1
|
Jiang M, Gao Y, Huang L. Circulating adipokines in girls with central precocious puberty: A systematic review and meta-analysis. Pediatr Res 2025:10.1038/s41390-025-03976-4. [PMID: 40355541 DOI: 10.1038/s41390-025-03976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 05/14/2025]
Abstract
OBJECTIVES This meta-analysis aimed to assess circulating adipokine levels in girls with central precocious puberty (CPP) and compare them with those in healthy controls. METHODS An exhaustive literature search was conducted, using the Embase, PubMed, Web of Science, Cochrane Library, and Scopus databases, from the inception of the study to October 31, 2023, to identify relevant studies. Studies comparing the serum levels of adiponectin, leptin, irisin, apelin, omentin,chemerin, resistin, vaspin, and visfatin in girls with CPP and healthy girls of the same age were included. The findings were summarized in Grading of Recommendations Assessment, Development, and Evaluation evidence profiles and synthesized qualitatively. RESULTS Eleven studies that included 701 girls with CPP and 590 healthy girls were analyzed after the selection process. Leptin levels were significantly increased, whereas adiponectin levels were decreased in girls with CPP. Irisin levels did not change significantly. Subgroup and meta-regression analyses indicated that the heterogeneity in the association of leptin with CPP might be due to factors such as the number of cases, diagnostic criteria for CPP, and measurement methods. CONCLUSIONS Adipokines levels were altered in girls with CPP compared with those in healthy controls. Preventing obesity in children and adolescents with CPP is crucial. PROSPERO REGISTRATION NUMBER CRD42022371490. IMPACT This meta-analysis is the first to explore the relationship between adipokines and central precocious puberty. The results of this systematic review provide evidence that adipokines levels are altered in girls with central precocious puberty (CPP) compared with those in healthy controls. CPP in girls increases the risk of cardiovascular disease in adulthood. Preventing obesity in children and adolescents, especially in those with precocious puberty, is crucial.
Collapse
Affiliation(s)
- Mei Jiang
- Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Acupuncture, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Zhang H, Fang J, Liu Y, Zhu W, Xu Y, Zhang Y, Shen W, Li D, Hao C. Hsa_circ_0043532 contributes to PCOS through upregulation of CYP19A1 by acting as a ceRNA for hsa-miR-1270. J Ovarian Res 2024; 17:151. [PMID: 39039600 PMCID: PMC11265019 DOI: 10.1186/s13048-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) accounts for about 75% of anovulatory infertility. The cause of PCOS is not clear. CircRNAs acting as miRNA sponges mediate the post-transcriptional regulation of multiple genes. CYP19A1 is a limiting enzyme in the ovarian steroidogenesis pathway. However, the mechanism of circRNAs regulating granulosa cell (GC) estradiol secretion in PCOS remains to be elucidated. METHODS Bioinformatics was used to predict the potential target miRNAs of circ_0043532 and target genes of miR-1270. Target miRNAs and mRNA expression were verified by qRT-PCR in GCs from 45 women with PCOS and 65 non-PCOS. Western blot, ELISA and dual-luciferase reporter assays were applied to confirm the substrate of miR-1270. RESULTS Circ_0043532 and CYP19A1 were significant up-regulation in GCs from patients with PCOS. The predicted target miRNAs of circ_0053432, miR-1270, miR-576-5p, miR-421 and miR-142-5p, were notably decreased in GCs from patients with PCOS. Mechanistic experiments showed that circ_0043532 specifically binds to miR-1270. MiR-1270 was negatively regulated by circ_0043532. Concomitantly, miR-1270 inhibited CYP19A1 expression and estradiol production, which could be reversed by circ_0043532 over-expression. CONCLUSION We identified that circ_0043532/miR-1270/CYP19A1 axis contributes to the aberrant steroidogenesis of GCs from patients with PCOS. This study broadens the spectrum of pathogenic factors of PCOS, and circ_0043532 might be a potential therapeutic target for PCOS.
Collapse
Affiliation(s)
- Huimin Zhang
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Jianye Fang
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
| | - Yingxue Liu
- College of Medicine, Qingdao University, Qingdao, China
| | - Wenqian Zhu
- The Second Hospital of Shandong University, Jinan, China
| | - Yangying Xu
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Wei Shen
- College of Life Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Duan Li
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Cuifang Hao
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China.
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China.
- College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Ying Y, Wang S, Han L, Li H, Wang Y, Lv J, Ge RS, Tang Y. Perfluorotetradecanoic acid exposure to adult male rats stimulates corticosterone biosynthesis but inhibits aldosterone production. ENVIRONMENTAL TOXICOLOGY 2024; 39:2610-2622. [PMID: 38205621 DOI: 10.1002/tox.24135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a novel perfluoroalkyl substance that ubiquitously exists in the environment. However, whether PFTeDA affects adrenal cortex function remains unclear. Male Sprague-Dawley rats (age of 60 days) were daily administered with PFTeDA (0, 1, 5, and 10 mg/kg body weight) through gavage for 28 days. PFTeDA did not change body and adrenal gland weights. PFTeDA markedly elevated serum corticosterone level at 10 mg/kg but lowering serum aldosterone level at this dosage without influencing serum adrenocorticotropic hormone level. PFTeDA thickened zona fasciculata without affecting zona glomerulosa. PFTeDA remarkably upregulated the expression of corticosterone biosynthetic genes (Mc2r, Scarb1, Star, Cyp21, Cyp11b1, and Hsd11b1) and their proteins, whereas downregulating aldosterone biosynthetic enzyme Cyp11b2 and its protein, thereby distinctly altering their serum levels. PFTeDA markedly downregulated the expression of antioxidant genes (Sod1 and Sod2) and their proteins at 10 mg/kg. PFTeDA significantly decreased SIRT1/PGC1α and AMPK signaling while stimulating AKT1/mTOR signaling. Corticosterone significantly inhibited testosterone production by adult Leydig cells at >0.1 μM in vitro; however aldosterone significantly stimulated testosterone production at 0.1 nM. In conclusion, exposure to PFTeDA at male rat adulthood causes corticosterone excess and aldosterone deficiency via SIRT1/PGC1α, AMPK, and AKT1/mTOR signals, which in turn additively leads to testosterone deficiency.
Collapse
Affiliation(s)
- Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Kumawat BL, Kumar P, Mahla AS, Kumar A, Kumar A, Singh R, Kumar A. A novel action of insulin sensitizing drug as a potential promotor of preovulatory follicles, ovulation rate and prolificacy in sheep. Vet Res Commun 2024; 48:849-863. [PMID: 37957451 DOI: 10.1007/s11259-023-10259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The effect of the insulin-sensitizing drug metformin on preovulatory follicle (POF) number, ovulation rate, fetal rate and prolificacy was studied in forty-six cyclic Malpura ewes. After estrus synchronization, the ewes were equally divided into two groups (n = 23). The treatment group (MET) received a daily oral dose of metformin at a rate of 500 mg/animal for approximately 12 weeks, spanning five estrous cycles, as against untreated control (CON). All the ewes were bred to proven rams at the end of treatment. Ovarian ultrasound scans were performed at each estrus and day 9 of each cycle to assess the number and diameter of POFs and corpora lutea (CL), respectively. A comprehensive assessment of circulating hormones including, estradiol, progesterone, androstenedione, and insulin as well as metabolic indicators such as glucose, and lipid profile parameters was performed. At the end of treatment on the day of estrus (E5D0), the treatment showed a stimulatory effect on follicular development with a 53.2% (P < 0.001) increase in the number of POFs. It also increased the ovulation rate by 67.4% (P < 0.01), with a higher proportion (χ2df1 = 10.7, P < 0.001) of ewes in the MET group having multiple ovulations compared to the CON group (82.6 vs. 30.4%). With 1.48 ± 0.12 prolificacy rate in MET ewes, the proportion of ewes giving birth to multiple lambs was 2.9-fold higher than in the CON group. Plasma estradiol, insulin, glucose, total cholesterol, and LDL-cholesterol concentrations were lower (P < 0.05) in the MET ewes than in the CON. The results of the present study indicate that metformin can increase the number of POF, ovulation rate, fetal rate and prolificacy in ewes, while reducing the plasma estradiol, insulin, glucose and cholesterol in MET ewes.
Collapse
Affiliation(s)
- Babu Lal Kumawat
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
- Department of Animal Reproduction, Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Parbhani (MAFSU, Nagpur), Maharashtra, 431 402, India
| | - Pramod Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
| | - Ajit Singh Mahla
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India.
| | - Ashok Kumar
- ICAR-Central Sheep and Wool Research Institute, Arid Region Campus, Bikaner, Rajasthan, 334 006, India
| | - Amit Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
| | - Raghvendar Singh
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
| | - Arun Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
| |
Collapse
|
6
|
Sudhakaran G, Priya PS, Jagan K, Haridevamuthu B, Meenatchi R, Arockiaraj J. Osteoporosis in polycystic ovary syndrome (PCOS) and involved mechanisms. Life Sci 2023; 335:122280. [PMID: 37981226 DOI: 10.1016/j.lfs.2023.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Polycystic Ovary Syndrome (PCOS) and osteoporosis, though seemingly unrelated, exhibit intricate connections influenced by genetic and epigenetic factors. PCOS, characterized by elevated androgen levels, insulin resistance, and increased body weight, has historically been considered protective against bone fragility disorders. However, emerging research suggests that chronic inflammation, prevalent in PCOS, can adversely affect bone health. Studies have demonstrated variable bone mineral density loss in PCOS, often associated with leptin resistance and hyperinsulinemia. Key genes such as INS, IGF1, CTNNB1, AKT1, and STAT3 play pivotal roles in the complex interplay between PCOS and osteoporosis, influencing insulin signaling, oxidative stress, and inflammatory pathways. Oxidative stress, a prominent element in PCOS, can lead to osteoporosis through hormonal imbalances, chronic inflammation, insulin resistance, and lifestyle factors. The insulin signaling pathway also significantly impacts both conditions by contributing to hormonal imbalances and bone health alterations. This intricate network of genetic and epigenetic factors underscores the need for a deeper understanding of their interrelationships. Thus, this review elucidates the multifaceted genetic, epigenetic, and inflammatory connections between PCOS and osteoporosis, highlighting their implications for bone health management in individuals with PCOS.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kannan Jagan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Jiang M, Gao Y, Wang K, Huang L. Lipid profile in girls with precocious puberty: a systematic review and meta-analysis. BMC Endocr Disord 2023; 23:225. [PMID: 37848909 PMCID: PMC10583444 DOI: 10.1186/s12902-023-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE Many studies have investigated the impact of precocious puberty on cardiovascular disease (CVD) outcomes and the association between lipid profile levels and precocious puberty. However, the results have been inconsistent. The aim of this meta-analysis was to evaluate whether triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL)and low density lipoprotein (LDL) levels were altered in girls with precocious puberty compared with healthy controls. METHODS References published before June 2022 in the EMBASE, Cochrane Library, PubMed and Web of Science databases were searched to identify eligible studies. A DerSimonian-Laird random-effects model was used to evaluate the overall standard mean difference (SMD) between precocious puberty and healthy controls. Subgroup analyses and sensitivity analyses were preformed, and publication bias was assessed. RESULTS A total of 14 studies featuring 1023 girls with precocious puberty and 806 healthy girls were selected for analysis. The meta-analysis showed that TG (SMD: 0.28; 95% CI: 0.01 to 0.55; P = 0.04), TC (SMD: 0.30; 95% CI: 0.01 to 0.59; P = 0.04), LDL (SMD: 0.45; 95% CI: 0.07 to 0.84; P = 0.02)levels were significantly elevated in girls with precocious puberty. HDL levels did not change significantly (SMD: -0.06; 95% CI: -0.12 to 0.61; P = 0.62). Subgroup analyses revealed that the heterogeneity in the association between lipid profile and precocious puberty in this meta-analysis may arise from disease type, region, sample size, chronological age, body mass index difference and drug usage. CONCLUSION Lipid profile levels altered in girls with precocious puberty compared with healthy controls. In order to minimize the risk of CVD morbidity and mortality, early interventions were needed to prevent obesity in children and adolescents, especially those with precocious puberty.
Collapse
Affiliation(s)
- Mei Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Acupuncture, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, P. R. China.
| |
Collapse
|
8
|
Liu ZB, Zhang JB, Li SP, Yu WJ, Pei N, Jia HT, Li Z, Lv WF, Wang J, Kim NH, Yuan B, Jiang H. ID3 regulates progesterone synthesis in bovine cumulus cells through modulation of mitochondrial function. Theriogenology 2023; 209:141-150. [PMID: 37393744 DOI: 10.1016/j.theriogenology.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
DNA binding inhibitory factor 3 (ID3) has been shown to have a key role in maintaining proliferation and differentiation. It has been suggested that ID3 may also affect mammalian ovarian function. However, the specific roles and mechanisms are unclear. In this study, the expression level of ID3 in cumulus cells (CCs) was inhibited by siRNA, and the downstream regulatory network of ID3 was uncovered by high-throughput sequencing. The effects of ID3 inhibition on mitochondrial function, progesterone synthesis, and oocyte maturation were further explored. The GO and KEGG analysis results showed that after ID3 inhibition, differentially expressed genes, including StAR, CYP11A1, and HSD3B1, were involved in cholesterol-related processes and progesterone-mediated oocyte maturation. Apoptosis in CC was increased, while the phosphorylation level of ERK1/2 was inhibited. During this process, mitochondrial dynamics and function were disrupted. In addition, the first polar body extrusion rate, ATP production and antioxidation capacity were reduced, which suggested that ID3 inhibition led to poor oocyte maturation and quality. The results will provide a new basis for understanding the biological roles of ID3 as well as cumulus cells.
Collapse
Affiliation(s)
- Zi-Bin Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Sheng-Peng Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Wen-Jie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Na Pei
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Hai-Tao Jia
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Wen-Fa Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, People's Republic of China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, People's Republic of China
| | - Nam-Hyung Kim
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
9
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Mierzejewski K, Gerwel Z, Kurzyńska A, Golubska M, Bogacka I. In vitro effects of PPAR gamma ligands on gene expression in corpus luteum explants in non-pregnant pigs - Transcriptome analysis. Theriogenology 2023; 203:69-81. [PMID: 36977370 DOI: 10.1016/j.theriogenology.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The corpus luteum (CL) is a temporary endocrine structure in the female ovaries that develops cyclically in mature females during luteinization. This study aimed to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptomic profile of the porcine CL in the mid- and late-luteal phase of the estrous cycle using RNA-seq technology. The CL slices were incubated in the presence of PPARγ agonist - pioglitazone or antagonist - T0070907. We identified 40 differentially expressed genes after treatment with pioglitazone and 40 after treatment with T0070907 in the mid-luteal phase as well as 26 after pioglitazone and 29 after T0070907 treatment in the late-luteal phase of the estrous cycle. In addition, we detected differences in gene expression between the mid- and late-luteal phase without treatment (409 differentially expressed genes). This study revealed a number of novel candidate genes that may play a role in controlling the function of CL by regulating signaling pathways related to ovarian steroidogenesis, metabolic processes, cell differentiation, apoptosis, and immune responses. These findings become a basis for further studies to explain the mechanism of PPARγ action in the reproductive system.
Collapse
|
11
|
Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, Stassi AF, Angeli E, Etchevers L, Salvetti NR, Ortega HH, Hein GJ, Rey F. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology 2023; 197:209-223. [PMID: 36525860 DOI: 10.1016/j.theriogenology.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The alteration of signaling molecules involved in the general metabolism of animals can negatively influence reproduction. In dairy cattle, the development of follicular cysts and the subsequent appearance of ovarian cystic disease (COD) often lead to decreased reproductive efficiency in the herd. The objective of this review is to summarize the contribution of relevant metabolic and nutritional sensors to the development of COD in dairy cows. In particular, we focus on the study of alterations of the insulin signaling pathway, adiponectin, and other sensors and metabolites relevant to ovarian functionality, which may be related to the development of follicular persistence and follicular formation of cysts in dairy cattle. The results of these studies support the hypothesis that systemic factors could alter the local scenario in the follicle, generating an adverse microenvironment for the resumption of ovarian activity and possibly leading to the persistence of follicles and to the development and recurrence of COD.
Collapse
Affiliation(s)
- N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
12
|
Hu S, Rong Y, Deng Y, Li L, Hu J, Yuan X, He H, Li L, Wang J. miR-27b-3p inhibits estrogen secretion of goose granulosa cells by targeting CYP1B1 through the AMPK signaling pathway. Poult Sci 2023; 102:102546. [PMID: 36842296 PMCID: PMC9984896 DOI: 10.1016/j.psj.2023.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Although miR-27b-3p has been evidenced to regulate the proliferation, apoptosis, and differentiation of a variety of mammalian cell types, its actions and mechanisms on ovarian cell steroidogenesis remains largely unknown in both mammalian and avian species. In this study, we aimed to determine the expression profiles of miR-27b-3p in granulosa cell layers during goose ovarian follicle development and to reveal its actions on estrogen (E2) secretion of goose granulosa cells as well as the underlying regulatory mechanisms. It was observed that miR-27b-3p was ubiquitously expressed throughout follicle development but exhibited much higher levels in hierarchical- than in prehierarchical follicles. In cultured granulosa cells from the fourth through second largest preovulatory (F4-F2) follicles of goose, up- and downregulation of miR-27b-3p by using its mimic and inhibitor significantly decreased and increased E2 secretion, respectively. Meanwhile, the mRNA levels of STAR and CYP19A1 were significantly reduced while those of CYP11A1 and 3βHSD were elevated in the mimic-transfected granulosa cells. By comparison, downregulation of miR-27b-3p enhanced the mRNA levels of STAR but had no significant effects on those of CYP19A1, CYP11A1, and 3βHSD. Results from bioinformatic prediction and luciferase reporter assay demonstrated that CYP1B1 was a downstream target of miR-27b-3p. Although the siRNA-mediated downregulation of CYP1B1 did not significantly change E2 secretion by goose granulosa cells, it reduced the mRNA levels of STAR and CYP19A1 as well as those of LKB1 and AMPKα, which are involved in the AMPK signaling pathway. Taken together, these data suggest that miR-27b-3p plays an inhibitory role in E2 secretion by goose F4-F2 granulosa cells, at least in part, by targeting CYP1B1 through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yujing Rong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
13
|
Gupta M, Korde JP, Bahiram KB, Sardar VM, Kurkure NV. Expression and localization of apelin and apelin receptor (APJ) in buffalo ovarian follicles and corpus luteum and the in-vitro effect of apelin on steroidogenesis and survival of granulosa cells. Theriogenology 2023; 197:240-251. [PMID: 36525863 DOI: 10.1016/j.theriogenology.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Apelin is an adipose tissue-derived hormone with many physiological functions, including the regulation of female reproduction. It acts through an orphan G protein-coupled receptor APJ/APLNR. The present study aimed to investigate the expression of apelin and its receptor APJ in the ovarian follicles and corpus luteum (CL) and the role of apelin on steroidogenesis and cell survival. Ovarian follicles were classified into four groups based on size and estradiol (E2) level in the follicular fluid as follows: (i) F1 (4-6 mm; <0.5 ng/mL) (ii) F2 (7-9 mm; 0.5-5 ng/mL) (iii) F3 (10-13 mm; 5-40 ng/mL) and (iv) F4 (dominant/pre-ovulatory follicle) (>13 mm; >180 ng/mL). The corpora lutea (CL) were categorized into early (CL1), mid (CL2), late luteal (CL3), and regressing (CL4) CL stages. Expression of apelin increased with follicle size, with significantly greatest in the dominant or pre-ovulatory follicle (P < 0.05). Expression of APJ was greater in large and dominant follicles than in small and medium follicles (P < 0.05). In CL, the mRNA and protein abundance of apelin and apelin receptor was greater during mid (CL2) and late luteal (CL3) stages as compared to early (CL1) and regressing (CL4) stages (P < 0.05). Both the factors were localized in granulosa and theca cells of follicles and small and large luteal cells of CL. The pattern of the intensity of immunofluorescence was similar to mRNA and protein expression. Granulosa cells were cultured in vitro and treated at 1, 10, and 10 ng/mL apelin-13 either alone or in the presence of the follicle-stimulating hormone (FSH) (30 ng/mL) or insulin-like growth factor-I (IGF-I) (10 ng/mL) for 48 h. The luteal cells were treated with apelin-13 at 1, 10, and 100 ng/mL doses for 48 h. Apelin treatment at 10 and 100 ng/ml significantly (P < 0.05) increased E2 secretion, cytochrome P450 aromatase or CYP19A1 expression in GC. In luteal cells, apelin at 10 ng/mL and 100 ng/mL significantly (P < 0.05) increased progesterone (P4) secretion and HSD3B1 expression. In GCs, apelin, either alone or in combination, increased PCNA expression and inhibited CASPASE3 expression suggesting its role in cell survival. In conclusion, this study provides novel evidence for the presence of apelin and receptor APJ in ovarian follicles and corpora lutea and the stimulatory effect on E2 and P4 production and promotes GC survival in buffalo, suggesting the role of apelin in follicular and luteal functions in buffalo.
Collapse
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India.
| | - Jayant P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur, 440006, India
| |
Collapse
|
14
|
Ran M, Hu S, Ouyang Q, Xie H, Zhang X, Lin Y, Li X, Hu J, Li L, He H, Liu H, Wang J. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3. Animals (Basel) 2023; 13:ani13030325. [PMID: 36766213 PMCID: PMC9913746 DOI: 10.3390/ani13030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular development. We have previously shown that miR-202-5p displays a stage-dependent expression pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs. A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition and steroidogenesis in goose hGCs by targeting the ACSL3 gene.
Collapse
|
15
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
17
|
Sonntag B. Einfluss der Trainingsintensität auf Marker des Syndroms polyzystischer Ovarien – eine randomisiert-kontrollierte Studie. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Zhao J, Yang PC, Yang H, Wang ZB, El-Samahy M, Wang F, Zhang YL. Dietary supplementation with metformin improves testis function and semen quality and increases antioxidants and autophagy capacity in goats. Theriogenology 2022; 188:79-89. [DOI: 10.1016/j.theriogenology.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
19
|
Klabnik JL, Christenson LK, Gunewardena SSA, Pohler KG, Rispoli LA, Payton RR, Moorey SE, Neal Schrick F, Edwards JL. Heat-induced increases in body temperature in lactating dairy cows: impact on the cumulus and granulosa cell transcriptome of the periovulatory follicle. J Anim Sci 2022; 100:skac121. [PMID: 35772768 PMCID: PMC9246673 DOI: 10.1093/jas/skac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cows acutely heat stressed after a pharmacologically induced luteinizing hormone (LH) surge had periovulatory changes in the follicular fluid proteome that may potentiate ovulation and impact oocyte developmental competence. Because the cellular origins of differentially abundant proteins were not known, we have examined the cumulus and granulosa cell transcriptomes from the periovulatory follicle in cows exhibiting varying levels of hyperthermia when occurring after the LH surge. After pharmacological induction of a dominant follicle, lactating dairy cows were administered gonadotropin releasing hormone (GnRH) and maintained in thermoneutral conditions (~67 temperature-humidity index [THI]) or heat stress conditions where THI was steadily increased for ~12 h (71 to 86 THI) and was sufficient to steadily elevate rectal temperatures. Cumulus-oocyte complexes and mural granulosa cells were recovered by transvaginal aspiration of dominant follicle content ~16 h after GnRH. Rectal temperature was used as a continuous, independent variable to identify differentially expressed genes (DEGs) increased or decreased per each 1 °C change in temperature. Cumulus (n = 9 samples) and granulosa (n = 8 samples) cells differentially expressed (false discovery rate [FDR] < 0.05) 25 and 87 genes, respectively. The majority of DEGs were upregulated by hyperthermia. Steady increases in THI are more like the "turning of a dial" than the "flipping of a switch." The moderate but impactful increases in rectal temperature induced modest fold changes in gene expression (<2-fold per 1 °C change in rectal temperature). Identification of cumulus DEGs involved in cell junctions, plasma membrane rafts, and cell-cycle regulation are consistent with marked changes in the interconnectedness and function of cumulus after the LH surge. Depending on the extent to which impacts may be occurring at the junctional level, cumulus changes may have indirect but impactful consequences on the oocyte as it undergoes meiotic maturation. Two granulosa cell DEGs have been reported by others to promote ovulation. Based on what is known, several other DEGs are suggestive of impacts on collagen formation or angiogenesis. Collectively these and other findings provide important insight regarding the extent to which the transcriptomes of the components of the periovulatory follicle (cumulus and mural granulosa cells) are affected by varying degrees of hyperthermia.
Collapse
Affiliation(s)
- Jessica L Klabnik
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha S A Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ky G Pohler
- Present address: Department of Animal Science, Pregnancy and Developmental Programming Area of Excellence, Texas A & M University, College Station, TX 77843, USA
| | - Louisa A Rispoli
- Present address: Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, OH 45220, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| |
Collapse
|
20
|
Froment P, Plotton I, Giulivi C, Fabre S, Khoueiry R, Mourad NI, Horman S, Ramé C, Rouillon C, Grandhaye J, Bigot Y, Chevaleyre C, Le Guevel R, Mallegol P, Andriantsitohaina R, Guerif F, Tamburini J, Viollet B, Foretz M, Dupont J. At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism. Hum Reprod 2022; 37:1207-1228. [PMID: 35459945 DOI: 10.1093/humrep/deac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/01/2022] [Indexed: 03/25/2024] Open
Abstract
STUDY QUESTION What biological processes are linked to the signaling of the energy sensor 5'-AMP-activated protein kinase (AMPK) in mouse and human granulosa cells (GCs)? SUMMARY ANSWER The lack of α1AMPK in GCs impacted cell cycle, adhesion, lipid metabolism and induced a hyperandrogenic response. WHAT IS KNOWN ALREADY AMPK is expressed in the ovarian follicle, and its activation by pharmacological medications, such as metformin, inhibits the production of steroids. Polycystic ovary syndrome (PCOS) is responsible for infertility in approximately 5-20% of women of childbearing age and possible treatments include reducing body weight, improving lifestyle and the administration of a combination of drugs to improve insulin resistance, such as metformin. STUDY DESIGN, SIZE, DURATION AMPK signaling was evaluated by analyzing differential gene expression in immortalized human granulosa cells (KGNs) with and without silencing α1AMPK using CRISPR/Cas9. In vivo studies included the use of a α1AMPK knock-out mouse model to evaluate the role of α1AMPK in folliculogenesis and fertility. Expression of α1AMPK was evaluated in primary human granulosa-luteal cells retrieved from women undergoing IVF with and without a lean PCOS phenotype (i.e. BMI: 18-25 kg/m2). PARTICIPANTS/MATERIALS, SETTING, METHODS α1AMPK was disrupted in KGN cells and a transgenic mouse model. Cell viability, proliferation and metabolism were evaluated. Androgen production was evaluated by analyzing protein levels of relevant enzymes in the steroid pathway by western blots, and steroid levels obtained from in vitro and in vivo models by mass spectrometry. Differential gene expression in human GC was obtained by RNA sequencing. Analysis of in vivo murine folliculogenesis was performed by histology and immunochemistry, including evaluation of the anti-Müllerian hormone (AMH) marker. The α1AMPK gene expression was evaluated by quantitative RT-PCR in primary GCs obtained from women with the lean PCOS phenotype (n = 8) and without PCOS (n = 9). MAIN RESULTS AND THE ROLE OF CHANCE Silencing of α1AMPK in KGN increased cell proliferation (P < 0.05 versus control, n = 4), promoted the use of fatty acids over glucose, and induced a hyperandrogenic response resulting from upregulation of two of the enzymes involved in steroid production, namely 3β-hydroxysteroid dehydrogenase (3βHSD) and P450 side-chain cleavage enzyme (P450scc) (P < 0.05, n = 3). Female mice deficient in α1AMPK had a 30% decrease in their ovulation rate (P < 0.05, n = 7) and litter size, a hyperandrogenic response (P < 0.05, n = 7) with higher levels of 3βHSD and p450scc levels in the ovaries, and an increase in the population of antral follicles (P < 0.01, n = 10) compared to controls. Primary GCs from lean women with PCOS had lower α1AMPK mRNA expression levels than the control group (P < 0.05, n = 8-9). LARGE SCALE DATA The FastQ files and metadata were submitted to the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB46048. LIMITATIONS, REASONS FOR CAUTION The human KGN is a not fully differentiated, transformed cell line. As such, to confirm the role of AMPK in GC and the PCOS phenotype, this model was compared to two others: an α1AMPK transgenic mouse model and primary differentiated granulosa-lutein cells from non-obese women undergoing IVF (with and without PCOS). A clear limitation is the small number of patients with PCOS utilized in this study and that the collection of human GCs was performed after hormonal stimulation. WIDER IMPLICATIONS OF THE FINDINGS Our results reveal that AMPK is directly involved in steroid production in human GCs. In addition, AMPK signaling was associated with other processes frequently reported as dysfunctional in PCOS models, such as cell adhesion, lipid metabolism and inflammation. Silencing of α1AMPK in KGN promoted folliculogenesis, with increases in AMH. Evaluating the expression of the α1AMPK subunit could be considered as a marker of interest in infertility cases related to hormonal imbalances and metabolic disorders, including PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by the Institut National de la Recherche Agronomique (INRA) and the national programme « FERTiNERGY » funded by the French National Research Agency (ANR). The authors report no intellectual or financial conflicts of interest related to this work. R.K. is identified as personnel of the International Agency for Research on Cancer/World Health Organization. R.K. alone is responsible for the views expressed in this article and she does not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Stephane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Nizar I Mourad
- Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | | | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Remy Le Guevel
- Plate-forme ImPACcell, Université de Rennes 1, Rennes, France
| | - Patricia Mallegol
- SOPAM, U1063, INSERM, UNIV Angers, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Univ Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- SOPAM, U1063, INSERM, UNIV Angers, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Univ Angers, Angers, France
| | | | - Jérôme Tamburini
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
21
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
22
|
Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 2021; 23:198. [PMID: 35008624 PMCID: PMC8745465 DOI: 10.3390/ijms23010198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
In men with type 2 diabetes mellitus (T2DM), steroidogenesis and spermatogenesis are impaired. Metformin and the agonists of luteinizing hormone/human chorionic gonadotropin(hCG)-receptor (LH/hCG-R) (hCG, low-molecular-weight allosteric LH/hCG-R-agonists) can be used to restore them. The aim was to study effectiveness of separate and combined administration of metformin, hCG and 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP3) on steroidogenesis and spermatogenesis in male rats with T2DM. hCG (15 IU/rat/day) and TP3 (15 mg/kg/day) were injected in the last five days of five-week metformin treatment (120 mg/kg/day). Metformin improved testicular steroidogenesis and spermatogenesis and restored LH/hCG-R-expression. Compared to control, in T2DM, hCG stimulated steroidogenesis and StAR-gene expression less effectively and, after five-day administration, reduced LH/hCG-R-expression, while TP3 effects changed weaker. In co-administration of metformin and LH/hCG-R-agonists, on the first day, stimulating effects of LH/hCG-R-agonists on testosterone levels and hCG-stimulated expression of StAR- and CYP17A1-genes were increased, but on the 3-5th day, they disappeared. This was due to reduced LH/hCG-R-gene expression and increased aromatase-catalyzed estradiol production. With co-administration, LH/hCG-R-agonists did not contribute to improving spermatogenesis, induced by metformin. Thus, in T2DM, metformin and LH/hCG-R-agonists restore steroidogenesis and spermatogenesis, with metformin being more effective in restoring spermatogenesis, and their co-administration improves LH/hCG-R-agonist-stimulating testicular steroidogenesis in acute but not chronic administration.
Collapse
Affiliation(s)
- Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
- Institute of Chemistry, Saint Petersburg State University, 198504 St. Petersburg, Russia
| | - Anna M. Stepochkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina O. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Liubov V. Bayunova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| |
Collapse
|
23
|
Gholizadeh M, Esmaeili-Fard SM. Meta-analysis of genome-wide association studies for litter size in sheep. Theriogenology 2021; 180:103-112. [PMID: 34968818 DOI: 10.1016/j.theriogenology.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 01/01/2023]
Abstract
Litter size and ovulation rate are important reproduction traits in sheep and have important impacts on the profitability of farm animals. To investigate the genetic architecture of litter size, we report the first meta-analysis of genome-wide association studies (GWAS) using 522 ewes and 564,377 SNPs from six sheep breeds. We identified 29 significant associations for litter size which 27 of which have not been reported in individual GWAS for each population. However, we could confirm the role of BMPR1B in prolificacy. Our gene set analysis discovered biological pathways related to cell signaling, communication, and adhesion. Functional clustering and enrichment using protein databases identified epidermal growth factor-like domain affecting litter size. Through analyzing protein-protein interaction data, we could identify hub genes like CASK, PLCB4, RPTOR, GRIA2, and PLCB1 that were enriched in most of the significant pathways. These genes have a role in cell proliferation, cell adhesion, cell growth and survival, and autophagy. Notably, identified SNPs were scattered on several different chromosomes implying different genetic mechanisms underlying variation of prolificacy in each breed. Given the different layers that make up the follicles and the need for communication and transfer of hormones and nutrients through these layers to the oocyte, the significance of pathways related to cell signaling and communication seems logical. Our results provide genetic insights into the litter size variation in different sheep breeds.
Collapse
Affiliation(s)
- Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Esmaeili-Fard
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
24
|
Bakhtyukov AA, Derkach KV, Stepochkina AM, Sorokoumov VN, Bayunova LV, Lebedev IA, Shpakov AO. The Effect of Metformin Therapy on Luteinizing Hormone Receptor Agonist-Mediated Stimulation of Testosterone Production and Spermatogenesis in Diabetic Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302106017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Tremblay PG, Fortin C, Sirard MA. Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. J Ovarian Res 2021; 14:178. [PMID: 34930403 PMCID: PMC8690403 DOI: 10.1186/s13048-021-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chloé Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
26
|
Przygrodzka E, Plewes MR, Davis JS. Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. Int J Mol Sci 2021; 22:9972. [PMID: 34576135 PMCID: PMC8470545 DOI: 10.3390/ijms22189972] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
| | - Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
27
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
28
|
Przygrodzka E, Hou X, Zhang P, Plewes MR, Franco R, Davis JS. PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis. Endocrinology 2021; 162:bqab015. [PMID: 33502468 PMCID: PMC7899060 DOI: 10.1210/endocr/bqab015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoying Hou
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pan Zhang
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
29
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Cao L, Li S, Huang S, Shi D, Li X. AQP8 participates in oestrogen-mediated buffalo follicular development by regulating apoptosis of granulosa cells. Reprod Domest Anim 2021; 56:812-820. [PMID: 33639021 DOI: 10.1111/rda.13921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs), a family of small membrane-spanning proteins, are involved in fluid transport, cell signalling and reproduction. Regulating AQP8 expression influences apoptosis of granulosa cells (GCs), ovarian folliculogenesis, oogenesis and early embryonic development in mice, but its role has never been investigated in other species. The aim of the present study was to characterize the AQP8 function in buffalo follicular development. The expression pattern of AQP8 in buffalo follicle was analysed by immunohistochemistry method. 17β-Estradiol (E2) or oestrogen receptor antagonist ICI182780 was used to treat GCs cultured in vitro, and the expression of AQP8 was detected using qRT-PCR. Its roles in apoptosis of buffalo GCs were investigated by shRNA technology. AQP8 was found to be expressed higher in secondary follicles (p < .05), and its mRNA level in GCs was upregulated by E2 via receptor-mediated mechanism in a dose-dependent manner. A 732-bp buffalo AQP8 coding region was obtained, which was highly conserved at the amino acid level among different species. AQP8-shRNA2 had more effective inhibition on target gene than AQP8-shRNA1 (66.49% vs. 58.31%) (p < .05). Knockdown of AQP8 induced GCs arrested at G2/M stage and occurred apoptosis. Compared with the control group, higher Caspase9 expression were observed in AQP8-shRNA2 lentivirus infected GCs (p < .05), while Bcl-2 and Bax expression levels had no obvious change (p > .05). Altogether, the above results indicate that AQP8 is involved in oestrogen-mediated regulation of buffalo follicular development by regulating cell cycle progression and apoptosis of GCs.
Collapse
Affiliation(s)
- Lihua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,Huangshi Maternity and Children's Health Hospital of Edong Healthcare Group, Huangshi, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
31
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
32
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
33
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
34
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Kyei G, Sobhani A, Nekonam S, Shabani M, Ebrahimi F, Qasemi M, Salahi E, Fardin A. Assessing the effect of MitoQ 10 and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model. Heliyon 2020; 6:e04279. [PMID: 32760818 PMCID: PMC7393412 DOI: 10.1016/j.heliyon.2020.e04279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) continues to be one of the most complex reproductive and endocrine disorder among women of reproductive age. Recent reports have identified close interaction of Vitamin D deficiency and oxidative stress (OS) in exacerbating the pathophysiology of PCOS. This current study aims at assessing the combine effect of MitoQ10 and Vitamin D3 on dehydroepiandrosterone (DHEA) induced PCOS. Following successful induction of PCOS using DHEA, mice were organized into five groups (n = 8) namely: Negative Control (NC), Vitamin D3 Vehicle (VDV), Vitamin D3 (VD), MitoQ10 (MQ), Vitamin D3 plus MitoQ10 (V+M) and DHEA, ethanol and distilled water, Vitamin D3, MitoQ10 and Vitamin D3 plus MitoQ10 were respectively administered for 20 consecutive days. The study also included positive control (PC) group (n = 8) in which no treatment was applied. Treatment effects were assessed using hormonal assays, biochemical assays, Real-Time PCR, western blotting and histological analysis. Combination of Vitamin D3 and MitoQ10 significantly reduced levels of estradiol, progesterone, FSH, LH, LH/FSH, SOD and MDA. The expression rate of mRNAs of 3β-HSD, Cyp19a1, Cyp11a1, StAR, Keap1, HO-1 and Nrf2 were also significantly low in V+M group. Moreover, the histomorphological inspection of ovaries from this group revealed many healthy follicles at various stages of development including few atretic follicles, pre-antral and antral follicles and many corpora lutea. The characteristics observed in this group were in many ways similar to that of the PC group. The combination of MitoQ10 and Vitamin D3 may be potential candidate to ameliorate PCOS.
Collapse
Affiliation(s)
- Gordon Kyei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Salahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amidi Fardin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Nayak G, Salian SR, Agarwal P, Suresh Poojary P, Rao A, Kumari S, Kalthur SG, Shreya AB, Mutalik S, Adiga SK, Kalthur G. Antidiabetic drug metformin affects the developmental competence of cleavage-stage embryos. J Assist Reprod Genet 2020; 37:1227-1238. [PMID: 32335799 PMCID: PMC7244706 DOI: 10.1007/s10815-020-01709-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Metformin is the most commonly prescribed drug in the management of metabolic disorders such as polycystic ovarian syndrome (PCOS) and gestational diabetes in women of reproductive age. Insulin-sensitizing effect of metformin helps in improving from PCOS features such as hyperandrogenism, anovulation, and infertility. However, its ability to cross placental barrier raises concern about safety of the drug on early embryonic development. In this study, we evaluated the effect of metformin on the ovarian function and embryo development. METHODS Adult Swiss albino female mice were administered with metformin (0, 50, 100, and 200 mg/kg body weight) for 4 weeks and assessed for reproductive function and preimplantation embryo development. Further, effect of metformin (0, 10, 25, 50, 100, 250, and 500 μg/mL) exposure to 2-cell-stage embryos was tested under in vitro conditions. RESULTS Metformin did not alter the body weight, blood glucose, ovarian weight, and follicular reserve. However, the early embryo development was significantly affected in mice treated with metformin in vivo at highest dose. Moreover, embryos which were exposed to metformin in vitro showed dose-dependent decline in blastocyst rate and hatching rate. Furthermore, at highest concentration of metformin (500 μg/mL), all the embryos were arrested at compaction stage. CONCLUSION The study revealed that metformin affects the early embryonic development and raises concern about its use during conception.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Agarwal
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Suresh Poojary
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandhya Kumari
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
37
|
McCallum ML, Pru CA, Smith AR, Kelp NC, Foretz M, Viollet B, Du M, Pru JK. A functional role for AMPK in female fertility and endometrial regeneration. Reproduction 2020; 156:501-513. [PMID: 30328345 DOI: 10.1530/rep-18-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved heterotrimeric complex that acts as an intracellular energy sensor. Based on recent observations of AMPK expression in all structures of the female reproductive system, we hypothesized that AMPK is functionally required for maintaining fertility in the female. This hypothesis was tested by conditionally ablating the two catalytic alpha subunits of AMPK, Prkaa1 and Prkaa2, using Pgr-cre mice. After confirming the presence of PRKAA1, PRKAA2 and the active phospho-PRKAA1/2 in the gravid uterus by immunohistochemistry, control (Prkaa1/2 fl/fl ) and double conditional knockout mice (Prkaa1/2 d/d ) were placed into a six-month breeding trial. While the first litter size was comparable between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice (P = 0.8619), the size of all subsequent litters was dramatically reduced in Prkaa1/2 d/d female mice (P = 0.0015). All Prkaa1/2 d/d female mice experienced premature reproductive senescence or dystocia by the fourth parity. This phenotype manifested despite no difference in estrous cycle length, ovarian histology in young and old nulliparous or multiparous animals, mid-gestation serum progesterone levels or uterine expression of Esr1 or Pgr between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice suggesting that the hypothalamic-pituitary-ovary axis remained unaffected by PRKAA1/2 deficiency. However, an evaluation of uterine histology from multiparous animals identified extensive endometrial fibrosis and disorganized stromal-glandular architecture indicative of endometritis, a condition that causes subfertility or infertility in most mammals. Interestingly, Prkaa1/2 d/d female mice failed to undergo artificial decidualization. Collectively, these findings suggest that AMPK plays an essential role in endometrial regeneration following parturition and tissue remodeling that accompanies decidualization.
Collapse
Affiliation(s)
- Melissa L McCallum
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Andrea R Smith
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Du
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
38
|
Wu K, Li Y, Liu J, Mo J, Li X, Ge RS. Long-term triphenyltin exposure disrupts adrenal function in adult male rats. CHEMOSPHERE 2020; 243:125149. [PMID: 31765896 DOI: 10.1016/j.chemosphere.2019.125149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Triphenyltin is an organotin, which is widely used as a fungicide in agriculture. Here, we reported the effects of triphenyltin on adrenal function in adult male rats. Adult male Sprague Dawley rats were daily gavaged with triphenyltin (0, 0.5, 1, and 2 mg/kg body weight) from postnatal day 56-86. Triphenyltin significantly decreased serum corticosterone levels at 1 and 2 mg/kg without affecting serum levels of aldosterone and adrenocorticotropic hormone. Triphenyltin increased thickness of zona glomerulosa without affecting that of zona fasciculata. Triphenyltin did not affect cell number in zona fasciculata and zona glomerulosa. Triphenyltin down-regulated the expression of Scarb1, Star, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, and Hsd11b1 at 1 and/or 2 mg/kg while it up-regulated the expression of At1, Nr4a2, and Hsd11b2 at 2 mg/kg. Triphenyltin activated the phosphorylation of AMPKα while suppressed the phosphorylation of AKT1 and SIRT1/PGC-1α in rat adrenals in vivo and H295R cells in vitro. In vitro, triphenyltin also induced ROS production in H295R cells at 100 nM, a concentration at which no apoptosis was induced. In conclusion, triphenyltin disrupts glucocorticoid synthesis in rat adrenal cortex via several mechanisms: 1) lowering AKT1 phosphorylation and SIRT1/PGC-1α levels; 2) activating AMPKα; and 3) possibly inducing ROS production.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianpeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
39
|
Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS. 4-Bromodiphenyl Ether Causes Adrenal Gland Dysfunction in Rats during Puberty. Chem Res Toxicol 2019; 32:1772-1779. [PMID: 31423765 DOI: 10.1021/acs.chemrestox.9b00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Jiaying Mo
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Song Zhang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xiaoheng Li
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tongliang Huang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Qiqi Zhu
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Songxue Wang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xianwu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Ren-Shan Ge
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
40
|
Maffi AS, Tonellotto Dos Santos J, Caetano de Oliveira F, Gasperin BG, Schneider A, Rincón JAA, Rabassa VR, Burkert Del Pino FA, Corrêa MN, Brauner CC. Insulin treatment does not affect follicular development but alters granulosa cell gene expression in dairy cows. Theriogenology 2019; 133:79-86. [PMID: 31075714 DOI: 10.1016/j.theriogenology.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 03/01/2019] [Accepted: 04/14/2019] [Indexed: 10/27/2022]
Abstract
The use of strategies to stimulate follicular growth are important, especially for use in timed artificial insemination (TAI) protocols, aiming to increase dairy cow's fertility. The aim of this study was to investigate the effect of insulin on follicular growth, steroid production and expression of genes related to follicular development. For this, cows were submitted to a progesterone (P4) and estradiol (E2) based synchronization protocol. In study 1, eleven primiparous lactating Holstein cows, received a single s.c. application of 0.25 IU/kg human insulin or no treatment (control) on D8 of the protocol. Blood samples were collected, and the dominant follicle diameter was assessed daily via transrectal ultrasonography, from D8 to D12. In study 2, eight multiparous non-pregnant and non-lactating Jersey cows, received a single s.c. application of 0.25 IU/kg human insulin, whereas cows from the control group received a single s.c. injection (1 mL) of saline solution (NaCl 0.9%). Blood samples were collected, and the dominant follicle diameter was assessed daily via transrectal ultrasonography from D6 to D9 of the protocol. Sixteen hours after insulin injection, follicular aspiration was performed. In study 1, insulin treatment decreased systemic glucose levels, but did not affect follicular growth. In study 2, the glucose decrease induced by insulin treatment was accompanied by a tendency of decreased progesterone levels in follicular fluid, along with a decrease in steroidogenic acute regulatory protein (STAR) and insulin like growth factor binding protein 2 (IGFBP2) mRNA abundance in granulosa cells. In conclusion, insulin treatment does not increase follicle growth and estradiol secretion in dairy cows, but decreases IGFBP2 and tends to increase pappalysin (PAPPA) mRNA abundance in granulosa cells, suggesting a positive effect on follicle development.
Collapse
Affiliation(s)
- Andressa Stein Maffi
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia Eliseu Maciel, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Joabel Tonellotto Dos Santos
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia Eliseu Maciel, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Bernardo Garziera Gasperin
- Departmento de Patologia, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Departmento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Joao Alveiro Alvarado Rincón
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Viviane Rorhig Rabassa
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francisco Augusto Burkert Del Pino
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia Eliseu Maciel, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcio Nunes Corrêa
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cassio Cassal Brauner
- Programa de Pós-Graduação em Zootecnia, Faculdade de Agronomia Eliseu Maciel, Núcleo de Pesquisa Ensino e Extensão em Pecuária (NUPEEC), Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
41
|
Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS One 2019; 14:e0217519. [PMID: 31163038 PMCID: PMC6548379 DOI: 10.1371/journal.pone.0217519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Fluoxetine (FLX), a widely used antidepressant primarily acting as a selective serotonin reuptake inhibitor (SSRI), has been shown to exhibit other mechanisms of action in various cell types. Consequently, it might have unexpected adverse effects not related to its intended use, possibly in the endocrine regulation of reproduction. We show in the present report that after a 1-hour preincubation of MLTC-1 Leydig cells with FLX, the intracellular cyclic adenosine monophosphate (cAMP) responses to Luteinizing Hormone (LH) and forskolin (FSK) are reduced through AMPK-dependent and -independent pathways respectively. FLX at low concentrations (12.5μM and 25μM) induced this inhibition without triggering AMPK phosphorylation, while higher FLX concentrations (50μM and 100μM) induced AMPK phosphorylation and lowered ATP concentration similarly to Metformin. Pretreatment with the specific AMPK inhibitor Compound C (CpdC), significantly diminished the inhibition of cAMP synthesis caused by high concentration of FLX. Moreover, as expected FLX also caused a decline of steroidogenesis which is under the control of cAMP. Taken together, these findings demonstrate that the inhibition of cAMP synthesis by FLX is dose-dependent and occurs in MLTC-1 cells through two mechanisms, AMPK-independent and AMPK-dependent, at low and high concentrations, respectively. FLX also inhibited hormone-induced steroidogenesis in MLTC-1 cells and mouse testicular Leydig cells, suggesting similar mechanisms in both cell types.
Collapse
|
42
|
Forcato S, Montagnini BG, de Góes MLM, da Silva Novi DRB, Inhasz Kiss AC, Ceravolo GS, Ceccatto Gerardin DC. Reproductive evaluations in female rat offspring exposed to metformin during intrauterine and intrauterine/lactational periods. Reprod Toxicol 2019; 87:1-7. [PMID: 31055052 DOI: 10.1016/j.reprotox.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
Metformin (MET) is a widely-used drug for the treatment of type 2 diabetes mellitus and gestational diabetes. It is known that metformin crosses the placenta and can to be transferred through milk. In vitro studies show that MET decreases gonadotropin-releasing hormone and gonadotropins release in rat neurons, and decreases progesterone and estradiol in rat granulosa cells and androstenedione synthesis in human theca cells. This study evaluated whether MET maternal exposure might interfere with reproductive parameters of female offspring. Wistar female rats were treated with MET 293 mg/kg/day, by gavage, from gestational day (GD) 0 to GD 21 (METG) or GD 0 until lactation day (LD) 21 (METGL). Controls groups received water. An increase in plasmatic estradiol levels was observed during the estrus stage in the METGL group. This result suggests that exposure to MET during gestational and lactational periods might be related to programming in theca and/or granulosa cells during development.
Collapse
Affiliation(s)
- Simone Forcato
- Department of Physiological Sciences, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Bruno Garcia Montagnini
- Department of Physiological Sciences, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Maria Luiza Marino de Góes
- Department of Physiological Sciences, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | | | | | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | | |
Collapse
|
43
|
The role of chamaejasmine in cellular apoptosis and autophagy in MG-63 cells. Biosci Rep 2019; 39:BSR20181707. [PMID: 30463909 PMCID: PMC6331667 DOI: 10.1042/bsr20181707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common malignant neoplasm in children and adolescents with a very high propensity for local invasion and poor response to current therapy. Anti-cancer effect of chamaejasmine is newly discovered from Stellera chamaejasmine L. Our study focuses on investigating the effect of chamaejasmine on the cellular apoptosis, proliferation, autophagy, and the underlying mechanisms in MG-63. Methods: Our study investigated the concentration of chamaejasmine in MG-63 cells by MTT and verified that chamaejasmine inhibited cell invasion by transwell. We also used Hoechst staining as well as apoptotic associated-proteins in MG-63 cells. Meanwhile, we also detected the lysophagesome and autophagsome by Lysotracker. Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) knockdown was performed with siRNA. Results: Our results show that chamaejasmine exerts cellular growth inhibition, pro-apoptotic and pro-autophagic effect via activating AMPK in MG-63 cells. Furthermore, chamaejasmine significantly increases autophagic cell via the inhibition of mammalian target of rapamycin (mTOR) and activation of AMPK signaling pathways. Administrated with chamaejasmine also induces reactive oxygen species (ROS) generation, indicating cross-talking between these two primary modes of programmed cell death. Conclusion: Our results show that chamaejasmine promotes apoptosis and autophagy by activating AMPK/mTOR signaling pathways with involvement of ROS in MG-63 cells. Chamaejasmine is a promising anti-cancer agent in OS treatment, and further studies are needed to confirm its efficacy and safety in vivo or other cancer cells.
Collapse
|
44
|
Heber MF, Ferreira SR, Abruzzese GA, Raices T, Pignataro OP, Vega M, Motta AB. Metformin improves ovarian insulin signaling alterations caused by fetal programming. J Endocrinol 2019; 240:JOE-18-0520.R1. [PMID: 30620715 DOI: 10.1530/joe-18-0520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
Insulin resistance is the decreased ability of insulin to mediate metabolic actions. In the ovary, insulin controls ovulation and oocyte quality. Alterations in ovarian insulin signaling pathway could compromise ovarian physiology. Here, we aimed to investigate the effects of fetal programming on ovarian insulin signaling and evaluate the effect of metformin treatment. Pregnant rats were hyperandrogenized with testosterone and female offspring born to those dams were employed; at adulthood, prenatally hyperandrogenized (PH) offspring presented two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Half of each group was orally treated with metformin. Metformin treatment improved the estrous cyclicity in both PH groups. Both PH groups showed low mRNA levels of IR, IRS1 and Glut4. IRS2 was decreased only in PHanov. Metformin upregulated the mRNA levels of some of the mediators studied. Protein expression of IR, IRS1/2 and GLUT4 was decreased in both PH groups. In PHiov, metformin restored the expression of all the mediators, whereas, in PHanov, metformin restored only that of IR and IRS1/2. IRS1 phosphorylation was measured in tyrosine residues, which activates the pathway, and in serine residues, which impairs insulin action. PHiov presented high IRS1 phosphorylation on tyrosine and serine residues, whereas PHanov showed high serine phosphorylation and low tyrosine phosphorylation. Metformin treatment lowered serine phosphorylation only in PHanov rats. Our results suggest that PHanov rats have a defective insulin action, partially restored with metformin. PHiov rats had less severe alterations, and metformin treatment was more effective in this phenotype.
Collapse
Affiliation(s)
- Maria F Heber
- M Heber, Laboratorio de Fisio-patologia Ovarica, CEFYBO, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Silvana R Ferreira
- S Ferreira, Laboratorio de Fisio-patologia Ovarica, Centro de Estudios Farmacologicos y Botanicos, Buenos Aires, Argentina
| | | | - Trinidad Raices
- T Raices, Laboratorio de Endocrinología Molecular y Transducción de Señales, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Omar Pedro Pignataro
- O Pignataro, Laboratorio de Endocrinología Molecular y Transducción de Señales, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Margarita Vega
- M Vega, Department of Obstetrics and Gynecology, University of Chile Clinical Hospital, Santiago, Chile
| | - Alicia B Motta
- A Motta, Laboratorio de Fisio-patologia Ovarica, CEFYBO, Buenos Aires, 1121, Argentina
| |
Collapse
|
45
|
Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. C R Biol 2018; 342:1-6. [PMID: 30580936 DOI: 10.1016/j.crvi.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key enzyme involved in linking the energy sensing to metabolic pathways. As such, it plays a central role at the whole-body level to translate endocrine communications into adapted responses aimed either at saving energy when food is scarce or at allocating it to various functions, particularly reproduction, when food is available. AMPK also plays major roles in the energy individual cells use in order to realize their specific functions. This is of course especially true for all cells involved in the reproductive function (gonads, gametes) or in its control (hypothalamus, pituitary). In the present review, I report a survey of the various roles of AMPK functions in reproduction, either directly in reproductive organs, or indirectly in organs controlling reproduction, particularly at hypothalamus level.
Collapse
|
46
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
47
|
Insights into leptin signaling and male reproductive health: the missing link between overweight and subfertility? Biochem J 2018; 475:3535-3560. [DOI: 10.1042/bcj20180631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.
Collapse
|
48
|
Effect of the interaction of metformin and bone morphogenetic proteins on ovarian steroidogenesis by human granulosa cells. Biochem Biophys Res Commun 2018; 503:1422-1427. [PMID: 30017187 DOI: 10.1016/j.bbrc.2018.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
In the present study, we studied the effects of metformin and its interactions with the actions of bone morphogenetic proteins (BMPs) on ovarian steroidogenesis. It was revealed that metformin treatment enhanced progesterone production by human granulosa KGN cells and rat primary granulosa cells induced by forskolin and FSH, respectively. In human granulosa cells, it was found that metformin treatment suppressed phosphorylation of Smad1/5/9 activated by BMP-15 compared with that induced by other BMP ligands. Moreover, metformin treatment increased the expression of inhibitory Smad6, but not of that Smad7, in human granulosa cells, while metformin had no significant impact on the expression levels of BMP type-I and -II receptors. Thus, the mechanism by which metformin suppresses BMP-15-induced Smad1/5/9 phosphorylation is likely, at least in part, to be upregulation of inhibitory Smad6 expression in granulosa cells. The results suggest the existence of functional interaction between metformin and BMP signaling, in which metformin enhances progesterone production by downregulating endogenous BMP-15 activity in granulosa cells.
Collapse
|
49
|
De Silva MSI, Dayton AW, Rhoten LR, Mallett JW, Reese JC, Squires MD, Dalley AP, Porter JP, Judd AM. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis. Steroids 2018; 134:53-66. [PMID: 29501754 DOI: 10.1016/j.steroids.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1.
Collapse
Affiliation(s)
- Matharage S I De Silva
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Adam W Dayton
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Lance R Rhoten
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - John W Mallett
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Jared C Reese
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Mathieu D Squires
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Andrew P Dalley
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - James P Porter
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Allan M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States.
| |
Collapse
|
50
|
Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol 2018; 16:40. [PMID: 29699561 PMCID: PMC5918968 DOI: 10.1186/s12958-018-0357-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.
Collapse
Affiliation(s)
- Virginie Maillard
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
- 0000 0004 0385 4036grid.464126.3INRA Centre Val de Loire, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alice Desmarchais
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Maeva Durcin
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Sebastien Elis
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|