1
|
Yellon SM, Ward D, Thompson A, Vazquez BM, Daniel Baldwin D, Oldford EJ, Kirby MA. Progesterone regulation of cervix ripening in preterm and term birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.636012. [PMID: 39974958 PMCID: PMC11838539 DOI: 10.1101/2025.01.31.636012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The cervix functions both as gatekeeper barrier to maintain pregnancy and virtually vanish for birth at term in mammals. The period of remodeling well-before term is characterized by an inflammatory process associated with reduced cell nuclei density and cross-linked collagen, as well as increased density of resident macrophages in cervix stroma. Contemporarily, progesterone (P4) is at or near peak concentrations in maternal circulation. The functional or actual loss of response to P4 is thought to drive the process that enhances uterine contractile activity for labor and parturition at term. The objective of the present study was to determine if actual or functional loss of P4 regulated cytomorphological characteristics associated with prepartum cervix ripening at term and with preterm birth. On day 16 of pregnancy. Ovaries were removed to eliminate the main source of P4 production and a silastic capsule implanted (with vehicle or P4, Ovx or Ovx+P4, respectively). Controls received a vehicle-filled capsule, while a P4 capsule was implanted into an addition group of Intact mice to ensure sustained concentrations throughout pregnancy (Intact+P4). Pups were born in controls at term (days 19-20 postbreeding), but deliveries were preterm in Ovx mice within 24h (day 17). In the Ovx+P4 group, births were delayed to term and post-term in most Intact+P4 mice with adverse pregnancy outcomes commonplace. Characteristics of cell nuclei and degradation of cross-linked collagen were advanced with preterm birth in Ovx mice compared to controls that gave birth by at term. Treatment of Ovx mice with P4 blocked preterm birth, but parturition was complicated by dystocia. In addition, P4 given to ovary-intact mice sustained peak pregnancy concentrations, but had minimal effects on cytoarchitecture of the prepartum cervix stroma except term birth was forestalled with dystocia and fetal morbidity. Density of resident macrophages in the cervix stroma in term Ovx+P4 mice was reduced along with area of macrophage stain versus postpartum controls. Thus, analyses of cervix cellular cytoarchitecture provided useful biomarkers of local inflammation to assessment the ripening process for preterm and term parturition. Collectively, findings suggest a functional loss of prepartum cervix responses to progesterone are part of a final common mechanism for parturition across mammals. Summary Loss of response to progesterone withdrawal is associated with cervix ripening while some cytoarchitectural characteristics of remodeling are regulated to block preterm birth and dystocia at term.
Collapse
|
2
|
Zhang F, Sun K, Wang WS. Identification of a feed-forward loop between 15(S)-HETE and PGE2 in human amnion at parturition. J Lipid Res 2022; 63:100294. [PMID: 36206855 PMCID: PMC9646666 DOI: 10.1016/j.jlr.2022.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human parturition is associated with massive arachidonic acid (AA) mobilization in the amnion, indicating that large amounts of AA-derived eicosanoids are required for parturition. Prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway is the best characterized AA-derived eicosanoid in the amnion which plays a pivotal role in parturition. The existence of any other pivotal AA-derived eicosanoids involved in parturition remains elusive. Here, we screened such eicosanoids in human amnion tissue with AA-targeted metabolomics and studied their role and synthesis in parturition by using human amnion fibroblasts and a mouse model. We found that lipoxygenase (ALOX) pathway-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and its synthetic enzymes ALOX15 and ALOX15B were significantly increased in human amnion at parturition. Although 15(S)-HETE is ineffective on its own, it potently potentiated the activation of NF-κB by inflammatory mediators including lipopolysaccharide, interleukin-1β, and serum amyloid A1, resulting in the amplification of COX-2 expression and PGE2 production in amnion fibroblasts. In turn, we determined that PGE2 induced ALOX15/15B expression and 15(S)-HETE production through its EP2 receptor-coupled PKA pathway, thereby forming a feed-forward loop between 15(S)-HETE and PGE2 production in the amnion at parturition. Our studies in pregnant mice showed that 15(S)-HETE injection induced preterm birth with increased COX-2 and PGE2 abundance in the fetal membranes and placenta. Conclusively, 15(S)-HETE is identified as another crucial parturition-pertinent AA-derived eicosanoid in the amnion, which may form a feed-forward loop with PGE2 in parturition. Interruption of this feed-forward loop may be of therapeutic value for the treatment of preterm birth.
Collapse
|
3
|
Hashimoto M, Makino N, Inazumi T, Yoshida R, Sugimoto T, Tsuchiya S, Sugimoto Y. Effects of an ω3 fatty acid-biased diet on luteolysis, parturition, and uterine prostanoid synthesis in pregnant mice. Biochem Biophys Res Commun 2022; 589:139-146. [PMID: 34920379 DOI: 10.1016/j.bbrc.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
The ω3 polyunsaturated fatty acids (PUFAs) are known to have beneficial effects on health and diseases, and hence their intake is encouraged. However, it remains unknown as to how ω3 PUFAs affect female reproduction processes, in which ω6 PUFA-derived prostaglandin (PG) E2 and PGF2α play crucial roles. We therefore compared female reproductive performance between ω3 PUFA-biased linseed oil diet-fed (Lin) mice and ω6 PUFA-biased soybean oil diet-fed (Soy) mice. In Lin mice, the uterine levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) were 0.42 fold and 16 fold of those in Soy mice, respectively, with the EPA/AA ratio being 0.7 (vs 0.02 in Soy mice). Lin mice showed no alterations in any of the fertility indexes, including luteolysis and parturition. The uterine PG synthesis profiles of Lin mice were similar to those of Soy mice, but the levels of PGF2α and PGE2 were 50% of those in Soy mice, as a result of the increased EPA/AA ratio. PGF3α and PGE3 were undetectable in the uterine tissues of Soy and Lin mice. Interestingly, in Lin mice, 'luteolytic' PGF2α synthesis was considerably maintained even in the ω6 PUFA-reduced condition. These results suggest the existence of an elaborate mechanism securing PGF2α synthesis to a level that is sufficient for triggering luteolysis and parturition, even under ω6 PUFA-reduced conditions.
Collapse
Affiliation(s)
- Miho Hashimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Nagisa Makino
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Rina Yoshida
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Toshiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
4
|
Leimert KB, Xu W, Princ MM, Chemtob S, Olson DM. Inflammatory Amplification: A Central Tenet of Uterine Transition for Labor. Front Cell Infect Microbiol 2021; 11:660983. [PMID: 34490133 PMCID: PMC8417473 DOI: 10.3389/fcimb.2021.660983] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In preparation for delivery, the uterus transitions from actively maintaining quiescence during pregnancy to an active parturient state. This transition occurs as a result of the accumulation of pro-inflammatory signals which are amplified by positive feedback interactions involving paracrine and autocrine signaling at the level of each intrauterine cell and tissue. The amplification events occur in parallel until they reach a certain threshold, ‘tipping the scale’ and contributing to processes of uterine activation and functional progesterone withdrawal. The described signaling interactions all occur upstream from the presentation of clinical labor symptoms. In this review, we will: 1) describe the different physiological processes involved in uterine transition for each intrauterine tissue; 2) compare and contrast the current models of labor initiation; 3) introduce innovative models for measuring paracrine inflammatory interactions; and 4) discuss the therapeutic value in identifying and targeting key players in this crucial event for preterm birth.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Magdalena M Princ
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Satoh H, Terashima R, Kawaminami M, Kurusu S. Prostaglandins F 2α and E 2 in rat placenta and fetal membrane: a comprehensive immunohistochemistry of their synthetic enzymes and in vivo tissue levels during normal pregnancy. J Vet Med Sci 2021; 83:1443-1447. [PMID: 34334510 PMCID: PMC8498834 DOI: 10.1292/jvms.21-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined a comprehensive immunohistochemistry of putative isoforms of enzymes for prostaglandin (PG) F2α and PGE2 biosynthesis and these PGs levels in placenta
and fetal membrane of normal pregnant rats in vivo. Placenta and fetal membrane showed positive immunoreactions for phospholipase A2 group 4A, but not group 2A,
and cyclooxygenase (COX)-1 rather than COX-2. They showed positive immunoreactions for at least one isoform of each of PGF synthase and PGE synthase with tissue-dependent variations.
PGF2α and PGE2 levels in both tissues were highest on day 12 and declined and remained low thereafter. Obtained data would be the basic information on the primary PGs
synthesis in rat placenta and fetal membrane in normal pregnancy.
Collapse
Affiliation(s)
- Hironori Satoh
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University
| | - Ryota Terashima
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University.,Laboratory of Veterinary Physiology, School of Veterinary Medicine, Okayama University of Science
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
6
|
Progesterone receptor isoform B regulates the Oxtr- Plcl2- Trpc3 pathway to suppress uterine contractility. Proc Natl Acad Sci U S A 2021; 118:2011643118. [PMID: 33707208 DOI: 10.1073/pnas.2011643118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.
Collapse
|
7
|
Leimert KB, Verstraeten BSE, Messer A, Nemati R, Blackadar K, Fang X, Robertson SA, Chemtob S, Olson DM. Cooperative effects of sequential PGF2α and IL-1β on IL-6 and COX-2 expression in human myometrial cells†. Biol Reprod 2020; 100:1370-1385. [PMID: 30794283 DOI: 10.1093/biolre/ioz029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
The change from the state of pregnancy to the state of parturition, which we call uterine transitioning, requires the actions of inflammatory mediators and results in an activated uterus capable of performing the physiology of labor. Interleukin (IL)-1β and prostaglandin (PG)F2α are two key mediators implicated in preparing the uterus for labor by regulating the expression of uterine activation proteins (UAPs) and proinflammatory cytokines and chemokines. To investigate this process, primary human myometrial smooth muscle cells (HMSMC) isolated from the lower segment of women undergoing elective cesarean sections at term (not in labor) were used to test the inflammatory cytokine and UAP outputs induced by PGF2α and IL-1β alone or in sequential combinations. PGF2α and IL-1β regulate mRNA abundance of the PGF2α receptor FP, the IL-1 receptor system, interleukin 6, and other UAPs (OXTR, COX2), driving positive feedback interactions to further amplify their own proinflammatory effects. Sequential stimulation of HMSMC by PGF2α and IL-1β in either order results in amplified upregulation of IL-6 and COX-2 mRNA and protein, compared to their effects individually. These profound increases were unique to myometrium and not observed with stimulation of human fetal membrane explants. These results suggest that PGF2α and IL-1β act cooperatively upstream in the birth cascade to maximize amplification of IL-6 and COX-2, to build inflammatory load and thereby promote uterine transition. Targeting PGF2α or IL-1β, their actions, or intermediates (e.g. IL-6) would be an effective therapeutic intervention for preterm birth prevention or delay.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Angela Messer
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Rojin Nemati
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Kayla Blackadar
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, University of Adelaide, Adelaide, South Australia, Australia
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Leimert KB, Messer A, Gray T, Fang X, Chemtob S, Olson DM. Maternal and fetal intrauterine tissue crosstalk promotes proinflammatory amplification and uterine transition†. Biol Reprod 2020; 100:783-797. [PMID: 30379983 DOI: 10.1093/biolre/ioy232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
Birth is a complex biological event requiring genetic, cellular, and physiological changes to the uterus, resulting in a uterus activated for completing the physiological processes of labor. We define the change from the state of pregnancy to the state of parturition as uterine transitioning, which requires the actions of inflammatory mediators and localized paracrine interactions between intrauterine tissues. Few studies have examined the in vitro interactions between fetal and maternal gestational tissues within this proinflammatory environment. Thus, we designed a co-culture model to address this gap, incorporating primary term human myometrium smooth muscle cells (HMSMCs) with human fetal membrane (hFM) explants to study interactions between the tissues. We hypothesized that crosstalk between tissues at term promotes proinflammatory expression and uterine transitioning for parturition. Outputs of 40 cytokines and chemokines encompassing a variety of proinflammatory roles were measured; all but one increased significantly with co-culture. Eighteen of the 39 cytokines increased to a higher abundance than the sum of the effect of each tissue cultured separately. In addition, COX2 and IL6 but not FP and OXTR mRNA abundance significantly increased in both HMSMCs and hFM in response to co-culture. These data suggest that synergistic proinflammatory upregulation within intrauterine tissues is involved with uterine transitioning.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Messer
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theora Gray
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Ilicic M, Zakar T, Paul JW. Epigenetic regulation of progesterone receptors and the onset of labour. Reprod Fertil Dev 2019; 31:1035-1048. [DOI: 10.1071/rd18392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Progesterone plays a crucial role in maintaining pregnancy by promoting myometrial quiescence. The withdrawal of progesterone action signals the end of pregnancy and, in most mammalian species, this is achieved by a rapid fall in progesterone concentrations. However, in humans circulating progesterone concentrations remain high up to and during labour. Efforts to understand this phenomenon led to the ‘functional progesterone withdrawal’ hypothesis, whereby the pro-gestation actions of progesterone are withdrawn, despite circulating concentrations remaining elevated. The exact mechanism of functional progesterone withdrawal is still unclear and in recent years has been the focus of intense research. Emerging evidence now indicates that epigenetic regulation of progesterone receptor isoform expression may be the crucial mechanism by which functional progesterone withdrawal is achieved, effectively precipitating human labour despite high concentrations of circulating progesterone. This review examines current evidence that epigenetic mechanisms play a role in determining whether the pro-gestation or pro-contractile isoform of the progesterone receptor is expressed in the pregnant human uterus. We explore the mechanism by which these epigenetic modifications are achieved and, importantly, how these underlying epigenetic mechanisms are influenced by known regulators of uterine physiology, such as prostaglandins and oestrogens, in order to phenotypically transform the pregnant uterus and initiate labour.
Collapse
|
10
|
Herington JL, O’Brien C, Robuck MF, Lei W, Brown N, Slaughter JC, Paria BC, Mahadevan-Jansen A, Reese J. Prostaglandin-Endoperoxide Synthase 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility. Endocrinology 2018; 159:490-505. [PMID: 29029054 PMCID: PMC5761592 DOI: 10.1210/en.2017-00647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-derived prostaglandins stimulate uterine contractions and prepare the cervix for parturition. Prior reports suggest Cox-1 knockout (KO) mice exhibit delayed parturition due to impaired luteolysis, yet the mechanism for late-onset delivery remains unclear. Here, we examined key factors for normal onset of parturition to determine whether any could account for the delayed parturition phenotype. Pregnant Cox-1KO mice did not display altered timing of embryo implantation or postimplantation growth. Although messenger RNAs of contraction-associated proteins (CAPs) were differentially expressed between Cox-1KO and wild-type (WT) myometrium, there were no differences in CAP agonist-induced intracellular calcium release, spontaneous or oxytocin (OT)-induced ex vivo uterine contractility, or in vivo uterine contractile pressure. Delayed parturition in Cox-1KO mice persisted despite exogenous OT treatment. Progesterone (P4) withdrawal, by ovariectomy or administration of the P4-antagonist RU486, diminished the delayed parturition phenotype of Cox-1KO mice. Because antepartum P4 levels do not decline in Cox-1KO females, P4-treated WT mice were examined for the effect of this hormone on in vivo uterine contractility and ex vivo cervical dilation. P4-treated WT mice had delayed parturition but normal uterine contractility. Cervical distensibility was decreased in Cox-1KO mice on the day of expected delivery and reduced in WT mice with long-term P4 treatment. Collectively, these findings show that delayed parturition in Cox-1KO mice is the result of impaired luteolysis and cervical dilation, despite the presence of strong uterine contractions.
Collapse
Affiliation(s)
- Jennifer L. Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Christine O’Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael F. Robuck
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Wei Lei
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, China
| | - Naoko Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Bibhash C. Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
11
|
Nadeau-Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, Rouget R, Zhu T, Belarbi L, Brien MÈ, Beaudry-Richard A, Olson DM, Girard S, Chemtob S. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod 2016; 95:72. [PMID: 27512149 PMCID: PMC5394981 DOI: 10.1095/biolreprod.116.140905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
Uterine labor requires the conversion of a quiescent (propregnancy) uterus into an activated (prolabor) uterus, with increased sensitivity to endogenous uterotonic molecules. This activation is induced by stressors, particularly inflammation in term and preterm labor. Neuromedin U (NmU) is a neuropeptide known for its uterocontractile effects in rodents. The objective of the study was to assess the expression and function of neuromedin U receptor 2 (NmU-R2) and its ligands NmU and the more potent neuromedin S (NmS) in gestational tissues, and the possible implication of inflammatory stressors in triggering this system. Our data show that NmU and NmS are uterotonic ex vivo in murine tissue, and they dose-dependently trigger labor by acting specifically via NmU-R2. Expression of NmU-R2, NmU, and NmS is detected in murine and human gestational tissues by immunoblot, and the expression of NmS in placenta and of NmU-R2 in uterus increases considerably with gestation age and labor, which is associated with amplified NmU-induced uterocontractile response in mice. NmU- and NmS-induced contraction is associated with increased NmU-R2-coupled Ca++ transients, and Akt and Erk activation in murine primary myometrial smooth muscle cells (mSMCs), which are potentiated with gestational age. NmU-R2 is upregulated in vitro in mSMCs and in vivo in uterus in response to proinflammatory interleukin 1beta (IL1beta), which is associated with increased NmU-induced uterocontractile response and Ca++ transients in murine and human mSMCs; additionally, placental NmS is markedly upregulated in vivo in response to IL1beta. In human placenta at term, immunohistological analysis revealed NmS expression primarily in cytotrophoblasts; furthermore, stimulation with lipopolysaccharide (LPS; Gram-negative endotoxin) markedly upregulates NmS expression in primary human cytotrophoblasts isolated from term placentas. Correspondingly, decidua of women with clinical signs of infection who delivered preterm display significantly higher expression of NmS compared with those without infection. Importantly, in vivo knockdown of NmU-R2 prevents LPS-triggered preterm birth in mice and the associated neonatal mortality. Altogether, our data suggest a critical role for NmU-R2 and its ligands NmU and NmS in preterm labor triggered by infection. We hereby identify NmU-R2 as a relevant target for preterm birth.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Amarilys Boudreault
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Kelycia Leimert
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Ankush Madaan
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Raphaël Rouget
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Tang Zhu
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Lydia Belarbi
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Marie-Ève Brien
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Alexandra Beaudry-Richard
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev 2015; 28:37-51. [PMID: 26684042 DOI: 10.1016/j.cytogfr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton AB TG6 2S2, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montréal H3T 1C5, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada.
| |
Collapse
|
13
|
M Kidder G, Winterhager E. Physiological roles of connexins in labour and lactation. Reproduction 2015; 150:R129-36. [PMID: 26150552 DOI: 10.1530/rep-15-0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
Abstract
The connexin family of proteins are best known as oligomerizing to form intercellular membrane channels (gap junctions) that metabolically and ionically couple cells to allow for coordinated cellular function. Nowhere in the body is this role better illustrated than in the uterine smooth muscle during parturition, where gap junctions conduct the contraction wave throughout the tissue to deliver the baby. Parturition is followed by the onset of lactation with connexins contributing to both the dramatic reorganization of mammary gland tissue leading up to lactation and the smooth muscle contraction of the myoepithelial cells which extrudes the milk. This review summarizes what is known about the expression and roles of individual connexin family members in the uterus during labour and in the mammary glands during development and lactation. Connexin loss or malfunction in mammary glands and the uterus can have serious implications for the health of both the mother and the newborn baby.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Elke Winterhager
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| |
Collapse
|
14
|
Salleh N, Ahmad VN. In-VITRo effect of Ficus deltoidea on the contraction of isolated rat's uteri is mediated via multiple receptors binding and is dependent on extracellular calcium. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:359. [PMID: 24330515 PMCID: PMC3866927 DOI: 10.1186/1472-6882-13-359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ficus deltoidea, is a perennial herb that is used to assist labor, firm the uterus post-delivery and to prevent postpartum bleeding. In view of its claimed uterotonic action, the mechanisms underlying plant's effect on uterine contraction were investigated. METHODS Adult female SD rats were injected with 2 mg/kg 17β-oestradiol (E2) to synchronize their oestrous cycle. A day after injection, uteri were removed for in-vitro contraction studies. The dose dependent effect of Ficus deltoidea aqeous extract (FDA) on the tension produced by the isolated rat's uteri was determined. The effects of atropine (2×10(-8) M), atosiban (0.5 IU), THG113.31 (10 μM), oxodipine (0.25 mM), EDTA (1 mM), 2-amino-ethoxy-diphenylborate (2-APB) (40 mM) and thapsigargin (1 mM) on the maximum force of contraction (Emax) achieved following 2 mg/ml FDA administration were also investigated. RESULTS FDA induced in-vitro contraction of the isolated rat's uteri in a dose-dependent manner. Administration of atropine, atosiban and THG113.31 reduced the Emax with atosiban having the greatest effect. The Emax was also reduced following oxodipine and EDTA administration. There was no significant change observed following 2-APB administration. Thapsigargin, however, augmented Emax. CONCLUSIONS FDA-induced contraction of the isolated rat's uteri is mediated via multiple uterotonin receptors (muscarinic, oxytocin and prostaglandin F2α) and was dependent on the extracellular Ca2+. Contraction, however, was not dependent on the Ca2+ release from the internal stores. This in-vitro study provides the first scientific evidence on the claimed effect of Ficus Deltoidea on uterine contraction.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Vivi Noryati Ahmad
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
15
|
Xu C, Long A, Fang X, Wood SL, Slater DM, Ni X, Olson DM. Effects of PGF2α on the expression of uterine activation proteins in pregnant human myometrial cells from upper and lower segment. J Clin Endocrinol Metab 2013; 98:2975-83. [PMID: 23678036 DOI: 10.1210/jc.2012-2829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The lower and upper segments of the uterus may play different roles in the process of parturition. The switch from pregnancy to delivery involves changes in expression of uterine activation proteins (UAPs). Prostaglandin (PG) F2α has multiple and complex roles in the birth process in addition to its vital contractile role. OBJECTIVE The purpose of this study was to investigate whether PGF2α regulates the expression of UAPs in human myometrium and to compare PGF2α actions in lower and upper segments. DESIGN Cultured human myometrial cells from upper and lower segments were treated with PGF2α. Western blotting was used to determine the levels of connexin 43 (CX-43), prostaglandin endoperoxide synthase-2 (PTGS-2; cyclooxygenase-2), oxytocin receptor (OTR), and PGF2α receptor (PTGFR) in the cells. The small interfering RNA approach was used to knock down PTGFR. RESULTS PGF2α dose dependently increased CX-43 and PTGS-2 while decreasing PTGFR in upper and lower segments. PGF2α increased OTR in the lower segment while decreasing it in the upper segment. PGF2α lost its effects on PTGS-2 and OTR in PTGFR knockdown cells, but its effect on CX-43 remained. AL8810, a specific antagonist of PTGFR, reversed the actions of PGF2α on UAPs except for CX-43 in the lower segment. Indomethacin reversed the PGF2α-induced effects on CX-43 and PTGS-2, but it did not alter PGF2α-induced PTGFR and OTR expression. The stimulatory effects of PGF2α were enhanced in the presence of IL-1β, which reversed the inhibitory effect of PGF2α on PTGFR. CONCLUSION PGF2α regulates UAPs in both upper and lower segment cells through either direct or indirect pathways, indicating that PGF2α uniquely participates in uterine preparation for the onset of labor.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai, China 200433, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Kemp MW, Saito M, Newnham JP, Nitsos I, Okamura K, Kallapur SG. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci 2011; 17:619-28. [PMID: 20581349 DOI: 10.1177/1933719110373148] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammation is a protective response mediated by both innate and adaptive arms of the immune system following exposure to a range of harmful stimuli. Although inflammation is an essential mechanism in response to challenges including tissue injury and microbiological insult, inappropriate or excessive induction of the inflammatory response is itself a well-characterized cause of morbidity and mortality in adult populations. There is currently a growing appreciation of the potential for inflammation to play an adverse role in fetal health. The expression of cytokines (notably interleukin 1beta [IL-1beta], IL-6, IL-8, and tumor necrosis factor alpha [TNF-alpha]) by either the fetal or maternal tissues has been demonstrated to upregulate the activity of a number of uterine and cervical factors (eg, prostaglandin hormones and their receptors, matrix metalloproteinases, vascular endothelial growth factor [VEGF]), leading to premature initiation of the parturition process. Herein, we review important developments in our understanding of the link between preterm birth and fetal inflammation subsequent to infection, gained from studies undertaken in animal models.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Sam Mesiano
- Departments of Reproductive Biology and Obstetrics & Gynecology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Yuguang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Errol R. Norwitz
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Robertson SA, Christiaens I, Dorian CL, Zaragoza DB, Care AS, Banks AM, Olson DM. Interleukin-6 is an essential determinant of on-time parturition in the mouse. Endocrinology 2010; 151:3996-4006. [PMID: 20610570 DOI: 10.1210/en.2010-0063] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-6 abundance in amniotic fluid and uterine tissues increases in late gestation or with infection-associated preterm labor. A role in regulation of labor onset is suggested by observations that IL-6 increases expression of genes controlling prostaglandin synthesis and signaling in isolated uterine cells, but whether IL-6 is essential for normal parturition is unknown. To evaluate the physiological role of IL-6 in parturition in mice, we investigated the effect of Il6 null mutation on the timing of parturition and expression of genes associated with uterine activation. Il6 null mutant mice delivered 24 h later than wild-type mice, although circulating progesterone fell similarly in both genotypes during the prepartal period. Il6 null mutant mice were also refractory to low doses of lipopolysaccharide sufficient to induce preterm delivery in wild-type mice. The characteristic late-gestation elevation in uterine expression of Oxtr mRNA encoding oxytocin receptor, and peripartal increases in Ptgfr and Ptgs2 mRNAs regulating prostaglandin synthesis and signaling were delayed by 24 h in Il6 null mutant mice. Conversely, Ptger4 mRNA encoding the prostaglandin E receptor-4 was abnormally elevated in late-gestation in Il6 null mutant mice. Administration of recombinant IL-6 from d 11.5 postcoitum until term restored the normal timing of delivery and normalized Ptger4 mRNA expression in late gestation. We conclude that IL-6 has a key role in controlling the progression of events culminating in parturition and that it acts downstream of luteolysis in the uterus to regulate genes involved in the prostaglandin-mediated uterine activation cascade.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Institute, School of Pediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia–pyometra complex. J Reprod Immunol 2010; 84:66-74. [DOI: 10.1016/j.jri.2009.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/20/2009] [Accepted: 10/25/2009] [Indexed: 01/23/2023]
|
20
|
Jefferson WN, Doerge D, Padilla-Banks E, Woodling KA, Kissling GE, Newbold R. Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1883-1889. [PMID: 20049207 PMCID: PMC2799462 DOI: 10.1289/ehp.0900923] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND Developmental exposure to environmental estrogens is associated with adverse consequences later in life. Exposure to genistin (GIN), the glycosylated form of the phytoestrogen genistein (GEN) found in soy products, is of concern because approximately 20% of U.S. infants are fed soy formula. High circulating levels of GEN have been measured in the serum of these infants, indicating that GIN is readily absorbed, hydrolyzed, and circulated. OBJECTIVES We investigated whether orally administered GIN is estrogenic in neonatal mice and whether it causes adverse effects on the developing female reproductive tract. METHODS Female CD-1 mice were treated on postnatal days 1-5 with oral GIN (6.25, 12.5, 25, or 37.5 mg/kg/day; GEN-equivalent doses), oral GEN (25, 37.5, or 75 mg/kg/day), or subcutaneous GEN (12.5, 20, or 25 mg/kg/day). Estrogenic activity was measured on day 5 by determining uterine wet weight gain and induction of the estrogen-responsive gene lactoferrin. Vaginal opening, estrous cyclicity, fertility, and morphologic alterations in the ovary/reproductive tract were examined. RESULTS Oral GIN elicited an estrogenic response in the neonatal uterus, whereas the response to oral GEN was much weaker. Oral GIN altered ovarian differentiation (i.e., multioocyte follicles), delayed vaginal opening, caused abnormal estrous cycles, decreased fertility, and delayed parturition. CONCLUSIONS Our results support the idea that the dose of the physiologically active compound reaching the target tissue, rather than the administered dose or route, is most important in modeling chemical exposures. This is particularly true with young animals in which phase II metabolism capacity is underdeveloped relative to adults.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Dynamic Changes in Amniotic Tight Junctions during Pregnancy. Placenta 2009; 30:840-7. [DOI: 10.1016/j.placenta.2009.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 12/24/2022]
|
22
|
Abstract
Almost 80 years ago George Corner and colleagues provided the first evidence that progesterone maintains pregnancy and that it does so, at least in part, by promoting myometrial relaxation. In the 1950s, Arpad Csapo proposed the “progesterone block hypothesis”, which posits that progesterone maintains pregnancy by promoting myometrial relaxation and that its withdrawal initiates a cascade of hormonal interactions that transforms the myometrium to a highly contractile state leading to the onset of labour. Csapo later proposed that contractility of the pregnant myometrium is determined by the balance between relaxation induced by progesterone and contraction induced by a cohort of signals including oestrogens, uterine distention and stimulatory uterotonins such as prostaglandins (PGs) and oxytocin (OT). According to this “seesaw” hypothesis, progesterone promotes myometrial relaxation by directly inducing relaxation and/or by inhibiting the production of, or myometrial responsiveness to, stimulatory uterotonins. These landmark concepts, though derived from studies of experimental animals, form the foundation for current understanding of progesterone's role in the physiology of human pregnancy. Remarkable progress has been made over the last 20–30 years in understanding the signal transduction pathways through which steroid hormones affect target cells. This knowledge has broadened the scope of Csapo's original paradigms and we are now beginning to unravel the specific signaling pathways and molecular interactions by which progesterone affects human myometrium and how its actions are controlled at the functional level. This is important for the development of progestin-based therapeutics for the prevention or suppression of preterm labour and preterm birth. Here we review recent progress in understanding the mechanisms by which progesterone sustains pregnancy and in particular how it promotes myometrial relaxation, how its relaxatory actions are nullified at parturition, and the hormonal interactions that induce progesterone withdrawal to determine the timing of human birth.
Collapse
|
23
|
Inflammatory processes in preterm and term parturition. J Reprod Immunol 2008; 79:50-7. [PMID: 18550178 DOI: 10.1016/j.jri.2008.04.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 11/22/2022]
Abstract
A role for the pro-inflammatory cytokines interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor alpha (TNF-alpha) is evident in term and preterm delivery, and this is independent of the presence of infection. All uterine tissues progress through a staged transformation near the end of pregnancy that leads from relative uterine quiescence and maintenance of pregnancy to the activation of the uterus that prepares it for the work of labour and production of stimulatory molecules that trigger the onset of labour and delivery. The uterus is activated by pro-inflammatory cytokines through stimulation of the expression and production of uterine activation proteins (UAPs). One of these actions is the stimulation of prostaglandin (PG) synthesis. Particularly important for labour is PGF(2alpha) and its receptor, PTGFR. In addition, pro-inflammatory cytokines are able to increase the synthesis of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF) and the progesterone receptor C isoform, which leads to decreased tissue progesterone responsiveness. Some of these effects are replicated by PGF(2alpha), suggesting that it may act via its receptor to amplify the direct actions of cytokines. In turn, VEGF may enhance leukocyte recruitment to the uterus, and MMP-9 may promote activation of inactive pro-form cytokines. Pro-inflammatory cytokines also decrease the activity of 11beta-hydroxysteroid dehydrogenase, which likely increases intrauterine cortisol concentrations. In turn, cortisol may drive PG synthesis. Together these feed-forward mechanisms activate the uterus, trigger the production of uterine contractile stimulants and lead to labour and delivery.
Collapse
|
24
|
Rampon C, Bouillot S, Climescu-Haulica A, Prandini MH, Cand F, Vandenbrouck Y, Huber P. Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics 2008; 34:193-204. [PMID: 18477666 DOI: 10.1152/physiolgenomics.00220.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protocadherins are transmembrane proteins exhibiting homophilic adhesive activities through their extracellular domain. Protocadherin 12 (Pcdh12) is expressed in angiogenic endothelial cells, mesangial cells of kidney glomeruli, and glycogen cells of the mouse placenta. To get insight into the role of this protein in vivo, we analyzed PCDH12-deficient mice and investigated their placental phenotype. The mice were alive and fertile; however, placental and embryonic sizes were reduced compared with wild-type mice. We observed defects in placental layer segregation and a decreased vascularization of the labyrinth associated with a reduction in cell density in this layer. To understand the molecular events responsible for the phenotypic alterations observed in Pcdh12(-/-) placentas, we analyzed the expression profile of embryonic day 12.5 mutant placentas compared with wild-type placentas, using pangenomic chips: 2,289 genes exhibited statistically significant changes in expressed levels due to loss of PCDH12. Functional grouping of modified genes was obtained by GoMiner software. Gene clusters that contained most of the differentially expressed genes were those involved in tissue morphogenesis and development, angiogenesis, cell-matrix adhesion and migration, immune response, and chromatin remodeling. Our data show that loss of PCDH12 leads to morphological alterations of the placenta and to notable changes in its gene expression profile. Specific genes emerging from the microarray screen support the biological modifications observed in PCDH12-deficient placentas.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratory of Vascular Pathophysiology, Institut National de la Santé et de la Recherche Médicale U882, Commissariat à l'Energie Atomique (CEA), Grenoble University, CEA, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Wagner KE, Ross SR. Chimpanzee (Pan troglodytes) birth patterns and human presence in zoological settings. Am J Primatol 2008; 70:703-6. [DOI: 10.1002/ajp.20545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Roizen JD, Asada M, Tong M, Tai HH, Muglia LJ. Preterm birth without progesterone withdrawal in 15-hydroxyprostaglandin dehydrogenase hypomorphic mice. Mol Endocrinol 2007; 22:105-12. [PMID: 17872381 PMCID: PMC2194629 DOI: 10.1210/me.2007-0178] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Parturition is a complex mammalian physiological process whose fundamental determinants have remained elusive. The increasing incidence of human preterm birth, a leading cause of infant mortality, highlights the importance of further understanding mechanisms regulating the timing of birth. Parturition is initiated in most nonprimate mammals, including mice, through a decrease in circulating progesterone caused by elevated prostaglandins. In humans, other higher primates, and guinea pigs, no consistent decrease in circulating progesterone occurs before the onset of labor. The divergence in endocrine control of labor initiation between most mammals compared with the great apes and guinea pigs gives rise to the question: how could a mechanism for the initiation of labor not requiring the withdrawal of progesterone evolve? Here, we genetically modulate prostaglandin signaling to determine the role of prostaglandin catabolism in the timing of birth. We find spontaneous preterm labor in the absence of progesterone withdrawal in 15-hydroxyprostaglandin dehydrogenase hypomorphic mice. The onset of labor in these hypomorphic mice is preceded by prematurely increased concentrations of prostaglandin E(2) and F(2alpha). Moreover, genetic crosses demonstrate a role for fetal genotype in birth timing. Together, these findings demonstrate a 15-hydroxyprostaglandin dehydrogenase-dependent shift in the physiology of murine parturition to one resembling the physiology of higher primates. Thus, endocrine control of labor has the capacity to plastically adapt to changes in genetically determined prostaglandin signals.
Collapse
Affiliation(s)
- Jeffrey D Roizen
- Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
27
|
Mesiano S, Welsh TN. Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol 2007; 18:321-31. [PMID: 17613262 DOI: 10.1016/j.semcdb.2007.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/03/2007] [Indexed: 01/04/2023]
Abstract
The precise temporal control of uterine contractility is essential for the success of pregnancy. For most of pregnancy, progesterone acting through genomic and non-genomic mechanisms promotes myometrial relaxation. At parturition the relaxatory actions of progesterone are nullified and the combined stimulatory actions of estrogens and other factors such as myometrial distention and immune/inflammatory cytokines, transform the myometrium to a highly contractile and excitable state leading to labor and delivery. This review addresses current understanding of how progesterone and estrogens affect the contractility of the pregnancy myometrium and how their actions are coordinated and controlled as part of the parturition cascade.
Collapse
Affiliation(s)
- Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106-5034, United States.
| | | |
Collapse
|
28
|
Burdon C, Mann C, Cindrova-Davies T, Ferguson-Smith A, Burton G. Oxidative stress and the induction of cyclooxygenase enzymes and apoptosis in the murine placenta. Placenta 2007; 28:724-33. [PMID: 17222904 PMCID: PMC1895600 DOI: 10.1016/j.placenta.2006.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/30/2022]
Abstract
Placental oxidative stress has been implicated in many complications of human pregnancy, including preterm delivery and preeclampsia. It is now appreciated that reactive oxygen species can induce a spectrum of changes, ranging from homeostatic induction of enzymes to apoptotic cell death. Little is known regarding the occurrence of placental oxidative stress in other species. We investigated markers of oxidative stress in the labyrinthine (LZ) and junctional (JZ) zones of the murine placenta across gestational age, and correlated these with expression of the cyclooxygenase enzymes COX-1 and COX-2, and apoptosis. We tested a causal link between the two by subjecting placental explants to hypoxia-reoxygenation (H/R) in vitro, a known stimulus for generation of oxidative stress. Western blotting demonstrated significant increases in the concentrations of hydroxynonenal (HNE), COX-1 and COX-2 with gestational age. Dual-labelling demonstrated co-localisation of HNE, and COX-1 and COX-2 within the trophoblast of the LZ, and glycogen cells of the JZ. An apoptotic index based on TUNEL-positivity demonstrated an increase with gestational age, and dual-labelling showed co-localisation of TUNEL labelling with HNE and active caspase-3 within the trophoblast of the LZ. H/R significantly increased oxidative stress, induction of COX-1 and COX-2, and the apoptotic index. Co-localisation demonstrated the increases in COX to be within the trophoblast of the LZ, and in particular the glycogen cells of the JZ. Apoptosis was restricted to the LZ. We speculate that the induction of COX enzymes is a physiological response to oxidative stress, and may play a role in initiating or augmenting parturition. Generation of oxidative stress may also play a role in influencing the growth trajectory of the placenta, and its component cell types. The mouse may provide an experimental genetic model in which to investigate these phenomena.
Collapse
Affiliation(s)
| | | | | | | | - G.J. Burton
- Corresponding author. Present address: Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK. Tel.: +44 1223 333 856; fax: +44 1223 333 840.
| |
Collapse
|
29
|
Zaragoza DB, Wilson RR, Mitchell BF, Olson DM. The Interleukin 1beta-Induced Expression of Human Prostaglandin F2alpha Receptor Messenger RNA in Human Myometrial-Derived ULTR Cells Requires the Transcription Factor, NFkappaB1. Biol Reprod 2006; 75:697-704. [PMID: 16855208 DOI: 10.1095/biolreprod.106.053439] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The molecular mechanisms that regulate the expression of genes involved in parturition are poorly understood. The mRNA expression of the prostaglandin F(2alpha) receptor (PTGFR), a uterine activating gene, is increased at labor and is required for uterine contractile activity in numerous animal models, although the signaling pathways responsible for this increased expression have not been identified. Proinflammatory cytokines have been proposed to regulate the expression of the uterine activating genes via activation of the nuclear transcription factor, NFkappaB, and initiate labor. However, it is uncertain whether uterine PTGFR is regulated this way. In this report, we demonstrate for the first time that treatment of immortalized human myometrial-derived ULTR cells with the proinflammatory cytokine IL1beta causes an increase in PTGFR mRNA levels. Furthermore, IL1beta treatment increased the nuclear levels of the RELA subunit of NFkappaB and increased binding of RELA to the NFkappaB DNA-binding site. Inhibition of NFkappaB activation with either the proteasome inhibitor MG132 or phenethyl caffeiate reduced PTGFR mRNA levels, which indicates that this transcription factor is important for basal transcription. Furthermore, this inhibition prevented IL1beta induction ofPTGFRmRNA, which confirms that NFkappaB is required for the IL1beta-induced increase inPTGFR. These results are consistent with the proposal that proinflammatory cytokines directly regulate uterine activation genes and that the transcription factor NFkappaB is involved in both basal and IL1beta-stimulated transcription of the PTGFR gene.
Collapse
Affiliation(s)
- Dean B Zaragoza
- Department of Obstetrics & Gynecology, University of Alberta, Canada.
| | | | | | | |
Collapse
|
30
|
Word RA, Landrum CP, Timmons BC, Young SG, Mahendroo MS. Transgene Insertion on Mouse Chromosome 6 Impairs Function of the Uterine Cervix and Causes Failure of Parturition1. Biol Reprod 2005; 73:1046-56. [PMID: 16034000 DOI: 10.1095/biolreprod.105.042663] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular mechanisms controlling the initiation of parturition remain largely undefined. We report a new animal model in which parturition does not occur. A line of mice expressing a human apolipoprotein B (APOB) gene fail to deliver their young if the transgene is present in homozygous (Tg/Tg), but not in heterozygous (Tg/Wt), form. Cloning and mapping of the transgene insertion locus indicate that 10 copies of the 80-kilobase APOB genomic fragment inserted into mouse chromosome 6 result in a small, 390-base pair deletion of mouse genomic DNA. Nine other lines expressing the transgene have normal labor, suggesting that transgene insertion in this mutant line disrupted a mouse gene crucial for successful parturition. The pathophysiology of parturition failure in these animals was defined using physiological, endocrinological, and morphological techniques. Results indicate that luteolysis occurs in Tg/Tg mice but is delayed by 1 day. Delivery did not occur in mutant mice at term after spontaneous luteolysis or even after removal of progesterone action by ovariectomy or antiprogestin treatment. Biomechanical and functional studies of the uterus and cervix revealed that the primary cause of failed parturition in Tg/Tg mice was not inadequate uterine contractions of labor but, rather, a rigid, inelastic cervix at term that was abnormally rich in neutrophils and tissue monocytes. Characterization of the transgene insertional mutant, Tg/Tg, indicates that progesterone withdrawal is insufficient to complete parturition in the presence of inadequate cervical ripening at term.
Collapse
Affiliation(s)
- R Ann Word
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | |
Collapse
|
31
|
Mitchell BF, Zielnik B, Wong S, Roberts CD, Mitchell JM. Intraperitoneal infusion of proinflammatory cytokines does not cause activation of the rat uterus during late gestation. Am J Physiol Endocrinol Metab 2005; 289:E658-64. [PMID: 15870103 DOI: 10.1152/ajpendo.00058.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased concentrations of IL-1beta and TNF-alpha have been associated with parturition. However, the role of these cytokines is unknown. Before parturition, the uterus undergoes a process of activation, during which there are significant changes in expression of genes associated with increased uterine contractility, including the receptors for oxytocin (OT) and prostaglandin (PG)F(2alpha) (FP), PGH(2) synthase isoform 2 (PGHS2), the gap junction protein connexin-43 (Cx-43), and the inducible isoform of nitric oxide synthase (iNOS). To determine whether IL-1beta or TNF-alpha was part of the causal mechanism for increased uterine contractions, we placed osmotic pumps infusing IL-1beta or TNF-alpha into the peritoneal cavity of late pregnant rats (gestation day 19) and measured the effects on uterine contractility and on the uterine concentrations of mRNA for the contraction-associated genes 24 h later. Maternal serum concentrations of IL-1beta and TNF-alpha were increased significantly. By day 21, the control animals had significant increases (P < or = 0.05) in mRNA for OT, FP, PGHS2, and Cx-43, a decrease (P < or = 0.05) in iNOS, and an increase (P < or = 0.05) in uterine sensitivity and responsiveness to OT. Infusion of IL-1beta or TNF-alpha had no effect on uterine contractility or on expression of the activation-associated genes. We conclude that intraperitoneal infusion of IL-1beta or TNF-alpha resulting in significantly increased maternal serum cytokine levels does not cause uterine activation. The role of proinflammatory cytokines in the mechanism of parturition remains unclear.
Collapse
Affiliation(s)
- Bryan F Mitchell
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | |
Collapse
|
32
|
Ribeiro ML, Aisemberg J, Billi S, Farina MG, Meiss R, McCann S, Rettori V, Villalón M, Franchi AM. Epidermal growth factor prevents prepartum luteolysis in the rat. Proc Natl Acad Sci U S A 2005; 102:8048-53. [PMID: 15911754 PMCID: PMC1142386 DOI: 10.1073/pnas.0502899102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that intrauterine (i/u) administration of epidermal growth factor (EGF 500 ng) on day (d) 21 of pregnancy delayed 19.0 +/- 0.6 h the onset of labor. Progesterone (P) is secreted by ovarian corpora lutea (CL) throughout gestation in the rat. Prepartum CL regression due to increased uterine cyclooxygenase I and prostaglandin F(2alpha) results in P withdrawal followed by labor. The aims of the present work were (i) to study whether EGF delayed-onset of labor was mediated by a mechanism that prevented CL regression; (ii) to determine amniotic fluid (AF) EGF in pregnant rats. Rats on d21 of pregnancy received i/u EGF (500 ng) and were killed 0, 4, 8, 12, 24, and 48 h later. Control AF from rats on d13 and 18-22 of pregnancy was obtained. EGF decreased uterine prostaglandin F(2alpha) synthesis 8 h after treatment. Twelve hours after EGF injection, P reached its highest serum level and uterine cyclooxygenase I expression was undetectable. CL from rats killed 8 and 12 h after EGF were similar to those from rats on d13 of pregnancy, when serum P is maximum. EGF in AF increased throughout gestation, reached a maximum on d21, and decreased before the onset of labor. We suggest that the effect of EGF on the onset of labor was mediated by an early effect on the uterus that prevented prepartum CL regression.
Collapse
Affiliation(s)
- M L Ribeiro
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, School of Medicine Paraquay 2155, Buenos Aires CP(1121), Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kimura T, Nakamura H, Ogita K, Koyama S, Tomiie M, Yoshida S, Tsutsui T, Shimoya K, Koyama M, Murata Y. Effect of Proteasome Pathway on Initiation of Mouse Labor Induced by Antiprogesterone. Am J Reprod Immunol 2004; 52:317-22. [PMID: 15550068 DOI: 10.1111/j.1600-0897.2004.00226.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Various kinds of contraction-associated molecules are up-regulated at the initiation of labor. However, expression profiling has revealed that many molecules are also down-regulated. The effect of down-regulation of molecules by protein degradation on parturition is not known. METHODS OF STUDY We administered lactacystin, a specific proteasome inhibitor, to mouse preterm birth model induced by antiprogesterone RU486 on day 16.0 post-coitus. NF-kappaB activity, and the levels of transcripts for oxytocin receptor, prostaglandin F(2alpha) receptor (FP), cyclooxygenase-1, -2, and interleukin-1beta in the uterus were examined by electrophoretic mobility shift assay and semi-quantitative reverse transcriptase-polymerase chain reaction, respectively. RESULTS Administration of lactacystin significantly prolonged the time until the delivery of the first pup. FP mRNA level was solely elevated by RU486 treatment, and lactacystin significantly suppressed this up-regulation. CONCLUSIONS Proteolysis by proteasomes in the uterus regulates the initiation of labor, at least in part, via control of contraction-associated molecules such as FP.
Collapse
Affiliation(s)
- Tadashi Kimura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hanna N, Bonifacio L, Reddy P, Hanna I, Weinberger B, Murphy S, Laskin D, Sharma S. IFN-gamma-mediated inhibition of COX-2 expression in the placenta from term and preterm labor pregnancies. Am J Reprod Immunol 2004; 51:311-8. [PMID: 15212685 DOI: 10.1111/j.1600-0897.2004.00162.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PROBLEM The inflammatory-anti-inflammatory cytokine network is thought to play a critical role in regulated progression and termination of pregnancy. The aim of this study was to evaluate the effects of interferon (IFN)-gamma on the expression of Cyclooxygenase (COX)-2 and production of prostaglandin E(2) (PGE(2)) in the human placenta from term and preterm labor deliveries. METHOD OF STUDY Placental explant culture system was used. COX-2 expression was determined by complementary techniques of immunohistochemistry and Western blotting. Released IFN-gamma and PGE(2) by placental explants were measured by enzyme-linked immunosorbent assay. Signal transducer and activator of transcription 1 (STAT1) phosphorylation was evaluated by Western blotting using a specific antibody. RESULTS IFN-gamma was poorly detected in the placenta but was significantly expressed in decidual tissues from both term and preterm pregnancies as detected by immunohistochemistry. IFN-gamma significantly inhibited COX-2 expression and PGE(2) release in cultured placental explants from term and preterm labor deliveries. This effect most likely occurred in a STAT1-dependent manner as this regulatory protein was phosphorylated in response to IFN-gamma. IFN-gamma receptor (IFN-gammaR) was expressed in normal early pregnancy placental samples. However, its expression was significantly reduced in placental samples from term and preterm deliveries. Of interest, IFN-gammaR was expressed in placentas from term and preterm labor deliveries after 24 hr in culture. CONCLUSIONS Our data suggest that the human placenta is an important site for IFN-gamma-mediated repression of COX-2 expression and PGE2 production, implying that functional withdrawal of IFN-gamma may be involved in the onset of term or preterm labor.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, UMDNJ-Robert Wood, Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitchell BF, Olson DM. Prostaglandin endoperoxide H synthase inhibitors and other tocolytics in preterm labour. Prostaglandins Leukot Essent Fatty Acids 2004; 70:167-87. [PMID: 14683691 DOI: 10.1016/j.plefa.2003.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preterm delivery (<37 weeks of gestation) is the major obstetrical complication in developed countries, yet attempts to delay labour and prolong pregnancy have largely been unsuccessful. One of the many reasons it is so difficult to prevent preterm birth is that the nature of preterm labour changes as a function of gestational age, maternal lifestyle factors or infection, to list a few of the reasons. The inhibitors of prostaglandin endoperoxide H synthase (PGHS), known as the Non-steroidal Antiinflammatory Drugs, have been viewed with interest as tocolytics with promising effectiveness under most conditions of preterm labour. Three isoforms of PGHS exist; the first two, PGHS-1 and -2, have been studied for their catalytic activity, X-ray crystallographic structure, and physiological roles in the adult and the foetus. Mixed inhibitors and isoform-specific inhibitors of PGHS have been developed, and their roles in delaying preterm labour are examined and compared to other tocolytics.
Collapse
Affiliation(s)
- Bryan F Mitchell
- Department of Obstetrics and Gynaecology, Perinatal Research Centre, CIHR Group in Perinatal Health and Disease, University of Alberta, 220 HMRC, Edmonton, Alberta, Canada T6G2S2
| | | |
Collapse
|
36
|
Abstract
Parturition is composed of five separate but integrated physiological events: fetal membrane rupture, cervical dilatation, myometrial contractility, placental separation and uterine involution. Prostaglandins (PGs) have central roles in each of these, but the most studied is myometrial contraction. Elevated uterine PGs or the enhanced sensitivity of the myometrium to PGs leads to contractions and labour. The regulator of PG synthesis is the mRNA expression of PGHS-2. Cytokines are important stimulators of this gene expression, and cortisol and other factors may be as well. This enzyme is an important therapeutic target in the prevention of preterm labour. Some preterm births occur without an elevation of uterine PGs, even though they are delayed by non-steroidal anti-inflammatory drugs (NSAIDs), suggesting enhanced myometrial sensitivity to PGs. The PGF(2alpha) receptor, FP, is emerging as a central component of uterine sensitivity and may prove to be involved with preterm birth and a reasonable target for tocolysis.
Collapse
Affiliation(s)
- David M Olson
- Department of Obstetrics and Gynaecology, CIHR Group in Perinatal Health and Disease, Perinatal Research Centre, University of Alberta, Edmonton, Canada.
| |
Collapse
|
37
|
Olson DM, Zaragoza DB, Shallow MC, Cook JL, Mitchell BF, Grigsby P, Hirst J. Myometrial activation and preterm labour: evidence supporting a role for the prostaglandin F receptor--a review. Placenta 2003; 24 Suppl A:S47-54. [PMID: 12842413 DOI: 10.1053/plac.2002.0938] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An increase in the myometrial expression of the prostaglandin (PG) receptors, and especially the PGF(2alpha) receptor (FP), may be an important component of the process initiating preterm labour. In this review of the literature and presentation of new possibilities, evidence will be discussed that demonstrates an increase in mouse uterine FP mRNA occurs at preterm birth whereas uterine PGF(2alpha) concentrations do not increase, suggesting elevated uterine receptor expression and sensitivity is a mechanism for preterm labour initiation. The first examination of the complete human myometrial FP promoter will be described and evidence presented that demonstrates the pro-inflammatory cytokine, interleukin-1beta, stimulates FP mRNA expression. Finally new data showing that administration of a specific FP antagonist delays preterm birth in sheep will be presented.
Collapse
Affiliation(s)
- D M Olson
- The Perinatal Research Centre, the CIHR Group in Perinatal Health and Disease, Department of Obstetrics and Gynaecology, The University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|