1
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Ringler E, Dellefont K, Peignier M, Canoine V. Water-borne testosterone levels predict exploratory tendency in male poison frogs. Gen Comp Endocrinol 2024; 346:114416. [PMID: 38000762 DOI: 10.1016/j.ygcen.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Hormones play a fundamental role in mediating social behaviors of animals. However, it is less well understood to what extent behavioral variation between individuals can be attributed to variation in underlying hormonal profiles. The goal of the present study was to infer if individual androgen levels, and/or the modulation thereof, can explain among-individual variation in aggressiveness, boldness and exploration. We used as a model the dart-poison frog Allobates femoralis and took repeated non-invasive water-borne hormonal samples of individual males before (baseline) and after (experimental) a series of behavioral tests for assessing aggression, boldness, and exploratory tendency. Our results show that androgen levels in A. femoralis are quite stable across the reproductive season. Repeatability in wbT baseline levels was high, while time of day, age of the frog, and trial order did not show any significant impact on measured wbT levels. In general, experimental wbT levels after behavioral tests were lower compared to the respective baseline levels. However, we identified two different patterns with regard to androgen modulation in response to behavioral testing: individuals with low baseline wbT tended to have increased wbT levels after the behavioral testing, while individuals with comparatively high baseline wbT levels rather showed a decrease in hormonal levels after testing. Our results also suggest that baseline wbT levels are linked to the personality trait exploration, and that androgen modulation is linked to boldness in A. femoralis males. These results show that differences in hormonal profiles and/or hormonal modulation in response to social challenges can indeed explain among-individual differences in behavioral traits.
Collapse
Affiliation(s)
- Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Katharina Dellefont
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Chen Q, Liu R, Wei C, Wang X, Wu X, Fan R, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin-Angiotensin System Antioxidant Pathway. Nutrients 2023; 15:5130. [PMID: 38140389 PMCID: PMC10745527 DOI: 10.3390/nu15245130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In older men, an age-related decline in testosterone is closely associated with various adverse health outcomes. With the progression of aging, hyperactivation of the local renin-angiotensin system (RAS) and oxidative stress increase in the testis. The regulation of RAS antioxidants may be a target to delay testicular aging and maintain testosterone levels. Exogenous nucleotides (NTs) have anti-aging potential in several systems, but there are no studies of their effects on the reproductive system. In our study, we examined the effects of exogenous NTs on testosterone synthesis and explored possible mechanisms of action. Therefore, senescence-accelerated mouse prone-8 (SAMP8) mice and senescence-accelerated mouse resistant 1 (SAMR1) were used in the experiment, and they were randomly divided into an NTs free group (NTs-F), a normal control group (control), a low-dose NTs group (NTs-L), a middle-dose NTs (NTs-M), a high-dose NTs group (NTs-H) and SAMR1 groups, and the testis of the mice were collected for testing after 9 months of intervention. The results showed that exogenous NTs could increase the testicular organ index in mice during aging, and delayed the age-associated decline in testosterone levels in SAMP8 male mice, possibly by modulating the local RAS antioxidant pathway and reducing oxidative stress to protect the testis. The present study provides new research clues for the development of preventive and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Tezuka M, Tamai Y, Kuramochi Y, Kobayashi K, Fushimi N, Kiguchi S. Pharmacological characterization of linzagolix, a novel, orally active, non-peptide antagonist of gonadotropin-releasing hormone receptors. Clin Exp Pharmacol Physiol 2022; 49:1082-1093. [PMID: 35690889 DOI: 10.1111/1440-1681.13688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/23/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Control of gonadotropin-releasing hormone (GnRH) signaling is an effective strategy for the treatment of sex hormone-dependent diseases. GnRH analogs have been widely used for treating these diseases; however, initial stimulation or complete suppression of GnRH signaling by GnRH analogs results in the occurrence of several distinct adverse effects. Accordingly, we aimed to discover small molecule GnRH antagonists with superior pharmacokinetic (PK) and pharmacodynamic profiles. Linzagolix is a potent, orally available, and selective GnRH antagonist. Herein, we reported the pharmacological characterization of linzagolix in vitro and in vivo. Linzagolix selectively binds to the GnRH receptor and inhibits GnRH-stimulated signaling, in a manner comparable to cetrorelix, a peptide GnRH antagonist. Since the inhibitory effect of the gonad axis is useful for the treatment of gynecological conditions such as endometriosis and uterine fibroids, we investigated the effect of orally administered linzagolix on the gonadal axis in ovariectomized and intact cynomolgus monkeys. In ovariectomized monkeys, linzagolix immediately suppressed the serum luteinizing hormone concentration at doses over 1 mg/kg, indicating dose-dependent inhibition that correlated with serum linzagolix concentrations. In intact female monkeys, repeated linzagolix administration suppressed hormone surges and ceased or prolonged menstrual cycles. Furthermore, all animals presenting arrested menstrual cycles following linzagolix treatment showed recovery of hormone secretion and regular menstrual cycles after administration periods ended. Our results demonstrated that linzagolix has potential as a novel agent for reproductive-aged women suffering from sex hormone-dependent diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Motohiro Tezuka
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| | - Yasuaki Tamai
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| | - Yu Kuramochi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| | - Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| | - Nobuhiko Fushimi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| | - Sumiyoshi Kiguchi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka Kashiwabara, Azumino, Nagano, Japan
| |
Collapse
|
5
|
Seraphin SB, Sanchez MM, Whitten PL, Winslow JT. The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta). Horm Behav 2022; 137:105078. [PMID: 34823146 PMCID: PMC11302405 DOI: 10.1016/j.yhbeh.2021.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) is a critical neuromodulator of behavior. With propensities for addiction, hyper-activity, cognitive impairment, aggression, and social subordinance, monkeys enduring early maternal deprivation evoke human disorders involving dopaminergic dysfunction. To examine whether DA system alterations shape the behavioral correlates of adverse rearing, male monkeys (Macaca mulatta) were either mother-reared (MR: N = 6), or separated from their mothers at birth and nursery-reared (NR: N = 6). Behavior was assessed during 20-minute observations of subjects interacting with same- or differently-reared peers. Cerebrospinal fluid (CSF) biogenic amines, and serum testosterone (T), cortisol (CORT), and prolactin (PRL) were collected before and after pharmacologic challenge with saline or the DA receptor-2 (DRD2) antagonist Raclopride (RAC). Neuropeptide correlations observed in MR were non-existent in NR monkeys. Compared to MR, NR showed reduced DA tone; higher basal serum T; and lower CSF serotonin (5-HT). RAC increased PRL, T and CORT, but the magnitude of responses varied as a function of rearing. Levels of PRL significantly increased following RAC in MR, but not NR. Elevations in T following RAC were only significant among MR. Contrastingly, the net change (RAC CORT - saline CORT) in CORT was greater in NR than MR. Finally, observations conducted during the juvenile phase in a novel play-arena revealed more aggressive, self-injurious, and repetitive behaviors, which negatively correlated with indexes of dopaminergic tone in NR monkeys. In conclusion, early maternal deprivation alters brain DA systems, and thus may be associated with characteristic cognitive, social, and addiction outcomes.
Collapse
Affiliation(s)
- Sally B Seraphin
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States.
| | - Mar M Sanchez
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322-1003, United States
| | - Patricia L Whitten
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States
| | - James T Winslow
- NIMH IRP Neurobiology Primate Core, NIHAC Bldg. 110, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892-0001, United States
| |
Collapse
|
6
|
Perumal P, De AK, Alyethodi RR, Savino N, Khate K, Vupru K, Khan MH. Daily and seasonal rhythmic secretary pattern of endocrinological profiles in mithun bull. Theriogenology 2021; 166:46-54. [PMID: 33684782 DOI: 10.1016/j.theriogenology.2021.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
Mithun (Bos frontalis) is a unique domestic free-range bovine species available in North Eastern hilly (NEH) regions of India and is reared for its protein rich meat. Mithun suffers severe non-cyclical population fluctuations; however, it is not yet declared as endangered species. Mithun follows some sort of seasonality based on the calving trend and semen production, although it is a perennial breeder. However, there is need to study the rhythmic changes of endocrine profiles to understand the hormone flow pattern in mithun to select the suitable time for blood collection to assess the exact endocrine profiles and to select the suitable time for natural breeding or semen collection by artificial methods for further research, conservation and propagation of its germplasm. Therefore, the present study was designed to evaluate the reproductive as well as metabolic endocrinological profiles in 24:00 h in intact adult mithun bulls during different seasons (winter, spring, summer and autumn) to know the rhythmic changes and flow pattern of the endocrinological profiles to improve its reproductive efficiency. Experimental mithun bulls (n = 6; age: 5-6 years; body condition score: 5-6 out of 10, classified as good) were selected for the study. Endocrinological profiles, follicle stimulating hormone (FSH), luteinizing hormone/interstitial cell stimulating hormone (LH/ICSH), testosterone, cortisol, thyroxine (T4), insulin like growth factor-1 (IGF-1), prolactin and melatonin (MT) were estimated at 04:00 h interval for one whole day in four seasons. The analysis was completed in two different ways as different times of collection (08:00, 12:00, 16:00, 20:00, 24:00 and 04:00 h) and day (08:00 to 16:00 h) & night time (20:00 to 04:00 h) collections. Repeated measures ANOVA analysis revealed that the bulls in winter and spring had significantly (p < 0.05) higher FSH, LH, testosterone, T4, IGF-1 and MT than those in summer whereas the bulls in summer had significantly higher cortisol and prolactin than those in winter and spring seasons. Similarly FSH, LH, testosterone, T4, IGF-1 and MT were significantly (p < 0.05) higher in night than in day time collections whereas cortisol and prolactin were significantly (p < 0.05) higher in day than in night time collections in different seasons. Correlation analysis revealed that FSH, LH, testosterone, T4, IGF-1 and MT had significant (p < 0.05) positive correlation with each other whereas these had significant (p < 0.05) negative correlation with cortisol and prolactin. The study concludes that season and time of blood collection had significant effect on the endocrinological profiles in mithun bulls. Estimation of FSH, LH, testosterone, T4, IGF-1 and MT during night time and cortisol and prolactin during day time was more appropriate to get correct value of the endocrinological profiles. Spring and winter have significantly greater beneficial effects than summer on reproduction and artificial breeding programs in mithun species in the semi-intensive management in the present location.
Collapse
Affiliation(s)
- P Perumal
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India; ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India.
| | - A K De
- ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India
| | - R R Alyethodi
- ICAR-Central Island Agricultural Research Institute, Port Blair, 744 105, Andaman and Nicobar Islands, India
| | - N Savino
- NU-School of Agricultural Science and Rural Development, Medziphema, Nagaland, 797 106, India
| | - K Khate
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| | - K Vupru
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| | - M H Khan
- ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797 106, India
| |
Collapse
|
7
|
Barad Z, Khant Aung Z, Grattan DR, Ladyman SR, Brown RSE. Impaired prolactin transport into the brain and functional responses to prolactin in aged male mice. J Neuroendocrinol 2020; 32:e12889. [PMID: 32725828 DOI: 10.1111/jne.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Ageing is related to changes in a number of endocrine systems that impact on the central actions of hormones. The anterior pituitary hormone prolactin is present in the circulation in both males and females, with widespread expression of the prolactin receptor throughout the forebrain. We aimed to investigate prolactin transport into the brain, as well as circulating levels of prolactin and functional responses to prolactin, in aged male mice (23 months). Transport of 125 I-labelled prolactin (125 I-prolactin) from the peripheral circulation into the brain was suppressed in aged compared to young adult (4 months) male mice, with no significant transport into the brain occurring in aged males. We subsequently investigated changes in the negative-feedback regulation of prolactin secretion and prolactin-induced suppression of luteinising hormone (LH) pulsatile secretion in aged male mice. Feedback regulation of prolactin secretion appeared to be unaffected in aged males, with no change in levels of circulating prolactin, and normal prolactin-induced phosphorylated signal transducer and activator of transcription 5(pSTAT5) immunoreactivity in tuberoinfundibular dopaminergic (TIDA) neurones in the arcuate nucleus. There were, however, significant impairments in the ability of prolactin to suppress LH pulsatile secretion in aged males. In young adult males, acute prolactin administration significantly decreased LH pulses from 1.5 ± 0.19 pulses of LH in 4 hours to 0.5 ± 0.27 pulses. In contrast, prolactin did not suppress LH pulse frequency in aged males, with prolactin leading to an increase in mean LH concentration. These data demonstrate the emergence of impairments in prolactin transport into the brain and deficits in specific functional responses to prolactin with ageing.
Collapse
Affiliation(s)
- Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Epelbaum J, Terrien J. Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109854. [PMID: 31891735 DOI: 10.1016/j.pnpbp.2019.109854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
The neuroendocrine system (NES) plays a crucial role in synchronizing the physiology and behavior of the whole organism in response to environmental constraints. The NES consists of a hypothalamic-pituitary-target organ axis that acts in coordination to regulate growth, reproduction, stress and basal metabolism. The growth (or somatotropic), hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes are therefore finely tuned by the hypothalamus through the successive release of hypothalamic and pituitary hormones to control the downstream physiological functions. These functions rely on a complex set of mechanisms requiring tight synchronization between peripheral organs and the hypothalamic-pituitary complex, whose functionality can be altered during aging. Here, we review the results of research on the effects of aging on the NES of nonhuman primate (NHP) species in wild and captive conditions. A focus on the age-related dysregulation of the master circadian pacemaker, which, in turn, alters the synchronization of the NES with the organism environment, is proposed. Finally, practical and ethical considerations of using NHP models to test the effects of nutrition-based or hormonal treatments to combat the deterioration of the NES are discussed.
Collapse
Affiliation(s)
- Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France; Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| |
Collapse
|
9
|
Holland S, Prescott M, Pankhurst M, Campbell RE. The influence of maternal androgen excess on the male reproductive axis. Sci Rep 2019; 9:18908. [PMID: 31827225 PMCID: PMC6906411 DOI: 10.1038/s41598-019-55436-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Prenatal androgen excess is suspected to contribute to the development of polycystic ovary syndrome (PCOS) in women. Evidence from preclinical female animal models links maternal androgen excess with the development of PCOS-like features and associated alterations in the neuronal network regulating the reproductive axis. There is some evidence suggesting that maternal androgen excess leads to similar reproductive axis disruptions in men, despite the critical role that androgens play in normal sexual differentiation. Here, the specific impact of maternal androgen excess on the male hypothalamic-pituitary-gonadal axis was investigated using a prenatal androgenization protocol in mice shown to model PCOS-like features in females. Reproductive phenotyping of prenatally androgenised male (PNAM) mice revealed no discernible impact of maternal androgen excess at any level of the reproductive axis. Luteinising hormone pulse characteristics, daily sperm production, plasma testosterone and anti-Müllerian hormone levels were not different in the male offspring of dams administered dihydrotestosterone (DHT) during late gestation compared to controls. Androgen receptor expression was quantified through the hypothalamus and identified as unchanged. Confocal imaging of gonadotropin-releasing hormone (GnRH) neurons revealed that in contrast with prenatally androgenised female mice, PNAM mice exhibited no differences in the density of putative GABAergic innervation compared to controls. These data indicate that a maternal androgen environment capable of inducing reproductive dysfunction in female offspring has no evident impact on the reproductive axis of male littermates in adulthood.
Collapse
Affiliation(s)
- Sarah Holland
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Michael Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
10
|
Han SY, Kane G, Cheong I, Herbison AE. Characterization of GnRH Pulse Generator Activity in Male Mice Using GCaMP Fiber Photometry. Endocrinology 2019; 160:557-567. [PMID: 30649269 DOI: 10.1210/en.2018-01047] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 11/19/2022]
Abstract
Kisspeptin neurons located in the hypothalamic arcuate nucleus are thought to represent the GnRH pulse generator responsible for driving pulsatile LH secretion. The recent development of GCaMP6 fiber photometry technology has made it possible to perform long-term recordings of the population activity of the arcuate nucleus kisspeptin (ARNKISS) neurons in conscious-behaving mice. Using this approach, we show that ARNKISS neurons in intact male mice exhibit episodes of synchronized activity that last ∼2 minutes and have a mean inter-episode interval of 166 minutes, with a very wide range (43 to 347 minutes). Gonadectomy resulted in dramatic changes in the dynamics of ARNKISS neuron behavior with temporally distinct alterations in synchronization episode (SE) amplitude (sevenfold increase), inter-SE frequency (range, 2 to 58 minutes), and duration (up to 28 minutes), including the frequent appearance of seemingly unstable clusters of doublet and triplet SEs. The combination of photometry with repeated blood sampling revealed a perfect correlation between ARNKISS neuron population SEs and LH pulses in intact and short-term gonadectomized (GDX) mice. No differences were detected in SE frequency across 24 hours in either intact or GDX mice. These observations further support a role for ARNKISS neurons as the GnRH pulse generator and show that it operates in a stochastic manner without diurnal variation in both intact and GDX male mice. The removal of gonadal steroids has multiple time-dependent effects upon ARNKISS neuron synchronizations, indicating their critical role in shaping pulse generator behavior.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Grace Kane
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
11
|
Herbison AE. The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology 2018; 159:3723-3736. [PMID: 30272161 DOI: 10.1210/en.2018-00653] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
The pulsatile release of GnRH and LH secretion is essential for fertility in all mammals. Pulses of LH occur approximately every hour in follicular-phase females and every 2 to 3 hours in luteal-phase females and males. Many studies over the last 50 years have sought to identify the nature and mechanism of the "GnRH pulse generator" responsible for pulsatile LH release. This review examines the characteristics of pulsatile hormone release and summarizes investigations that have led to our present understanding of the GnRH pulse generator. There is presently little compelling evidence for an intrinsic mechanism of pulse generation involving interactions between GnRH neuron cell bodies. Rather, data support the presence of an extrinsic pulse generator located within the arcuate nucleus, and attention has focused on the kisspeptin neurons and their projections to GnRH neuron dendrons concentrated around the median eminence. Sufficient evidence has been gathered in rodents to conclude that a subpopulation of arcuate kisspeptin neurons is, indeed, the GnRH pulse generator. Findings in other species are generally compatible with this view and suggest that arcuate/infundibular kisspeptin neurons represent the mammalian GnRH pulse generator. With hindsight, it is likely that past arcuate nucleus multiunit activity recordings have been from kisspeptin neurons. Despite advances in identifying the cells forming the pulse generator, almost nothing is known about their mechanisms of synchronicity and the afferent hormonal and transmitter modulation required to establish the normal patterns of LH pulsatility in mammals.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Teixeira M, Commin L, Gavin-Plagne L, Bruyère P, Buff S, Joly T. Rapid cooling of rabbit embryos in a synthetic medium. Cryobiology 2018; 85:113-119. [PMID: 30048627 DOI: 10.1016/j.cryobiol.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/07/2018] [Accepted: 07/21/2018] [Indexed: 01/12/2023]
Abstract
Embryo cryopreservation media usually contain animal-derived products, such as bovine serum albumin (BSA). These products present two major disadvantages: an undefined variable composition and a risk of pathogen transmission. We aimed to evaluate the effect of replacing BSA in rabbit embryo rapid cooling "freezing" and warming media with a chemically defined medium with no animal-derived products: STEM ALPHA. Cryo3 ("Cryo3"). A total of 1540 rabbit morulae were divided into three cryopreservation groups (group 1: BSA, group 2: 20% Cryo3 and group 3: 100% Cryo3) and a fresh controls group. After rapid cooling, embryos were cultured (in vitro approach), or transferred into synchronized does (in vivo approach). In the in vitro approach, post-warm survival rates obtained with 100% Cryo3 (94.9%) were superior to BSA (90.8%) and 20% Cryo3 (85.6%). The blastocyst formation rate was similar between BSA, 20% Cryo3 and 100% Cryo3 groups (85.1, 77.9 and 83.3%, respectively), as was the expansion/hatching rate (63.1, 63.4 and 58.0%, respectively) and embryo mitochondrial activity. In the in vivo approach, pregnancy (80.0, 68.0 and 95.2%, respectively), implantation (40.5, 45.9 and 44.8%, respectively), and live-foetus rates (35.6, 35.5 and 38.1%, respectively) were similar between the three groups. To conclude, Cryo3 can replace BSA in rabbit embryo rapid cooling "freezing" and warming media.
Collapse
Affiliation(s)
- Magda Teixeira
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France.
| | - Loris Commin
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France
| | - Lucie Gavin-Plagne
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France
| | - Pierre Bruyère
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France
| | - Samuel Buff
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup, Interaction cellule environnement, Marcy l'Etoile, France; Université de Lyon, ISARA-Lyon, Lyon, France
| |
Collapse
|
13
|
An overview of nonhuman primates in aging research. Exp Gerontol 2016; 94:41-45. [PMID: 27956088 DOI: 10.1016/j.exger.2016.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
A graying human population and the rising costs of healthcare have fueled the growing need for a sophisticated translational model of aging. Nonhuman primates (NHPs) experience aging processes similar to humans and, as a result, provide an excellent opportunity to study a closely related species. Rhesus monkeys share >92% homology and are the most commonly studied NHP. However, their substantial size, long lifespan, and the associated expense are prohibitive factors. Marmosets are rapidly becoming the preferred NHP for biomedical testing due to their small size, low zoonotic risk, reproductive efficiency, and relatively low-cost. Both species experience age-related pathology similar to humans, such as cancer, diabetes, arthritis, cardiovascular disease, and neurological decline. As a result, their use in aging research is paving the way to improved human health through a better understanding of the mechanisms of aging.
Collapse
|
14
|
Didier ES, MacLean AG, Mohan M, Didier PJ, Lackner AA, Kuroda MJ. Contributions of Nonhuman Primates to Research on Aging. Vet Pathol 2016; 53:277-90. [PMID: 26869153 PMCID: PMC5027759 DOI: 10.1177/0300985815622974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans.
Collapse
Affiliation(s)
- E S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - A G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - P J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - A A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - M J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
15
|
Abstract
The testis provides not just one but several models of temporal organization. The complexity of its rhythmic function arises in part from its compartmentalization and diversity of cell types: not only does the testis produce gametes, but it also serves as the major source of circulating androgens. Within the seminiferous tubules, the germ cells divide and differentiate while in intimate contact with Sertoli cells. The tubule is highly periodic: a spermatogenic wave travels along its length to determine the timing of the commitment of spermatogonia to differentiate, the phases of meiotic division, and the rate of differentiation of the postmeiotic germ cells. Recent evidence indicates that oscillations of retinoic acid play a major role in determining periodicity of the seminiferous epithelium. In the interstitial space, Leydig cells produce the steroid hormones required both for the completion of spermatogenesis and the development and maintenance of male sexual characteristics throughout the body. This endocrine output also oscillates; although the pulse generator lies outside the gonad, the steroidogenic function of Leydig cells is tuned to a regular episodic input. While the oscillations of the intratubular and interstitial cells have multihour (ultradian) and multiday (infradian) periodicities, respectively, the functions of both compartments also display dramatic seasonal rhythms. Furthermore, circadian rhythms are evident in some of the cell types, although their amplitude and pervasiveness are not as great as in many other tissues of the same organism, and their detection may require methods that recognize the heterogeneity of the testis. This review examines the periodicity of testicular function along multiple time scales.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
|
17
|
Abstract
The prefrontal cortex continues to mature after puberty and into early adulthood, mirroring the time course of maturation of cognitive abilities. However, the way in which prefrontal activity changes during peri- and postpubertal cortical maturation is largely unknown. To address this question, we evaluated the developmental stage of peripubertal rhesus monkeys with a series of morphometric, hormonal, and radiographic measures, and conducted behavioral and neurophysiological tests as the monkeys performed working memory tasks. We compared firing rate and the strength of intrinsic functional connectivity between neurons in peripubertal vs. adult monkeys. Notably, analyses of spike train cross-correlations demonstrated that the average magnitude of functional connections measured between neurons was lower overall in the prefrontal cortex of peripubertal monkeys compared with adults. The difference resulted because negative functional connections (indicative of inhibitory interactions) were stronger and more prevalent in peripubertal compared with adult monkeys, whereas the positive connections showed similar distributions in the two groups. Our results identify changes in the intrinsic connectivity of prefrontal neurons, particularly that mediated by inhibition, as a possible substrate for peri- and postpubertal advances in cognitive capacity.
Collapse
|
18
|
Sitzmann BD, Brown DI, Garyfallou VT, Kohama SG, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2014; 36:183-197. [PMID: 23881606 PMCID: PMC3889886 DOI: 10.1007/s11357-013-9563-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
We previously reported that moderate calorie restriction (CR) has minimal impact on testicular gene expression in young adult rhesus macaques, and no obvious negative impact on semen quality or plasma testosterone levels. We now extend these findings by examining the influence of CR on various aspects of the reproductive axis of older males, including 24-h circulating testosterone levels, testicular gene expression, and testicular morphology. Young adult and old adult male rhesus macaques were subjected to either 30 % CR for 5-7 years, or were fed a standard control diet. Analysis of the 24-h plasma testosterone profiles revealed a significant age-associated decline, but no evidence for CR-induced suppression in either the young or old males. Similarly, expression profiling of key genes associated with testosterone biosynthesis and Leydig cell maintenance showed no significant CR-induced changes in either the young or old animals. The only evidence for CR-associated negative effects on the testis was detected in the old animals at the histological level; when old CR animals were compared with their age-matched controls, there was a modest decrease in seminiferous tubule diameter and epithelium height, with a concomitant increase in the number of depleted germ cell lines. Reassuringly, data from this study and our previous study suggest that moderate CR does not negatively impact 24-h plasma testosterone profiles or testicular gene expression. Although there appear to be some minor CR-induced effects on testicular morphology in old animals, it is unclear if these would significantly compromise fertility.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Donald I. Brown
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Departamento de Biología y Ciencias Ambientales, Facultad Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Vasilios T. Garyfallou
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Julie A. Mattison
- />National Institute on Aging, National Institutes of Health, Translational Gerontology Branch, Baltimore, MD 21224 USA
| | - Donald K. Ingram
- />National Institute on Aging, National Institutes of Health, Translational Gerontology Branch, Baltimore, MD 21224 USA
- />Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808 USA
| | | | - Mary Ann Ottinger
- />Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Henryk F. Urbanski
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- />Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
- />Division of Neuroscience, ONPRC, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| |
Collapse
|
19
|
Sorwell KG, Kohama SG, Urbanski HF. Testosterone increases circulating dehydroepiandrosterone sulfate levels in the male rhesus macaque. Front Endocrinol (Lausanne) 2014; 5:101. [PMID: 25009533 PMCID: PMC4070064 DOI: 10.3389/fendo.2014.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
The adrenal steroid dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are two of the most abundant hormones in the human circulation. Furthermore, they are released in a circadian pattern and show a marked age-associated decline. Adult levels of DHEA and DHEAS are significantly higher in males than in females, but the reason for this sexual dimorphism is unclear. In the present study, we administered supplementary androgens [DHEA, testosterone and 5α-dihydrotestosterone (DHT)] to aged male rhesus macaques (Macaca mulatta). While this paradigm increased circulating DHEAS immediately after DHEA administration, an increase was also observed following either testosterone or DHT administration, resulting in hormonal profiles resembling levels observed in young males in terms of both amplitude and circadian pattern. This stimulatory effect was limited to DHEAS, as an increase in circulating cortisol was not observed. Taken together, these data demonstrate an influence of the hypothalamo-pituitary-testicular axis on adrenal function in males, possibly by sensitizing the zona reticularis to the stimulating action of adrenocorticopic hormone. This represents a plausible mechanism to explain sex differences in circulating DHEA and DHEAS levels, and may have important implications in the development of hormone therapies designed for elderly men and women.
Collapse
Affiliation(s)
- Krystina G. Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, USA
- Department of Physiology and Pharmacology, Oregon Health & Sciences University, Portland, OR, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- *Correspondence: Henryk F. Urbanski, Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA e-mail:
| |
Collapse
|
20
|
Zhou X, Zhu D, Qi XL, Lees CJ, Bennett AJ, Salinas E, Stanford TR, Constantinidis C. Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. J Neurophysiol 2013; 110:2648-60. [PMID: 24047904 PMCID: PMC3882774 DOI: 10.1152/jn.00370.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/11/2013] [Indexed: 11/22/2022] Open
Abstract
The dorsolateral prefrontal cortex matures late into adolescence or early adulthood. This pattern of maturation mirrors working memory abilities, which continue to improve into adulthood. However, the nature of the changes that prefrontal neuronal activity undergoes during this process is poorly understood. We investigated behavioral performance and neural activity in working memory tasks around the time of puberty, a developmental event associated with the release of sex hormones and significant neurological change. The developmental stages of male rhesus monkeys were evaluated with a series of morphometric, hormonal, and radiographic measures. Peripubertal monkeys were trained to perform an oculomotor delayed response task and a variation of this task involving a distractor stimulus. We found that the peripubertal monkeys tended to abort a relatively large fraction of trials, and these were associated with low levels of task-related neuronal activity. However, for completed trials, accuracy in the delayed saccade task was high and the appearance of a distractor stimulus did not impact performance significantly. In correct trials delay period activity was robust and was not eliminated by the presentation of a distracting stimulus, whereas in trials that resulted in errors the sustained cue-related activity was significantly weaker. Our results show that in peripubertal monkeys the prefrontal cortex is capable of generating robust persistent activity in the delay periods of working memory tasks, although in general it may be more prone to stochastic failure than in adults.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sorwell KG, Urbanski HF. Causes and consequences of age-related steroid hormone changes: insights gained from nonhuman primates. J Neuroendocrinol 2013; 25:1062-9. [PMID: 23796387 PMCID: PMC3883982 DOI: 10.1111/jne.12064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 01/23/2023]
Abstract
Similar to humans, rhesus macaques (Macaca mulatta) are large, long-lived diurnal primates, and show similar age-related changes in the secretion of many steroid hormones, including oestradiol, testosterone, cortisol and dehydroepiandrosterone (DHEA). Consequently, they represent a pragmatic animal model in which to examine the mechanisms by which these steroidal changes contribute to perturbed sleep-wake cycles and cognitive decline in the elderly. Using remote serial blood sampling, we have found the circulating levels of DHEA sulphate, as well as oestradiol and testosterone, decline markedly in old monkeys. Furthermore, using the real-time polymerase chain reaction, we have shown that the genes for the enzymes associated with the conversion of DHEA to oestradiol and testosterone (3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and aromatase) are highly expressed in brain areas associated with cognition and behaviour, including the hippocampus, prefrontal cortex and amygdala. Taken together, these findings suggest that the administration of supplementary DHEA in the elderly may have therapeutic potential for cognitive and behavioural disorders, although with fewer negative side effects outside of the central nervous system. To test this, we have developed a novel steroid supplementation paradigm for use in old animals; this involves the oral administration of DHEA and testosterone at physiologically relevant times of the day to mimic the circadian hormone patterns observed in young adults. We are currently evaluating the efficacy of this steroid supplementation paradigm with respect to reversing age-associated disorders, including perturbed sleep-wake cycles and cognitive decline, as well as an impaired immune response.
Collapse
Affiliation(s)
- K G Sorwell
- Departments of Neuroscience and Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
22
|
Irfan S, Ehmcke J, Wahab F, Shahab M, Schlatt S. Intratesticular action of kisspeptin in rhesus monkey (Macaca mulatta). Andrologia 2013; 46:610-7. [PMID: 23758287 DOI: 10.1111/and.12121] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 11/30/2022] Open
Abstract
Kisspeptin-Kiss1R signalling in mammals has been implicated as an integral part of the reproductive cascade. Kisspeptinergic neurons upstream of GnRH neurons are involved in the activation of the hypothalamic GnRH pulse generator during pubertal onset. Thus, the major research focus has been on the central effects of kisspeptin. The demonstration of the presence of KissR expression in human testes suggests additional unknown actions of kisspeptin-KISS1R signalling at the distal component of the male reproductive axis. Here we explored the impact of kisspeptin at the testis in the adult male rhesus monkey. We employed the clamped monkey model to assess the intratesticular actions of kisspeptin. Plasma testosterone and LH levels were monitored in four adult male monkeys. The peripheral administration of human kisspeptin-10 (50 μg, iv bolus) caused a single LH pulse, which was followed by a robust increase in plasma testosterone levels sustained for at least 180 min. This response was abolished when kisspeptin was administered to GnRH receptor antagonist (acyline) pre-treated animals. However, kisspeptin administration significantly (P < 0.005) elevated hCG-stimulated testosterone levels in acyline pre-treated monkeys when compared with saline+ hCG treatment. These results revealed a novel peripheral facet of kisspeptin signalling.
Collapse
Affiliation(s)
- S Irfan
- Institute of Reproductive and Regenerative Biology, Center of Reproductive Medicine and Andrology, University Clinics, Münster, Germany
| | | | | | | | | |
Collapse
|
23
|
Chapin R, Weinbauer G, Thibodeau MS, Sonee M, Saldutti LP, Reagan WJ, Potter D, Moffit JS, Laffan S, Kim JH, Goldstein RA, Erdos Z, Enright BP, Coulson M, Breslin WJ. Summary of the HESI consortium studies exploring circulating inhibin B as a potential biomarker of testis damage in the rat. ACTA ACUST UNITED AC 2013; 98:110-8. [PMID: 23364877 DOI: 10.1002/bdrb.21041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/12/2012] [Indexed: 11/08/2022]
Abstract
The Developmental and Reproductive Toxicity Technical Committee of the Health and Environmental Sciences Institute hosted a working consortium of companies to evaluate a new commercially available analytic assay for Inhibin B in rat serum or plasma. After demonstrating that the kit was stable and robust, the group performed a series of independent pathogenesis studies (23 different compound/investigator combinations) designed to examine the correlation between the appearance of lesions in the testis and changes in circulating levels of Inhibin B. These studies were reported individually in the previous articles in this series (this issue), and are discussed in this paper. For roughly half of these exposures, lesions appeared well before Inhibin B changed. A few of the studies showed a good correlation between seminiferous tubule damage and reduced circulating Inhibin B levels, while for seven exposures, circulating Inhibin B was reduced with no detectable alteration in testis histology. Whether this indicates a prodromal response or a false-positive signal will require further investigation. These exceptions could plausibly suggest some value of circulating Inhibin B as a useful biomarker in some circumstances. However, for roughly half of these exposures, Inhibin B appeared to be a lagging biomarker, requiring significant damage to the seminiferous tubules before a consistent and credible reduction in circulating levels of Inhibin B was observed.
Collapse
Affiliation(s)
- Robert Chapin
- Pfizer Drug Safety Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Erdos Z, Pearson K, Goedken M, Menzel K, Sistare FD, Glaab WE, Saldutti LP. Inhibin B response to testicular toxicants hexachlorophene, ethane dimethane sulfonate, di-(n-butyl)-phthalate, nitrofurazone, DL-ethionine, 17-alpha ethinylestradiol, 2,5-hexanedione, or carbendazim following short-term dosing in male rats. ACTA ACUST UNITED AC 2013; 98:41-53. [PMID: 23348767 DOI: 10.1002/bdrb.21035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND Inhibin B is a heterodimer glycoprotein that downregulates follicle-stimulating hormone and is produced predominantly by Sertoli cells. The potential correlation between changes in plasma Inhibin B and Sertoli cell toxicity was evaluated in male rats administered testicular toxicants in eight studies. Inhibin B fluctuations over 24 hr were also measured. METHODS Adult rats were administered one of eight testicular toxicants for 1 to 29 days. The toxicants were DL-ethionine, dibutyl phthalate, nitrofurazone, 2,5-hexanedione, 17-alpha ethinylestradiol, ethane dimethane sulfonate, hexachlorophene, and carbendazim. In a separate study plasma was collected throughout a 24-hr period via an automatic blood sampler. RESULTS Histomorphologic testicular findings included seminiferous tubule degeneration, round and elongate spermatid degeneration/necrosis, seminiferous tubule vacuolation, aspermatogenesis, and interstitial cell degeneration. There was a varying response of plasma Inhibin B levels to seminiferous tubule toxicity, with three studies showing high correlation, three studies with a response only at a certain time or dose, and two studies with no Inhibin B changes. In a receiver operating characteristics exclusion model analysis, where treated samples without histopathology were excluded, Inhibin B showed a sensitivity of 70% at 90% specificity in studies targeting seminiferous tubule toxicity. CONCLUSION Decreases in Inhibin B correlated with Sertoli cell toxicity in the majority of studies evaluated, demonstrating the value of Inhibin B as a potential biomarker of testicular toxicity. There was no correlation between decreases in Inhibin B and interstitial cell degeneration. In addition, a pattern of Inhibin B secretion could not be identified over 24 hr.
Collapse
Affiliation(s)
- Zoltan Erdos
- Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Magari T, Shibata Y, Arai S, Kashiwagi B, Suzuki K. Influence of castration on bladder blood flow and function during the rapid phase of androgen deprivation. Scand J Urol 2012; 47:236-41. [DOI: 10.3109/00365599.2012.739639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Shutt K, Setchell JM, Heistermann M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen Comp Endocrinol 2012; 179:167-77. [PMID: 22926327 DOI: 10.1016/j.ygcen.2012.08.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
Enzymeimmunoassays (EIAs) allow researchers to monitor stress hormone output via measurement of fecal glucocorticoid metabolites (FGCMs) in many vertebrates. They can be powerful tools which allow the acquisition of otherwise unobtainable physiological information from both captive animals and wild animals in remote forest habitats, such as great apes. However, methods for hormone measurement, extraction and preservation need to be adapted and validated for field settings. In preparation for a field study of Western lowland gorillas (Gorilla gorilla gorilla) in the Central African Republic we used samples from captive gorillas collected around opportunistic stressful situations to test whether four different glucocorticoid EIAs reflected adrenocortical activity reliably and to establish the lag-time from the stressor to peak excretion. We also validated a field extraction technique and established a simple, non-freezer-reliant method to preserve FGCMs in extracts long-term. We determined the rate of FGCM change over 28 days when samples cannot be extracted immediately and over 12h when feces cannot be preserved immediately in alcohol. Finally, we used repeat samples from identified individuals to test for diurnal variation in FGCM output. Two group-specific assays measuring major cortisol metabolites detected the predicted FGCM response to the stressor reliably, whereas more specific cortisol and corticosterone assays were distinctly less responsive and thus less useful. We detected a lag time of 2-3 days from stressor to peak FGCM excretion. Our field extraction method performed as well as an established laboratory extraction method and FGCMs in dried extracts stored at ambient temperatures were as stable as those at -20 °C over 1 yr. Hormones in non-extracted feces in alcohol were stable up to 28 days at ambient temperatures. FGCMs in un-fixed gorilla feces deteriorated to almost 50% of the original values within 6h under field conditions. We detected no diurnal variation in FGCMs in samples from wild gorillas. Our study highlights the importance of thorough biological and immunological validation of FGCM assays, and presents validated, practical methods for the application of non-invasive adrenocortical monitoring techniques to field conservation contexts where it is crucially needed.
Collapse
Affiliation(s)
- Kathryn Shutt
- Department of Anthropology, Durham University, DH1 3LE, Durham, UK.
| | | | | |
Collapse
|
27
|
Urbanski HF, Sorwell KG. Age-related changes in neuroendocrine rhythmic function in the rhesus macaque. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1111-1121. [PMID: 22198672 PMCID: PMC3448984 DOI: 10.1007/s11357-011-9352-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
Many environmental conditions show rhythmic changes across the 24-h day; these include changes in light intensity, ambient temperature, food availability, and presence or absence of predators. Consequently, many organisms have developed corresponding adaptations, which ensure that specific physiological and behavioral events occur at an appropriate time of the day. In mammals, the underlying mechanism responsible for synchronizing internal biochemical processes with circadian environmental cues has been well studied and is thought to comprise three major components: (1) photoreception by the retina and transmission of neural signals along the retinohypothalamic tract, (2) integration of photoperiodic information with an internal reference circadian pacemaker located in the suprachiasmatic nucleus, and (3) dissemination of circadian information to target organs, via the autonomic nervous system and through humoral pathways. Given the importance that neuroendocrine rhythms play in coordinating normal circadian physiology and behavior, it is plausible that their perturbation during aging contributes to the etiology of age-related pathologies. This mini-review highlights some of the most dramatic rhythmic neuroendocrine changes that occur in primates during aging, focusing primarily on data from the male rhesus macaques (Macaca mulatta). In addition to the age-associated attenuation of hormone levels and reduction of humoral circadian signaling, there are also significant age-related changes in intracrine processing enzymes and hormone receptors which may further affect the functional efficacy of these hormones. Rhesus macaques, like humans, are large diurnal primates and show many of the same physiological and behavioral circadian changes during aging. Consequently, they represent an ideal translational animal model in which to study the causes and consequences of age-associated internal circadian disruption and in which to evaluate novel therapies.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
28
|
Sorwell KG, Garten J, Renner L, Weiss A, Garyfallou VT, Kohama SG, Neuringer M, Urbanski HF. Hormone supplementation during aging: how much and when? Rejuvenation Res 2012; 15:128-31. [PMID: 22533414 DOI: 10.1089/rej.2011.1251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circulating levels of dehydroepiandrosterone, a major adrenal steroid, show a marked age-related decrease in both humans and nonhuman primates. Because this decrease has been implicated in age-related cognitive decline, we administered supplementary dehydroepiandrosterone to perimenopausal rhesus macaques (Macaca mulatta) to test for cognitive benefits. Although recognition memory improved, there was no benefit to spatial working memory. To address the limitations of this study we developed a hormone supplementation regimen in aged male macaques that more accurately replicates the 24-hr androgen profiles of young animals. We hypothesize that this more comprehensive physiological hormone replacement paradigm will enhance cognitive function in the elderly.
Collapse
Affiliation(s)
- K G Sorwell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Roberts D, Killiany R, Rosene D. Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J Comp Neurol 2012; 520:1181-97. [PMID: 21935936 PMCID: PMC4278435 DOI: 10.1002/cne.22761] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Normal aging is accompanied by changes in hypothalamic functions including autonomic and endocrine functions and circadian rhythms. The rhesus monkey provides an excellent model of normal aging without the potential confounds of incipient Alzheimer's disease inherent in human populations. This study examined the hypothalamus of 51 rhesus monkeys (23 male, 18 female, 6.5-31 years old) using design-based stereology to obtain unbiased estimates of neuron and glia numbers and the Cavalieri method to estimate volumes for eight reference spaces: total unilateral hypothalamus, suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular nucleus (PVN), dorsomedial nucleus (DM), ventromedial nucleus (VM), medial mammillary nucleus (MMN), and lateral hypothalamic area (LHA). The results demonstrated no age-related difference in neuron number, glia number, or volume in any area in either sex except the PVN of male monkeys, which showed a significant increase in both neuron and glia numbers with age. Comparison of males and females for sexual dimorphisms revealed no significant differences in neuron number. However, males had more glia overall as well as in the SCN, DM, and LHA and had a larger hypothalamic volume overall and in the SCN, SON, VM, DM, and MMN. These results demonstrate that hypothalamic neuron loss cannot account for age-related deficits in hypothalamic function and provides further evidence of the absence of neurodegeneration and cell death in the normal aging rhesus monkey.
Collapse
Affiliation(s)
- D.E. Roberts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
| | - R.J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
| | - D.L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
30
|
Dihydrotestosterone differentially modulates the cortisol response of the hypothalamic-pituitary-adrenal axis in male and female rhesus macaques, and restores circadian secretion of cortisol in females. Brain Res 2011; 1429:43-51. [PMID: 22088823 DOI: 10.1016/j.brainres.2011.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/11/2022]
Abstract
Here we used a within-subject design to evaluate hypothalamic-pituitary-adrenal (HPA) activity following replacement of low and high physiological levels of testosterone (T) to adult, gonadally-suppressed, male rhesus macaques, and replacement with sex-specific low and high physiological doses of dihydrotestosterone (DHT) in the same adult males as well as in adult, gonadally-suppressed, female rhesus macaques. As indexes of HPA axis activation following T and DHT replacement, serum levels of cortisol (CORT) were measured before and following dexamethasone (DEX) inhibition, and corticotrophin-releasing factor (CRF) induced activation. Female monkeys were assessed for differences in response associated with dominant (DOM) and subordinate (SUB) social status. Data show that the high physiological dose of DHT significantly decreased basal CORT in both male and female monkeys irrespective of social status, but reduced CRF-stimulated CORT only in males. SUB female monkeys showed a trend towards increased CRF-stimulated CORT release under high-dose DHT replacement compared to DOM females or males given the same treatment, indicating that androgens likely have no influence on reducing HPA activation under chronic psychosocial stress in females. The normal circadian rhythm of CORT release was absent in placebo-replaced SUB and DOM females and was restored with low-dose DHT replacement. These results indicate that DHT significantly reduces CRF-stimulated CORT release only in male monkeys, and plays a role in maintaining circadian changes in CORT release in female monkeys.
Collapse
|
31
|
Pubertal delay in male nonhuman primates (Macaca mulatta) treated with methylphenidate. Proc Natl Acad Sci U S A 2011; 108:16301-6. [PMID: 21930929 DOI: 10.1073/pnas.1102187108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Juvenile male rhesus monkeys treated with methylphenidate hydrochloride (MPH) to evaluate genetic and behavioral toxicity were observed after 14 mo of treatment to have delayed pubertal progression with impaired testicular descent and reduced testicular volume. Further evaluation of animals dosed orally twice a day with (i) 0.5 mL/kg of vehicle (n = 10), (ii) 0.15 mg/kg of MPH increased to 2.5 mg/kg (low dose, n = 10), or (iii) 1.5 mg/kg of MPH increased to 12.5 mg/kg (high dose, n = 10) for a total of 40 mo revealed that testicular volume was significantly reduced (P < 0.05) at months 15 to 19 and month 27. Testicular descent was significantly delayed (P < 0.05) in the high-dose group. Significantly lower serum testosterone levels were detected in both the low- (P = 0.0017) and high-dose (P = 0.0011) animals through month 33 of treatment. Although serum inhibin B levels were increased overall in low-dose animals (P = 0.0328), differences between groups disappeared by the end of the study. Our findings indicate that MPH administration, beginning before puberty, and which produced clinically relevant blood levels of the drug, impaired pubertal testicular development until ∼5 y of age. It was not possible to resolve whether MPH delayed the initiation of the onset of puberty or reduced the early tempo of the developmental process. Regardless, deficits in testicular volume and hormone secretion disappeared over the 40-mo observation period, suggesting that the impact of MPH on puberty is not permanent.
Collapse
|
32
|
Bryan N, Andrews KD, Loughran MJ, Rhodes NP, Hunt JA. Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro. Biosci Rep 2011; 31:199-210. [PMID: 20840080 DOI: 10.1042/bsr20100064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
One of the major obstacles to obtaining human cells of a defined and reproducible standard suitable for use as medical therapies is the necessity for FCS (fetal calf serum) media augmentation in routine cell culture applications. FCS has become the supplement of choice for cell culture research, as it contains an array of proteins, growth factors and essential ions necessary for cellular viability and proliferation in vitro. It is, however, a potential route for the introduction of zoonotic pathogens and makes defining the cell culture milieu impossible in terms of reproducibility, as the precise composition of each batch of serum not only changes but is in fact extremely variable. The present study determined the magnitude of donor variations in terms of elemental composition of FCS and the effect these variations had on the expression of a group of proteins associated with the antigenicity of primary human umbilical-vein endothelial cells, using a combination of ICPMS (inductively coupled plasma MS) and flow cytometry. Statistically significant differences were demonstrated for a set of trace elements in FCS, with correlations made to variations in antigenic expression during culture. The findings question in detail the suitability of FCS for the in vitro supplementation of cultures of primary human cells due to the lack of reproducibility and modulations in protein expression when cultured in conjunction with sera from xenogeneic donors.
Collapse
Affiliation(s)
- Nicholas Bryan
- Department of Clinical Engineering, UK Centre for Tissue Engineering, UKBioTEC, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | |
Collapse
|
33
|
Urbanski HF. Role of circadian neuroendocrine rhythms in the control of behavior and physiology. Neuroendocrinology 2011; 93:211-22. [PMID: 21508622 PMCID: PMC3128131 DOI: 10.1159/000327399] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/13/2011] [Indexed: 12/27/2022]
Abstract
Hormones play a major role in regulating behavior and physiology, and their efficacy is often dependent on the temporal pattern in which they are secreted. Significant insights into the mechanisms underlying rhythmic hormone secretion have been gained from transgenic rodent models, suggesting that many of the body's rhythmic functions are regulated by a coordinated network of central and peripheral circadian pacemakers. Some neuroendocrine rhythms are driven by transcriptional-posttranslational feedback circuits comprising 'core clock genes', while others represent a cyclic cascade of neuroendocrine events. This review focuses on recent data from the rhesus macaque, a non-human primate model with high clinical translation potential. With primary emphasis on adrenal and gonadal steroids, it illustrates the rhythmic nature of hormone secretion, and discusses the impact that fluctuating hormone levels have on the accuracy of clinical diagnoses and on the design of effective hormone replacement therapies in the elderly. In addition, this minireview raises awareness of the rhythmic expression patterns shown by many genes, and discusses how this could impact interpretation of data obtained from gene profiling studies, especially from nocturnal rodents.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oreg., USA.
| |
Collapse
|
34
|
Sitzmann BD, Leone EH, Mattison JA, Ingram DK, Roth GS, Urbanski HF, Zelinski MB, Ottinger MA. Effects of moderate calorie restriction on testosterone production and semen characteristics in young rhesus macaques (Macaca mulatta). Biol Reprod 2010; 83:635-40. [PMID: 20610809 DOI: 10.1095/biolreprod.110.084186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have previously reported a modest influence of moderate calorie restriction (CR) on testicular gene expression in young adult rhesus macaques (Macaca mulatta); however, it is unclear if these modifications correspond to subsequent changes in testicular function or sperm physiology. This study extends our earlier findings to examine potential physiological differences due to this differential gene expression. Animals were subjected to 30% CR (CR, n = 5) or were fed a standard control diet (CON, n = 5) starting during their peripubertal period. Circulating testosterone (T) levels were measured across a 24-h period after 7 yr of dietary treatment and were found to be similar in CR and CON males; however, maintenance of daily minimum T levels was significantly higher in the CR animals. Semen collection was performed on the same cohort of animals three times per male (CR, n = 4; CON, n = 4) after 8 yr of treatment, and samples were assessed by a variety of measures. Parameters, including semen quality and sperm cell viability and function, showed less variability in semen samples taken from CR males, but overall testicular function and sperm quality were comparable regardless of diet. There is mounting evidence that CR may promote health and longevity in a wide range of organisms, including nonhuman primates. Importantly, our data suggest that moderate CR has no obvious lasting detrimental effect on testicular function and sperm parameters in young adult primates and may in fact help maintain higher levels of circulating T.
Collapse
Affiliation(s)
- Brandon D Sitzmann
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ultradian rhythmicity and induced changes in salivary testosterone. Eur J Appl Physiol 2010; 110:405-13. [DOI: 10.1007/s00421-010-1518-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
|
36
|
Bribiescas RG, Hill KR. Circadian variation in salivary testosterone across age classes in Ache Amerindian males of Paraguay. Am J Hum Biol 2010; 22:216-20. [PMID: 19957265 DOI: 10.1002/ajhb.21012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Testosterone levels exhibit a circadian rhythm in healthy men, with morning levels tending to be higher compared to evening titers. However, circadian rhythms wane with age. Although this has been described in males living within industrialized settings, age-related changes have not received similar attention in populations outside these contexts. Because many nonindustrialized populations, such as Ache Amerindians of Paraguay, exhibit testosterone levels that are lower than what is commonly reported in the clinical literature and lack age-associated variation in testosterone, it was hypothesized that Ache men would not show age-related variation in testosterone circadian rhythms. Diurnal rhythmicity in testosterone within and between Ache men in association with age (n = 52; age range, 18-64) was therefore examined. A significant negative association was evident between the ratio of morning and evening salivary testosterone and age (r = -0.28, P = 0.04). Men in their third decade of life exhibited significant diurnal variation (P = 0.0003), whereas older and younger age classes did not. Men between the ages of 30 and 39 also exhibited a higher AM:PM testosterone ratio compared to 40-49 and 50< year old men (P = 0.002, 0.006). Overall, declines in testosterone with aging may not be universal among human males, however, within-individual analyses of diurnal variation capture age-related contrasts in daily testosterone fluctuations. Circadian rhythmicity differs with age among the Ache and may be a common aspect of reproductive senescence among men regardless of ecological context.
Collapse
Affiliation(s)
- Richard G Bribiescas
- Reproductive Ecology Laboratory, Department of Anthropology, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
37
|
Lacreuse A, Chiavetta MR, Shirai AAC, Meyer JS, Grow DR. Effects of testosterone on cognition in young adult male rhesus monkeys. Physiol Behav 2009; 98:524-31. [DOI: 10.1016/j.physbeh.2009.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|