1
|
Brown LTL, Pereira D, Winn LM. A Narrative Review on the Effect of Valproic Acid on the Placenta. Birth Defects Res 2025; 117:e2471. [PMID: 40211937 PMCID: PMC11986804 DOI: 10.1002/bdr2.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy. AIM This narrative review examines how VPA exposure affects placental growth, morphology, nutrient transport, and epigenetic modifications. It also considers whether placental dysfunction may contribute VPA's teratogenic effects. RESULTS Evidence suggests that VPA disrupts placental structure and growth, alters the expression of nutrient transporters, such as those for folate, glucose, and amino acids, and modifies the placental epigenome, including globally decreased DNA methylation and increased histone acetylation. DISCUSSION It is hypothesized that these epigenetic changes may influence chromatin remodelling and trophoblast gene expression, though this connection has not been fully established. Such epigenetic dysregulation may result in aberrant gene expression that underlies the structural and functional impairments observed in the placenta, potentially compromising its ability to support fetal development and contributing to VPA's teratogenic effects. Findings across studies, however, are inconsistent, varying with dose, timing of exposure, and model system. Furthermore, there is a lack of research examining sex-specific differences in placental responses to VPA, despite evidence that male and female placentas exhibit distinct growth patterns, gene expression profiles, and susceptibilities to environmental insults. CONCLUSION Addressing these knowledge gaps through targeted research will improve our understanding of how VPA affects the placenta and its role in teratogenesis.
Collapse
Affiliation(s)
- Lauren T. L. Brown
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
- School of Environmental SciencesQueen's University at KingstonKingstonOntarioCanada
| |
Collapse
|
2
|
Pronovost GN, Yu KB, Coley-O’Rourke EJ, Telang SS, Chen AS, Vuong HE, Williams DW, Chandra A, Rendon TK, Paramo J, Kim RH, Hsiao EY. The maternal microbiome promotes placental development in mice. SCIENCE ADVANCES 2023; 9:eadk1887. [PMID: 37801498 PMCID: PMC10558122 DOI: 10.1126/sciadv.adk1887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization. The maternal gut microbiota modulates metabolites in the maternal and fetal circulation. Short-chain fatty acids (SCFAs) stimulate cultured endothelial cell tube formation and prevent abnormalities in placental vascularization in microbiota-deficient mice. Furthermore, in a model of maternal malnutrition, gestational supplementation with SCFAs prevents placental growth restriction and vascular insufficiency. These findings highlight the importance of host-microbial symbioses during pregnancy and reveal that the maternal gut microbiome promotes placental growth and vascularization in mice.
Collapse
Affiliation(s)
- Geoffrey N. Pronovost
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristie B. Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elena J. L. Coley-O’Rourke
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahil S. Telang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela S. Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helen E. Vuong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drake W. Williams
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anisha Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomiko K. Rendon
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Paramo
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Stenhouse C, Bazer FW, Ashworth CJ. Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Mol Reprod Dev 2023; 90:684-696. [PMID: 35466463 DOI: 10.1002/mrd.23573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Álvarez-Nava F, Soto-Quintana M. The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome. J Dev Biol 2022; 10:16. [PMID: 35645292 PMCID: PMC9149809 DOI: 10.3390/jdb10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023] Open
Abstract
Turner syndrome (TS) is a chromosomal disorder that is caused by a missing or structurally abnormal second sex chromosome. Subjects with TS are at an increased risk of developing intrauterine growth retardation, low birth weight, short stature, congenital heart diseases, infertility, obesity, dyslipidemia, hypertension, insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular diseases (stroke and myocardial infarction). The underlying pathogenetic mechanism of TS is unknown. The assumption that X chromosome-linked gene haploinsufficiency is associated with the TS phenotype is questioned since such genes have not been identified. Thus, other pathogenic mechanisms have been suggested to explain this phenotype. Morphogenesis encompasses a series of events that includes cell division, the production of migratory precursors and their progeny, differentiation, programmed cell death, and integration into organs and systems. The precise control of the growth and differentiation of cells is essential for normal development. The cell cycle frequency and the number of proliferating cells are essential in cell growth. 45,X cells have a failure to proliferate at a normal rate, leading to a decreased cell number in a given tissue during organogenesis. A convergence of data indicates an association between a prolonged cell cycle and the phenotypical features in Turner syndrome. This review aims to examine old and new findings concerning the relationship between a prolonged cell cycle and TS phenotype. These studies reveal a diversity of phenotypic features in TS that could be explained by reduced cell proliferation. The implications of this hypothesis for our understanding of the TS phenotype and its pathogenesis are discussed. It is not surprising that 45,X monosomy leads to cellular growth pathway dysregulation with profound deleterious effects on both embryonic and later stages of development. The prolonged cell cycle could represent the beginning of the pathogenesis of TS, leading to a series of phenotypic consequences in embryonic/fetal, neonatal, pediatric, adolescence, and adulthood life.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito 170113, Ecuador
| | | |
Collapse
|
5
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
7
|
Inkster AM, Fernández-Boyano I, Robinson WP. Sex Differences Are Here to Stay: Relevance to Prenatal Care. J Clin Med 2021; 10:3000. [PMID: 34279482 PMCID: PMC8268816 DOI: 10.3390/jcm10133000] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
Sex differences exist in the incidence and presentation of many pregnancy complications, including but not limited to pregnancy loss, spontaneous preterm birth, and fetal growth restriction. Sex differences arise very early in development due to differential gene expression from the X and Y chromosomes, and later may also be influenced by the action of gonadal steroid hormones. Though offspring sex is not considered in most prenatal diagnostic or therapeutic strategies currently in use, it may be beneficial to consider sex differences and the associated mechanisms underlying pregnancy complications. This review will cover (i) the prevalence and presentation of sex differences that occur in perinatal complications, particularly with a focus on the placenta; (ii) possible mechanisms underlying the development of sex differences in placental function and pregnancy phenotypes; and (iii) knowledge gaps that should be addressed in the development of diagnostic or risk prediction tools for such complications, with an emphasis on those for which it would be important to consider sex.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Icíar Fernández-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
8
|
Roy SW. Haldane's duel: intragenomic conflict, selfish Y chromosomes and speciation. Trends Genet 2021; 38:8-11. [PMID: 34167831 DOI: 10.1016/j.tig.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Haldane's rule, which states that the heterogametic sex (XY or ZW females) fares more poorly in interspecific hybrids, is generally attributed to absence of one of the two species' X/Z chromosomes. However, Haldane's rule is also observed in mouse placentas despite paternal X silencing. This pattern could reflect Y chromosomes having evolved to promote growth due to maternal-paternal conflict. If so, balanced sex investment arises from a complex intra- and intergenomic duel.
Collapse
Affiliation(s)
- Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
9
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
10
|
Stenhouse C, Hogg CO, Ashworth CJ. Identification of appropriate reference genes for qPCR analyses of porcine placentae and endometria, supplying foetuses of different size and sex, at multiple gestational days. Reprod Domest Anim 2020; 55:785-794. [PMID: 32297689 DOI: 10.1111/rda.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/12/2023]
Abstract
Recent studies suggest associations exist between foetal size and sex, and gene expression at the porcine feto-maternal interface. It is essential to identify reference genes which have stable expression throughout gestation in feto-placental units associated with foetuses of different size and sex. qPCR was performed for 11 genes within porcine placentae and endometria at gestational days (GD) 30, 60 and 90. Several reference genes were found to have stable expression in these samples. The combination of B2m1 and Tbp1, and Hprt1 and Tbp1 had the most stable expression in endometria and placentae, respectively. Reference genes identified as having stable expression were utilized in a larger experiment with placentae and endometria associated with foetuses of different size and sex at four GD. The average expression of B2m1 and Tbp1 mRNAs was suitable for the normalization of temporal changes in endometria, and comparison between endometria supplying foetuses of different size throughout gestation. The average expression of Hprt1 and Tbp1 mRNAs was suitable for the normalization of placental mRNA expression for comparison of temporal changes and sex differences between placentae supplying foetuses of different sex throughout gestation. This combination was suitable for the normalization of mRNA expression in placentas supplying GD30, GD60 and GD90 foetuses of different size. This study has identified reference genes with stable expression in placentae and endometria across multiple gestational days, in tissues associated with foetuses of different size and sex. The results of these experiments highlight the importance of selecting appropriate reference genes for the biological comparison under investigation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
11
|
de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore TJ, Blackmore HL, Fernandez-Twinn DS, Carmo MDGTD, Ozanne SE. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes (Lond) 2020; 44:1087-1096. [PMID: 32203108 PMCID: PMC7188669 DOI: 10.1038/s41366-020-0561-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. .,Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Nutritional Epidemiology Observatory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Laura C Kusinski
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Phoebe Wilsmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maria das Graças T do Carmo
- Nutritional Biochemistry Laboratory, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Eaton M, Davies AH, Devine J, Zhao X, Simmons DG, Maríusdóttir E, Natale DRC, Matyas JR, Bering EA, Workentine ML, Hallgrimsson B, Cross JC. Complex patterns of cell growth in the placenta in normal pregnancy and as adaptations to maternal diet restriction. PLoS One 2020; 15:e0226735. [PMID: 31917811 PMCID: PMC6952106 DOI: 10.1371/journal.pone.0226735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.
Collapse
Affiliation(s)
- Malcolm Eaton
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Alastair H. Davies
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Jay Devine
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Xiang Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David G. Simmons
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elín Maríusdóttir
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David R. C. Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - John R. Matyas
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elizabeth A. Bering
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | | | - Benedikt Hallgrimsson
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - James C. Cross
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
- * E-mail:
| |
Collapse
|
13
|
Denisova EI, Kozhevnikova VV, Bazhan NM, Makarova EN. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio 2019; 10:96-106. [PMID: 31703240 PMCID: PMC6943234 DOI: 10.1002/2211-5463.12757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity during pregnancy has been shown to increase the risk of metabolic diseases in the offspring. However, the factors within the maternal milieu which affect offspring phenotypes and the underlying mechanisms remain unknown. The adipocyte hormone leptin plays a key role in regulating energy homeostasis and is known to participate in sex‐specific developmental programming. To examine the action of leptin on fetal growth, placental gene expression and postnatal offspring metabolism, we injected C57BL mice with leptin or saline on gestational day 12 and then measured body weights (BWs) of offspring fed on a standard or obesogenic diet, as well as mRNA expression levels of insulin‐like growth factors and glucose and amino acid transporters. Male and female offspring born to leptin‐treated mothers exhibited growth retardation before and a growth surge after weaning. Mature male offspring, but not female offspring, exhibited increased BWs on a standard diet. Leptin administration prevented the development of hyperglycaemia in the obese offspring of both sexes. The placentas of the male and female foetuses differed in size and gene expression, and leptin injection decreased the fetal weights of both sexes, the placental weights of the male foetuses and placental gene expression of the GLUT1 glucose transporter in female foetuses. The data suggest that mid‐pregnancy is an ontogenetic window for the sex‐specific programming effects of leptin, and these effects may be exerted via fetal sex‐specific placental responses to leptin administration.
Collapse
Affiliation(s)
- Elena I Denisova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeria V Kozhevnikova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda M Bazhan
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Physiology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena N Makarova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
He N, Lim SJ, Moreira de Mello JC, Navarro I, Bialecka M, Salvatori DCF, van der Westerlaken LAJ, Pereira LV, Chuva de Sousa Lopes SM. At Term, XmO and XpO Mouse Placentas Show Differences in Glucose Metabolism in the Trophectoderm-Derived Outer Zone. Front Cell Dev Biol 2017; 5:63. [PMID: 28680878 PMCID: PMC5478694 DOI: 10.3389/fcell.2017.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic mouse model (39,XO) for human Turner Syndrome (45,XO) harboring either a single maternally inherited (Xm) or paternally inherited (Xp) chromosome show a pronounced difference in survival rate at term. However, a detailed comparison of XmO and XpO placentas to explain this difference is lacking. We aimed to investigate the morphological and molecular differences between XmO and XpO term mouse placentas. We observed that XpO placentas at term contained a significantly larger area of glycogen cells (GCs) in their outer zone, compared to XmO, XX, and XY placentas. In addition, the outer zone of XpO placentas showed higher expression levels of lactate dehydrogenase (Ldha) than XmO, XX, and XY placentas, suggestive of increased anaerobic glycolysis. In the labyrinth, we detected significantly lower expression level of trophectoderm (TE)-marker keratin 19 (Krt19) in XpO placentas than in XX placentas. The expression of other TE-markers was comparable as well as the area of TE-derived cells between XO and wild-type labyrinths. XpO placentas exhibited specific defects in the amount of GCs and glucose metabolism in the outer zone, suggestive of increased anaerobic glycolysis, as a consequence of having inherited a single Xp chromosome. In conclusion, the XpO genotype results in a more severe placental phenotype at term, with distinct abnormalities regarding glucose metabolism in the outer zone.
Collapse
Affiliation(s)
- Nannan He
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Shujing J Lim
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | | | - Injerreau Navarro
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands
| | - Daniela C F Salvatori
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands.,Central Laboratory Animal Facility, Leiden University Medical CenterLeiden, Netherlands
| | | | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, University of São PauloSão Paulo, Brazil
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical CenterLeiden, Netherlands.,Department for Reproductive Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
15
|
Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016; 7:68. [PMID: 27999654 PMCID: PMC5154145 DOI: 10.1186/s13293-016-0115-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Stem Cell Biology and Developmental Genetics, Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, London, NW7 1AA UK
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 610 Charles Young Drive South, Los Angeles, CA 90095-7239 USA
| |
Collapse
|
16
|
Abstract
The placenta is an ephemeral but critical organ for the survival of all eutherian mammals and marsupials. It is the primary messenger system between the mother and fetus, where communicational signals, nutrients, waste, gases, and extrinsic factors are exchanged. Although the placenta may buffer the fetus from various environmental insults, placental dysfunction might also contribute to detrimental developmental origins of adult health and disease effects. The placenta of one sex over the other might possess greater ability to respond and buffer against environmental insults. Given the potential role of the placenta in effecting the lifetime health of the offspring, it is not surprising that there has been a resurging interest in this organ, including the Human Placental Project launched by the National Institutes of Child Health and Human Development. In this review, we will compare embryological development of the laboratory mouse and human chorioallantoic placentae. Next, evidence that various species, including humans, exhibit normal sex-dependent structural and functional placental differences will be examined followed by how in utero environmental changes (nutritional state, stress, and exposure to environmental chemicals) might interact with fetal sex to affect this organ. Recent data also suggest that paternal state impacts placental function in a sex-dependent manner. The research to date linking placental maladaptive responses and later developmental origins of adult health and disease effects will be explored. Finally, we will focus on how sex chromosomes and epimutations may contribute to sex-dependent differences in placental function, the unanswered questions, and future directions that warrant further consideration.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Departments of Bond Life Sciences Center, Biomedical Sciences, Genetics Area Program, and Research Faculty Member for the Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
17
|
Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R, Arnold AP. Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Res Notes 2015; 8:69. [PMID: 25870930 PMCID: PMC4354741 DOI: 10.1186/s13104-015-0986-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The "four core genotypes" (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues. FINDINGS We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12-14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27-29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels. CONCLUSION The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.
Collapse
Affiliation(s)
- Yuichiro Itoh
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Ryan Mackie
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Kathy Kampf
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Shelly Domadia
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Judith D Brown
- />Institute for Systems Genomics and the Department of Allied Health Sciences, University of CT, Storrs, CT USA
| | - Rachel O’Neill
- />Institute for Systems Genomics and the Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Arthur P Arnold
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| |
Collapse
|
18
|
Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol 2015; 218:50-8. [DOI: 10.1242/jeb.110320] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent and rapid worldwide increase in non-communicable diseases challenges the assumption that genetic factors are the primary contributors to such diseases. A new concept of the ‘developmental origins of health and disease’ (DOHaD) is at stake and therefore requires a paradigm shift. Maternal obesity and malnutrition predispose offspring to develop metabolic syndrome, a vicious cycle leading to transmission to subsequent generation(s), with differences in response and susceptibility according to the sex of the individual. The placenta is a programming agent of adult health and disease. Adaptations of placental phenotype in response to maternal diet and metabolic status alter fetal nutrient supply. This implies important epigenetic changes that are, however, still poorly documented in DOHaD studies, particularly concerning overnutrition. The aim of this review is to discuss the emerging knowledge on the relationships between the effect of maternal nutrition or metabolic status on placental function and the risk of diseases later in life, with a specific focus on epigenetic mechanisms and sexual dimorphism. Explaining the sex-specific causal variables and how males versus females respond and adapt to environmental perturbations should help physicians and patients to anticipate disease susceptibility.
Collapse
Affiliation(s)
- Anne Tarrade
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Polina Panchenko
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Claudine Junien
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
- UVSQ, Université Versailles-Saint-Quentin-en-Yvelines, France
| | - Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
19
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
20
|
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013; 4:5. [PMID: 23514128 PMCID: PMC3618244 DOI: 10.1186/2042-6410-4-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, F-78352, France.
| | | | | | | | | |
Collapse
|
21
|
Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais JP, Junien C. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5:e14398. [PMID: 21200436 PMCID: PMC3006175 DOI: 10.1371/journal.pone.0014398] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. METHODS AND FINDINGS We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. CONCLUSIONS A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of studying both sexes in epidemiological protocols and dietary interventions.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Anne Gabory
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Jörg Tost
- Laboratoire d'Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Mohsen Karimi
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Mayeur
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Elsa Boudadi
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Marie-Sylvie Gross
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Julien Taurelle
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Alexandre Vigé
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Tomas J. Ekström
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudine Junien
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| |
Collapse
|
22
|
Wijchers PJ, Yandim C, Panousopoulou E, Ahmad M, Harker N, Saveliev A, Burgoyne PS, Festenstein R. Sexual Dimorphism in Mammalian Autosomal Gene Regulation Is Determined Not Only by Sry but by Sex Chromosome Complement As Well. Dev Cell 2010; 19:477-84. [DOI: 10.1016/j.devcel.2010.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 03/18/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
23
|
Abstract
XX and XY cells have a different number of X and Y genes. These differences in their genomes cause sex differences in the functions of cells, both in the gonads and in non-gonadal tissues. This review discusses mouse models that have shed light on these direct genetic effects of sex chromosomes that cause sex differences in physiology. Because many sex differences in tissues are caused by different effects of male and female gonadal hormones, it is important to attempt to discriminate between direct genetic and hormonal effects. Numerous mouse models exist in which the number of X or Y genes is manipulated, aiming to observe the effects on phenotype. In two models, namely the four core genotypes model and SF1 knockout gonadless mice, it is possible to detect sex chromosome effects that are not explained by group differences in gonadal hormones. Moreover, mouse models are available to determine whether the sex chromosome effects are caused by X or Y genes.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
24
|
Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 2008; 83:441-493. [PMID: 18783362 DOI: 10.1111/j.1469-185x.2008.00050.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
25
|
Chen X, Watkins R, Delot E, Reliene R, Schiestl RH, Burgoyne PS, Arnold AP. Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Dev Neurobiol 2008; 68:265-73. [PMID: 18004765 DOI: 10.1002/dneu.20581] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Physiological Science, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gutiérrez-Adán A, Perez-Crespo M, Fernandez-Gonzalez R, Ramirez MA, Moreira P, Pintado B, Lonergan P, Rizos D. Developmental Consequences of Sexual Dimorphism During Pre-implantation Embryonic Development. Reprod Domest Anim 2006; 41 Suppl 2:54-62. [PMID: 16984469 DOI: 10.1111/j.1439-0531.2006.00769.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormalities of development potential arising from pre-implantation environment are not limited to in vitro culture (IVC) (for, i.e. in ruminants the large offspring syndrome produced by IVC), they may also be consequence of specific stress conditions experienced in vivo, like maternal diet, toxins, etc. A complex group of mechanisms (gene expression, epigenetic, metabolic, etc.) may operate to link early embryo environment with future health. Furthermore, during the pre-implantation period, in vitro produced male embryos have a higher metabolic rate, they grow faster than females, and they also have differential gene transcription of genes located in the Y-, X-, or in autosomal-chromosomes. As a consequence of these differences embryos may be affected differentially by natural or artificial environmental conditions, depending on their gender. It has been suggested that under some stress conditions male embryos are more vulnerable than females; however the biological fragility of male embryos is poorly understood. Evidences suggest that epigenetic differences produced by the presence of one or two X-chromosomes are the principal cause of the male and female pre-implantation differences, and we put forward the possible role of these early sex differences to control sex ratio of the offspring under different environmental conditions in Nature. By following the differences between male and female early embryos not only may be possible to manipulate sex ratio in farm animals, we can also gain further insight into aspects of early embryo development, X inactivation, and epigenetic and genetic processes related with early development that may have a long-term effect on the offspring.
Collapse
|
27
|
Abstract
The mammalian genome contains multiple genetic factions with distinct interests in the outcomes of interactions among kin. In the context of an offspring's relations with its mother, these factions are proposed to align into two 'parties', one favoring increased demand by offspring and the other favoring reduced demand. A possible alignment has inhibitors of demand located on the X chromosome and enhancers of demand located on autosomes, because X-linked loci are maternally derived two-thirds of the time by contrast to autosomal loci which are maternally derived half of the time.
Collapse
Affiliation(s)
- D Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Pérez-Crespo M, Ramírez MA, Fernández-González R, Rizos D, Lonergan P, Pintado B, Gutiérrez-Adán A. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol Reprod Dev 2005; 72:502-10. [PMID: 16149081 DOI: 10.1002/mrd.20366] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During the preimplantation period, in vitro cultured males have a higher metabolic rate, different gene expression, and grow faster than females. It has been suggested that under some stress conditions male embryos are more vulnerable than females; however, the biological fragility of male embryos is little understood. Since many forms of stress result in the overproduction of cellular reactive oxygen species (ROS), we addressed the hypothesis that the connection between female advantage during early developmental stages and heat stress involves ROS and differential gene expression of G6PD, an X-linked gene related to oxidative stress. We have found that after compaction, female heat-stressed embryos have less relative amounts of H2O2 than males, and female embryos survive better than males under in vivo or in vitro heat stress situations. In addition, in vitro produced female embryos grow slower than male embryos, have differential mRNA transcription of G6PD and also of some genes situated on autosomal-chromosomes (Sox, Bax, and Oct-4). Moreover, by inhibiting G6PD, all differences generated by oxidative stress between male and female embryos disappear. For the first time, we provide an experimental demonstration of a mechanism that explains why following exposure to heat stress-induced ROS, female preimplantation embryos are more resistant than males.
Collapse
Affiliation(s)
- M Pérez-Crespo
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Ishikawa H, Seki R, Yokonishi S, Yamauchi T, Yokoyama K. Relationship between fetal weight, placental growth and litter size in mice from mid- to late-gestation. Reprod Toxicol 2005; 21:267-70. [PMID: 16191476 DOI: 10.1016/j.reprotox.2005.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/08/2005] [Accepted: 08/19/2005] [Indexed: 01/26/2023]
Abstract
In mammals, the placenta, which consists of maternal and fetal components, is important in fetal development because it supplies the fetus with the nourishment it needs. We investigated the effects of placental growth and litter size on mouse fetal weights from mid- to late-gestation. The mean weight of male fetuses at 13.5 days post coitum (dpc) was larger than that of females. Although there was a significant correlation between fetal and placental weights in both males and females during mid-gestation (P<0.05), there was no correlation during late-gestation. However, a significant correlation was observed between litter size and fetal weights in both males and females at 17.5 dpc (P<0.05). These findings suggest that fetal weight is regulated by placental growth during mid-gestation, while the effects of litter size are more prominent towards late-gestation.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Public Health and Occupational Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan.
| | | | | | | | | |
Collapse
|
30
|
Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, Ojarikre O, Biggin C, Skuse D, Burgoyne P, Wilkinson L. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet 2005; 37:625-9. [PMID: 15908950 DOI: 10.1038/ng1577] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/27/2005] [Indexed: 12/23/2022]
Abstract
Imprinted genes show differential expression between maternal and paternal alleles as a consequence of epigenetic modification that can result in 'parent-of-origin' effects on phenotypic traits. There is increasing evidence from mouse and human studies that imprinted genes may influence behavior and cognitive functioning. Previous work in girls with Turner syndrome (45,XO) has suggested that there are X-linked parent-of-origin effects on brain development and cognitive functioning, although the interpretation of these data in terms of imprinted gene effects has been questioned. We used a 39,XO mouse model to examine the influence of the parental origin of the X chromosome on cognitive behaviors and expression of X-linked genes in brain. Our findings confirm the existence of X-linked imprinted effects on cognitive processes and identify a new maternally expressed imprinted gene candidate on the X chromosome, Xlr3b, which may be of importance in mediating the behavioral effects.
Collapse
Affiliation(s)
- William Davies
- Laboratories of Cognitive and Behavioral Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, The Babraham Research Campus, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Isles AR, Davies W, Burrmann D, Burgoyne PS, Wilkinson LS. Effects on fear reactivity in XO mice are due to haploinsufficiency of a non-PAR X gene: implications for emotional function in Turner's syndrome. Hum Mol Genet 2004; 13:1849-55. [PMID: 15238507 DOI: 10.1093/hmg/ddh203] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent work has indicated altered emotional functioning in Turner's syndrome (TS) subjects (45,XO). We examined the role of X-chromosome deficiency on fear reactivity in X-monosomic mice (39,XO), and found that they exhibited anxiogenic behaviour relative to normal females (40,XX). A molecular candidate for this effect is Steroid sulfatase (Sts) as this is located in the pseudoautosomal region (PAR) of the X-chromosome and consequently is normally biallelically expressed. In addition, the steroid sulfatase enzyme (STS) is putatively linked to fear reactivity by an effect on GABAA receptors via the action of neurosteroids. Real-time PCR demonstrated that levels of Sts mRNA were reduced by half in the brains of 39,XO mice compared with 40,XX, and that expression levels of a number of GABAA subunits previously shown to be important components of fear processing (Gabra3, Gabra1 and Gabrg2) were also altered. However, 40,XY*X mice, in which the Y*X is a small chromosome comprising of a complete PAR and a small non-PAR segment of the X-chromosome, exhibited the same pattern of fear reactivity behaviour as 39,XO animals, but equivalent expression levels of Sts, Gabra1, Gabra3 and Gabrg2 to 40,XX females. This showed that although Sts may cause alterations in GABAA subunit expression, these changes do not result in increased fear reactivity. This suggests an alternative X-chromosome gene, that escapes inactivation, is responsible for the differences in fear reactivity between 39,XO and 40,XX mice. These findings inform the TS data, and point to novel genetic mechanisms that may be of general significance to the neurobiology of fear.
Collapse
Affiliation(s)
- Anthony R Isles
- Neurobiology and Developmental Genetics Programmes, The Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|