternatives should be explored, such as the use of hypovirulent mycovirus-infected fungal strains. To determine the mycovirome of two Botrytis species, B. cinerea and B. prunorum, we reanalyzed RNA-Seq and small RNA-Seq data using different assembly programs and an updated viral database, aiming to identify new mycoviruses that were previously not described in the same dataset. New mycoviruses were identified, including those previously reported to infect or be associated with B. cinerea and Plasmopara viticola, such as Botrytis cinerea alpha-like virus 1 and Plasmopara viticola lesion-associated ourmia-like virus 80. Additionally, two novel narnaviruses, not previously identified infecting Botrytis species, have been characterized, tentatively named Botrytis cinerea narnavirus 1 and Botrytis narnavirus 1. The analysis of small RNAs suggested that all identified mycoviruses were targeted by the antiviral fungal mechanism, regardless of the viral genome type. In conclusion, the enlarged list of newly found viruses and the application of different bioinformatics approaches have enabled the identification of novel mycoviruses not previously described in Botrytis species, expanding the already extensive list.
Collapse
Affiliation(s)
- Hugo Muñoz-Suárez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100 Murcia, Spain;
| | - Ernesto Pérez Benito
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero, 12, Villamayor, 37185 Salamanca, Spain;
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
19
|
Xie H, Liu T, Guo J, Zhang T, Hu H, Yin J, Zhao Y, Xu G, Wang J, Chen J, Yang J. A novel ormycovirus isolated from the plant-pathogenic fungus Fusarium graminearum. Arch Virol 2024; 169:202. [PMID: 39294444 DOI: 10.1007/s00705-024-06131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024]
Abstract
In this study, we identified a novel mycovirus, Fusarium graminearum ormycovirus 1 (FgOV1), from the pathogenic fungus Fusarium graminearum. The virus has two RNA segments, RNA1 and RNA2, with lengths of 2,591 and 1,801 nucleotides, respectively, excluding the polyA tail. Each segment contains a single open reading frame (ORF). The ORF in RNA1 encodes an RNA-dependent RNA polymerase, while the ORF in RNA2 encodes a hypothetical protein. Phylogenetic analysis showed that FgOV1 belongs to the gammaormycovirus clade, whose members are related to betaormycoviruses. To our knowledge, this is the first report of an ormycovirus in Fusarium graminearum.
Collapse
Affiliation(s)
- Haoxin Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianbo Liu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Jun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yingjie Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Gecheng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
21
|
Wang Y, Yan J, Song G, Song Z, Shi M, Hu H, You L, Zhang L, Wang J, Liu Y, Cheng X, Zhang X. Transcriptome Analysis Reveals the Effect of Oyster Mushroom Spherical Virus Infection in Pleurotus ostreatus. Int J Mol Sci 2024; 25:9749. [PMID: 39273696 PMCID: PMC11396332 DOI: 10.3390/ijms25179749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA sequencing (RNA-seq) was conducted, identifying 354 differentially expressed genes (DEGs) in the mycelium of P. ostreatus during OMSV infection. Verifying the RNA-seq data through quantitative real-time polymerase chain reaction on 15 DEGs confirmed the consistency of gene expression trends. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the pivotal role of primary metabolic pathways in OMSV infection. Additionally, significant changes were noted in the gene expression levels of carbohydrate-active enzymes (CAZymes), which are crucial for providing the carbohydrates needed for fungal growth, development, and reproduction by degrading renewable lignocellulose. The activities of carboxymethyl cellulase, laccase, and amylase decreased, whereas chitinase activity increased, suggesting a potential mechanism by which OMSV influenced mycelial growth through modulating CAZyme activities. Therefore, this study provided insights into the pathogenic mechanisms triggered by OMSV in P. ostreatus.
Collapse
Affiliation(s)
- Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Junjie Yan
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guoyue Song
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zhizhong Song
- School of Agriculture, Ludong University, Yantai 264025, China
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Matthew Shi
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lu Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China
| |
Collapse
|
22
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
23
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
24
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
25
|
Urzo MLR, Guinto TD, Eusebio-Cope A, Budot BO, Yanoria MJT, Jonson GB, Arakawa M, Kondo H, Suzuki N. Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses. Viruses 2024; 16:1152. [PMID: 39066314 PMCID: PMC11281561 DOI: 10.3390/v16071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
Collapse
Affiliation(s)
- Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Timothy D. Guinto
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Ana Eusebio-Cope
- Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Bernard O. Budot
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Mary Jeanie T. Yanoria
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Gilda B. Jonson
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Masao Arakawa
- Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan;
| | - Hideki Kondo
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
26
|
Buivydaitė Ž, Winding A, Sapkota R. Transmission of mycoviruses: new possibilities. Front Microbiol 2024; 15:1432840. [PMID: 38993496 PMCID: PMC11236713 DOI: 10.3389/fmicb.2024.1432840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.
Collapse
Affiliation(s)
| | | | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
27
|
Lu X, Dai Z, Xue J, Li W, Ni P, Xu J, Zhou C, Zhang W. Discovery of novel RNA viruses through analysis of fungi-associated next-generation sequencing data. BMC Genomics 2024; 25:517. [PMID: 38797853 PMCID: PMC11129472 DOI: 10.1186/s12864-024-10432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However, compared to other virome studies, the research on fungi-associated viruses remains limited. RESULTS In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bioprojects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified, all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classified into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae, Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus, or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their groups is largely driven by cross-species transmission events. CONCLUSIONS These findings are of significant importance for understanding the diversity, evolution, and relationships between genome structure and function of fungal viruses. However, further investigation is needed to study their interactions.
Collapse
Affiliation(s)
- Xiang Lu
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Jiaxin Xue
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
28
|
Walterová L, Botella L, Hejna O, de la Peña M, Tonka T, Čurn V. Characterization of Mycoviruses in Armillaria ostoyae and A. cepistipes in the Czech Republic. Viruses 2024; 16:610. [PMID: 38675951 PMCID: PMC11053624 DOI: 10.3390/v16040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.
Collapse
Affiliation(s)
- Lucie Walterová
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022 Valencia, Spain;
| | - Tomáš Tonka
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| | - Vladislav Čurn
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (O.H.); (T.T.); (V.Č.)
| |
Collapse
|
29
|
Zheng SJ, Hu H, Li Y, Chen J, Li X, Bai T. Editorial: Microbial interaction with banana: mechanisms, symbiosis, and integrated diseases control. Front Microbiol 2024; 15:1390969. [PMID: 38646630 PMCID: PMC11026712 DOI: 10.3389/fmicb.2024.1390969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Centre for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Yunfeng Li
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jian Chen
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Centre for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Centre for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
30
|
Schiwek S, Slonka M, Alhussein M, Knierim D, Margaria P, Rose H, Richert-Pöggeler KR, Rostás M, Karlovsky P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel) 2024; 16:131. [PMID: 38535797 PMCID: PMC10975473 DOI: 10.3390/toxins16030131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2025] Open
Abstract
RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.
Collapse
Affiliation(s)
- Simon Schiwek
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| | - Matthäus Slonka
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Dennis Knierim
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Brunswick, Germany; (D.K.); (P.M.)
| | - Hanna Rose
- Institute of Horticultural Production Systems, University of Hannover, 30419 Hannover, Germany
| | - Katja R. Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Michael Rostás
- Agricultural Entomology, University of Göttingen, 37077 Göttingen, Germany; (M.S.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Fu M, Qu Z, Pierre-Pierre N, Jiang D, Souza FL, Miklas PN, Porter LD, Vandemark GJ, Chen W. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by Sclerotinia sclerotiorum. PLANT DISEASE 2024; 108:624-634. [PMID: 37743591 DOI: 10.1094/pdis-07-23-1458-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing white mold on many important economic crops. Recently, some mycoviruses such as S. sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) converted S. sclerotiorum into a beneficial symbiont that helps plants manage pathogens and other stresses. To explore the potential use of SsHADV-1 as a biocontrol agent in the United States and to test the efficacy of SsHADV-1-infected United States isolates in managing white mold and other crop diseases, SsHADV-1 was transferred from the Chinese strain DT-8 to United States isolates of S. sclerotiorum. SsHADV-1 is readily transmitted horizontally among United States isolates of S. sclerotiorum and consistently conferred hypovirulence to its host strains. Biopriming of dry bean seeds with hypovirulent S. sclerotiorum strains enhanced resistance to white mold, gray mold, and Rhizoctonia root rot. To investigate the underlying mechanisms, endophytic growth of hypovirulent S. sclerotiorum in dry beans was confirmed using PCR, and the expression of 12 plant defense-related genes were monitored before and after infection. The results indicated that the endophytic growth of SsHADV-1-infected strains in plants stimulated the expression of plant immunity pathway genes that assisted a rapid response from the plant to fungal infection. Finally, application of the seed biopriming technology with SsHADV-1-infected hypervirulent strain has promise for the biological control of several diseases of wheat, pea, and sunflower.
Collapse
Affiliation(s)
- Min Fu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zheng Qu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nickisha Pierre-Pierre
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Daohong Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fernanda L Souza
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - Lyndon D Porter
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA 99350, U.S.A
| | - George J Vandemark
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Pullman, WA 99164, U.S.A
| |
Collapse
|
32
|
Erkmen S, Sahin E, Akata I. Full-length genome characterization of a novel mitovirus isolated from the root rot fungus Armillaria mellea. Virus Genes 2024; 60:65-70. [PMID: 38103104 DOI: 10.1007/s11262-023-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Members of the genus Armillaria belong to the group of pathogenic and facultative saprotrophic fungi that are generally known as one of the causative agents of white root rot in infected plants including deciduous and evergreen trees and shrubs. Although several single-stranded RNA mycoviruses were previously described in different Armillaria species, there is no report on mitoviruses (one of the simplest RNA viruses of fungal hosts) known to infect Armillaria taxa. In this study, a new mitovirus denominated "Armillaria mellea mitovirus 1" (AmMV1) was identified in the sporophore samples of Armillaria mellea, commonly known as honey mushroom. AmMV1 has a genome length of 4440 nucleotides and a G + C content of 48%. It encompasses a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). Comparison through BLASTp analysis revealed that the RdRp domain of AmMV1 shares a sequence identity ranging from 33.43% to 43.27% with RdRp domains of Duamitovirus genus members, having the highest similarity (43.27%) to Rhizoctonia solani mitovirus 94. According to phylogenetic analysis, AmMV1 is classified as a member of the genus Duamitovirus belonging to the Mitoviridae family. This marks the initial instance of a mitovirus identified in Armillaria spp..
Collapse
Affiliation(s)
- Sıla Erkmen
- Faculty of Science, Department of Biology, Dokuz Eylul University, 35390, Buca, Izmir, Turkey
| | - Ergin Sahin
- Faculty of Science, Department of Biology, Dokuz Eylul University, 35390, Buca, Izmir, Turkey.
- Fauna and Flora Research and Application Center, Dokuz Eylul University, 35390, Buca, Izmir, Turkey.
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, 06100, Tandogan, Ankara, Turkey
| |
Collapse
|
33
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
34
|
Ruiz-Padilla A, Rodríguez-Romero JL, Pacifico D, Chiapello M, Ayllón MA. Determination of the Mycovirome of a Necrotrophic Fungus. Methods Mol Biol 2024; 2732:83-101. [PMID: 38060119 DOI: 10.1007/978-1-0716-3515-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Next-generation sequencing (NGS) of total RNA has allowed the detection of novel viruses infecting different hosts, such as fungi, increasing our knowledge on virus horizontal transfer events among different hosts, virus diversity, and virus evolution. Here, we describe the detailed protocols for the isolation of the plant pathogenic fungus Botrytis cinerea, from grapevine plants showing symptoms of the mold gray disease, the culture and maintenance of the isolated B. cinerea strains, the extraction of total RNA from B. cinerea strains for NGS, the bioinformatics pipeline designed and followed to detect mycoviruses in the sequenced samples, and the validation of the in silico detected mycoviruses by different approaches.
Collapse
Affiliation(s)
- Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Julio L Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Davide Pacifico
- Institute of Bioscience and Bioresources, National Research Council of Italy, Palermo, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| |
Collapse
|
35
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
36
|
Arshed S, Cox MP, Beever RE, Parkes SL, Pearson MN, Bowen JK, Templeton MD. The Bcvic1 and Bcvic2 vegetative incompatibility genes in Botrytis cinerea encode proteins with domain architectures involved in allorecognition in other filamentous fungi. Fungal Genet Biol 2023; 169:103827. [PMID: 37640199 DOI: 10.1016/j.fgb.2023.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Vegetative incompatibility is a fungal allorecognition system characterised by the inability of genetically distinct conspecific fungal strains to form a viable heterokaryon and is controlled by multiple polymorphic loci termed vic (vegetative incompatibility) or het (heterokaryon incompatibility). We have genetically identified and characterised the first vic locus in the economically important, plant-pathogenic, necrotrophic fungus Botrytis cinerea. A bulked segregant approach coupled with whole genome Illumina sequencing of near-isogenic lines of B. cinerea was used to map a vic locus to a 60-kb region of the genome. Within that locus, we identified two adjacent, highly polymorphic open reading frames, Bcvic1 and Bcvic2, which encode predicted proteins that contain domain architectures implicated in vegetative incompatibility in other filamentous fungi. Bcvic1 encodes a predicted protein containing a putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin repeats. Bcvic2 encodes a putative syntaxin protein containing a SNARE domain; such proteins typically function in vesicular transport. Deletion of Bcvic1 and Bcvic2 individually had no effect on vegetative incompatibility. However, deletion of the region containing both Bcvic1 and Bcvic2 resulted in mutant lines that were severely restricted in growth and showed loss of vegetative incompatibility. Complementation of these mutants by ectopic expression restored the growth and vegetative incompatibility phenotype, indicating that Bcvic1 and Bcvic2 are controlling vegetative incompatibility at this vic locus.
Collapse
Affiliation(s)
- Saadiah Arshed
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa Centre of Research Excellence, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Ross E Beever
- Manaaki Whenua Landcare Research, Auckland, New Zealand
| | | | - Michael N Pearson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K Bowen
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand.
| | - Matthew D Templeton
- Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand; Bioprotection Aotearoa Centre of Research Excellence, New Zealand.
| |
Collapse
|
37
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
38
|
Khan HA, Baig DI, Bhatti MF. An Overview of Mycoviral Curing Strategies Used in Evaluating Fungal Host Fitness. Mol Biotechnol 2023; 65:1547-1564. [PMID: 36841858 PMCID: PMC9963364 DOI: 10.1007/s12033-023-00695-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023]
Abstract
The number of novel mycoviruses is increasing at a high pace due to advancements in sequencing technologies. As a result, an uncountable number of mycoviral sequences are available in public sequence repositories. However, only genomic information is not sufficient to understand the impact of mycoviruses on their host biology. Biological characterization is required to determine the nature of mycoviruses (cryptic, hypervirulent, or hypovirulent) and to search for mycoviruses with biocontrol and therapeutic potential. Currently, no particular selective method is used as the gold standard against these mycoviral infections. Given the importance of curing, we present an overview of procedures used in preparation of isogenic lines, along with their benefits and drawbacks. We concluded that a combination of single-spore isolation and hyphal tipping is the best fit for preparation of isogenic lines. Furthermore, recent bioinformatic approaches should be introduced in the field of mycovirology to predict virus-specific antivirals to get robust results.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
- Department of Biotechnology, University of Mianwali, Punjab, 42200 Pakistan
| | - Danish Ilyas Baig
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000 Pakistan
| |
Collapse
|
39
|
Khan HA, Mukhtar M, Bhatti MF. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 2023; 54:1459-1478. [PMID: 37523037 PMCID: PMC10485235 DOI: 10.1007/s42770-023-01073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (-ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, "CCHH" motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.
| | - Mamuna Mukhtar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
40
|
Kuroki M, Yaguchi T, Urayama SI, Hagiwara D. Experimental verification of strain-dependent relationship between mycovirus and its fungal host. iScience 2023; 26:107337. [PMID: 37520716 PMCID: PMC10372822 DOI: 10.1016/j.isci.2023.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Mycoviruses are viruses that infect fungi. Unlike mammalian infectious viruses, their life cycle does not generally have an extracellular stage, and a symbiosis-like relationship is maintained between virus and host fungi. Recently, mycoviruses have been reported to show effects on host fungi, altering biological properties such as growth rate, virulence, drug resistance, and metabolite production. In this study, we systematically elucidated the effects of viruses on host cells by comparing host phenotypes and transcriptomic responses in multiple sets of virus-infected and -eliminated Aspergillus flavus strains. The comparative study showed that mycoviruses affect several cellular activities at the molecular level in a virus- and host strain-dependent manner. The virus-swapping experiment revealed that difference with only three bases in the virus genome led to different host fungal response at the transcriptional level. Our results highlighted highly specific relationship between viruses and their host fungi.
Collapse
Affiliation(s)
- Misa Kuroki
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Inohana, Chou-ku, Chiba 260-8673, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
41
|
Das T, Prasad A, Dey A. Mycoviral gene-incorporating phytopathogenic fungi: a biocontrol agent. TRENDS IN PLANT SCIENCE 2023; 28:864-866. [PMID: 37236859 DOI: 10.1016/j.tplants.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Fungal pathogens cause devastating agroeconomic losses. Chemical fungicides are used to control fungal diseases, although this is not an ecofriendly approach. A recent study by Liu et al. highlighted the use of mycoviral gene-incorporating phytopathogenic fungi as biocontrol agents for disease management.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
42
|
Khan HA, Nerva L, Bhatti MF. The good, the bad and the cryptic: The multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 2023; 585:259-269. [PMID: 37453341 DOI: 10.1016/j.virol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan; Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015, Conegliano, (TV), Italy.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
43
|
Zhang X, Hu H, Zhao Y, Wang Y, Zhang W, You L, Wang J, Liu Y, Cheng X. Oyster Mushroom Spherical Virus Crosses the Species Barrier and Is Pathogenic to a New Host Pleurotus pulmonarius. Int J Mol Sci 2023; 24:10584. [PMID: 37445762 DOI: 10.3390/ijms241310584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally transferred from an infected strain to a cured strain via mycelia. The infection results in significant inhibition of mycelial growth, malformation of fruiting bodies, and yield loss in oyster mushrooms. This study successfully transferred OMSV from P. ostreatus to Pleurotus pulmonarius. However, transmission was not successful in other Pleurotus species including P. citrinopileatus, P. eryngii, P. nebrodensis, and P. salmoneostramineus. The successful OMSV infection in P. pulmonarius was further verified with Western blot analysis using a newly prepared polyclonal antiserum against the OMSV coat protein. Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius. The OMSV-infected strain demonstrated abnormal performance including twisted mushrooms or irregular edge of the cap as well as reduced yield of fruiting bodies in P. pulmonarius, compared to the OMSV-free strain. This study is the first report on the infection and pathogenicity of OMSV to the new host P. pulmonarius. The data from this study therefore suggest that OMSV is a potential threat to P. pulmonarius.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanxiang Zhao
- College of Plant Health and Medicine, Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenjing Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
44
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
45
|
Jankovic M, Cirkovic V, Stamenkovic G, Loncar A, Todorovic M, Stanojevic M, Siljic M. Detection of the Xanthi Chryso-like Virus in New Geographical Area and a Novel Arthropod Carrier. Trop Med Infect Dis 2023; 8:tropicalmed8040225. [PMID: 37104350 PMCID: PMC10144253 DOI: 10.3390/tropicalmed8040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Here, we report on a serendipitous finding of a chryso-like virus associated with Culex pipiens mosquitos in the course of study aimed to detect and characterize West Nile virus (WNV) circulating in mosquitos in Serbia, Southern Europe. Upon initial detection of unexpected product in a PCR protocol for partial WNV NS5 gene amplification, further confirmation and identification was obtained through additional PCR and Sanger sequencing experiments. Bioinformatic and phylogenetic analysis identified the obtained sequences as Xanthi chryso-like virus (XCLV). The finding is particular for the fact that it associates XCLV with a new potential vector species and documents a novel geographical area of its distribution.
Collapse
Affiliation(s)
- Marko Jankovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Valentina Cirkovic
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Gorana Stamenkovic
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Loncar
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia
| | - Marija Todorovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Marina Siljic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| |
Collapse
|
46
|
Sarrocco S. Biological Disease Control by Beneficial (Micro)Organisms: Selected Breakthroughs in the Past 50 Years. PHYTOPATHOLOGY 2023; 113:732-740. [PMID: 36706001 DOI: 10.1094/phyto-11-22-0405-kd] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biological control of plant disease by beneficial (micro)organisms is one of the main tools available to preserve plant health within the wider context of One Health and in line with the goals of the Agenda 2030 for Sustainable Development. The commercial development of biocontrol agents, together with a new perspective on the resident microbial community, all supported by innovative "omics" technologies, continues to gain in prominence in plant pathology, addressing the need to feed the increasing world population and to assure safe and secure access to food. The present review considers selected advances within the last 50 years, highlighting those that can be considered as breakthroughs for the biological control research field. Selected examples of successful biocontrol agents and strategies are reported, including the history of the progress in researching Trichoderma isolates as commercial biocontrol agents, the exploitation of mycoviruses to confer hypovirulence to plant pathogenic fungi, the role of microbial communities in the suppressiveness of soils, and evolving approaches including the establishment of synthetic microbial communities.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80-56124, Pisa, Italy
| |
Collapse
|
47
|
Villan Larios DC, Diaz Reyes BM, Pirovani CP, Loguercio LL, Santos VC, Góes-Neto A, Fonseca PLC, Aguiar ERGR. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J Fungi (Basel) 2023; 9:jof9030361. [PMID: 36983529 PMCID: PMC10052124 DOI: 10.3390/jof9030361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus–fungi interactions, providing an important source of information for future studies.
Collapse
Affiliation(s)
- Diana Carolina Villan Larios
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Brayan Maudiel Diaz Reyes
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Paula Luize Camargos Fonseca
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| |
Collapse
|
48
|
Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids. ISME COMMUNICATIONS 2023; 3:10. [PMID: 36732595 PMCID: PMC9894930 DOI: 10.1038/s43705-022-00210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNATyr gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.
Collapse
|
49
|
Reyes BMD, Fonseca PLC, Heming NM, Conceição LBDA, Nascimento KTDS, Gramacho KP, Arevalo-Gardini E, Pirovani CP, Aguiar ERGR. Characterization of the microbiota dynamics associated with Moniliophthora roreri, causal agent of cocoa frosty pod rot disease, reveals new viral species. Front Microbiol 2023; 13:1053562. [PMID: 36817107 PMCID: PMC9936985 DOI: 10.3389/fmicb.2022.1053562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Theobroma cacao, the cocoa tree, is a target for pathogens, such as fungi from the genera Phytophthora, Moniliophthora, Colletotrichum, Ceratocystis, among others. Some cacao pathogens are restricted to specific regions of the world, such as the Cacao swollen shoot virus (CSSV) in West African countries, while others are expanding geographically, such as Moniliophthora roreri in the Americas. M. roreri is one of the most threatening cacao pathogens since it directly attacks the cacao pods driving a significant reduction in production, and therefore economic losses. Despite its importance, the knowledge about the microenvironment of this pathogen and the cocoa pods is still poorly characterized. Methods Herein we performed RNA sequencing of spores in differential stages of culture in a medium supplemented with cacao pod extract and mycelium collected of the susceptible variety ICT 7121 naturally infected by the pathogen to evaluate the diversity and transcriptional activity of microorganisms associated with the in vitro sporulation of M. roreri. Results Our data revealed a great variety of fungi and bacteria associated with M. roreri, with an exceptional diversity of individuals from the genus Trichoderma sp. Interestingly, the dynamics of microorganisms from different kingdoms varied proportionally, suggesting they are somehow affected by M. roreri culture time. We also identified three sequences similar to viral genomes from the Narnaviridae family, posteriorly confirmed by phylogenetic analysis as members of the genus Narnavirus. Screening of M. roreri public datasets indicated the virus sequences circulating in samples from Ecuador, suggesting a wide spread of these elements. Of note, we did not identify traces of the viral sequences in the M. roreri genome or DNA sequencing, restricting the possibility of these sequences representing endogenized elements. Discussion To the best of our knowledge, this is the first report of viruses infecting the fungus of the genus Moniliophthora and only the third description of viruses that are able to parasite elements from the Marasmiaceae family.
Collapse
Affiliation(s)
| | - Paula Luize Camargos Fonseca
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil,Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Neander Marcel Heming
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Karina Peres Gramacho
- Centro de Pesquisas do Cacau, Comissão Executivo do Plano da Lavoura Cacaueira, CEPEC/CEPLAC, Rodovia Ilhéus-Itabuna, Ilhéus, Brazil
| | - Enrique Arevalo-Gardini
- Instituto de Cultivos Tropicales, Tarapoto, Peru,Universidad Nacional Autónoma de Alto Amazonas, Yurimaguas, Peru
| | | | - Eric Roberto Guimarães Rocha Aguiar
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil,*Correspondence: Eric Roberto Guimarães Rocha Aguiar, ✉
| |
Collapse
|
50
|
Vainio EJ, Anany H, Hyman P. Editorial: Beyond humans-Virus therapy for pathogens of animals and plants. Front Microbiol 2023; 13:1127901. [PMID: 36687625 PMCID: PMC9850140 DOI: 10.3389/fmicb.2022.1127901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Eeva J. Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada,Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland, OH, United States,*Correspondence: Paul Hyman ✉
| |
Collapse
|