1
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
McMillen CM, Megli C, Radisic R, Skvarca LB, Hoehl RM, Boyles DA, McGaughey JJ, Bird BH, McElroy AK, Hartman AL. Vaccine strains of Rift Valley fever virus exhibit attenuation at the maternal-fetal placental interface. J Virol 2024; 98:e0098324. [PMID: 39016561 PMCID: PMC11334480 DOI: 10.1128/jvi.00983-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Christina Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Rebecca Radisic
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lauren B. Skvarca
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Devin A. Boyles
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anita K. McElroy
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
McMillen CM, Megli C, Radisic R, Skvarca LB, Hoehl RM, Boyles DA, McGaughey JJ, Bird BH, McElroy AK, Hartman AL. Vaccine strains of Rift Valley fever virus exhibit attenuation at the maternal-fetal placental interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596800. [PMID: 38854055 PMCID: PMC11160702 DOI: 10.1101/2024.05.31.596800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent in the maternal-facing side. Type-I and type-III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Christina Megli
- University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA
| | - Rebecca Radisic
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Lauren B. Skvarca
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, PA, USA
| | - Ryan M. Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | - Devin A. Boyles
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | | | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anita K. McElroy
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
| | - Amy L. Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta 2023; 141:26-34. [PMID: 36443107 DOI: 10.1016/j.placenta.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Maintenance of cell polarity and the structure of the apical surface of epithelial cells is a tightly regulated process necessary for tissue homeostasis. The syncytiotrophoblast of the human placenta is an entirely unique epithelial layer. It is a single giant multinucleate syncytial layer that comprises the maternal-facing surface of the human placenta. Like other epithelia, the syncytiotrophoblast is highly polarized with the apical surface dominated by microvillar membrane protrusions. Syncytiotrophoblast dysfunction is a key feature of pregnancy complications like preeclampsia. Preeclampsia is commonly associated with a heightened maternal immune response and pro-inflammatory environment. Importantly, reports have observed disruption of syncytiotrophoblast apical microvilli in placentas from preeclamptic pregnancies, indicating a loss of apical polarity, but little is known about how the syncytiotrophoblast regulates polarity. Here, we review the evolutionarily conserved mechanisms that regulate apical-basal polarization in epithelial cells, and the emerging evidence that PAR polarity complex components are critical regulators of syncytiotrophoblast homeostasis and apical membrane structure. Pro-inflammatory cytokines have been shown to disrupt the expression of polarity regulating proteins. We also discuss initial data showing that syncytiotrophoblast apical polarity can be disrupted by the addition of the pro-inflammatory cytokine tumor necrosis factor-α, revealing that physiologically relevant signals can modulate syncytiotrophoblast polarization. Since disrupted polarity is a feature of preeclampsia, further elucidation of the syncytiotrophoblast-specific polarity signaling network and testing whether the disruption of polarity-factor signaling networks may contribute to the development of preeclampsia is warranted.
Collapse
Affiliation(s)
- Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Khushali Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
5
|
Trinh QD, Pham NTK, Takada K, Ushijima H, Komine-Aizawa S, Hayakawa S. Roles of TGF-β1 in Viral Infection during Pregnancy: Research Update and Perspectives. Int J Mol Sci 2023; 24:ijms24076489. [PMID: 37047462 PMCID: PMC10095195 DOI: 10.3390/ijms24076489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a pleiotropic growth factor playing various roles in the human body including cell growth and development. More functions of TGF-β1 have been discovered, especially its roles in viral infection. TGF-β1 is abundant at the maternal-fetal interface during pregnancy and plays an important function in immune tolerance, an essential key factor for pregnancy success. It plays some critical roles in viral infection in pregnancy, such as its effects on the infection and replication of human cytomegalovirus in syncytiotrophoblasts. Interestingly, its role in the enhancement of Zika virus (ZIKV) infection and replication in first-trimester trophoblasts has recently been reported. The above up-to-date findings have opened one of the promising approaches to studying the mechanisms of viral infection during pregnancy with links to corresponding congenital syndromes. In this article, we review our current and recent advances in understanding the roles of TGF-β1 in viral infection. Our discussion focuses on viral infection during pregnancy, especially in the first trimester. We highlight the mutual roles of viral infection and TGF-β1 in specific contexts and possible functions of the Smad pathway in viral infection, with a special note on ZIKV infection. In addition, we discuss promising approaches to performing further studies on this topic.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
6
|
Andrade CBV, Lopes LVA, Ortiga-Carvalho TM, Matthews SG, Bloise E. Infection and disruption of placental multidrug resistance (MDR) transporters: Implications for fetal drug exposure. Toxicol Appl Pharmacol 2023; 459:116344. [PMID: 36526072 DOI: 10.1016/j.taap.2022.116344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.
Collapse
Affiliation(s)
- C B V Andrade
- Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L V A Lopes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Endocrinologia Translacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Obstetrics & Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - E Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Kim B, Park KH, Lee OH, Lee G, Kim H, Lee S, Hwang S, Kim YB, Choi Y. Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice. Anim Biosci 2023; 36:43-52. [PMID: 36108690 PMCID: PMC9834656 DOI: 10.5713/ab.22.0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. METHODS To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. RESULTS hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. CONCLUSION In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.
Collapse
Affiliation(s)
- Byeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Ki Hoon Park
- Department of Research and Development, KR BIOTECH CO., Ltd., Seoul, 05029,
Korea
| | - Ok-Hee Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029,
Korea
| | - Giwan Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Hyukjung Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Siyoung Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Semi Hwang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029,
Korea,Corresponding Authors: Young Bong Kim, Tel: +82-2-450-4208, E-mail: . Youngsok Choi, Tel: +82-2-450-3969, E-mail:
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea,Corresponding Authors: Young Bong Kim, Tel: +82-2-450-4208, E-mail: . Youngsok Choi, Tel: +82-2-450-3969, E-mail:
| |
Collapse
|
8
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Heydarifard Z, Zadheidar S, Yavarian J, Shatizadeh Malekshahi S, Kalantari S, Mokhtari-Azad T, Shafiei-Jandaghi NZ. Potential role of viral infections in miscarriage and insights into the underlying molecular mechanisms. Congenit Anom (Kyoto) 2022; 62:54-67. [PMID: 34961973 DOI: 10.1111/cga.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Intrauterine viruses can infect the decidua and placenta and cause adverse effects on the fetus during gestation. This review discusses the contribution of various viral infections to miscarriage and the molecular mechanisms by which viruses can cause devastating effects on healthy fetuses and induce miscarriage. Severe acute respiratory syndrome coronavirus 2 as newly emerged coronavirus was considered here, due to the concerns about its role during pregnancy and inducing miscarriage, as well. In this narrative review, an extensive literature search was conducted to find all studies investigating viral infections in miscarriage and their molecular mechanisms published over the past 20 years. The results of various studies investigating the roles of 20 viral infections in miscarriage are presented. Then, the mechanisms of pregnancy loss in viral infections were addressed, including alteration of trophoblast invasion and placental dysfunction, inducing excessive maternal immune response, and inducing apoptosis in the placental tissue. Viruses may cause pregnancy loss through different mechanisms and our knowledge about these mechanisms can be helpful for controlling or preventing viral infections and achieving a successful pregnancy.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sevrin Zadheidar
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirin Kalantari
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Zhu G, Du S, Wang Y, Huang X, Hu G, Lu X, Li D, Zhu Y, Qu D, Cai Q, Liu L, Du M. Delayed Antiviral Immune Responses in Severe Acute Respiratory Syndrome Coronavirus Infected Pregnant Mice. Front Microbiol 2022; 12:806902. [PMID: 35126335 PMCID: PMC8814454 DOI: 10.3389/fmicb.2021.806902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in immune responses had been reported to correlate with different symptoms and mortality in the disease course of coronavirus disease 2019 (COVID-19). However, whether severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection interferes with females’ fertility and causes different symptoms among pregnant and non-pregnant females remains unknown. Here, we examined the differences in viral loads, SARS-CoV-2-specific antibody titers, proinflammatory cytokines, and levels of T cell activation after SARS-CoV-2 sub-lethal infection between pregnant and non-pregnant human Angiotensin-Converting Enzyme II (ACE2) transgenic mouse models. Both mice showed elevated levels of viral loads in the lung at 4 days post-infection (dpi). However, viral loads in the pregnant group remained elevated at 7 dpi while decreased in the non-pregnant group. Consistent with viral loads, increased production of proinflammatory cytokines was detected from the pregnant group, and the IgM or SARS-CoV-2-specific IgG antibody in serum of pregnant mice featured delayed elevation compared with non-pregnant mice. Moreover, by accessing kinetics of activation marker expression of peripheral T cells after infection, a lower level of CD8+ T cell activation was observed in pregnant mice, further demonstrating the difference of immune-response between pregnant and non-pregnant mice. Although vertical transmission did not occur as SARS-CoV-2 RNA was absent in the uterus and fetus from the infected pregnant mice, a lower pregnancy rate was observed when the mice were infected before embryo implantation after mating, indicating that SARS-CoV-2 infection may interfere with mice’s fertility at a specific time window. In summary, pregnant mice bear a weaker ability to eliminate the SARS-CoV-2 virus than non-pregnant mice, which was correlated with lower levels of antibody production and T cell activation.
Collapse
Affiliation(s)
- Guohua Zhu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xixi Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Gaowei Hu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Lu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yizhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Di Qu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Qiliang Cai,
| | - Lu Liu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Lu Liu,
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Meirong Du,
| |
Collapse
|
12
|
Quiñones-Vega M, Velásquez E, Sosa-Acosta P, Melo A, Garcez PP, Nogueira FCS, Domont GB. Proteomic profiles of Zika virus-infected placentas bearing fetuses with microcephaly. Proteomics Clin Appl 2021; 16:e2100042. [PMID: 34704388 DOI: 10.1002/prca.202100042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE Zika virus (ZIKV) transmission to the fetus during pregnancy could enable a collection of severe fetal malformations like microcephaly (MC), termed Congenital Zika Syndrome (CZS). The mechanisms involved in ZIKV transplacental transmission are not fully understood. EXPERIMENTAL DESIGN Here we aim to identify in placental tissues the deregulated proteins associated with ZIKV-induced MC using label-free proteomics. RESULTS We found proteins associated with DNA damage and gene expression inhibition up-regulated in infected placentas with no MC fetuses (Z+) compared to the control group (Ctr). Actin filament organization and the immune response were also found deregulated in the Z+ group. In ZIKV-positive placentas bearing fetuses with MC (MC+) was detected an increase in T cell activation, indicating an elevated immune response. A comparison between MC+ and Z+ groups showed a higher abundance of proteins related to endocytosis and autophagy in MC+, suggesting a higher transcytosis of vesicles with ZIKV particles across the maternal-fetal interface. CONCLUSIONS AND CLINICAL RELEVANCE Our results suggest that higher expression of integrins in MC+ might be associated with high internalization of the virus since these proteins are known as virus receptors. Similarly, an increased immune response in the placenta and higher infiltration of the virus to the fetus could contribute to the neurological malformation of the CZS.
Collapse
Affiliation(s)
- Mauricio Quiñones-Vega
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Erika Velásquez
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Patricia Sosa-Acosta
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Adriana Melo
- Instituto Pesquisa Professor Joaquim Amorim Neto (IPESQ), Campina Grande, Paraíba, Brazil
| | - Patrícia P Garcez
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Fábio C S Nogueira
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil.,Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Gilberto B Domont
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| |
Collapse
|
13
|
Bhagirath AY, Medapati MR, de Jesus VC, Yadav S, Hinton M, Dakshinamurti S, Atukorallaya D. Role of Maternal Infections and Inflammatory Responses on Craniofacial Development. FRONTIERS IN ORAL HEALTH 2021; 2:735634. [PMID: 35048051 PMCID: PMC8757860 DOI: 10.3389/froh.2021.735634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is a tightly regulated immunological state. Mild environmental perturbations can affect the developing fetus significantly. Infections can elicit severe immunological cascades in the mother's body as well as the developing fetus. Maternal infections and resulting inflammatory responses can mediate epigenetic changes in the fetal genome, depending on the developmental stage. The craniofacial development begins at the early stages of embryogenesis. In this review, we will discuss the immunology of pregnancy and its responsive mechanisms on maternal infections. Further, we will also discuss the epigenetic effects of pathogens, their metabolites and resulting inflammatory responses on the fetus with a special focus on craniofacial development. Understanding the pathophysiological mechanisms of infections and dysregulated inflammatory responses during prenatal development could provide better insights into the origins of craniofacial birth defects.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Manoj Reddy Medapati
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sneha Yadav
- Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Martha Hinton
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Devi Atukorallaya
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Zaga-Clavellina V, Diaz L, Olmos-Ortiz A, Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166182. [PMID: 34058350 DOI: 10.1016/j.bbadis.2021.166182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Pregnancy is a unique immunological condition in which an "immune-diplomatic" dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.
Collapse
Affiliation(s)
- Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México C.P. 11000, Mexico
| | - Lorenza Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México C.P. 14080, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, INPer, Ciudad de México C.P. 11000, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico.
| |
Collapse
|
16
|
Narang K, Cheek EH, Enninga EAL, Theiler RN. Placental Immune Responses to Viruses: Molecular and Histo-Pathologic Perspectives. Int J Mol Sci 2021; 22:2921. [PMID: 33805739 PMCID: PMC7998619 DOI: 10.3390/ijms22062921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
As most recently demonstrated by the SARS-CoV-2 pandemic, congenital and perinatal infections are of significant concern to the pregnant population as compared to the general population. These outcomes can range from no apparent impact all the way to spontaneous abortion or fetal infection with long term developmental consequences. While some pathogens have developed mechanisms to cross the placenta and directly infect the fetus, other pathogens lead to an upregulation in maternal or placental inflammation that can indirectly cause harm. The placenta is a temporary, yet critical organ that serves multiple important functions during gestation including facilitation of fetal nutrition, oxygenation, and prevention of fetal infection in utero. Here, we review trophoblast cell immunology and the molecular mechanisms utilized to protect the fetus from infection. Lastly, we discuss consequences in the placenta when these protections fail and the histopathologic result following infection.
Collapse
Affiliation(s)
- Kavita Narang
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth H. Cheek
- Department of Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth Ann L. Enninga
- Departments of Immunology, Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Regan N. Theiler
- Division of Obstetrics, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Ouyang Y, Mouillet JF, Sorkin A, Sadovsky Y. Trophoblastic extracellular vesicles and viruses: Friends or foes? Am J Reprod Immunol 2021; 85:e13345. [PMID: 32939907 PMCID: PMC7880881 DOI: 10.1111/aji.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cells produce cytoplasmic vesicles to facilitate the processing and transport of RNAs, proteins, and other signaling molecules among intracellular organelles. Moreover, most cells release a range of extracellular vesicles (EVs) that mediate intercellular communication in both physiological and pathological settings. In addition to a better understanding of their biological functions, the diagnostic and therapeutic prospects of EVs, particularly the nano-sized small EVs (sEVs, exosomes), are currently being rigorously pursued. While EVs and viruses such as retroviruses might have evolved independently, they share a number of similar characteristics, including biogenesis pathways, size distribution, cargo, and cell-targeting mechanisms. The interplay of EVs with viruses has profound effects on viral replication and infectivity. Our research indicates that sEVs, produced by primary human trophoblasts, can endow other non-placental cell types with antiviral response. Better insights into the interaction of EVs with viruses may illuminate new ways to attenuate viral infections during pregnancy, and perhaps develop new antiviral therapeutics to protect the feto-placental unit during critical times of human development.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Mahyuddin AP, Kanneganti A, Wong JJL, Dimri PS, Su LL, Biswas A, Illanes SE, Mattar CNZ, Huang RYJ, Choolani M. Mechanisms and evidence of vertical transmission of infections in pregnancy including SARS-CoV-2s. Prenat Diagn 2020; 40:1655-1670. [PMID: 32529643 PMCID: PMC7307070 DOI: 10.1002/pd.5765] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
There remain unanswered questions concerning mother‐to‐child‐transmission of SARS‐CoV‐2. Despite reports of neonatal COVID‐19, SARS‐CoV‐2 has not been consistently isolated in perinatal samples, thus definitive proof of transplacental infection is still lacking. To address these questions, we assessed investigative tools used to confirm maternal‐fetal infection and known protective mechanisms of the placental barrier that prevent transplacental pathogen migration. Forty studies of COVID‐19 pregnancies reviewed suggest a lack of consensus on diagnostic strategy for congenital infection. Although real‐time polymerase chain reaction of neonatal swabs was universally performed, a wide range of clinical samples was screened including vaginal secretions (22.5%), amniotic fluid (35%), breast milk (22.5%) and umbilical cord blood. Neonatal COVID‐19 was reported in eight studies, two of which were based on the detection of SARS‐CoV‐2 IgM in neonatal blood. Histological examination demonstrated sparse viral particles, vascular malperfusion and inflammation in the placenta from pregnant women with COVID‐19. The paucity of placental co‐expression of ACE‐2 and TMPRSS2, two receptors involved in cytoplasmic entry of SARS‐CoV‐2, may explain its relative insensitivity to transplacental infection. Viral interactions may utilise membrane receptors other than ACE‐2 thus, tissue susceptibility may be broader than currently known. Further spatial‐temporal studies are needed to determine the true potential for transplacental migration.
Collapse
Affiliation(s)
- Aniza P Mahyuddin
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhiram Kanneganti
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Jeslyn J L Wong
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Pooja S Dimri
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore
| | - Lin L Su
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Citra N Z Mattar
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Y-J Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Pique-Regi R, Romero R, Tarca AL, Luca F, Xu Y, Alazizi A, Leng Y, Hsu CD, Gomez-Lopez N. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? eLife 2020; 9:e58716. [PMID: 32662421 PMCID: PMC7367681 DOI: 10.7554/elife.58716] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 10 million people, including pregnant women. To date, no consistent evidence for the vertical transmission of SARS-CoV-2 exists. The novel coronavirus canonically utilizes the angiotensin-converting enzyme 2 (ACE2) receptor and the serine protease TMPRSS2 for cell entry. Herein, building upon our previous single-cell study (Pique-Regi et al., 2019), another study, and new single-cell/nuclei RNA-sequencing data, we investigated the expression of ACE2 and TMPRSS2 throughout pregnancy in the placenta as well as in third-trimester chorioamniotic membranes. We report that co-transcription of ACE2 and TMPRSS2 is negligible in the placenta, thus not a likely path of vertical transmission for SARS-CoV-2. By contrast, receptors for Zika virus and cytomegalovirus, which cause congenital infections, are highly expressed by placental cell types. These data show that the placenta minimally expresses the canonical cell-entry mediators for SARS-CoV-2.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
- Detroit Medical CenterDetroitUnited States
- Department of Obstetrics and Gynecology, Florida International UniversityMiamiUnited States
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human ServicesDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
20
|
Groß R, Bauer R, Krüger F, Rücker-Braun E, Olari LR, Ständker L, Preising N, Rodríguez AA, Conzelmann C, Gerbl F, Sauter D, Kirchhoff F, Hagemann B, Gačanin J, Weil T, Ruiz-Blanco YB, Sanchez-Garcia E, Forssmann WG, Mankertz A, Santibanez S, Stenger S, Walther P, Wiese S, Spellerberg B, Münch J. A Placenta Derived C-Terminal Fragment of β-Hemoglobin With Combined Antibacterial and Antiviral Activity. Front Microbiol 2020; 11:508. [PMID: 32328038 PMCID: PMC7153485 DOI: 10.3389/fmicb.2020.00508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
The placenta acts as physical and immunological barrier against the transmission of viruses and bacteria from mother to fetus. However, the specific mechanisms by which the placenta protects the developing fetus from viral and bacterial pathogens are poorly understood. To identify placental peptides and small proteins protecting from viral and bacterial infections, we generated a peptide library from 10 kg placenta by chromatographic means. Screening the resulting 250 fractions against Herpes-Simplex-Virus 2 (HSV-2), which is rarely transmitted through the placenta, in a cell-based system identified two adjacent fractions with significant antiviral activity. Further rounds of chromatographic purification and anti-HSV-2 testing allowed to purify the bioactive peptide. Mass spectrometry revealed the presence of a 36-mer derived from the C-terminal region of the hemoglobin β subunit. The purified and corresponding chemically synthesized peptide, termed HBB(112–147), inhibited HSV-2 infection in a dose-dependent manner, with a mean IC50 in the median μg/ml range. Full-length hemoglobin tetramer had no antiviral activity. HBB(112–147) did not impair infectivity by direct targeting of the virions but prevented HSV-2 infection at the cell entry level. The peptide was inactive against Human Immunodeficiency Virus Type 1, Rubella and Zika virus infection, suggesting a specific anti-HSV-2 mechanism. Notably, HBB(112–147) has previously been identified as broad-spectrum antibacterial agent. It is abundant in placenta, reaching concentrations between 280 and 740 μg/ml, that are well sufficient to inhibit HSV-2 and prototype Gram-positive and -negative bacteria. We here additionally show, that HBB(112–147) also acts potently against Pseudomonas aeruginosa strains (including a multi-drug resistant strain) in a dose dependent manner, while full-length hemoglobin is inactive. Interestingly, the antibacterial activity of HBB(112–147) was increased under acidic conditions, a hallmark of infection and inflammatory conditions. Indeed, we found that HBB(112–147) is released from the hemoglobin precursor by Cathepsin D and Napsin A, acidic proteases highly expressed in placental and other tissues. We propose that upon viral or bacterial infection, the abundant hemoglobin precursor is proteolytically processed to release HBB(112–147), a broadly active antimicrobial innate immune defense peptide.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
| | - Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Armando A Rodríguez
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany.,Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Benjamin Hagemann
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jasmina Gačanin
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Costa ML, de Moraes Nobrega G, Antolini-Tavares A. Key Infections in the Placenta. Obstet Gynecol Clin North Am 2019; 47:133-146. [PMID: 32008664 DOI: 10.1016/j.ogc.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital infections are an important cause of morbidity and mortality worldwide, especially in low-income settings. This review discusses the main pathways of infections and associated adverse maternal and fetal outcomes, considering the TORCH pathogens, including Zika virus; the acronym stands for Toxoplasma gondii infection, other (Listeria monocytogenes, Treponema pallidum, and parvovirus B19, among others, including Zika virus), rubella virus, cytomegalovirus, and herpes simplex viruses type 1 and type 2.
Collapse
Affiliation(s)
- Maria Laura Costa
- Department of Obstetrics and Gynecology, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil.
| | - Guilherme de Moraes Nobrega
- Department of Obstetrics and Gynecology, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil
| | - Arthur Antolini-Tavares
- Department of Pathological Anatomy, School of Medicine, University of Campinas, Rua Alexander Fleming 101, Campinas, São Paulo 13084-881, Brazil
| |
Collapse
|
22
|
Perry ID, Nguyen T, Sherina V, Love TMT, Miller RK, Krishnan L, Murphy SP. Analysis of the capacity of Salmonella enterica Typhimurium to infect the human Placenta. Placenta 2019; 83:43-52. [PMID: 31477206 PMCID: PMC11823428 DOI: 10.1016/j.placenta.2019.06.386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella species are gram-negative facultative intracellular bacteria that are common causes of foodborne illness in North America. Infections by Salmonella during pregnancy are a significant cause of fetal loss in domestic livestock, and fetal and maternal mortality in mice. Furthermore, Salmonella infection is associated with miscarriage, stillbirth and preterm birth in pregnant women. Despite these collective associations, the extent to which Salmonella can infect the human placenta has not been investigated. METHODS Human placental villous explants from several gestational ages were exposed to Salmonella enterica serovar Typhimurium (STm) ex vivo. Infection was assessed by colony forming unit assay and whole mount immunofluorescence (WMIF). RESULTS Viable bacteria were recovered from placental villous explants of all gestational ages tested, but the bacterial burden was highest in 1st trimester explants. Bacterial numbers did not change appreciably with time post-infection in explants from any gestational age examined, suggesting that STm does not proliferate in placental villi. Exposure of villous explants to STm strains defective for the type III secretion systems revealed that Salmonella pathogenicity island 1 is essential for optimal invasion. In contrast to placental explants, STm infected and proliferated within villous cytotrophoblast cells isolated from term placentas. WMIF demonstrated that STm was restricted primarily to the syncytiotrophoblast layer in infected placentas. DISCUSSION Our study demonstrates that STm can invade into the syncytiotrophoblast but does not subsequently proliferate. Thus, the syncytiotrophoblast may function as a barrier to STm infection of the fetus.
Collapse
Affiliation(s)
- Ian D Perry
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tina Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada; Human Health Therapeutics, Division of Life Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Valeriia Sherina
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Departments of Environmental Medicine and of Pathology and Clinical Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada; Human Health Therapeutics, Division of Life Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Shawn P Murphy
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
23
|
Anton L, DeVine A, Polyak E, Olarerin-George A, Brown AG, Falk MJ, Elovitz MA. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front Physiol 2019; 10:699. [PMID: 31263422 PMCID: PMC6590495 DOI: 10.3389/fphys.2019.00699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
Preeclampsia is associated with first trimester placental dysfunction. miR-210, a small non-coding RNA, is increased in the preeclamptic placenta. The effects of elevated miR-210 on placental function remain unclear. The objectives of this study were to identify targets of miR-210 in first trimester primary extravillous trophoblasts (EVTs) and to investigate functional pathways altered by elevated placental miR-210 during early pregnancy. EVTs isolated from first trimester placentas were exposed to cobalt chloride (CoCl2), a HIF-1α stabilizer and hypoxia mimetic, and miR-210 expression by qPCR, HIF1α protein levels by western blot and cell invasion were assessed. A custom TruSeq RNA array, including all known/predicted miR-210 targets, was run using miR-210 and miR-negative control transfected EVTs. Mitochondrial function was assessed by high resolution respirometry in transfected EVTs. EVTs exposed to CoCl2 showed a dose and time-dependent increase in miR-210 and HIF1α and reductions in cell invasion. The TruSeq array identified 49 altered genes in miR-210 transfected EVTs with 27 genes repressed and 22 enhanced. Three of the top six significantly repressed genes, NDUFA4, SDHD, and ISCU, are associated with mitochondrial function. miR-210 transfected EVTs had decreased maximal, complex II and complex I+II mitochondrial respiration. This study suggests that miR-210 alters first trimester trophoblast function. miR-210 overexpression alters EVT mitochondrial function in early pregnancy. Mitochondrial dysfunction may lead to increased reactive oxygen species, trophoblast cell damage and likely contributes to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ann DeVine
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anthony Olarerin-George
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Amy G Brown
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
The BeWo cell line derived from a human placental choriocarcinoma is permissive for respiratory syncytial virus infection. Virus Genes 2019; 55:406-410. [PMID: 30758769 DOI: 10.1007/s11262-019-01646-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
The respiratory syncytial virus (RSV) is the main pathogen associated with upper respiratory tract infections during early childhood. Vertical transmission of this virus has been suggested in humans, based on observations recorded during animal studies that revealed an association of RSV with persistent structural and functional changes in the developing lungs of the offspring. However, human placentas have not yet been evaluated for susceptibility to RSV infection. In this study, we examined the capacity of RSV to infect a human trophoblast model, the BeWo cell line. Our results suggest that BeWo cells are susceptible to RSV infection since they allow RNA viral replication, viral protein translation, leading to the production of infectious RSV particles. In this report, we demonstrate that a human placenta model system, consisting of BeWo cells, is permissive to RSV infection. Thus, the BeWo cell line may represent a useful model for studies that aim to characterize the events of a possible RSV infection at the human maternal-fetal interface.
Collapse
|
25
|
Gomez LM, Anton L, Srinivas SK, Elovitz MA, Parry S. Low-Dose Aspirin May Prevent Trophoblast Dysfunction in Women With Chlamydia Pneumoniae Infection. Reprod Sci 2018; 26:1449-1459. [PMID: 30572799 DOI: 10.1177/1933719118820468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Previously, we demonstrated that live Chlamydia pneumoniae (Cp) impaired extravillous trophoblast (EVT) viability and invasion and that Cp DNA was detected in placentas from cases with preeclampsia. We sought to elucidate whether (1) inactive forms of Cp also affect EVT function; (2) potential therapeutic interventions protect against the effects of Cp; and (3) anti-Cp antibodies are associated with preeclampsia. METHODS Human first-trimester EVTs were infected with ultraviolet light-inactivated Cp. Subgroups of EVTs were pretreated with low-dose acetyl-salicylic acid (ASA), dexamethasone, heparin, and indomethacin. We conducted functional assays after infection with inactivated Cp and measured interleukin 8 (IL8), C-reactive protein (CRP), heat shock protein 60 (HSP60), and tumor necrosis factor-α (TNFα) in culture media. We measured anti-Cp IgG serum levels from women who developed preeclampsia (N = 105) and controls (N = 121). RESULTS Inactivated Cp reduced EVT invasion when compared to noninfected cells (P < .00001) without adversely affecting cell viability. Increased levels of IL8, CRP, HSP60, and TNFα were detected in EVTs infected with inactivated Cp compared to noninfected cells (P < .0001). Only pretreatment with low-dose ASA prevented reduced EVT invasion and decreased release of inflammatory mediators (P < .01). Elevated anti-Cp IgG antibodies were more prevalent in serum from cases with preeclampsia compared to controls (67/105 vs 53/121; adjusted P = .013); elevated IgG correlated significantly with elevated serum CRP and elevated soluble fms-like tyrosine kinase-1-placental growth factor ratio. CONCLUSION Inactivated Cp induces decreased EVT invasion and a proinflammatory response; these effects were abrogated by pretreatment with low-dose ASA. Our results suggest an association between Cp infection, trophoblast dysfunction, and preeclampsia.
Collapse
Affiliation(s)
- Luis M Gomez
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, INOVA Health System, Falls Church, VA, USA
| | - Lauren Anton
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Shindu K Srinivas
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Parry
- Maternal and Child Health Research Program, University of Pennsylvania, Philadelphia, PA, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Perry ID, Krishnan L, Murphy SP. SLC11A1 is expressed in the human placenta across multiple gestational ages. Placenta 2018; 75:23-26. [PMID: 30712662 DOI: 10.1016/j.placenta.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/11/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
The human placenta functions as an innate immune barrier to prevent fetal infection. However, the molecular mechanisms accounting for placental resistance to pathogens are currently poorly understood. The solute carrier family 11 member 1 (SLC11A1) is a divalent cation transporter expressed primarily by macrophages and neutrophils that is essential for controlling infections by intracellular pathogens such as Salmonella, Leishmania and Mycobacteria. This report demonstrates that SLC11A1 is expressed in the syncytiotrophoblast of the human placenta at multiple gestational ages. These results suggest that SLC11A1 may play a role in blocking productive placental infections by certain intracellular pathogens.
Collapse
Affiliation(s)
- Ian D Perry
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada; Human Health Therapeutics, Division of Life Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Shawn P Murphy
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
27
|
Heerema-McKenney A. Defense and infection of the human placenta. APMIS 2018; 126:570-588. [PMID: 30129129 DOI: 10.1111/apm.12847] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
The placenta functions as a shield against infection of the fetus. The innate and adaptive immune defenses of the developing fetus are poorly equipped to fight infections. Infection by bacteria, viruses, and protozoa may cause infertility, spontaneous abortion, stillbirth, growth retardation, anomalies of development, premature delivery, neonatal morbidity, and mortality. However, appreciation of the human microbiome and host cell-microbe interactions must be taken into consideration as we try to determine what interactions are pathologic. Infection is typically recognized histologically by the presence of inflammation. Yet, several factors make comparison of the placenta to other human organs difficult. The placenta comprises tissues from two persons, complicating the role of the immune system. The placenta is a temporary organ. It must be eventually expelled; the processes leading to partuition involve maternal inflammation. What is normal or pathologic may be a function of timing or extent of the process. We now must consider whether bacteria, and even some viruses, are useful commensals or pathogens. Still, recognizing infection of the placenta is one of the most important contributions placental pathologic examination can give to care of the mother and neonate. This review provides a brief overview of placental defense against infection, consideration of the placental microbiome, routes of infection, and the histopathology of amniotic fluid infection and TORCH infections.
Collapse
Affiliation(s)
- Amy Heerema-McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
León-Juárez M, Martínez–Castillo M, González-García LD, Helguera-Repetto AC, Zaga-Clavellina V, García-Cordero J, Flores-Pliego A, Herrera-Salazar A, Vázquez-Martínez ER, Reyes-Muñoz E. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis 2017; 75:4056146. [PMID: 28903546 PMCID: PMC7108519 DOI: 10.1093/femspd/ftx093] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.
Collapse
Affiliation(s)
- Moises León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Macario Martínez–Castillo
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Luis Didier González-García
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. Av. I.P.N 2508 Col. San Pedro Zacatenco, CP 07360 Ciudad de México, México
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Alma Herrera-Salazar
- Departamento de Infectología e Inmunología Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química UNAM, Ciudad de México, México
| | - Enrique Reyes-Muñoz
- Coordinación de Endocrinología, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México. México
| |
Collapse
|
29
|
Abstract
Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future.
Collapse
Affiliation(s)
- Nitin Arora
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
30
|
Abstract
Despite the prevalence of viral infections in the American population, we still have a limited understanding of how they affect pregnancy and fetal development. Viruses can gain access to the decidua and placenta by ascending from the lower reproductive tract or via hematogenous transmission. Viral tropism for the decidua and placenta is then dependent on viral entry receptor expression in these tissues as well as on the maternal immune response to the virus. These factors vary by cell type and gestational age and can be affected by changes to the in utero environment and maternal immunity. Some viruses can directly infect the fetus at specific times during gestation, while some only infect the placenta. Both scenarios can result in severe birth defects or pregnancy loss. Systemic maternal viral infections can also affect the pregnancy, and these can be especially dangerous, because pregnant women suffer higher virus-associated morbidity and mortality than do nonpregnant counterparts. In this Review, we discuss the potential contributions of maternal, placental, and fetal viral infection to pregnancy outcome, fetal development, and maternal well-being.
Collapse
|
31
|
Nakubulwa S, Kaye DK, Bwanga F, Tumwesigye NM, Nakku-Joloba E, Mirembe F. Effect of suppressive acyclovir administered to HSV-2 positive mothers from week 28 to 36 weeks of pregnancy on adverse obstetric outcomes: a double-blind randomised placebo-controlled trial. Reprod Health 2017; 14:31. [PMID: 28253893 PMCID: PMC5335854 DOI: 10.1186/s12978-017-0292-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/14/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Acyclovir (ACV) given to HSV-2 positive women after 36 weeks reduces adverse outcomes but its benefit at lower gestation was undocumented. We determined the effect of oral acyclovir administered from 28 to 36 weeks on premature rupture of membranes (PROM) primarily and preterm delivery risk. METHODS This was a randomized, double-blind placebo-controlled trial among 200 HSV-2 positive pregnant women at 28 weeks of gestation at Mulago Hospital, Uganda. Participants were assigned randomly (1:1) to take either acyclovir 400 mg orally twice daily (intervention) or placebo (control) from 28 to 36 weeks. Both arms received acyclovir after 36 weeks until delivery. Development of Pre-PROM by 36 weeks and preterm delivery were outcomes. RESULTS One hundred women were randomised to acyclovir and 100 to placebo arms between January 2014 and February 2015. There was tendency towards reduction of incidence of PROM at 36 weeks but this was not statistically significant (4.0% versus 10.0%; RR 0.35; 95% 0.11-1.10) in the acyclovir and placebo arms respectively. However, there was a significant reduction in the incidence of preterm delivery (11.1% versus 23.5%; RR 0.41; 95% 0.20-0.85) in the acyclovir and placebo arms respectively. CONCLUSIONS Oral acyclovir given to HSV-2 positive pregnant women from 28 to 36 weeks reduced incidence of preterm delivery but did not significantly reduce incidence of pre-PROM. TRIAL REGISTRATION www.pactr.org, PACTR201311000558197 .
Collapse
Affiliation(s)
- Sarah Nakubulwa
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Dan K. Kaye
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Freddie Bwanga
- Department of Microbiology, Makerere University College of Health Sciences, P.O.Box 7072, Kampala, Uganda
| | - Nazarius Mbona Tumwesigye
- School of Public Health, Makerere University College of Health Sciences, P.O.Box 7072, Kampala, Uganda
| | - Edith Nakku-Joloba
- School of Public Health, Makerere University College of Health Sciences, P.O.Box 7072, Kampala, Uganda
| | - Florence Mirembe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| |
Collapse
|
32
|
Díaz-Luján C, Triquell MF, Castillo C, Hardisson D, Kemmerling U, Fretes RE. Role of placental barrier integrity in infection by Trypanosoma cruzi. Acta Trop 2016; 164:360-368. [PMID: 27686961 DOI: 10.1016/j.actatropica.2016.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/10/2016] [Accepted: 09/24/2016] [Indexed: 11/17/2022]
Abstract
American trypanosomiasis has long been a neglected disease endemic in LatinAmerica, but congenital transmission has now spread Chagas disease to cause a global health problem. As the early stages of the infection of placental tissue and the vertical transmission by Trypanosoma cruzi are still not well understood, it is important to investigate the relevance of the first structure of the placental barrier in chorionic villi infection by T. cruzi during the initial stage of the infection. Explants of human chorionic villi from healthy pregnant women at term were denuded of their syncytiotrophoblast and co-cultured for 3h, 24h and 96h with 800,000 trypomastigotes (simulating acute infection). T. cruzi infected cells were identified by immunohistochemistry for cytokeratin-7 (+cytotrophoblast) and CD68 (+macrophages), and the infection was quantified. In placental tissue, the parasite load was analyzed by qPCR and microscopy, and the motile trypomastigotes were quantified in culture supernatant. In denuded chorionic villous, the total area occupied by the parasite (451.23μm2, 1.33%) and parasite load (RQ: 87) was significantly higher (p<0.05) than in the entire villous (control) (5.98μm2, 0.016%) (RQ:1) and with smaller concentration of nitric oxide. Stromal non-macrophage cells were infected as well as cytotrophoblasts and some macrophages, but with significant differences being observed. The parasite quantity in the culture supernatant was significantly higher (p<0.05) in denuded culture explants from 96h of culture. Although the human complete chorionic villi limited the infection, the detachment of the first structure of the placenta barrier (syncytiotrophoblast) increased both the infection of the villous stroma and the living trypomastigotes in the culture supernatant. Therefore structural and functional alterations to chorionic villi placental barrier reduce placental defenses and may contribute to the vertical transmission of Chagas.
Collapse
Affiliation(s)
- C Díaz-Luján
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina; Histology and Cytology, Medicine, Universidad Nacional de Villa María, Córdoba, Argentina.
| | - M F Triquell
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina
| | - C Castillo
- Programa de Anatomía del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - D Hardisson
- Hospital La Paz, Universidad Autónoma de Madrid, Spain
| | - U Kemmerling
- Programa de Anatomía del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - R E Fretes
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina; Histology, Embryology and Genetic-IICSHUM, Health Department, Universidad Nacional de La Rioja, Argentina; Histology and Cytology, Medicine, Universidad Nacional de Villa María, Córdoba, Argentina.
| |
Collapse
|
33
|
Klase ZA, Khakhina S, Schneider ADB, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 2016; 10:e0004877. [PMID: 27560129 PMCID: PMC4999274 DOI: 10.1371/journal.pntd.0004877] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain-Barré syndrome) has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of "TORCH" viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication.
Collapse
Affiliation(s)
- Zachary A Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Michael V Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Zika Foundation, College Station, Texas, United States of America
| | - Jill Glasspool-Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Abstract
Throughout pregnancy, the placenta acts as a physical and immunological barrier against the hematogenous transmission of viruses from mother to fetus. Despite this, very little is known regarding the specific mechanisms by which the placenta shields the developing fetus from viral infections or about the strategies utilized by select viruses to bypass and/or weaken the placental barrier. In this review, we summarize studies regarding virus-host interactions at the placental interface and explore key areas for future investigation. We focus our review on placental trophoblasts, which form the barrier between maternal and fetal circulations and thus govern the cross talk between the maternal and fetal microenvironments.
Collapse
Affiliation(s)
- Elizabeth Delorme-Axford
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219;
| | - Yoel Sadovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; .,Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Carolyn B Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; .,Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
35
|
Abstract
In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications.
Collapse
|
36
|
Anton L, Olarerin-George AO, Hogenesch JB, Elovitz MA. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One 2015; 10:e0122707. [PMID: 25799546 PMCID: PMC4370750 DOI: 10.1371/journal.pone.0122707] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Preeclampsia is a pregnancy specific hypertensive disease that confers significant maternal and fetal risks. While the exact pathophysiology of preeclampsia is unknown, it is widely accepted that placental dysfunction is mechanistically involved. Recent studies reported aberrant expression of placenta-specific microRNAs (miRNAs) in preeclampsia including miR-517a/b and miR-517c. Using placental biopsies from a preeclampsia case-control study, we found increased expression of miR-517a/b in term and preterm preeclampsia vs controls, while, miR-517c was increased only in preterm preeclampsia vs controls. To determine if miR-517a/b and miR-517c are regulated by hypoxia, we treated first trimester primary extravillous trophoblast cells (EVTs) with a hypoxia mimetic and found both were induced. To test for a mechanistic role in placental function, we overexpressed miR-517a/b or miR-517c in EVTs which resulted in decreased trophoblast invasion. Additionally, we found that miR-517a/b and miR-517c overexpression increased expression of the anti-angiogenic protein, sFLT1. The regulation of sFLT1 is mostly unknown, however, TNFSF15, a cytokine involved in FLT1 splicing, was also increased by miR-517a/b and miR-517c in EVTs. In summary, we demonstrate that miR-517a/b and miR-517c contribute to the development of preeclampsia and suggest that these miRNAs play a critical role in regulating trophoblast and placental function.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Anthony O. Olarerin-George
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John B. Hogenesch
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
37
|
Anton L, Brown AG, Bartolomei MS, Elovitz MA. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS One 2014; 9:e100148. [PMID: 24963923 PMCID: PMC4070941 DOI: 10.1371/journal.pone.0100148] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE), a hypertensive disorder of pregnancy, is hypothesized to be associated with, if not mechanistically related to abnormal placental function. However, the exact mechanisms regulating the pathogenesis of PE remain unclear. While many studies have investigated changes in gene expression in the PE placenta, the role of epigenetics in PE associated placental dysfunction remains unclear. Using the genome-wide Illumina Infinium Methylation 450 BeadChip array, we analyzed gene-specific alterations in DNA methylation in placental biopsies collected from normal pregnant women delivering at term (n = 14), with term PE (≥37 weeks; n = 19) or with preterm PE (<37 weeks, n = 12). Of the 485,582 gene loci on the array, compared to controls, 229 loci were differentially methylated in PE placentas and 3411 loci were differentially methylated in preterm PE (step up p-value <0.05 and >5% methylation difference). Functional annotation of the differentially methylated genes in preterm PE placentas revealed a 32 gene cluster in the cadherin and cell adhesion functional groups (Benjamini p<0.00001). Hypermethylation of CDH11 (p = 0.0143), COL5A1 (p = 0.0127) and TNF (p = 0.0098) and hypomethylation of NCAM1 (p = 0.0158) was associated with altered mRNA expression in preterm PE placentas. Demethylation of first trimester extravillous trophoblast cells resulted in altered CDH11 (p = 0.0087), COL5A1 (p = 0.0043), NCAM1 (p = 0.0260) and TNF (p = 0.0022) mRNA expression. These studies demonstrate aberrant methylation, correlating with disease severity, in PE placentas. Furthermore, we provide evidence that disruption of gene-specific methylation in preterm PE placentas and first trimester trophoblasts is significantly associated with altered gene expression demonstrating that epigenetic modifications early in pregnancy can have effects on trophoblast function contributing to PE.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Amy G. Brown
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marisa S. Bartolomei
- Department of Cell & Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
First trimester typhoid Fever with vertical transmission of salmonella typhi, an intracellular organism. Case Rep Med 2013; 2013:973297. [PMID: 24459469 PMCID: PMC3891435 DOI: 10.1155/2013/973297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/19/2013] [Indexed: 11/30/2022] Open
Abstract
We report a case in which placental abruption occurred at 16 weeks following first trimester diagnosis and treatment for typhoid fever. Unexpectedly Salmonella enterica serovar Typhi (S. Typhi) was found in fetal tissues at autopsy. Using information from the murine model of typhoid fever in pregnancy, we draw parallels between S. Typhi and L. monocytogenes to develop a plausible hypothesis to explain how this organism was able to cross the placenta in the first trimester to cause abruption, inflammation, and expulsion of the fetus and placenta. We hope that this model for understanding placental infections by the hematogenous route helps to raise awareness that organisms not typically associated with TORCH infection can nevertheless cause placental infection and pregnancy loss.
Collapse
|
39
|
Zeldovich VB, Clausen CH, Bradford E, Fletcher DA, Maltepe E, Robbins JR, Bakardjiev AI. Placental syncytium forms a biophysical barrier against pathogen invasion. PLoS Pathog 2013; 9:e1003821. [PMID: 24348256 PMCID: PMC3861541 DOI: 10.1371/journal.ppat.1003821] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/11/2013] [Indexed: 02/02/2023] Open
Abstract
Fetal syncytiotrophoblasts form a unique fused multinuclear surface that is bathed in maternal blood, and constitutes the main interface between fetus and mother. Syncytiotrophoblasts are exposed to pathogens circulating in maternal blood, and appear to have unique resistance mechanisms against microbial invasion. These are due in part to the lack of intercellular junctions and their receptors, the Achilles heel of polarized mononuclear epithelia. However, the syncytium is immune to receptor-independent invasion as well, suggesting additional general defense mechanisms against infection. The difficulty of maintaining and manipulating primary human syncytiotrophoblasts in culture makes it challenging to investigate the cellular and molecular basis of host defenses in this unique tissue. Here we present a novel system to study placental pathogenesis using murine trophoblast stem cells (mTSC) that can be differentiated into syncytiotrophoblasts and recapitulate human placental syncytium. Consistent with previous results in primary human organ cultures, murine syncytiotrophoblasts were found to be resistant to infection with Listeria monocytogenes via direct invasion and cell-to-cell spread. Atomic force microscopy of murine syncytiotrophoblasts demonstrated that these cells have a greater elastic modulus than mononuclear trophoblasts. Disruption of the unusually dense actin structure--a diffuse meshwork of microfilaments--with Cytochalasin D led to a decrease in its elastic modulus by 25%. This correlated with a small but significant increase in invasion of L. monocytogenes into murine and human syncytium. These results suggest that the syncytial actin cytoskeleton may form a general barrier against pathogen entry in humans and mice. Moreover, murine TSCs are a genetically tractable model system for the investigation of specific pathways in syncytial host defenses.
Collapse
Affiliation(s)
- Varvara B. Zeldovich
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| | - Casper H. Clausen
- Department of Bioengineering and Program in Biophysics, University of California, Berkeley, Berkeley, California, United States of America
| | - Emily Bradford
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, California, United States of America
| | - Daniel A. Fletcher
- Department of Bioengineering and Program in Biophysics, University of California, Berkeley, Berkeley, California, United States of America
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer R. Robbins
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
| | - Anna I. Bakardjiev
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB, Elovitz MA. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1437-1445. [PMID: 24035613 DOI: 10.1016/j.ajpath.2013.07.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
Abstract
Preeclampsia is characterized by hypertension and proteinuria in pregnant women. Its exact cause is unknown. Preeclampsia increases the risk of maternal and fetal morbidity and mortality. Although delivery, often premature, is the only known cure, early targeted interventions may improve maternal and fetal outcomes. Successful intervention requires a better understanding of the molecular etiology of preeclampsia and the development of accurate methods to predict women at risk. To this end, we tested the role of miR-210, a miRNA up-regulated in preeclamptic placentas, in first-trimester extravillous trophoblasts. miR-210 overexpression reduced trophoblast invasion, a process necessary for uteroplacental perfusion, in an extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent manner. Conversely, miR-210 inhibition promoted invasion. Furthermore, given that the placenta secretes miRNAs into the maternal circulation, we tested if serum expression of miR-210 was associated with the disease. We measured miR-210 expression in two clinical studies: a case-control study and a prospective cohort study. Serum miR-210 expression was significantly associated with a diagnosis of preeclampsia (P = 0.007, area under the receiver operator curves = 0.81) and was predictive of the disease, even months before clinical diagnosis (P < 0.0001, area under the receiver operator curve = 0.89). Hence, we conclude that aberrant expression of miR-210 may contribute to trophoblast function and that miR-210 is a novel predictive serum biomarker for preeclampsia that can help in identifying at-risk women for monitoring and treatment.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony O Olarerin-George
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nadav Schwartz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sindhu Srinivas
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jamie Bastek
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John B Hogenesch
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Nguyen T, Robinson N, Allison SE, Coombes BK, Sad S, Krishnan L. IL-10 produced by trophoblast cells inhibits phagosome maturation leading to profound intracellular proliferation of Salmonella enterica Typhimurium. Placenta 2013; 34:765-74. [PMID: 23834952 DOI: 10.1016/j.placenta.2013.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/23/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Salmonella enterica Typhimurium (ST) is a phagosomal pathogen that can infect placental trophoblast cells leading to abortion and severe maternal illness. It is unclear how the trophoblast cells promote profound bacterial proliferation. METHODS The mechanism of internalization, intracellular growth and phagosomal biogenesis in ST-infected human epithelial (HeLa), macrophage (THP-1) and trophoblast-derived cell lines (JEG-3, BeWo and HTR-8) was studied. Specific inhibitors were used to block bacterial internalization. Phagosomal maturation was determined by confocal microscopy, Western-blotting and release of lysosomal β-galactosidase by infected cells. Bacterial colony forming units were determined by plating infected cell lysates on agar plates. RESULTS ST proliferated minimally in macrophages but replicated profoundly within trophoblast cells. The ST-ΔinvA (a mutant of Salmonella pathogenicity island-1 gene effector proteins) was unable to infect epithelial cells, but was internalized by scavenger receptors on trophoblasts and macrophages. However, ST was contrastingly localized in early (Rab5⁺) or late (LAMP1⁺) phagosomes within trophoblast cells and macrophages respectively. Furthermore trophoblast cells (unlike macrophages) did not exhibit phagoso-lysosomal fusion. ST-infected macrophages produced IL-6 whereas trophoblast cells produced IL-10. Neutralizing IL-10 in JEG-3 cells accelerated phagolysomal fusion and reduced proliferation of ST. Placental bacterial burden was curtailed in vivo in anti-IL-10 antibody treated and IL-10-deficient mice. DISCUSSION Macrophages phagocytose but curtail intracellular replication of ST in late phagosomes. In contrast, phagocytosis by trophoblast cells results in an inappropriate cytokine response and proliferation of ST in early phagosomes. CONCLUSION IL-10 production by trophoblast cells that delays phagosomal maturation may facilitate proliferation of pathogens in placental cells.
Collapse
Affiliation(s)
- T Nguyen
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Hamilton ST, Scott G, Naing Z, Iwasenko J, Hall B, Graf N, Arbuckle S, Craig ME, Rawlinson WD. Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS One 2012; 7:e52899. [PMID: 23300810 PMCID: PMC3534118 DOI: 10.1371/journal.pone.0052899] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (CMV) infection of the developing fetus can result in adverse pregnancy outcomes including death in utero. Fetal injury results from direct viral cytopathic damage to the CMV-infected fetus, although evidence suggests CMV placental infection may indirectly cause injury to the fetus, possibly via immune dysregulation with placental dysfunction. This study investigated the effects of CMV infection on expression of the chemokine MCP-1 (CCL2) and cytokine TNF-α in placentae from naturally infected stillborn babies, and compared these changes with those found in placental villous explant histocultures acutely infected with CMV ex vivo. Tissue cytokine protein levels were assessed using quantitative immunohistochemistry. CMV-infected placentae from stillborn babies had significantly elevated MCP-1 and TNF-α levels compared with uninfected placentae (p = 0.001 and p = 0.007), which was not observed in placentae infected with other microorganisms (p = 0.62 and p = 0.71) (n = 7 per group). Modelling acute clinical infection using ex vivo placental explant histocultures showed infection with CMV laboratory strain AD169 (0.2 pfu/ml) caused significantly elevated expression of MCP-1 and TNF-α compared with uninfected explants (p = 0.0003 and p<0.0001) (n = 25 per group). Explant infection with wild-type Merlin at a tenfold lower multiplicity of infection (0.02 pfu/ml), caused a significant positive correlation between increased explant infection and upregulation of MCP-1 and TNF-α expression (p = 0.0001 and p = 0.017). Cytokine dysregulation has been associated with adverse outcomes of pregnancy, and can negatively affect placental development and function. These novel findings demonstrate CMV infection modulates the placental immune environment in vivo and in a multicellular ex vivo model, suggesting CMV-induced cytokine modulation as a potential initiator and/or exacerbator of placental and fetal injury.
Collapse
Affiliation(s)
- Stuart T. Hamilton
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Gillian Scott
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Zin Naing
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Jenna Iwasenko
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Beverley Hall
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
| | - Nicole Graf
- Department of Histopathology, The Children’s Hospital at Westmead, Sydney, Australia
| | - Susan Arbuckle
- Department of Histopathology, The Children’s Hospital at Westmead, Sydney, Australia
| | - Maria E. Craig
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, Australia
| | - William D. Rawlinson
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
43
|
Gomez LM, Anton L, Srinivas SK, Elovitz MA, Parry S. Effects of increased fetuin-A in human trophoblast cells and associated pregnancy outcomes. Am J Obstet Gynecol 2012; 207:484.e1-8. [PMID: 23108067 DOI: 10.1016/j.ajog.2012.10.872] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/17/2012] [Accepted: 10/15/2012] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether fetuin-A affects trophoblast viability and invasion, whether growth factors that bind receptors that activate tyrosine kinase are impaired by fetuin-A, and whether elevated maternal serum fetuin-A levels are associated with adverse pregnancy outcomes. STUDY DESIGN We studied viability and invasion in first-trimester extravillous trophoblast cells that were exposed to fetuin-A, insulin-like growth factor, and placental growth factor. Insulin receptor substrates expression was assessed. We compared serum fetuin-A levels in 111 preeclampsia cases and 95 controls. RESULTS Fetuin-A reduced extravillous trophoblast cell viability and invasion in the presence or absence of growth factors. Fetuin-A reduced insulin receptor substrate-1 and tyrosine phosphorylated insulin receptor substrate-1 expression in extravillous trophoblast cells that had been treated with insulin-like growth factor. Elevated serum fetuin-A levels were more prevalent in preeclampsia cases than control subjects, even after we controlled for diabetes mellitus, hypertension, and obesity. CONCLUSION Fetuin-A may decrease trophoblast viability and invasion caused by the inhibition of receptor tyrosine kinase activity. Elevated serum levels of fetuin-A may be associated with preeclampsia.
Collapse
Affiliation(s)
- Luis M Gomez
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
44
|
Prasad KM, Watson AMM, Dickerson FB, Yolken RH, Nimgaonkar VL. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr Bull 2012; 38:1137-48. [PMID: 22490995 PMCID: PMC3494052 DOI: 10.1093/schbul/sbs046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Latent infection with neurotropic herpes viruses, such as herpes simplex virus, type 1 (HSV1), has been generally considered benign in most immunocompetent individuals except for rare cases of encephalitis. However, several recent studies have shown impaired cognitive functions among individuals with schizophrenia exposed to HSV1 compared with schizophrenia patients not exposed to HSV1. Such impairments are robust and are prominently observed in working memory, verbal memory, and executive functions. Brain regions that play a key role in the regulation of these domains have shown smaller volumes, along with correlation between these morphometric changes and cognitive impairments in schizophrenia. One study noted temporal decline in executive function and gray matter loss among HSV1-exposed first-episode antipsychotic-naïve schizophrenia patients. Furthermore, a proof-of-concept double-blind placebo-controlled trial indicated improvement in cognitive performance following supplemental anti-herpes-specific medication among HSV1 seropositive schizophrenia patients. Cross-sectional studies have also identified an association between HSV1 exposure and lesser degrees of cognitive impairment among healthy control individuals and patients with bipolar disorder. These studies fulfill several Bradford-Hill criteria, suggesting etiological links between HSV1 exposure and cognitive impairment. Exposure to other human herpes viruses such as cytomegalovirus and herpes simplex virus type 2 (HSV2) may also be associated with cognitive impairment, but the data are less consistent. These studies are reviewed critically and further lines of enquiry recommended. The results are important from a public health perspective, as HSV1 exposure is highly prevalent in many populations.
Collapse
Affiliation(s)
- Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA
| | - Annie M. M. Watson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Faith B. Dickerson
- Stanley Research Program at Sheppard Pratt, Sheppard Pratt Health System, Baltimore, MD
| | - Robert H. Yolken
- Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; Department of Psychiatry, University of Pittsburgh School of Medicine, TDH 441, 3811 O’Hara Street, Pittsburgh PA 15213; tel: 412-246-6353, fax: 412-246-6350, e-mail:
| |
Collapse
|
45
|
Affiliation(s)
- Varvara B Zeldovich
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
46
|
Robbins JR, Bakardjiev AI. Pathogens and the placental fortress. Curr Opin Microbiol 2012; 15:36-43. [PMID: 22169833 PMCID: PMC3265690 DOI: 10.1016/j.mib.2011.11.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 01/24/2023]
Abstract
Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: firstly, maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and secondly, maternal blood surrounding the syncytiotrophoblast (SYN). Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental SYN evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen.
Collapse
Affiliation(s)
- Jennifer R Robbins
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
47
|
Wang B, Koga K, Osuga Y, Cardenas I, Izumi G, Takamura M, Hirata T, Yoshino O, Hirota Y, Harada M, Mor G, Taketani Y. Toll-like receptor-3 ligation-induced indoleamine 2, 3-dioxygenase expression in human trophoblasts. Endocrinology 2011; 152:4984-92. [PMID: 21952237 DOI: 10.1210/en.2011-0278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that degrades an essential amino acid, tryptophan, and plays a role in inhibiting the proliferation of T cells and intracellular pathogens. Inhibiting IDO in mice leads to fetal rejection, suggesting its significance in establishing pregnancy. Toll-like receptor 3 (TLR-3) is a key component of the innate immune system that recognizes viral double-stranded RNA and triggers immune reactions by producing type I interferon. Using a human trophoblast cell culture system, we studied the effect of TLR-3 ligation on IDO expression and function by treating trophoblasts with polyinosinic-polycytidylic acid [poly(I:C)] (a synthetic double stranded RNA, which mimics viral RNA). Real-time PCR and Western blot analysis revealed that IDO mRNA and protein expression was significantly induced by poly(I:C). The activity of IDO was also increased by poly(I:C) given that the L-kynurenine concentrations were elevated in conditioned media. Conditioned media from poly(I:C)-treated trophoblasts were found to inhibit the proliferation of human T cells significantly. Poly(I:C) was also shown to induce interferon (IFN)-β mRNA expression in trophoblasts. Recombinant human IFN-β increased IDO mRNA expression in trophoblasts more rapidly than poly(I:C). Pretreating with neutralizing antibody against IFN-β significantly suppressed IDO induction by poly(I:C). Collectively we have demonstrated that ligation of TLR-3 by poly(I:C) induces IDO expression in human first-trimester trophoblasts via an IFN-β-dependent pathway. These findings suggest that upon viral infection, trophoblasts induce IDO and in turn contribute to antimicrobial activity and maintenance of fetomaternal tolerance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Obstetrics and Gynecology, University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Toxoplasma gondii is a ubiquitous, obligate intracellular parasite capable of crossing the placenta to cause spontaneous abortion, preterm labor, or significant disease in the surviving neonate. Exploration of the cellular and histological components of the placental barrier is in its infancy, and both how and where T. gondii breaches it are unknown. The human placenta presents two anatomical interfaces between maternal cells and fetal cells (trophoblasts): (i) the villous region where maternal blood bathes syncytialized trophoblasts for nutrient exchange and (ii) the maternal decidua, where mononuclear, extravillous trophoblasts anchor the villous region to the uterus. Using first-trimester human placental explants, we demonstrate that the latter site is significantly more vulnerable to infection, despite presenting a vastly smaller surface. This is consistent with past findings concerning two vertically transmitted viruses and one bacterium. We further explore whether three genetically distinct T. gondii types (I, II, and III) are capable of preferential placental infection and survival in this model. We find no difference in these strains' ability to infect placental explants; however, slightly slower growth is evident in type II (Prugniaud [Pru]) parasites relative to other cell types, although this did not quite achieve statistical significance.
Collapse
|
49
|
Anton L, Brown AG, Parry S, Elovitz MA. Lipopolysaccharide induces cytokine production and decreases extravillous trophoblast invasion through a mitogen-activated protein kinase-mediated pathway: possible mechanisms of first trimester placental dysfunction. Hum Reprod 2011; 27:61-72. [PMID: 22052387 DOI: 10.1093/humrep/der362] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Defects in extravillous trophoblast (EVT) function could contribute to placental dysfunction resulting in adverse obstetrical outcomes. Adverse obstetrical outcomes have been highly correlated with intrauterine infection; however, the mechanisms linking infection to placental dysfunction remain unclear. We investigated the effects of inflammation on EVT cytokine production and invasion early in pregnancy and determined the cell signaling pathways mediating this response. METHODS AND RESULTS In our model of inflammation, EVT cells, isolated following first trimester pregnancy terminations (n= 6) were stimulated with lipopolysaccharide (LPS). LPS induced a dose-dependent increase in interleukin (IL)-8 and IL-6 protein production (P < 0.01) and decreased EVT invasion (P = 0.01) versus control. The LPS-mediated changes in cytokine production (P < 0.001) and invasion (P < 0.001) were reversed by dexamethasone (DEX). Exposure to LPS resulted in an increase in mitogen-activated protein kinase (MAPK) signaling pathway phosphorylation, including p44/42 MAPK (P < 0.01), p38 MAPK (P < 0.05), MAPK extracellular signal-regulated kinase 1/2 (MEK1/2) (P< 0.01) and stress-activated protein kinase/c-Jun N-terminal kinase (JNK; P < 0.001), which was reversed by DEX (P < 0.05) for all MAPKs except p38. MAPK-specific inhibitors to MEK1/2 (U0126), p38 MAPK (SB 202190) and JNK (SP 600125) significantly reversed the LPS-mediated increase in IL-6 (P < 0.001) and IL-8 (P < 0.001) production. While U0126 reversed the LPS-induced decrease in EVT invasion (P < 0.001), SB 202190 (P < 0.001) and SP 600125 (P< 0.001) decreased EVT invasion, further indicating that MEK1/2 phosphorylation may be inflammation dependent while p38 MAPK and JNK phosphorylation occurs independently of an inflammatory stimulus. CONCLUSIONS LPS increased IL-8 and IL-6 and decreased EVT invasion through activation of MAPK signaling. MEK1/2 activation may contribute to placental dysfunction, in the setting of inflammation-associated adverse obstetrical outcomes.
Collapse
Affiliation(s)
- Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
50
|
Nettersheim D, Gillis AJM, Looijenga LHJ, Schorle H. TGF-β1, EGF and FGF4 synergistically induce differentiation of the seminoma cell line TCam-2 into a cell type resembling mixed non-seminoma. ACTA ACUST UNITED AC 2011; 34:e189-203. [DOI: 10.1111/j.1365-2605.2011.01172.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|