1
|
Yang Y, Li X, Ye S, Chen X, Wang L, Qian Y, Xin Q, Li L, Gong P. Identification of genes related to sexual differentiation and sterility in embryonic gonads of Mule ducks by transcriptome analysis. Front Genet 2022; 13:1037810. [PMID: 36386800 PMCID: PMC9643717 DOI: 10.3389/fgene.2022.1037810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 12/11/2023] Open
Abstract
The key genes of avian gonadal development are of great significance for sex determination. Transcriptome sequencing analysis of Mule duck gonad as potential sterile model is expected to screen candidate genes related to avian gonad development. In this study, the embryonic gonadal tissues of Mule ducks, Jinding ducks, and Muscovy ducks were collected and identified. Six sample groups including female Mule duck (A), male Mule duck (B), female Jinding duck (C), male Jinding duck (D), female Muscovy duck (E), and male Muscovy duck (F) were subjected to RNA sequencing analysis. A total of 9,471 differential genes (DEGs) and 691 protein-protein interaction pairs were obtained. Totally, 12 genes (Dmrt1, Amh, Sox9, Tex14, Trim71, Slc26a8, Spam1, Tdrp, Tsga10, Boc, Cxcl14, and Hsd17b3) were identified to be specifically related to duck testicular development, and 11 genes (Hsd17b1, Cyp19a1, Cyp17a1, Hhipl2, Tdrp, Uts2r, Cdon, Axin2, Nxph1, Brinp2, and Brinp3) were specifically related to duck ovarian development. Seven genes (Stra8, Dmc1, Terb1, Tex14, Tsga10, Spam1, and Plcd4) were screened to be specifically involved in the female sterility of Mule ducks; eight genes (Gtsf1, Nalcn, Tat, Slc26a8, Kmo, Plcd4, Aldh4a1, and Hgd) were specifically involved in male sterility; and five genes (Terb1, Stra8, Tex14 Tsga10 and Spam1) were involved in both female and male sterility. This study provides an insight into the differential development between male and female gonads of ducks and the sterility mechanism of Mule ducks through function, pathway, and protein interaction analyses. Our findings provide theoretical basis for the further research on sex determination and differentiation of birds and the sterility of Mule ducks.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengqiang Ye
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Yunguo Qian
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
2
|
Printz MA, Sugarman BJ, Paladini RD, Jorge MC, Wang Y, Kang DW, Maneval DC, LaBarre MJ. Risk Factors, Hyaluronidase Expression, and Clinical Immunogenicity of Recombinant Human Hyaluronidase PH20, an Enzyme Enabling Subcutaneous Drug Administration. AAPS J 2022; 24:110. [PMID: 36266598 DOI: 10.1208/s12248-022-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Multiple FDA-approved and clinical-development stage therapeutics include recombinant human hyaluronidase PH20 (rHuPH20) to facilitate subcutaneous administration. As rHuPH20-reactive antibodies potentially interact with endogenous PH20, we investigated rHuPH20 immunogenicity risk through hyaluronidase tissue expression, predicted B cell epitopes, CD4+ T cell stimulation indices and related these to observed clinical immunogenicity profiles from 18 clinical studies. Endogenous hyaluronidase PH20 expression in humans/mice was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and deep RNA-Seq. rHuPH20 potential T cell epitopes were evaluated in silico and confirmed in vitro. Potential B cell epitopes were predicted for rHuPH20 sequence in silico, and binding of polyclonal antibodies from various species tested on a rHuPH20 peptide microarray. Clinical immunogenicity data were collected from 2643 subjects. From 57 human adult and fetal tissues previously screened by RT-PCR, 22 tissue types were analyzed by deep RNA-Seq. Hyaluronidase PH20 messenger RNA expression was detected in adult human testes. In silico analyses of the rHuPH20 sequence revealed nine T cell epitope clusters with immunogenic potential, one cluster was homologous to human leukocyte antigen. rHuPH20 induced T cell activation in 6-10% of peripheral blood mononuclear cell donors. Fifteen epitopes in the rHuPH20 sequence had the potential to cross-react with B cells. The cumulative treatment-induced incidence of anti-rHuPH20 antibodies across clinical studies was 8.8%. Hyaluronidase PH20 expression occurs primarily in adult testes. Low CD4+ T cell activation and B cell cross-reactivity by rHuPH20 suggest weak rHuPH20 immunogenicity potential. Restricted expression patterns of endogenous PH20 indicate low immunogenicity risk of subcutaneous rHuPH20.
Collapse
Affiliation(s)
- Marie A Printz
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA.
| | - Barry J Sugarman
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | | | - Michael C Jorge
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | - Yan Wang
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| | - David W Kang
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| | - Daniel C Maneval
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | - Michael J LaBarre
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| |
Collapse
|
3
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Labadie JD, Elvers I, Feigelson HS, Magzamen S, Yoshimoto J, Dossey J, Burnett R, Avery AC. Genome-wide association analysis of canine T zone lymphoma identifies link to hypothyroidism and a shared association with mast-cell tumors. BMC Genomics 2020; 21:464. [PMID: 32631225 PMCID: PMC7339439 DOI: 10.1186/s12864-020-06872-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/26/2020] [Indexed: 01/23/2023] Open
Abstract
Background T zone lymphoma (TZL), a histologic variant of peripheral T cell lymphoma, represents about 12% of all canine lymphomas. Golden Retrievers appear predisposed, representing over 40% of TZL cases. Prior research found that asymptomatic aged Golden Retrievers frequently have populations of T zone-like cells (phenotypically identical to TZL) of undetermined significance (TZUS), potentially representing a pre-clinical state. These findings suggest a genetic risk factor for this disease and caused us to investigate potential genes of interest using a genome-wide association study of privately-owned U.S. Golden Retrievers. Results Dogs were categorized as TZL (n = 95), TZUS (n = 142), or control (n = 101) using flow cytometry and genotyped using the Illumina CanineHD BeadChip. Using a mixed linear model adjusting for population stratification, we found association with genome-wide significance in regions on chromosomes 8 and 14. The chromosome 14 peak included four SNPs (Odds Ratio = 1.18–1.19, p = .3 × 10− 5–5.1 × 10− 5) near three hyaluronidase genes (SPAM1, HYAL4, and HYALP1). Targeted resequencing of this region using a custom sequence capture array identified missense mutations in all three genes; the variant in SPAM1 was predicted to be damaging. These mutations were also associated with risk for mast cell tumors among Golden Retrievers in an unrelated study. The chromosome 8 peak contained 7 SNPs (Odds Ratio = 1.24–1.42, p = 2.7 × 10− 7–7.5 × 10− 5) near genes involved in thyroid hormone regulation (DIO2 and TSHR). A prior study from our laboratory found hypothyroidism is inversely associated with TZL risk. No coding mutations were found with targeted resequencing but identified variants may play a regulatory role for all or some of the genes. Conclusions The pathogenesis of canine TZL may be related to hyaluronan breakdown and subsequent production of pro-inflammatory and pro-oncogenic byproducts. The association on chromosome 8 may indicate thyroid hormone is involved in TZL development, consistent with findings from a previous study evaluating epidemiologic risk factors for TZL. Future work is needed to elucidate these mechanisms.
Collapse
Affiliation(s)
- Julia D Labadie
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Ingegerd Elvers
- Department of Medical Biochemistry and Microbiology, Uppsala University, Broad Institute of MIT and Harvard, Cambridge, Massachusetts and Science for Life Laboratory, Uppsala, Sweden
| | | | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeremy Dossey
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Burnett
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anne C Avery
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Park S, Kim YH, Jeong PS, Park C, Lee JW, Kim JS, Wee G, Song BS, Park BJ, Kim SH, Sim BW, Kim SU, Triggs-Raine B, Baba T, Lee SR, Kim E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect. FASEB J 2019; 33:14440-14449. [PMID: 31670981 DOI: 10.1096/fj.201900889rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glycosylphosphatidylinositol-anchored sperm hyaluronidases (Hyals), sperm adhesion molecule 1 (SPAM1) and HYAL5, have long been believed to assist in sperm penetration through the cumulus-oocyte complex (COC), but their role in mammalian fertilization remains unclear. Previously, we have shown that mouse sperm devoid of either Spam1 or Hyal5 are still capable of penetrating the COC and that the loss of either Spam1 or Hyal5 alone does not cause male infertility in mice. In the present study, we found that Spam1/Hyal5 double knockout (dKO) mice produced significantly fewer offspring compared with wild-type (WT) mice, and this was due to defective COC dispersal. A comparative analysis between WT and Spam1/Hyal5 dKO epididymal sperm revealed that the absence of these 2 sperm Hyals resulted in a marked accumulation of sperm on the outside of the COC. This impaired sperm activity is likely due to the deficiency in the sperm Hyals, even though other somatic Hyals are expressed normally in the dKO mice. The fertilization ability of the Spam1/Hyal5 dKO sperm was restored by adding purified human sperm Hyal to the in vitro fertilization medium. Our results suggest that Hyal deficiency in sperm may be a significant risk factor for male sterility.-Park, S., Kim, Y.-H., Jeong, P.-S., Park, C., Lee, J.-W., Kim, J.-S., Wee, G., Song, B.-S., Park, B.-J., Kim, S.-H., Sim, B.-W., Kim, S.-U., Triggs-Raine, B., Baba, T., Lee, S.-R., Kim, E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect.
Collapse
Affiliation(s)
- Soojin Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Chaeri Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, South Korea
| | - Ju-Sung Kim
- College of Applied Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju, South Korea
| | - Gabin Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Boon-Joo Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Bo-Woong Sim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Sun-Uk Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| |
Collapse
|
7
|
Fereshteh Z, Bathala P, Galileo DS, Martin-DeLeon PA. Detection of extracellular vesicles in the mouse vaginal fluid: Their delivery of sperm proteins that stimulate capacitation and modulate fertility. J Cell Physiol 2018; 234:12745-12756. [PMID: 30536802 DOI: 10.1002/jcp.27894] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) were isolated by ultracentrifugation of vaginal luminal fluid (VLF) from superovulated mice and identified for the first time using transmission electron microscopy. Characterized by size and biochemical markers (CD9 and HSC70), EVs were shown to be both microvesicular and exosomal and were dubbed as "Vaginosomes" (VGS). Vaginal cross-sections were analyzed to visualize EVs in situ: EVs were present in the lumen and also embedded between squamous epithelial and keratinized cells, consistent with their endogenous origin. Western blots detected Plasma membrane Ca2+ -ATPase 1 (PMCA1) and tyrosine-phosphorylated proteins in the VGS cargo and also in uterosomes. Flow cytometry revealed that following coincubation of caudal sperm and VLF for 30 min, the frequencies of cells with the highest Sperm adhesion molecule 1 (SPAM1), PMCA1/4, and PMCA1 levels increased 16.4-, 8.2-, and 27-fold, respectively; compared with control coincubated in phosphate buffered saline (PBS). Under identical conditions, sperm tyrosine-phosphorylated proteins were elevated ~3.3-fold, after VLF coincubation. Progesterone-induced acrosome reaction (AR) rates were significantly (p < 0.001) elevated in sperm coincubated with VGS for 10-30 min, compared with PBS. Sperm artificially deposited in the vaginas of superovulated females for these periods also showed significant (p < 0.01) increases in AR rates, compared with PBS. Thus in vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus. Overall, VGS appear to deliver higher levels of proteins involved in preventing premature capacitation and AR than those promoting them. Our findings which have implications for humans open the possibility of new approaches to infertility treatment with exosome therapeutics.
Collapse
Affiliation(s)
- Zeinab Fereshteh
- Department of Biological Sciences, University of Delaware, Newark, Delaware.,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | |
Collapse
|
8
|
Fereshteh Z, Schmidt SA, Al-Dossary AA, Accerbi M, Arighi C, Cowart J, Song JL, Green PJ, Choi K, Yoo S, Martin-DeLeon PA. Murine Oviductosomes (OVS) microRNA profiling during the estrous cycle: Delivery of OVS-borne microRNAs to sperm where miR-34c-5p localizes at the centrosome. Sci Rep 2018; 8:16094. [PMID: 30382141 PMCID: PMC6208369 DOI: 10.1038/s41598-018-34409-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Oviductosomes (OVS) are nano-sized extracellular vesicles secreted in the oviductal luminal fluid by oviductal epithelial cells and known to be involved in sperm capacitation and fertility. Although they have been shown to transfer encapsulated proteins to sperm, cargo constituents other than proteins have not been identified. Using next-generation sequencing, we demonstrate that OVS are carriers of microRNAs (miRNAs), with 272 detected throughout the estrous cycle. Of the 50 most abundant, 6 (12%) and 2 (4%) were expressed at significantly higher levels (P < 0.05) at metestrus/diestrus and proestrus/estrus. RT-qPCR showed that selected miRNAs are present in oviductal epithelial cells in significantly (P < 0.05) lower abundance than in OVS, indicating selective miRNA packaging. The majority (64%) of the top 25 OVS miRNAs are present in sperm. These miRNAs’ potential target list is enriched with transcription factors, transcription regulators, and protein kinases and there are several embryonic developmentally-related genes. Importantly, OVS can deliver to sperm miRNAs, including miR-34c-5p which is essential for the first cleavage and is solely sperm-derived in the zygote. Z-stack of confocal images of sperm co-incubated with OVS loaded with labeled miRNAs showed the intracellular location of the delivered miRNAs. Interestingly, individual miRNAs were predominantly localized in specific head compartments, with miR-34c-5p being highly concentrated at the centrosome where it is known to function. These results, for the first time, demonstrate OVS’ ability to contribute to the sperm’s miRNA repertoire (an important role for solely sperm-derived zygotic miRNAs) and the physiological relevance of an OVS-borne miRNA that is delivered to sperm.
Collapse
Affiliation(s)
- Zeinab Fereshteh
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Skye A Schmidt
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Monica Accerbi
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Cecilia Arighi
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Pamela J Green
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Kyungmin Choi
- A.I. DuPont Hospital for Children, 1600 Rockland Rd, Wilmington, Delaware, 19803, USA
| | - Soonmoon Yoo
- A.I. DuPont Hospital for Children, 1600 Rockland Rd, Wilmington, Delaware, 19803, USA
| | | |
Collapse
|
9
|
Marella M, Ouyang J, Zombeck J, Zhao C, Huang L, Connor RJ, Phan KB, Jorge MC, Printz MA, Paladini RD, Gelb AB, Huang Z, Frost GI, Sugarman BJ, Steinman L, Wei G, Shepard HM, Maneval DC, Lapinskas PJ. PH20 is not expressed in murine CNS and oligodendrocyte precursor cells. Ann Clin Transl Neurol 2017; 4:191-211. [PMID: 28275653 PMCID: PMC5338182 DOI: 10.1002/acn3.393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Objective Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. Methods Steady‐state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. Results BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. Interpretation We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, “BTH” effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.
Collapse
Affiliation(s)
| | - Joe Ouyang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc. San Diego California
| | - Lei Huang
- Halozyme Therapeutics, Inc. San Diego California
| | | | - Kim B Phan
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | | | | | | | | | | - Lawrence Steinman
- University School of Medicine Department of Neurology and Neurological Sciences Beckman Center for Molecular Medicine Stanford University Stanford California
| | - Ge Wei
- Halozyme Therapeutics, Inc. San Diego California
| | | | | | | |
Collapse
|
10
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
11
|
Nguyen HPT, Simpson RJ, Salamonsen LA, Greening DW. Extracellular Vesicles in the Intrauterine Environment: Challenges and Potential Functions. Biol Reprod 2016; 95:109. [PMID: 27655784 PMCID: PMC5333933 DOI: 10.1095/biolreprod.116.143503] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes (30–150 nm) and microvesicles (100–1500 nm), play important roles in mediating cell-cell communication. Such particles package distinct cargo elements, including lipids, proteins, mRNAs, microRNAs, and DNA, that vary depending on the cell of origin and its phenotype. This cargo can be horizontally transferred to target cells where its components can reprogram the recipient cell to modify its function. EVs have been identified within the uterine cavity of women, sheep, and mice, where they contribute to the microenvironment of sperm transport, and of blastocyst and endometrial preparation for implantation. It is likely that exosomes and microvesicles carry different cargo and coordinate different roles in this intrauterine environment. Understanding and defining these subtypes of EVs is important for future functional studies and clinical translation. Here we critically review the various purification and validation procedures for extracellular vesicle analysis and discuss what is known of endometrial-derived exosome cargo and of their hormonal regulation. The current knowledge of the functions of uterine exosomes, with respect to sperm transport and function, and of their actions on trophectodermal cells to promote implantation are summarized and evaluated in their physiological context. Given the potential importance of this form of cell-cell interactions within the reproductive tract, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
- Hong P T Nguyen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Ito C, Toshimori K. Acrosome markers of human sperm. Anat Sci Int 2016; 91:128-42. [PMID: 26748928 DOI: 10.1007/s12565-015-0323-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023]
Abstract
Molecular biomarkers that can assess sperm acrosome status are very useful for evaluating sperm quality in the field of assisted reproductive technology. In this review, we introduce and discuss the localization and function of acrosomal proteins that have been well studied. Journal databases were searched using keywords, including "human acrosome", "localization", "fertilization-related protein", "acrosomal membrane", "acrosomal matrix", "acrosome reaction", "knockout mouse", and "acrosome marker".
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Kiyotaka Toshimori
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
13
|
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 2015; 22:182-93. [PMID: 26663221 DOI: 10.1093/humupd/dmv055] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-bound vesicles, found in biofluids, that carry and transfer regulatory molecules, such as microRNAs (miRNAs) and proteins, and may mediate intercellular communication between cells and tissues. EVs have been isolated from a wide variety of biofluids, including plasma, urine, and, relevant to this review, seminal, follicular and uterine luminal fluid. We conducted a systematic search of the literature to review and present the currently available evidence on the possible roles of EVs in follicular growth, resumption of oocyte development and maturation (meiosis), sperm maturation, fertilization and embryo implantation. METHODS MEDLINE, Embase and Web of Science databases were searched using keywords pertaining to EVs, including 'extracellular vesicles', 'microvesicles', 'microparticles' and 'exosomes', combined with a range of terms associated with the period of development between fertilization and implantation, including 'oocyte', 'sperm', 'semen', 'fertilization', 'implantation', 'embryo', 'follicular fluid', 'epididymal fluid' and 'seminal fluid'. Relevant research articles published in English (both animal and human studies) were reviewed with no restrictions on publication date (i.e. from earliest database dates to July 2015). References from these articles were used to obtain additional articles. RESULTS A total of 1556 records were retrieved from the three databases. After removing duplicates and irrelevant titles, we reviewed the abstracts of 201 articles, which included 92 relevant articles. Both animal and human studies unequivocally identified various types of EVs in seminal, follicular and ULFs. Several studies provided evidence for the roles of EVs in these biofluids. In men, EVs in seminal fluid were linked with post-testicular sperm maturation, including sperm motility acquisition and reduction of oxidative stress. In women, EVs in follicular fluid were shown to contain miRNAs with potential roles in follicular growth, resumption of oocyte meiosis, steroidogenesis and prevention of polyspermy after fertilization. EVs were also detected in the media of cultured embryos, suggesting that EVs released from embryos and the uterus may mediate embryo-endometrium cross-talk during implantation. It is important to note that many of the biologically plausible functions of EVs in reproduction discussed in the current literature have not yet been substantiated by conclusive experimental evidence. CONCLUSIONS A detailed understanding of the contributions of EVs in the series of events from gametogenesis to fertilization and then on to implantation, in both normal and pathological cases, may enable the development of valuable tools to advance reproductive health. Because of the early stage of the field, it is unsurprising that the current literature includes not only growing experimental evidence, but also as-yet unproven hypotheses pertaining to the roles of EVs in key reproductive processes. In this review, we present a comprehensive survey of the rapidly expanding literature on this subject, highlighting both relevant findings and gaps in knowledge.
Collapse
Affiliation(s)
- Ronit Machtinger
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Sheba Medical Center and Tel-Aviv University, Tel Hashomer 52561, Israel
| | - Louise C Laurent
- Department of Reproductive Medicine, Division of Maternal Fetal Medicine, University of California, San Diego, CA, USA
| | - Andrea A Baccarelli
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
14
|
Coy P, Yanagimachi R. The Common and Species-Specific Roles of Oviductal Proteins in Mammalian Fertilization and Embryo Development. Bioscience 2015. [DOI: 10.1093/biosci/biv119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Wagner A, Holland OJ, Tong M, Shelling AN, Chamley LW. The role of SPRASA in female fertility. Reprod Sci 2014; 22:452-61. [PMID: 25038051 DOI: 10.1177/1933719114542009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fertility is a complex process and infertility can have many causes. Sperm protein reactive with antisperm antibody (SPRASA)/sperm lysozyme-like protein 1 is a protein discovered as the target of autoantibodies in infertile men and previously thought to be expressed only in sperm. Using a bovine in vitro fertilization model, we have shown that SPRASA antiserum reduced sperm binding to zona-free oocytes and the development of embryos to morulae but did not affect the postfertilization cleavage rate to 2 cells or sperm motility. We demonstrated that SPRASA was expressed in ovarian follicles, corpora lutea, and oocytes by a combination of reverse transcription-polymerase chain reaction and immunohistochemistry. Female mice immunized with SPRASA had profound infertility following timed matings and those mice that did become pregnant had reduced fetal viability. The levels of antibodies reactive with SPRASA in 204 fertile and 202 infertile couples were elevated in 3 infertile but no fertile women. Together, these results indicate that SPRASA has a role in female fertility.
Collapse
Affiliation(s)
- Angela Wagner
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Olivia J Holland
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One 2013; 8:e80181. [PMID: 24244642 PMCID: PMC3828235 DOI: 10.1371/journal.pone.0080181] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/09/2013] [Indexed: 12/02/2022] Open
Abstract
PMCA4, a membrane protein, is the major Ca2+ efflux pump in murine sperm where its deletion leads to a severe loss of hyperactivated motility and to male infertility. We have previously shown that the PMCA4b splice variant interacts with CASK (Ca2+/CaM-dependent serine kinase) in regulating sperm Ca2+. More recently we detected that PMCA4a isoform, in addition to its presence in testis, is secreted in the epididymal luminal fluid and transferred to sperm. Here we show that Pmca4 mRNA is expressed in both the 4a and 4b variants in the vagina, uterus, and oviduct. Immunofluorescence reveals that PMCA4a is similarly expressed and is elevated during estrus, appearing in the glandular and luminal epithelia. Western analysis detected PMCA4a in all tissues and in the luminal fluids (LF) of the vagina (VLF), uterus (ULF), and the oviduct (OLF) collected during estrus. It was ~9- and 4-fold higher in OLF than in VLF and ULF, and only marginally present in LF collected at metestrus/diestrus. Fractionation of the LF collected at estrus, via ultracentrifugation, revealed that 100% of the PMCA4a resides in the vesicular fraction of the ULF and OLF. Transmission electron microscopy (TEM) revealed that OLF vesicles have an exosomal orientation (with the cytoplasmic-side inward), a size range of 25-100 nm, with the characteristic CD9 biomarker. Thus, we dubbed these vesicles “oviductosomes”, to which PMCA4a was immunolocalized. Incubation of caudal sperm in the combined LF or exosomes resulted in up to a ~3-fold increase of sperm PMCA4a, as detected by flow cytometry, indicating in vitro uptake. Our results are consistent with the increased requirement of Ca2+ efflux in the oviduct. They show for the first time the presence of oviductal exosomes and highlight their role, along with uterosomes and vaginal exosomes, in post-testicular sperm acquisition of PMCA4a which is essential for hyperactivated motility and fertility.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Emanuel E. Strehler
- Department of Biochemistry, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Patricia A. Martin-DeLeon
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
17
|
Aravindan RG, Fomin VP, Naik UP, Modelski MJ, Naik MU, Galileo DS, Duncan RL, Martin-Deleon PA. CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+ homeostasis and motility. J Cell Physiol 2012; 227:3138-50. [PMID: 22020416 PMCID: PMC3383836 DOI: 10.1002/jcp.24000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deletion of the highly conserved gene for the major Ca(2+) efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca(2+) concentration ([Ca(2+) ](c)) and ∼10-fold higher mitochondrial sequestration, indicating Ca(2+) overload. Investigating the mechanism involved, we used co-immunoprecipitation studies to show that CASK (Ca(2+) /calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca(2+) accumulation, and a ∼6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca(2+) homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions.
Collapse
Affiliation(s)
- Rolands G Aravindan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
|
20
|
Reese KL, Aravindan RG, Griffiths GS, Shao M, Wang Y, Galileo DS, Atmuri V, Triggs-Raine BL, Martin-Deleon PA. Acidic hyaluronidase activity is present in mouse sperm and is reduced in the absence of SPAM1: evidence for a role for hyaluronidase 3 in mouse and human sperm. Mol Reprod Dev 2010; 77:759-72. [PMID: 20586096 DOI: 10.1002/mrd.21217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanisms underlying sperm penetration of the physical barriers surrounding the oocyte have not been completely delineated. Although neutral-active or "reproductive" hyaluronidases (hyases), exemplified by Sperm Adhesion Molecule 1 (SPAM1), are thought to be responsible for hyaluronan digestion in the egg vestments and for sperm-zona binding, their roles in mouse sperm have been recently questioned. Here we report that acidic "somatic" Hyaluronidase 3 (HYAL3), a homolog of SPAM1 with 74.6% structural similarity, exists in two isoforms in human ( approximately 47 and approximately 55 kDa) and mouse ( approximately 44 and approximately 47 kDa) sperm, where it resides on the plasma membrane over the head and midpiece. Mouse isoforms are differentially distributed in the soluble (SAP), membrane (MBP), and acrosome-reacted (AR) fraction where they are most abundant. Comparisons of zymography of Hyal3 null and wild-type (WT) AR and MBP fractions show significant HYAL3 activity at pH 3 and 4, and less at pH 7. At pH 4, a second acid-active hyase band at approximately 57 kDa is present in the AR fraction. HYAL3 activity was confirmed using immunoprecipitated HYAL3 and spectrophotometry. In total proteins, hyase activity was higher at pH 6 than at 4, where Spam1 nulls had significantly (P < 0.01) diminished activity implicating an acidic optima for murine SPAM1. Although fully fertile, Hyal3 null sperm showed delayed cumulus penetration and reduced acrosomal exocytosis. HYAL3 is expressed in epididymal tissue/fluid, from where it is acquired by caudal mouse sperm in vitro. Our results reveal concerted activity of both neutral- and acid-active hyaluronidases in sperm.
Collapse
Affiliation(s)
- Kristen L Reese
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morin G, Sullivan R, Laflamme I, Robert C, Leclerc P. SPAM1 Isoforms from Two Tissue Origins Are Differentially Localized Within Ejaculated Bull Sperm Membranes and Have Different Roles During Fertilization1. Biol Reprod 2010; 82:271-81. [DOI: 10.1095/biolreprod.109.079582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Griffiths GS, Galileo DS, Aravindan RG, Martin-DeLeon PA. Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes. Biol Reprod 2009; 81:562-70. [PMID: 19357365 DOI: 10.1095/biolreprod.108.075739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glycosyl phosphatidylinositol (GPI)-linked proteins, which are involved in post-testicular maturation of sperm and have a role in fertilization, are acquired on the sperm surface from both vesicular and membrane-free soluble fractions of epididymal luminal fluid (LF) and uterine LF. Herein, we investigate the mechanism of uptake of these proteins from the soluble fraction of LFs using sperm adhesion molecule 1 (SPAM1) as a model. Ultracentrifugation and native Western blot analysis of the soluble fraction revealed that SPAM1 is present in low-molecular-weight (monomeric) and high-molecular-weight (oligomeric) complexes. The latter are incapable of transferring SPAM1 and may serve to produce monomers. Monomers are stabilized by hydrophobic interactions with clusterin (CLU), a lipid carrier that is abundantly expressed in LFs. We show that CLU is involved in the transfer of SPAM1 monomers, whose delivery was decreased by anti-CLU antibody under normal and apolipoprotein-enhanced conditions. Coimmunoprecipitation revealed an intimate association of CLU with SPAM1. Both plasma and recombinant CLU had a dose-related effect on transfer efficiency: high concentrations reduced and low concentrations enhanced delivery of SPAM1 to human and mouse sperm membranes, reflecting physiological states in the epididymal tract. We propose a lipid exchange model (akin to the lipid-poor model for cholesterol efflux) for the delivery of GPI-linked proteins to sperm membranes via CLU. Our investigation defines specific conditions for membrane-free GPI-linked protein transfer in vitro and could lead to technology for improving fertility or treating sperm pathology by the addition of relevant GPI-linked proteins critical for successful fertilization in humans and domestic animals.
Collapse
Affiliation(s)
- Genevieve S Griffiths
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
23
|
Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA. Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 2008; 75:1627-36. [PMID: 18384048 DOI: 10.1002/mrd.20907] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sperm uptake of glycosyl phosphatidylinositol (GPI)-linked proteins from luminal fluids has been shown to occur in male and estrous female reproductive tracts. In males, this is attributed to membranous vesicles secreted into the epididymis and prostate. While epididymosomes have been characterized, there have been no reports of the presence of vesicles in female luminal fluids. Here we report the presence of vesicles, characterized as "uterosomes," in the murine estrous female reproductive fluid; and use Sperm Adhesion Molecule 1 (SPAM1/PH-20), a well-known hyaluronidase found in male and female fluids, as a model to investigate vesicle-mediated GPI-linked protein transfer to sperm. Epididymosomes and uterosomes isolated after ultracentrifugation of epididymal (ELF) and uterine luminal fluid (ULF) were analyzed by electron microscopy and shown to be approximately 10-70 and approximately 15-50 nm in diameter. The structural integrity of uterosomes was confirmed by their resistance to hypo-osmotic and freeze/thaw stresses; and immunogold labeling localized SPAM1 to their outer membrane surface, as was the case for epididymosomes. SPAM1 was acquired by caudal sperm during incubation in epididymosomes and uterosomes; uptake was abolished when the GPI anchor was enzymatically cleaved. Sperm analyzed by confocal and transmission electron microscopy (TEM) after incubation in fluorescently labeled vesicles revealed the label on the membrane over the acrosome and midpiece of the flagella, where SPAM1 normally resides. High magnification TEM images demonstrated vesicles juxtaposed to the sperm plasma membrane potentially transferring SPAM1. Taken together, these results implicate vesicular docking as the mechanism of vesicle-mediated GPI-linked protein transfer to sperm from murine reproductive fluids.
Collapse
Affiliation(s)
- Genevieve S Griffiths
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
24
|
Midnight footprints in the watermelon patch. Matrix Biol 2008; 27:651-2. [DOI: 10.1016/j.matbio.2008.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Griffiths GS, Miller KA, Galileo DS, Martin-DeLeon PA. Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction 2008; 135:293-301. [PMID: 18299422 DOI: 10.1530/rep-07-0340] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sperm uptake of epididymal sperm adhesion molecule 1 (SPAM1) in vitro has recently been shown to be a marker of sperm maturation, since acquisition of this surface hyaluronidase increases cumulus dispersal efficiency. Here, we demonstrate that this glycosyl phosphatidylinositol-linked sperm antigen, previously shown to be expressed during estrous in the female reproductive tract, is secreted in the uterine and oviductal fluids (ULF and OF respectively) in a 67 kDa form, which can bind to sperm. We show that it can be acquired by caudal sperm from Spam1 null, Spam1-deficient mutant, and wild-type (WT) mice in vitro during incubation in ULF or OF at 37 degrees C, as detected by immunocytochemistry and flow cytometry. SPAM1 binding after ULF incubation was localized predominantly to the acrosome and the mid-piece of the flagella of Spam1 null sperm in a pattern identical to that of WT sperm. After ULF incubation, WT sperm demonstrated a significantly (P<0.001) enhanced hyaluronic acid-binding ability, and the involvement of SPAM1 in this activity was shown by a significant (P<0.001) decrease in binding when sperm were exposed to SPAM1 antiserum-inhibited ULF. Importantly, when Spam1 null sperm were exposed to ULF with SPAM1 accessible (in the presence of pre-immune serum) or inaccessible (in the presence of SPAM1 antiserum) for uptake, there was a significant difference in cumulus dispersal efficiency. Taken together, these results suggest that in the sperm surface remodeling that occurs prior to and during capacitation, the fertilizing competence of sperm is increased via acquisition of SPAM1, and likely other hyaluronidases, from the female tract.
Collapse
Affiliation(s)
- Genevieve S Griffiths
- Department of Biological Sciences, University of Delaware, 267 MKL, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
26
|
Grigorieva A, Griffiths GS, Zhang H, Laverty G, Shao M, Taylor L, Martin-DeLeon PA. Expression of SPAM1 (PH-20) in the Murine Kidney Is Not Accompanied by Hyaluronidase Activity: Evidence for Potential Roles in Fluid and Water Reabsorption. Kidney Blood Press Res 2007; 30:145-55. [PMID: 17446714 DOI: 10.1159/000101856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/13/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A role for Sperm Adhesion Molecule 1 (SPAM1) hyaluronidase in murine kidney, where Spam1 transcript levels have been reported to be higher in males, has not been clarified. METHODS Spam1 RNA and protein were studied using RT-PCR, in situhybridization, Western blotting, immunohistochemistry and hyaluronic acid substrate gel electrophoresis. Urine volume and osmolality were studied in wild-type and Spam1 null mice. RESULTS While RT-PCR supported a tendency of higher RNA expression in males, no sex difference for the protein was detectable in the cortex, medulla, and urine. Transcripts were predominantly localized in the proximal tubules and glomeruli, with lower levels in the medulla. Similarly, Western blotting and immunohistochemistry revealed that SPAM1 is more abundant in the cortex. Hyaluronidase activity was absent at neutral and acidic pH: suggesting non-enzymatic role(s) for SPAM1. Wild-type and Spam1 null mice given free access to water showed significantly reduced urine volumes (p < 0.01; n = 12) in the latter. Baseline urine osmolality was similar in both, leading to a significantly (p < 0.05) lower osmolar output in the nulls. After water deprivation (24 h), a significant (p < 0.01) increase in urine osmolality was seen only for wild-type mice. CONCLUSION SPAM1 is implicated in fluid reabsorption and urine concentration.
Collapse
Affiliation(s)
- Anastasia Grigorieva
- Department of Biological Sciences, University of Delaware, Newark, NJ 19716, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80:1921-43. [PMID: 17408700 DOI: 10.1016/j.lfs.2007.02.037] [Citation(s) in RCA: 452] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/04/2007] [Accepted: 02/19/2007] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, Karnataka State, 560007, India.
| | | |
Collapse
|
28
|
Sengupta A, Baker T, Chakrabarti N, Whittaker JA, Sridaran R. Localization of immunoreactive gonadotropin-releasing hormone and relative expression of its mRNA in the oviduct during pregnancy in rats. J Histochem Cytochem 2007; 55:525-34. [PMID: 17283369 DOI: 10.1369/jhc.6a7135.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine the cellular and ultrastructural distribution of the gonadotropin-releasing hormone (GnRH) and the relative expression of its mRNA in the oviduct of rats during different time points (days 7, 9, 16, and 20) of pregnancy. Immunofluorescent localization and confocal microscopic techniques were used to determine the cellular distribution of GnRH in the oviduct. Immunogold electron microscopy indicated its localization at the ultrastructural level, and real-time PCR was used to study the expression pattern of GnRH mRNA in the oviduct during pregnancy. In general, GnRH was localized within the epithelial cells lining the oviductal lumen at each selected time point. A strong correlation between the fluorescence intensity of GnRH-immunoreactive cells and the relative expression of GnRH mRNA was noted on days 7 and 16, followed by a plateau by day 20. At the ultrastructural level, uniform labeling of colloidal gold particles was observed in secretory vesicles and lamella of the luminal epithelium as well as the lumen of the oviduct. Collectively, these results demonstrate for the first time that the oviductal epithelium synthesizes and secretes the decapeptide GnRH during pregnancy in rats, which may have a possible role in postimplantation embryonic development and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anamika Sengupta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The most widely conserved mammalian sperm antigen is sperm adhesion molecule 1, SPAM1/PH-20, which is also the major testicular hyaluronidase. This multifunctional glycosyl phosphatidylinositol (GPI)-linked protein plays several roles in fertilization and is encoded by a gene that resides among hyaluronidase family members in a cluster on human 7q31/mouse 6A2. In the human cluster, SPAM1 is the only functional hyaluronidase and of all six hyaluronidases in the genome it is the best characterized, both structurally and functionally. While SPAM1 transcripts are abundantly expressed only in the testis, specifically in spermatids, the RNA and protein are present in the male reproductive tract and accessory organs and in the female tract of mice. Our investigation of the post-testicular expression of SPAM1 shows that the protein is widely expressed in the epididymis. Like testicular SPAM1, epididymal SPAM1 (ES) has hyaluronidase activity and is conserved in at least five species (mouse, rat, bull, macaque, and human) all of which have putative androgen response elements in the gene promoters, consistent with androgen regulation. Testicular lumicrine factors have also been implicated in ES regulation. Based on regional expression, the protein is likely to play a role in both sperm maturation and storage. A minor secretory glycoprotein, ES is present in the epididymal luminal fluid in both a soluble and insoluble form (epididymosomes), with the latter having an intact lipid anchor. Genetic approaches have provided evidence for sperm uptake of ES in vivo, and in vitro uptake has been demonstrated with the use of Spam1 null mice. In vitro acquisition of ES on the sperm surface results in a pattern that mimics the wild-type distribution. More importantly it significantly increases the ability of null sperm to penetrate the cumulus of oocytes via hyaluronidase activity, directly relating ES uptake with fertilizing ability and indicating that ES is a marker of sperm maturation.
Collapse
|
30
|
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA 94143-0511, USA
| | - Mark J. Jedrzejas
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
- To whom correspondence should be addressed: Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609, USA, Phone: +1 510-450-7932, Fax +1 510-450-7914, e-mail: , Web: www.chori.org/investigators/jedrzejas.html
| |
Collapse
|
31
|
Stern R. Hyaluronan metabolism: a major paradox in cancer biology. ACTA ACUST UNITED AC 2005; 53:372-82. [PMID: 16085113 DOI: 10.1016/j.patbio.2004.12.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/09/2004] [Indexed: 11/16/2022]
Abstract
Paradoxically, both hyaluronan (HA) and hyaluronidases, the enzymes that eliminate HA, can correlate with cancer progression. Levels of HA on the surface of tumor cells are indicators of poor outcome. Certain hyaluronidases, products of tumor suppressor genes eliminated in the course of tumor spread, are used clinically in anti-cancer chemotherapy regimens. Such information would indicate that cancer progression is inhibited by hyaluronidase. Yet progression of certain cancers correlates with levels of hyaluronidase activity. An attempt is made here to understand such apparent contradictions by examining details of HA metabolism. Anabolic and catabolic pathways are comprised of the HA synthases and hyaluronidases, respectively. There are several enzymes that synthesize HA, each under a different control mechanism, generating products of differing polymer size. The hyaluronidases degrade HA in step-wise fashion, the polymer decreasing in size in quantum steps, each size-specific polymer having a different biological activity. Superimposed on these are the potent hyaluronidase inhibitors, about which very little is known. These components of HA metabolism are reviewed here for possible roles in supporting or suppressing malignant transformation, growth, invasion and metastatic spread of tumors. Such a systematic approach may reveal mechanisms used in the course of cancer progression, resolve some of the apparent disparities, render new prognostic markers, and provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Stern
- Department of Pathology, UCSF Comprehensive Cancer Center, University of California San Francisco, CA 94143-0511, USA.
| |
Collapse
|
32
|
Morin G, Lalancette C, Sullivan R, Leclerc P. Identification of the bull sperm p80 protein as a PH-20 ortholog and its modification during the epididymal transit. Mol Reprod Dev 2005; 71:523-34. [PMID: 15892045 DOI: 10.1002/mrd.20308] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have identified an 80 kDa protein in ejaculated bull spermatozoa (p80) which is found in acrosomal and post-acrosomal areas of the head. It has a hyaluronidase activity and shares homologies with PH-20, a sperm surface glycoprotein involved in sperm-egg interaction. The aim of the present study was to characterize bull sperm p80 protein at the nucleic and amino acid levels to determine whether it is the bovine PH-20 ortholog. The complete nucleotide sequence determined by RT-PCR, 3' and 5' RACE show that bull p80, displays identity with the PH-20 nucleotide and amino acid sequences. Messenger RNA and protein expressions determined by Northern blot and immunohistochemistry revealed that the protein is testicular (expressed in spermatocytes and spermatids). The localization of p80 on spermatozoa, determined by indirect immunofluorescence using a monoclonal antibody, shows the protein in acrosomal and post acrosomal areas of the head with an increase in the signal intensity as sperm progress through the epididymis. Post-translational modifications of the protein were investigated during the epididymal maturation by Western blot on protein extracts from sperm collected in the caput, corpus and cauda portions of bull epididymis. Glycolysation status of sperm p80 protein on proteins from ejaculated and epididymidal sperm was investigated. Result show that the glycosylation status is modified as spermatozoa migrate through the epididymis. Hyaluronidase activity evaluated in protein extracts from spermatozoa of the three different epididymal sections revealed that the activity is higher at pH 7 than 4 and is not affected by epididymal maturation. These data strongly suggest that p80 is the bovine PH-20.
Collapse
Affiliation(s)
- Guillaume Morin
- Département d'Obstétrique/Gynécologie, Université Laval, Centre de recherche du CHUQ, Québec, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Overpopulation is a global problem of significant magnitude, with grave implications for the future. Development of new contraceptives is necessary, as existing forms of birth control are unavailable, impractical and/or too expensive for many individuals due to sociological, financial or educational limitations. Immunocontraception and, in particular, the targeting of antibodies to sperm-specific antigens implicated in sperm-egg binding and fertilisation offers an attractive approach to control fertility. Sperm-specific antibodies may impair fertility by inhibiting sperm motility, by reducing penetration of the cervical mucus by sperm, or by interfering in sperm capacitation or the acrosome reaction; alternatively, antisperm antibodies may invoke the complement cascade, resulting in sperm lysis. The antibodies raised against sperm-specific antigens have proved to be extremely effective at reducing sperm-egg interactions in vitro; fertility trials in subhuman primates will eventually be needed to prove the effectiveness of the sperm antigens in terms of contraceptive efficacy before trials in humans can be justified. In addition, existing and emerging strategies (such as sperm proteomics, the determination of molecular and structural details of sperm proteins, and the modelling of protein-ligand interactions using X-ray and/or NMR structures to name a few) are expected to provide the experimental foundation for the design of small molecule inhibitors with antifertility effects. The technology underpinning vaccine development is constantly being developed and the introduction of DNA/RNA vaccines is certain to impact upon the field of immunocontraception.
Collapse
Affiliation(s)
- Anil Suri
- National Institute of Immunology, Genes and Proteins Laboratory, Aruna Asaf Ali Marg, NewDelhi-110067, India.
| |
Collapse
|
34
|
Dunn CA, Mager DL. Transcription of the human and rodent SPAM1 / PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics 2005; 6:47. [PMID: 15804358 PMCID: PMC1079825 DOI: 10.1186/1471-2164-6-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 04/01/2005] [Indexed: 12/20/2022] Open
Abstract
Background Sperm adhesion molecule 1 (SPAM1) is the major mammalian testicular hyaluronidase and is expressed at high levels in sperm cells. SPAM1 protein is important for penetration of the cumulus cell layer surrounding the ovum, and is also involved in zona pellucida binding and sperm intracellular signalling. A previous study had identified SPAM1 as one of the many human genes that initiate within a transposable element. Results Examination of the human, mouse and rat SPAM1 loci revealed that transcripts initiate within the pol gene of an endogenous retrovirus (ERV) element. This is highly unusual, as all previously identified ERV-initiated cellular gene transcripts initiate within the viral long terminal repeat promoter. The SPAM1 locus therefore represents an example of the evolution of a promoter from protein-coding sequence. We have identified novel alternative promoter and splicing variants of human and murine SPAM1. We show that all transcript variants are expressed primarily in the testis and are predicted to encode identical proteins. Conclusion The testis-specific promoters of the human and mouse SPAM1 genes are derived from sequence that was originally part of an ERV pol gene. This represents the first known example of an ERV-derived promoter acting in a gender-specific manner.
Collapse
Affiliation(s)
- Catherine A Dunn
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Zhang H, Jones R, Martin-DeLeon PA. Expression and secretion of rat SPAM1(2B1 or PH-20) in the epididymis: role of testicular lumicrine factors. Matrix Biol 2005; 22:653-61. [PMID: 15062858 DOI: 10.1016/j.matbio.2003.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 11/17/2003] [Accepted: 11/24/2003] [Indexed: 11/23/2022]
Abstract
Rat sperm surface antigen Sperm Adhesion Molecule1, SPAM1 (a.k.a. 2B1 or PH-20) is a plasma membrane-bound glycoprotein with hyaluronidase activity and putative roles during fertilization. Previously the antigen was thought to be testis-specific but recently it has been shown to be synthesized in the epididymis (mouse, macaque and human). Using the efferent ductule ligated (EDL) rat as a model to produce a sperm-free androgen-maintained epididymis, we have examined the factors regulating the expression of epididymal 2B1. RT-PCR and in situ transcript hybridization (ISH) studies showed that 2B1 mRNA is transcribed in the principal cells in all three regions of the epididymis. Its cognate protein was also detected by Western blot analysis in sperm-free cytosols from normal epididymis and found to undergo endoproteolytic cleavage into 2 subunits of similar size to the sperm-bound form. Immunohistochemistry with a monoclonal antibody to 2B1 confirmed that the protein is present in the epididymal epithelium and luminal secretions. The intensity of staining was much stronger in the sperm-free EDL epididymis than that in the normal (sperm-present) epididymis. The protein was shown to have hyaluronidase activity at neutral pH and both its quantity and activity appeared to be greater in the EDL epididymis. It is suggested that a soluble form of SPAM1 glycoprotein is synthesized and released in the epididymis and that in addition to androgens, its regulation may involve a cross-talk between the tubule epithelium and lumicrine factors, the latter possibly of testicular origin.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
36
|
Zhang H, Morales CR, Badran H, El-Alfy M, Martin-DeLeon PA. Spam1 (PH-20) expression in the extratesticular duct and accessory organs of the mouse: a possible role in sperm fluid reabsorption. Biol Reprod 2004; 71:1101-7. [PMID: 15175239 DOI: 10.1095/biolreprod.104.030403] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A widely conserved sperm antigen, the sperm adhesion molecule 1 (SPAM1 or PH-20) is a glycosylphosphatidyl inositol-linked protein with multiple roles in mammalian fertilization. It has been shown to be dually expressed in testis and epididymis and this is conserved in the four species (mouse, rat, macaques, humans) that have been studied to date. Here, we report Spam1 RNA and protein expression in the murine vas deferens and efferent ducts. In situ hybridization and immunohistochemistry indicate that transcript and protein are distributed in the nonciliated epithelial cells and that the efferent ducts have the most intense staining of all three regions of the excurrent ducts. Spam1 products were also present in the accessory organs, the prostate, and seminal vesicles and its fluid. Using hyaluronic acid substrate gel electrophoresis, hyaluronidase activity at pH 7.0 was detected in the vas deferens but was absent from the efferent ducts, the prostate, and the seminal vesicles/fluid. This suggests that Spam1 may play a nonenzymatic role in these organs. In the efferent ducts, where Spam1 is enriched in the apical (but not basolateral) membrane of nonciliated cells, it is likely to play a role in sperm concentration, which is the established function of that organ.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | |
Collapse
|
37
|
Hardy CM, Clydesdale G, Mobbs KJ, Pekin J, Lloyd ML, Sweet C, Shellam GR, Lawson MA. Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 2004; 127:325-34. [PMID: 15016952 DOI: 10.1530/rep.1.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mouse PH20 (mPH20), the mouse homologue to guinea pig hyaluronidase protein PH20 (gpPH20), was used to produce contraceptive vaccines that target both sexes of mice. Previously, immunization with a female gamete antigen (the zona pellucida subunit 3 protein) delivered in a recombinant murine cytomegalovirus (MCMV), or as a purified recombinant protein, has been shown to induce infertility in female mice. There is evidence, however, that sperm protein antigens could provide broader contraceptive coverage by affecting both males and females, and the most promising has been gpPH20 when tested in a guinea pig model. Mice were therefore either inoculated with a recombinant MCMV expressing mPH20 or immunized directly with purified recombinant mPH20 protein fused to maltose-binding protein. Mice treated with either vaccine formulation developed serum antibodies that cross-reacted to a protein band of 55 kDa corresponding to mPH20 in Western blots of mouse sperm. However, there was no significant reduction in the fertility of males or females compared with control animals with either formulation. We conclude from our data that recombinant mPH20 is not a useful antigen for inclusion in immunocontraceptive vaccines that target mice.
Collapse
Affiliation(s)
- Christopher M Hardy
- Pest Animal Control Cooperative Research Centre, CSIRO Sustainable Ecosystems, GPO Box 284, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Morales CR, Badran H, El-Alfy M, Men H, Zhang H, Martin-DeLeon PA. Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Mol Reprod Dev 2004; 69:475-82. [PMID: 15457544 DOI: 10.1002/mrd.20177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Sperm Adhesion Molecule1 (SPAM1) is the most widely conserved sperm antigen with important roles in mammalian fertilization. Light and electron microscopy were used to localize, by in situ hybridization, the cellular and subcellular sites of Spam1 mRNA in the murine testis. Transcripts were first detected in step 3 round spermatids, gradually increased until step 8 and abruptly decreased between steps 9-11. They were predominantly localized near the ER and were not dispersed throughout the cytoplasm. Immunohistochemistry revealed that Spam1 is present on both the head and tail of sperm in the seminiferous tubules, and provided support for transcriptional regulation of its transcript. Immunocytochemistry confirmed the location of Spam1 on the tail of testicular sperm and demonstrated that it is localized to both the principal piece and the midpiece. Spam1 on epididymal sperm is localized to the midpiece of the tail and changes from a uniform distribution on the head in the caput to a regionalized pattern, first on the posterior and then on the anterior head, in caudal sperm. Spam1 on the surface of caudal sperm was shown to mediate the increase in acrosome reactions induced by the synergistic effects of HA and progesterone, as confirmed in sperm from the Rb(6.16) translocation-bearing mice which are Spam1 mutants. The similar response of human and mouse sperm to these agonists of the acrosome reaction, underscores the usefulness of the mouse as a model to study physiological aspects of SPAM1 in humans where, unlike the mouse, it is the only sperm hyaluronidase.
Collapse
Affiliation(s)
- Carlos R Morales
- Department of Anatomy and Cell Biology, McGill University, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
39
|
Evans EA, Zhang H, Martin-DeLeon PA. SPAM1 (PH-20) protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR. Reprod Biol Endocrinol 2003; 1:54. [PMID: 12932297 PMCID: PMC184449 DOI: 10.1186/1477-7827-1-54] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 08/06/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Sperm Adhesion Molecule 1 (SPAM1) is an important sperm surface hyaluronidase with at least three functions in mammalian fertilization. Previously our laboratory reported that in the mouse, in addition to its expression in the testis, Spam1 is synthesized in the epididymis where it is found in membranous vesicles in the principal cells of the epithelium in all three regions. Since SPAM1 is widely conserved among mammals the aim of the study was to determine if its expression pattern in the epididymis is conserved in rodents and primates. METHODS We used laser microdissection (LM)/RT-PCR on frozen and paraffin-embedded epididymal sections of humans (n = 3) and macaques (n = 2) as well as in situ transcript hybridization to determine if transcripts are present in the epididymal epithelium. Western analysis and immunohistochemistry were used to detect and confirm the protein expression, and hyaluronic acid substrate gel electrophoresis analyzed its hyaluronidase activity. An in silico analysis of the proximal promoter of SPAM1 was also performed to identify relevant putative transcription binding sites for the androgen receptor. RESULTS We demonstrate that mRNA unique to SPAM1 is present in the principal cells of the epididymal epithelium in all individuals of both species studied. SPAM1 protein is present in all three regions of the epididymis, as well as the vas deferens, and is localized similarly to the transcripts. SPAM1 was shown to have hyaluronidase activity at pH 7.0. In the proximal promoter of SPAM1 were uncovered putative epididymal transcription factor binding sites including androgen receptor elements (AREs), consistent with epididymal expression. CONCLUSIONS These findings allow us to conclude that epididymal SPAM1 is conserved in at least two mammalian classes, rodents and primates. This conservation of expression suggests that the protein is likely to play an important function, possibly in sperm maturation.
Collapse
Affiliation(s)
- Eric A Evans
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA 94305-6120, USA
| | - Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | |
Collapse
|