1
|
Corrêa MSL, Silva EN, Dos Santos TCF, Simielli Fonseca LF, Magalhães AFB, Verardo LL, de Albuquerque LG, Silva DBDS. A network-based approach to understanding gene-biological processes affecting economically important traits of Nelore cattle. Anim Genet 2024; 55:55-65. [PMID: 38112158 DOI: 10.1111/age.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
This study aimed to build gene-biological process networks with differentially expressed genes associated with economically important traits of Nelore cattle from 17 previous studies. The genes were clustered into three groups by evaluated traits: group 1, production traits; group 2, carcass traits; and group 3, meat quality traits. For each group, a gene-biological process network analysis was performed with the differentially expressed genes in common. For production traits, 37 genes were found in common, of which 13 genes were enriched for six Gene Ontology (GO) terms; these terms were not functionally grouped. However, the enriched GO terms were related to homeostasis, the development of muscles and the immune system. For carcass traits, four genes were found in common. Thus, it was not possible to functionally group these genes into a network. For meat quality traits, the analysis revealed 222 genes in common. CSRP3 was the only gene differentially expressed in all three groups. Non-redundant biological terms for clusters of genes were functionally grouped networks, reflecting the cross-talk between all biological processes and genes involved. Many biological processes and pathways related to muscles, the immune system and lipid metabolism were enriched, such as striated muscle cell development and triglyceride metabolic processes. This study provides insights into the genetic mechanisms of production, carcass and meat quality traits of Nelore cattle. This information is fundamental for a better understanding of the complex traits and could help in planning strategies for the production and selection systems of Nelore cattle.
Collapse
Affiliation(s)
| | - Evandro Neves Silva
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Thaís Cristina Ferreira Dos Santos
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- National Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Ana Fabrícia Braga Magalhães
- Department of Animal Science, Federal University of Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Lucas Lima Verardo
- Department of Animal Science, Federal University of Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Danielly Beraldo Dos Santos Silva
- Professor Edson Antônio Velano University (UNIFENAS), Alfenas, Minas Gerais, Brazil
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
2
|
Lounas A, Breton Y, Lebrun A, Laflamme I, Vernoux N, Savage J, Tremblay MÈ, Pelletier M, Germain M, Richard FJ. The follicle-stimulating hormone triggers rapid changes in mitochondrial structure and function in porcine cumulus cells. Sci Rep 2024; 14:436. [PMID: 38172520 PMCID: PMC10764925 DOI: 10.1038/s41598-023-50586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Oocyte maturation is a key process during which the female germ cell undergoes resumption of meiosis and completes its preparation for embryonic development including cytoplasmic and epigenetic maturation. The cumulus cells directly surrounding the oocyte are involved in this process by transferring essential metabolites, such as pyruvate, to the oocyte. This process is controlled by cyclic adenosine monophosphate (cAMP)-dependent mechanisms recruited downstream of follicle-stimulating hormone (FSH) signaling in cumulus cells. As mitochondria have a critical but poorly understood contribution to this process, we defined the effects of FSH and high cAMP concentrations on mitochondrial dynamics and function in porcine cumulus cells. During in vitro maturation (IVM) of cumulus-oocyte complexes (COCs), we observed an FSH-dependent mitochondrial elongation shortly after stimulation that led to mitochondrial fragmentation 24 h later. Importantly, mitochondrial elongation was accompanied by decreased mitochondrial activity and a switch to glycolysis. During a pre-IVM culture step increasing intracellular cAMP, mitochondrial fragmentation was prevented. Altogether, the results demonstrate that FSH triggers rapid changes in mitochondrial structure and function in COCs involving cAMP.
Collapse
Affiliation(s)
- Amel Lounas
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yann Breton
- Centre de recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, G1V4G2, Canada
| | - Ariane Lebrun
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Laflamme
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Julie Savage
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Martin Pelletier
- Centre de recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, G1V4G2, Canada
| | - Marc Germain
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Campolo F, Capponi C, Tarsitano MG, Tenuta M, Pozza C, Gianfrilli D, Magliocca F, Venneri MA, Vicini E, Lenzi A, Isidori AM, Barbagallo F. cAMP-specific phosphodiesterase 8A and 8B isoforms are differentially expressed in human testis and Leydig cell tumor. Front Endocrinol (Lausanne) 2022; 13:1010924. [PMID: 36277728 PMCID: PMC9585345 DOI: 10.3389/fendo.2022.1010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) signaling pathway is the master regulator of endocrine tissue function. The level, compartmentalization and amplitude of cAMP response are finely regulated by phosphodiesterases (PDEs). PDE8 is responsible of cAMP hydrolysis and its expression has been characterized in all steroidogenic cell types in rodents including adrenal and Leydig cells in rodents however scarce data are currently available in humans. Here we demonstrate that human Leydig cells express both PDE8A and PDE8B isoforms. Interestingly, we found that the expression of PDE8B but not of PDE8A is increased in transformed Leydig cells (Leydig cell tumors-LCTs) compared to non-tumoral cells. Immunofluorescence analyses further reveals that PDE8A is also highly expressed in specific spermatogenic stages. While the protein is not detected in spermatogonia it accumulates nearby the forming acrosome, in the trans-Golgi apparatus of spermatocytes and spermatids and it follows the fate of this organelle in the later stages translocating to the caudal part of the cell. Taken together our findings suggest that 1) a specific pool(s) of cAMP is/are regulated by PDE8A during spermiogenesis pointing out a possible new role of this PDE8 isoform in key events governing the differentiation and maturation of human sperm and 2) PDE8B can be involved in Leydig cell transformation.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Capponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Magliocca
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mary A. Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Vicini
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Faculty of Medicine and Surgery, Kore University of Enna, Enna, Italy
- *Correspondence: Federica Barbagallo,
| |
Collapse
|
4
|
Richani D, Gilchrist RB. Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence. Biol Reprod 2021; 106:243-252. [PMID: 34534265 DOI: 10.1093/biolre/ioab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, School of Women's & Children's Health, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Women's & Children's Health, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Singina GN, Shedova EN, Lopukhov AV, Mityashova OS, Lebedeva IY. Delaying Effects of Prolactin and Growth Hormone on Aging Processes in Bovine Oocytes Matured In Vitro. Pharmaceuticals (Basel) 2021; 14:684. [PMID: 34358110 PMCID: PMC8308928 DOI: 10.3390/ph14070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aging processes accelerate dramatically in oocytes that have reached the metaphase-II (M-II) stage. The present work aimed to study the patterns and intracellular pathways of actions of prolactin (PRL) and growth hormone (GH) on age-associated changes in bovine M-II oocytes aging in vitro. To this end, we analyzed spontaneous parthenogenetic activation (cytogenetic assay), apoptosis (TUNEL assay), and the developmental capacity (IVF/IVC) of in vitro-matured oocytes after prolonged culturing. Both PRL and GH reduced the activation rate of aging cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs), and their respective hormone receptors were revealed in the ova. The inhibitor of Src-family tyrosine kinases PP2 eliminated the effects of PRL and GH on meiotic arrest in DOs, whereas the MEK inhibitor U0126 only abolished the PRL effect. Furthermore, PRL was able to maintain the apoptosis resistance and developmental competence of aging CEOs. The protein kinase C inhibitor calphostin C suppressed both the actions of PRL. Thus, PRL and GH can directly support meiotic arrest in aging M-II oocytes by activating MAP kinases and/or Src-family kinases. The effect of PRL in maintaining the developmental capacity of aging oocytes is cumulus-dependent and related to the pro-survival action of the protein kinase C-mediated signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Irina Y. Lebedeva
- Department of Animal Biotechnology and Molecular Diagnostics, L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (G.N.S.); (E.N.S.); (A.V.L.); (O.S.M.)
| |
Collapse
|
6
|
Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira Leme L, Kussano NR, Zangeronimo MG, Dode MAN. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS One 2021; 16:e0247518. [PMID: 33667248 PMCID: PMC7935280 DOI: 10.1371/journal.pone.0247518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.
Collapse
Affiliation(s)
| | - Mauricio Machaim Franco
- Federal University Uberlândia, Animal Science, Uberlândia, Minas Gerais, Brazil
- Institute of Genetics and Biochemistry of Federal, University of Uberlandia, Uberlândia, Minas Gerais, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Margot Alves Nunes Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- University of Brasilia, Animal Science, Brasilia, Distrito Federal, Brazil
- University of Brasilia, Institute of Biology, Brasilia, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
7
|
Jia Z, Wang X. Effects of C-type natriuretic peptide on meiotic arrest and developmental competence of bovine oocyte derived from small and medium follicles. Sci Rep 2020; 10:18213. [PMID: 33106527 PMCID: PMC7589481 DOI: 10.1038/s41598-020-75354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to evaluate the effects of C-type natriuretic peptide (CNP) on meiotic arrest and developmental competence of bovine oocyte derived from follicles of different sizes. Collected immature cumulus-oocyte complexes from small follicles (< 3 mm) and medium follicles (3–8 mm) were cultured for 6 h in basal medium supplementated without or with 200 nM CNP. We observed that CNP effectively sustained meiotic arrest at germinal vesicle stage in in vitro cultured bovine oocytes from follicles of different sizes. Moreover, CNP treatment significantly improved the levels of cGMP in both cumulus cells and oocytes, as well as the levels of cAMP in oocytes regardless of follicle size. Based on the above results, we tested the effect of a novel in vitro maturation (IVM) system based on CNP-pretreatment, including a pre-IVM phase for 6 h using 200 nM CNP, followed by a extended IVM phase for 28 h, on developmental competence of bovine oocyte derived from small follicles (< 3 mm) and medium follicles (3–8 mm) compared to standard IVM system. The results showed that athough the novel IVM system based on CNP-pretreatment enhanced the developmental potencial of oocytes obtained from large follicles, but had no effect on the developmental comptence of oocytes obtained from small follicles.
Collapse
Affiliation(s)
- Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China.
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China
| |
Collapse
|
8
|
Gupta A, Pandey AN, Sharma A, Tiwari M, Yadav PK, Yadav AK, Pandey AK, Shrivastav TG, Chaube SK. Cyclic nucleotide phosphodiesterase inhibitors: possible therapeutic drugs for female fertility regulation. Eur J Pharmacol 2020; 883:173293. [PMID: 32663542 DOI: 10.1016/j.ejphar.2020.173293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes responsible for the hydrolysis of cyclic adenosine 3', 5' monophosphate (cAMP) and cyclic guanosine 3', 5' monophosphate (cGMP) levels in wide variety of cell types. These PDEs are detected in encircling granulosa cells or in oocyte with in follicular microenvironment and responsible for the decrease of cAMP and cGMP levels in mammalian oocytes. A transient decrease of cAMP level initiates downstream pathways to cause spontaneous meiotic resumption from diplotene arrest and induces oocyte maturation. The nonspecific PDE inhibitors (caffeine, pentoxifylline, theophylline, IBMX etc.) as well as specific PDE inhibitors (cilostamide, milrinone, org 9935, cilostazol etc.) have been used to elevate cAMP level and inhibit meiotic resumption from diplotene arrest and oocyte maturation, ovulation, fertilization and pregnancy rates both in vivo as well as under in vitro culture conditions. The PDEs inhibitors are used as powerful experimental tools to demonstrate cyclic nucleotide mediated changes in ovarian functions and thereby fertility. Indeed, non-hormonal nature and reversible effects of nonspecific as well as specific PDE inhibitors hold promise for the development of novel therapeutic drugs for female fertility regulation.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, 110067, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
9
|
Dubeibe DF, Caldas-Bussiere MC, Maciel VL, Sampaio W, Gonçalves PBD, De Cesaro MP, Quirino CR, Faes MR, Paes de Carvalho CS. Partial inhibition of nitric oxide synthase activity stimulates the nuclear maturation progression of bovine cumulus-oocyte complex in vitro in the presence of hemisections of the follicular walls. ZYGOTE 2020; 28:1-9. [PMID: 32408924 DOI: 10.1017/s0967199420000234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aimed to assess the effects of the inhibition of nitric oxide synthase (NOS) on events that modulate bovine in vitro oocyte maturation. Cumulus-oocyte complexes (COCs) were cultured with hemisections (HSs) of the follicular walls in a maturation medium supplemented with different concentrations (0.1-10.0 mM) of Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME). Controls consisted of COCs cultured in the presence (+HSs) or absence of HSs (-HSs) with no additional l-NAME supplementation. The following parameters were assessed: oocyte nuclear maturation stage; cumulus cell (CC) membrane integrity; nitrate/nitrite, progesterone, and estradiol concentrations in the culture medium at 22 h of cultivation; and the concentrations of cGMP and cAMP in COCs during the first hour of maturation. The addition of 1.0 mM l-NAME increased the percentage of oocytes that reached metaphase II (MII) and the percentage of intact CCs (P < 0.05). All l-NAME concentrations reduced the nitrate/nitrite concentrations (P < 0.05), but none affected steroid concentrations compared with control +HSs (P > 0.05). The addition of 1.0 mM l-NAME reduced cGMP concentrations at 3 h and increased cAMP concentrations in the first hour of culture (P < 0.05). Our findings suggest that the NOS/NO/cGMP pathway participates in meiosis progression (MI to MII) of the bovine oocytes matured in vitro in the presence of hemisections of the follicular walls. Lastly, the mechanisms that lead to the progression of meiosis after NOS inhibition do not involve changes in steroid production.
Collapse
Affiliation(s)
- Diego Fernando Dubeibe
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Valter Luiz Maciel
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Wlaisa Sampaio
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Paulo B D Gonçalves
- Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil
| | - Matheus P De Cesaro
- Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul-RS, Cep 97105-900, Brazil
| | - Celia Raquel Quirino
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Márcia R Faes
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| | - Carla S Paes de Carvalho
- Laboratório de Reprodução e Melhoramento Genético Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro - RJ, Cep 28013-602, Brazil
| |
Collapse
|
10
|
Gupta A, Chaube SK. Cilostamide and rolipram prevent spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. Eur J Pharmacol 2020; 878:173115. [PMID: 32302597 DOI: 10.1016/j.ejphar.2020.173115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
The involvement of specific phosphodiesterases (PDEs) in the modulation of cAMP and thereby spontaneous meiotic resumption remains poorly understood. This work aims to evaluate the effects of cilostamide and rolipram (PDE 3A and PDE 4D inhibitors) on spontaneous meiotic resumption from diplotene arrest in rat oocytes cultured in vitro. For this purpose, diplotene-arrested cumulus oocyte complexes (COCs) were collected from rat ovary. The COCs and denuded oocytes were exposed to various concentrations of cilostamide (0.0, 2.5, 5.0 and 10 μM) and rolipram (0, 10, 50 and 100 μM) for various times (0, 3, 5, 7, 14, 16, 18, 20, 22 and 24 h). Cilostamide inhibited spontaneous meiotic resumption in a concentration- and time-dependent manner in COCs and denuded oocytes. Although rolipram showed inhibition of spontaneous meiotic resumption up to some extent, cilostamide was more potent to prevent spontaneous meiotic resumption in both COCs and denuded oocytes. Cilostamide significantly reduced PDE 3A expression, increased cAMP level and prevented spontaneous meiotic resumption in COCs and denuded oocytes. Although rolipram inhibited PDE 4D expression in cumulus cells, increased cAMP level but was not sufficient to prevent spontaneous meiotic resumption. We conclude that both drugs prevent spontaneous resumption from diplotene-arrest through PDE 3A/PDE 4D-cAMP mediated pathway. However, as compare to rolipram, cilostamide was more potent in preventing spontaneous resumption from diplotene-arrest in rat oocytes cultured in vitro. Thus, cilostamide could be used as a potential candidate for the development of female contraceptive drug in future.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
11
|
Lounas A, Vernoux N, Germain M, Tremblay ME, Richard FJ. Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells. Sci Rep 2019; 9:12493. [PMID: 31462694 PMCID: PMC6713761 DOI: 10.1038/s41598-019-48886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.
Collapse
Affiliation(s)
- Amel Lounas
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - Marc Germain
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
12
|
Soto-Heras S, Menéndez-Blanco I, Catalá MG, Izquierdo D, Thompson JG, Paramio MT. Biphasic in vitro maturation with C-type natriuretic peptide enhances the developmental competence of juvenile-goat oocytes. PLoS One 2019; 14:e0221663. [PMID: 31442286 PMCID: PMC6707569 DOI: 10.1371/journal.pone.0221663] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
In vitro embryo production success in juvenile animals is compromised due to their intrinsic lower oocyte quality. Conventional in vitro maturation (IVM) impairs oocyte competence by inducing spontaneous meiotic resumption. A series of experiments were performed to determine if maintaining meiotic arrest during a pre-maturation culture phase (pre-IVM) prior to conventional IVM improves oocyte competence of juvenile-goat (2 months old) cumulus-oocyte complexes (COCs). In experiment 1, COCs were cultured with C-type natriuretic peptide (CNP; 0, 50, 100, 200 nM) for 6 and 8 h. Nuclear stage was assessed, revealing no differences in the incidence of germinal vesicle (GV) breakdown. In experiment 2, the same CNP concentrations were assessed plus 10 nM estradiol, the known upstream agonist activating expression of NPR2, the exclusive receptor of CNP. CNP (200 nM) plus estradiol increased the rate of oocytes at GV stage at 6 h compared to control group (74.7% vs 28.3%; P<0.05) with predominantly condensed chromatin configuration. In experiment 3, relative mRNA quantification revealed NPR2 expression was down-regulated after pre-IVM (6 h). In experiment 4, analysis of transzonal projections indicated that pre-IVM maintained cumulus-oocyte communication after oocyte recovery. For experiments 5 and 6, biphasic IVM (6 h pre-IVM with CNP and estradiol, plus 24 h IVM) and control IVM (24 h) were compared. Biphasic IVM increased intra-oocyte glutathione and decreased ROS, up-regulated DNA-methyltransferase 1 and pentraxin 3 expression and led to an increase in rate of blastocyst development compared to control group (30.2% vs 17.2%; P<0.05). In conclusion, a biphasic IVM, including a pre-IVM with CNP, maintains oocyte meiotic arrest for 6 h and enhances the embryo developmental competence of oocytes from juvenile goats.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Menéndez-Blanco
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria-Gracia Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jeremy G. Thompson
- Robinson Research Institute, School of Paedriatics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Davies Research Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
13
|
Soto-Heras S, Paramio MT, Thompson JG. Effect of pre-maturation with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte developmental competence in cattle. Anim Reprod Sci 2019; 202:49-57. [PMID: 30772104 DOI: 10.1016/j.anireprosci.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
In vitro embryo production depends on oocyte competence, which is acquired during folliculogenesis, involving cytoplasmic and nuclear processes. In vitro maturation (IVM) induces spontaneous resumption of meiosis, preventing full competence acquisition. The incorporation of a pre-IVM phase with supplementation with C-type natriuretic peptide (CNP) and 3-Isobutyl-1-methylxanthine (IBMX) was used with the aim of improving developmental competence of cattle oocytes. In a preliminary experiment, COCs were cultured with increasing CNP concentrations and nuclear stage assessment was performed. Supplementation with both 100 and 200 nM CNP resulted in more germinal vesicle (GV) arrest at 6 h of culture than those in the control group (79.3%, 76.4% and 59.2%, respectively). In a second experiment, use of 100 nM CNP plus 500 μM IBMX resulted in retention of more oocytes in the GV stage (92.0%) at 6 h of culture compared to supplementation with either CNP or IBMX alone (74.8% and 86.7%, respectively). A subsequent assessment of the effect of the pre-IVM system (6-h of culture with CNP plus IBMX), followed by 20-h of IVM, with comparison to the control at 24-h of IVM was performed. Blastocyst development rate was greater after the pre-IVM phase (45.1% compared with 34.5%). The inclusion of the pre-IVM phase also resulted in an enhanced mitochondrial activity in matured oocytes and sustained integrity of transzonal projections for longer after IVM. In conclusion, CNP and IBMX function synergistically to arrest meiosis in cattle oocytes during a pre-IVM phase, which improves cumulus-oocyte communication and embryo development.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Jeremy G Thompson
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
14
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Ramos Leal G, Santos Monteiro CA, Souza-Fabjan JMG, de Paula Vasconcelos CO, Garcia Nogueira LA, Reis Ferreira AM, Varella Serapião R. Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim Reprod Sci 2018; 199:1-14. [PMID: 30449707 DOI: 10.1016/j.anireprosci.2018.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important molecule in signal transduction within the cell, functioning as a second cell messenger of gonadotrophin stimulation. The concentration of cAMP in cumulus-oocyte complexes (COCs) is known to be controlled through modulation of its synthesis by adenylyl cyclase (AC) and by degradation through the cyclic nucleotide phosphodiesterase (PDE) enzymes. One of the main obstacles for in vitro embryo production is the optimization of reproduction processes that occur in oocyte maturation. The function of cAMP is important in maintaining meiotic arrest in mammalian oocytes. When the oocyte is physically removed from the antral follicle for in vitro maturation (IVM), intra-oocyte cAMP concentrations decrease and spontaneous meiotic resumption begins, due to the depletion of inhibitory factors from the follicle. In many studies, relatively greater cAMP concentrations before IVM has been reported to improve oocyte competence, leading to subsequent benefits in embryonic development in different species. There, therefore, has been an increase in oocyte cAMP concentrations with several treatments and different approaches, such as invasive AC, stimulators of AC activity, PDE inhibitors, and cAMP analogs. The aim of this review is to comprehensively evaluate and provide data related to (i) the use of cAMP modulators during IVM and the effects on completion of meiosis and cytoplasmic reorganization, which are required for development of oocytes with the capacity to contribute to fertilization and subsequent embryonic development; and (ii) the main cAMP modulators and the effects when used in oocyte IVM.
Collapse
Affiliation(s)
- Gabriela Ramos Leal
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Clara Ana Santos Monteiro
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Joanna Maria Gonçalves Souza-Fabjan
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Carlos Otávio de Paula Vasconcelos
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Ana Maria Reis Ferreira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Raquel Varella Serapião
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO) - Avenida São Boa Ventura, 770, 24120-19, Fonseca, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Moussa M, Li MQ, Zheng HY, Yang CY, Yan SF, Yu NQ, Huang JX, Shang JH. Developmental competence of buffalo (Bubalus bubalis) denuded oocytes cocultured with cumulus cells: Protective role of cumulus cells. Theriogenology 2018; 120:40-46. [DOI: 10.1016/j.theriogenology.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 11/26/2022]
|
17
|
Bergeron A, Guillemette C, Sirard MA, Richard FJ. Active 3'-5' cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of mural granulosa cells. Reprod Fertil Dev 2018; 29:778-790. [PMID: 26724956 DOI: 10.1071/rd15243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/26/2015] [Indexed: 01/21/2023] Open
Abstract
Lipids rafts are specialised membrane microdomains involved in cell signalling that can be isolated as detergent-resistant membranes (DRMs). The second messenger cyclic AMP (cAMP) has a central role in cell signalling in the ovary and its degradation is carried out by the phosphodiesterase (PDE) enzyme family. We hypothesised that PDEs could be functionally present in the lipid rafts of porcine mural granulosa cell membranes. PDE6C, PDE8A and PDE11A were detected by dot blot in the DRMs and the Triton-soluble fraction of the mural granulosa cells membrane and the cytosol. As shown by immunocytochemistry, PDEs showed clear immunostaining in mural granulosa cell membranes and the cytosol. Interestingly, cAMP-PDE activity was 18 times higher in the DRMs than in the Triton-soluble fraction of cell membranes and was 7.7 times higher in the cytosol than in the DRMs. cAMP-PDE activity in mural granulosa cells was mainly contributed by the PDE8 and PDE11 families. This study shows that PDEs from the PDE8 and PDE11 families are present in mural granulosa cells and that the cAMP-PDE activity is mainly contributed by the cytosol. In the cell membrane, the cAMP-PDE activity is mainly contributed by the DRMs. In addition, receptors for prostaglandin E2 and LH, two G-protein-coupled receptors, are present in lipid rafts and absent from the non-raft fraction of the granulosa cell membrane. These results suggest that in these cells, the lipid rafts exist as a cell-signalling platform and PDEs are one of the key enzyme families present in the raft.
Collapse
Affiliation(s)
- Annick Bergeron
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - Christine Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - François J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
18
|
Inhibition of PDE3A sustains meiotic arrest and gap junction of bovine growing oocytes in in vitro growth culture. Theriogenology 2018; 118:110-118. [PMID: 29886357 DOI: 10.1016/j.theriogenology.2018.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
Abstract
Bovine growing oocytes with a diameter of 105-115 μm from early antral follicles (1.2-1.8 mm) are able to resume meiosis, but lack the competence to mature to metaphase II. To confer full maturation competence onto the oocytes, culture systems which can support their growth and prevent their meiotic resumption during culture are needed. In this study, we cultured growing oocytes for 5 days to examine the effects of different phosphodiesterase (PDE) inhibitors on meiotic arrest and acquisition of full maturation competence of growing oocytes, and their gap junctional communication with cumulus cells. Growing oocyte-cumulus complexes (OCCs) were cultured with 3-isobutyl-1-methylxanthine (IBMX; broad-spectrum PDE inhibitor), rolipram (PDE4D inhibitor), cilostamide and milrinone (PDE3A inhibitors). The mean diameters of oocytes increased similarly in all groups. IBMX, cilostamide and milrinone induced antrum formation by OCCs and maintained meiotic arrest of oocytes during culture, whereas rolipram neither promoted antrum formation nor maintained oocyte meiotic arrest. Gap junctional communication between oocytes and cumulus cells was maintained by IBMX and cilostamide, but not by rolipram as judged by the transfer of injected lucifer yellow dye from oocytes to cumulus cells. In subsequent in vitro maturation, oocytes grown with IBMX, cilostamide and milrinone showed full maturation competence. These results suggest that PDE3A inhibition maintains the meiotic arrest of bovine growing oocytes and sustains their gap junctional communication with cumulus cells for 5 days, thereby contributing to their acquisition of full maturation competence.
Collapse
|
19
|
Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation. Endocrinology 2018; 159:2142-2152. [PMID: 29608743 PMCID: PMC5913618 DOI: 10.1210/en.2018-00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.
Collapse
Affiliation(s)
- Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| |
Collapse
|
20
|
Yang F, Wang M, Zhang B, Xiang W, Zhang K, Chu M, Wang P. Identification of new progestogen-associated networks in mammalian ovulation using bioinformatics. BMC SYSTEMS BIOLOGY 2018; 12:36. [PMID: 29615037 PMCID: PMC5883354 DOI: 10.1186/s12918-018-0577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Background Progesterone plays an essential role in mammalian ovulation. Although much is known about this process, the gene networks involved in ovulation have yet to be established. When analyze the mechanisms of ovulation, we often need to determine key genes or pathways to investigate the reproduction features. However, traditional experimental methods have a number of limitations. Results Data, in this study, were acquired from GSE41836 and GSE54584 which provided different samples. They were analyzed with the GEO2R and 546 differentially expressed genes were obtained from two data sets using bioinformatics (absolute log2 FC > 1, P < 0.05). This study identified four genes (PGR, RELN, PDE10A and PLA2G4A) by protein-protein interaction networks and pathway analysis, and their functional enrichments were associated with ovulation. Then, the top 25 statistical pathway enrichments related to hCG treatment were analyzed. Furthermore, gene network analysis identified certain interconnected genes and pathways involved in progestogenic mechanisms, including progesterone-mediated oocyte maturation, the MAPK signaling pathway, the GnRH signaling pathway and focal adhesion, etc. Moreover, we explored the four target gene pathways. q-PCR analysis following hCG and RU486 treatments confirmed the certain novel progestogenic-associated genes (GNAI1, PRKCA, CAV1, EGFR, RHOA, ZYX, VCL, GRB2 and RAP1A). Conclusions The results suggested four key genes, nine predicted genes and eight pathways to be involved in progestogenic networks. These networks provide important regulatory genes and signaling pathways which are involved in ovulation. This study provides a fundamental basis for subsequent functional studies to investigate the regulation of mammalian ovulation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0577-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Yang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Medical Molecular Biology Research Center, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meng Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Baoyun Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wei Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ke Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mingxin Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
21
|
Delaying meiotic resumption during transportation of bovine cumulus–oocyte complexes: effects on development, apoptosis and caspases activity of in vitro-produced embryos. ZYGOTE 2017; 25:740-750. [DOI: 10.1017/s0967199417000636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThis study examined the effects of meiosis inhibition during bovine oocyte transportation on developmental competence and quality of produced embryos. The transportation medium was supplemented with: 100 μM butyrolactone I (BL), 500 μM IBMX + 100 μM forskolin (mSPOM), 100 μM milrinone (MR) or follicular fluid (bFF), and was carried out in a portable incubator for 6 h. Next, oocytes were in vitro matured (IVM) for 18 h, without the meiotic inhibitors, with the exception of mSPOM group, in which was added 20 μM cilostamide. The three control groups were IVM with 10% fetal calf serum (FCS) (Control Lab FCS) or 0.6% bovine serum albumin (BSA) (Control Lab BSA) in a CO2 in air incubator or in the portable incubator with 0.6% BSA (Control Transp BSA). Higher cleavage rates (P < 0.05) were obtained in the Control Lab FCS group (84.5 ± 5.3%) compared with the other groups (59.6 ± 3.4% to 70.9 ± 2.3%). Embryonic development was higher (P < 0.05) in the Control Lab FCS group (39.8 ± 4.7%) than in the Control Transp BSA (22.7 ± 3.4%) and MR (21.6 ± 2.3%) groups. However, they were similar (P > 0.05) to the other groups (23.6 ± 3.3% to 28.8 ± 2.7%). The total number of blastomeres was higher (P < 0.05) in the Control Lab FCS group (85.2 ± 5.6) than in Control Lab BSA (53.6 ± 2.9), Control Transp BSA (55.5 ± 4.4), BL (58.2 ± 3.0), mSPOM (57.9 ± 4.9) and MR (59.2 ± 3.9), but all these treatments did not differ (P > 0.05) from bFF (67.7 ± 4.2). No differences (P > 0.05) were found in apoptosis by the activity of caspases (139.0 ± 3.2 to 152.4 ± 6.5, expressed in fluorescence intensity) as well as the percentage of TUNEL-positive cells (12.3 ± 2.0% to 15.7 ± 1.7%). In conclusion, the transportation of oocytes over 6 h with BL, mSPOM or bFF enabled the acquisition of developmental competence at similar rates to the Control Lab FCS group.
Collapse
|
22
|
Diógenes MN, Guimarães ALS, Leme LO, Maurício MF, Dode MAN. Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes. Theriogenology 2017; 102:190-198. [DOI: 10.1016/j.theriogenology.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 01/10/2023]
|
23
|
Colombe S, Houllier L, Fleurot E, Levallet G, Benhaïm A, Bonnamy PJ, Levallet J. Syndecan 1 represses cell growth and FSH responsiveness in human granulosa cells. Reproduction 2017; 153:797-808. [DOI: 10.1530/rep-17-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022]
Abstract
Albeit devoid of intrinsic catalytic activity, the transmembrane heparan sulphate proteoglycan syndecan 1 plays critical roles in cellular processes such as extracellular matrix crosstalk, cytoskeletal organization, cell spreading, proliferation and differentiation. During the ovarian cycle, the expression of syndecan 1 in granulosa cells shows cyclic variation suggesting that it might fulfil specific roles in follicle development. To investigate its physiological roles on granulosa cells, syndecan 1 was overexpressed in human granulosa cell line KGN which retains features of granulosa cells from small antral follicle such as estradiol (E2) synthesis and low expression of functional FSH receptor (FSHR). We demonstrated that overexpression of syndecan 1 in immature granulosa cells (KGN-SDC1) induces a profound alteration in their intrinsic characteristics including enhanced spreading and attachment, both associated with a reduced growth rate. Flow cytometry analysis revealed that syndecan 1 overexpression increases the percentage of KGN cells in quiescent phase. This partial cell cycle exit is concordant with downregulated levels of CCND1 and CDK4 and upregulated expression of CDK inhibitor CDKN1A. In parallel both unstimulated and FSH-induced E2 synthesis are reduced in KGN-SDC1 through both repression of CYP19A1 and FSHR mRNA associated with decreased levels of potential regulators NR5A1 and ESR2. Additionally, we provide evidence that transient cAMP accumulation reduction in cells overexpressing syndecan 1 is accompanied by an increase in cAMP-hydrolysing PDE activity. Our results demonstrated that syndecan 1 might regulate differentiation of granulosa cells and follicular development by means of various mechanisms involving morphological changes, control of signalling pathways and alterations in gene expressions.
Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/797/suppl/DC2
Collapse
|
24
|
Reversible meiotic arrest of bovine oocytes by EGFR inhibition and follicular hemisections. Theriogenology 2017; 99:53-62. [PMID: 28708500 DOI: 10.1016/j.theriogenology.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/08/2017] [Accepted: 05/20/2017] [Indexed: 11/21/2022]
Abstract
The objective of this study was to investigate the effects of inhibiting the epidermal growth factor receptor (EGFR) pathway on meiosis blockage and resumption, mRNA expression of genes involved in oocyte maturation and cumulus expansion, and embryo development. Bovine cumulus-oocyte complexes (COCs) were cultured for 15 h in the presence of the EGFR inhibitor (AG1478) and follicular hemisections (FHS). Most of the oocytes (89.3%) remained at the germinal vesicle (GV) stage when cultured in the presence of FHS and 5 μM AG1478. The inhibitory effect was reversible as most oocytes (83.8%) completed meiosis after additional 20 h maturation. Embryo development to the blastocyst stage was similar (P > 0.05) between FHS and 5 μM AG1478 treated (39.3%) and control (41.1%) groups. In cumulus cells, mRNA abundance of early growth response protein 1 (EGR1), tumor necrosis factor alpha-induced protein 6 (TNFAIP6) and hyaluronan synthase 2 (HAS2) genes, and phosphorylated extracellular regulated kinase (p-ERK1/2) protein were lower in COCs treated with AG1478 plus FHS compared with FHS alone (P < 0.05). In granulosa cells of FHS, AG1478 treatment reduced transcript levels of PGR and ADAMTS1 (P < 0.05). The inhibitory effect of AG1478 on meiotic progression was not reverted by treatment with angiotensin II (ANG II) or prostaglandins (PGF2α or PGE2). This study demonstrates that inhibition of EGFR in the presence of FHS is a reliable approach to promote reversible arrest of bovine oocytes at the GV stage.
Collapse
|
25
|
Zhang H, Na W, Zhang HL, Wang N, Du ZQ, Wang SZ, Wang ZP, Zhang Z, Li H. TCF21 is related to testis growth and development in broiler chickens. Genet Sel Evol 2017; 49:25. [PMID: 28235410 PMCID: PMC5326497 DOI: 10.1186/s12711-017-0299-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background Large amounts of fat deposition often lead to loss of reproductive efficiency in humans and animals. We used broiler chickens as a model species to conduct a two-directional selection for and against abdominal fat over 19 generations, which resulted in a lean and a fat line. Direct selection for abdominal fat content also indirectly resulted in significant differences (P < 0.05) in testis weight (TeW) and in TeW as a percentage of total body weight (TeP) between the lean and fat lines. Results A total of 475 individuals from the generation 11 (G11) were genotyped. Genome-wide association studies revealed two regions on chicken chromosomes 3 and 10 that were associated with TeW and TeP. Forty G16 individuals (20 from each line), were further profiled by focusing on these two chromosomal regions, to identify candidate genes with functions that may be potentially related to testis growth and development. Of the nine candidate genes identified with database mining, a significant association was confirmed for one gene, TCF21, based on mRNA expression analysis. Gene expression analysis of the TCF21 gene was conducted again across 30 G19 individuals (15 individuals from each line) and the results confirmed the findings on the G16 animals. Conclusions This study revealed that the TCF21 gene is related to testis growth and development in male broilers. This finding will be useful to guide future studies to understand the genetic mechanisms that underlie reproductive efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Li Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shou-Zhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Peng Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiwu Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Botigelli RC, Razza EM, Pioltine EM, Nogueira MFG. New approaches regarding the in vitro maturation of oocytes: manipulating cyclic nucleotides and their partners in crime. JBRA Assist Reprod 2017; 21:35-44. [PMID: 28333031 PMCID: PMC5365199 DOI: 10.5935/1518-0557.20170010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several discoveries have been described recently (5-10 years) about the biology of ovarian follicles (oocyte, cumulus cells and granulosa cells), including new aspects of cellular communication, the control of oocyte maturation and the acquisition of oocyte competence for fertilization and further embryo development. These advances are nourishing assisted reproduction techniques (ART) with new possibilities, in which novel culture systems are being developed and tested to improve embryo yield and quality. This mini-review aims to describe how the recent knowledge on the physiological aspects of mammalian oocyte is reflecting as original or revisited approaches into the context of embryo production. These new insights include recent findings on the mechanisms that control oocyte maturation, especially modulating intraoocyte levels of cyclic nucleotides during in vitro maturation using endogenous or exogenous agents. In this mini-review we also discuss the positive and negative effects of these manipulations on the outcoming embryo.
Collapse
Affiliation(s)
- Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Eduardo Montanari Razza
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Elisa Mariano Pioltine
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil.,Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State, Assis, São Paulo, Brazil
| |
Collapse
|
27
|
Bergeron A, Hébert A, Guillemette C, Laroche A, Poulin MP, Aragon JP, Leclerc P, Sullivan R, Blondin P, Vigneault C, Richard FJ. Papaverine-sensitive phosphodiesterase activity is measured in bovine spermatozoa. Andrology 2016; 5:169-179. [DOI: 10.1111/andr.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 01/21/2023]
Affiliation(s)
- A. Bergeron
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - A. Hébert
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - C. Guillemette
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - A. Laroche
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - M.-P. Poulin
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - J. P. Aragon
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| | - P. Leclerc
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département Obstétrique, Gynécologie et Reproduction; Faculté de Médecine; Université Laval; Québec QC Canada
| | - R. Sullivan
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département Obstétrique, Gynécologie et Reproduction; Faculté de Médecine; Université Laval; Québec QC Canada
| | | | | | - F. J. Richard
- Centre de Recherche en Reproduction; Développement et Santé Intergénérationnelle; Université Laval; Québec QC Canada
- Département des Sciences Animales; Faculté des Sciences de L'agriculture et de L'alimentation; Université Laval; Québec QC Canada
| |
Collapse
|
28
|
Maréchal L, Guillemette C, Goupil S, Blondin P, Leclerc P, Richard FJ. Cyclic nucleotide phosphodiesterases in human spermatozoa and seminal fluid: Presence of an active PDE10A in human spermatozoa. Biochim Biophys Acta Gen Subj 2016; 1861:147-156. [PMID: 27836756 DOI: 10.1016/j.bbagen.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) plays a crucial role as a signaling molecule for sperm functions such as capacitation, motility and acrosome reaction. It is well known that cAMP degradation by phosphodiesterase (PDE) enzyme has a major impact on sperm functions. The present study was undertaken to characterize cAMP-PDE activity in human semen. METHODS cAMP-PDE activity was measured in human sperm and seminal plasma using family specific PDE inhibitors. Three sperm fractionation methods were applied to assess cAMP-PDE activity in spermatozoa. Western blots were used to validate the presence of specific family in sperm and seminal plasma. RESULTS Using three sperm fractionation methods, we demonstrated that in human sperm, the major cAMP-PDE activity is papaverine-sensitive and thus ascribed to PDE10. In seminal plasma, total cAMP-PDE activity was 1.14±0.39fmol of cAMP hydrolyzed per minute per μg of protein. Using specific inhibitors, we showed that the major cAMP-PDE activity found in human seminal plasma is ascribed to PDE4 and PDE11. Western blot analysis, immunoprecipitation with a specific monoclonal antibody, and mass spectrometry confirmed the presence of PDE10 in human spermatozoa. CONCLUSION This study provides the first demonstration of the presence of functional PDE10 in human spermatozoa and functional PDE4 and PDE11 in human seminal plasma. GENERAL SIGNIFICANCE Since the contribution of cyclic nucleotides in several sperm functions is well known, the finding that PDE10 is an active enzyme in human spermatozoa is novel and may lead to new insight into fertility.
Collapse
Affiliation(s)
- Loïze Maréchal
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - Christine Guillemette
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec G1V 0A6, Québec, Canada
| | - Serge Goupil
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - Patrick Blondin
- L'Alliance Boviteq Inc, 19320 Grand rang St-François, Saint-Hyacinthe, Québec J2T 5H1, Canada
| | - Pierre Leclerc
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département d'obstétrique, gynécologie et reproduction, Centre de recherche du CHU de Québec-Université Laval, 2705 Boul. Laurier, Québec G1V 4G2, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec G1V 0A6, Québec, Canada.
| |
Collapse
|
29
|
Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer. ZYGOTE 2016; 25:32-40. [PMID: 27780485 DOI: 10.1017/s0967199416000289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to evaluate the effect of meiotic arrest using phosphodiesterase type 3A (PDE 3A) inhibitors, cilostamide and C-type natriuretic peptide (NPPC), on pre-maturation (PM) of oocytes to be used in the production of cloned embryos. Nuclear maturation, in vitro embryo production (IVP), somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA), and total cells number of cloned embryos were evaluated. The results were analysed by chi-squared and Kruskal-Wallis test with a P-value 0.05) between control and PM, both for cleavage (78.2% and 76.9%) and blastocyst (35.5% and 29.3%) rates. After SCNT, cleavage rate was also similar (P > 0.05) between control and PM (66% and 51.9%) however, blastocyst rate was lower (P < 0.05) in the PM group than in the control group (7.4% and 30.2%). After 6 h of PM with 100 nM of NPPC, approximately 84.9% of the oocytes remained at GV. No difference was found between control and PM in cleavage (69.2% and 76.1%) and blastocyst rates (37,4% and 35%) after IVP. Similarly, no differences between PM and control groups were observed for cleavage (69.2% and 68.4%) and blastocyst (24.4% and 21.5%) rates. SCNT and PA embryos from control or PM oocytes had similar total cell number. It can be concluded that PM for 6 h with 100 nM NPPC is feasible for cloned embryo production without affecting embryo outcome.
Collapse
|
30
|
Gupta A, Tiwari M, Prasad S, Chaube SK. Role of Cyclic Nucleotide Phosphodiesterases During Meiotic Resumption From Diplotene Arrest in Mammalian Oocytes. J Cell Biochem 2016; 118:446-452. [PMID: 27662514 DOI: 10.1002/jcb.25748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes that hydrolyze cyclic nucleotides in wide variety of cell types including encircling granulosa cells as well as associated oocytes. One group of PDEs are located in encircling granulosa cells and another group get expressed in the oocyte, while few other PDEs are expressed in both compartments. The PDE1A, PDE4D, PDE5A, PDE8A, and PDE8B are granulosa cell specific PDEs that hydrolyze adenosine 3',5'-cyclic monophosphate (cAMP) as well as guanosine 3',5'-cyclic monophosphate (cGMP) with different affinities. PDE3A, PDE8A as well as PDE9A are expressed in oocyte and specifically responsible for the cyclic nucleotide hydrolysis in the oocyte itself. Few other PDEs such as PDE7B, PDE10A, and PDE11A are either detected in granulosa cells or oocytes. Activation of these PDEs either in encircling granulosa cells or in oocyte directly or indirectly reduces intraoocyte cAMP level. Reduction of intraoocyte cAMP level modulates phosphorylation status of cyclin-dependent kinase 1 (Cdk1) and triggers cyclin B1 degradation that destabilizes maturation promoting factor (MPF) and/or increases Cdk1 activity. The destabilized MPF and/or increased Cdk1 activity leads to resumption of meiosis, which initiates the achievement of meiotic competency in preovulatory follicles of several mammalian species. Use of specific PDEs inhibitors block cyclic nucleotides hydrolysis that results in increase of intraoocyte cyclic nucleotides level, which leads to maintenance of meiotic arrest at diplotene stage in vivo as well as in vitro. Thus, cyclic nucleotide PDEs play important role in the achievement of meiotic competency by reducing intraoocyte cyclic nucleotides level in mammalian oocytes. J. Cell. Biochem. 118: 446-452, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
31
|
Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 2016; 152:R143-57. [PMID: 27422885 DOI: 10.1530/rep-15-0606] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.
Collapse
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - A M Luciano
- Reproductive and Developmental Biology LaboratoryDepartment of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - D Richani
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - H T Zeng
- Center for Reproductive MedicineSixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia Department of Obstetrics and GynaecologySt George Public Hospital, Sydney, Australia
| | - M De Vos
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sugimura
- Institute of AgricultureDepartment of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - J Smitz
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - F J Richard
- Centre de Recherche en Biologie de la ReproductionDépartement des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - J G Thompson
- School of MedicineRobinson Research Institute and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Dau AMP, da Silva EP, da Rosa PRA, Bastiani FT, Gutierrez K, Ilha GF, Comim FV, Gonçalves PBD. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro. Peptides 2016; 81:1-8. [PMID: 27060674 DOI: 10.1016/j.peptides.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023]
Abstract
The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (P<0.05). To determine the involvement of angiotensin II in prorenin-induced meiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (P<0.05). Only the oocytes' cyclic adenosine monophosphate levels seemed to be regulated by prorenin and/or forskolin treatment after incubation for 6h. To the best of our knowledge, this is the first study to identify the (pro)renin receptor in ovarian cells and to demonstrate the independent role of prorenin in the resumption of oocyte meiosis in cattle.
Collapse
Affiliation(s)
- Andressa Minussi Pereira Dau
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Eduardo Pradebon da Silva
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Paulo Roberto Antunes da Rosa
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Felipe Tusi Bastiani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Gustavo Freitas Ilha
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil
| | - Fabio Vasconcellos Comim
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil; Department of Medical Clinic, Faculty of Medicine, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Federal University of Santa Maria, Roraima Avenue 1000, 97105-900, Veterinary Hospital, Santa Maria, RS, Brazil.
| |
Collapse
|
33
|
Parker Gaddis KL, Null DJ, Cole JB. Explorations in genome-wide association studies and network analyses with dairy cattle fertility traits. J Dairy Sci 2016; 99:6420-6435. [PMID: 27209127 DOI: 10.3168/jds.2015-10444] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
The objective of this study was to identify single nucleotide polymorphisms and gene networks associated with 3 fertility traits in dairy cattle-daughter pregnancy rate, heifer conception rate, and cow conception rate-using different approaches. Deregressed predicted transmitting abilities were available for approximately 24,000 Holstein bulls and 36,000 Holstein cows sampled from the National Dairy Database with high-density genotypes. Of those, 1,732 bulls and 375 cows had been genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA). The remaining animals were genotyped with various chips of lower density that were imputed to high density. Univariate and trivariate genome-wide association studies (GWAS) with both medium- (60,671 markers) and high-density (312,614 markers) panels were performed for daughter pregnancy rate, heifer conception rate, and cow conception rate using GEMMA (version 0.94; http://www.xzlab.org/software.html). Analyses were conducted using bulls only, cows only, and a sample of both bulls and cows. The partial correlation and information theory algorithm was used to develop gene interaction networks. The most significant markers were further investigated to identify putatively associated genes. Little overlap in associated genes could be found between GWAS using different reference populations of bulls only, cows only, and combined bulls and cows. The partial correlation and information theory algorithm was able to identify several genes that were not identified by ordinary GWAS. The results obtained herein will aid in further dissecting the complex biology underlying fertility traits in dairy cattle, while also providing insight into the nuances of GWAS.
Collapse
Affiliation(s)
- K L Parker Gaddis
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| | - D J Null
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - J B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| |
Collapse
|
34
|
Campen KA, Clark ZL, Olds MA, McNatty KP, Pitman JL. The in-vitro effects of cAMP and cGMP modulators on inter-cellular dye transfer and gene expression levels in rat cumulus cell--oocyte complexes. Mol Cell Endocrinol 2016; 420:46-56. [PMID: 26628038 DOI: 10.1016/j.mce.2015.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/16/2022]
Abstract
Supplementation of in-vitro maturation medium with reagents that inhibit meiotic resumption whilst supporting normal function of cumulus cell-oocyte complexes (COC) is challenging. This study compared the in-vitro effects of synthetic and physiologically-relevant reagents on meiotic resumption, gap junction activity and gene expression of rat COC. Higher doses of forskolin reduced gap junction activity. Whilst addition of phosphodiesterase inhibitors initially promoted gap junction activity, this decreased with time in-vitro. Moreover despite oocytes remaining in meiotic arrest, there was a concomitant decline in expression of genes critical for oocyte maturation, and evidence of a reduction in overall transcription rate. Similarly, supplementing media with C-type natriuretic peptide and/or oestradiol delayed meiotic resumption and only initially maintained gap junction activity. In contrast, several key genes were stimulated and overall transcription rates remained constant with time in-vitro. In summary, supplementation of media with physiologically-relevant reagents may better enable normal functions of the COC.
Collapse
Affiliation(s)
- Kelly A Campen
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Zaramasina L Clark
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Melanie A Olds
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
35
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
36
|
Khan DR, Guillemette C, Sirard MA, Richard FJ. Transcriptomic analysis of cyclic AMP response in bovine cumulus cells. Physiol Genomics 2015; 47:432-42. [PMID: 26082143 DOI: 10.1152/physiolgenomics.00043.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022] Open
Abstract
Acquisition of oocyte developmental competence needs to be understood to improve clinical outcomes of assisted reproduction. The stimulation of cumulus cell concentration of cyclic adenosine 3'5'-monophosphate (cAMP) by pharmacological agents during in vitro maturation (IVM) participates in improvement of oocyte quality. However, precise coordination and downstream targets of cAMP signaling in cumulus cells are largely unknown. We have previously demonstrated better embryo development after cAMP stimulation for first 6 h during IVM. Using this model, we investigated cAMP signaling in cumulus cells through in vitro culture of cumulus-oocyte complexes (COCs) in the presence of cAMP raising agents: forskolin, IBMX, and dipyridamole (here called FID treatment). Transcriptomic analysis of cumulus cells indicated that FID-induced differentially expressed transcripts were implicated in cumulus expansion, steroidogenesis, cell metabolism, and oocyte competence. Functional genomic analysis revealed that protein kinase-A (PKA), extracellular signal regulated kinases (ERK1/2), and calcium (Ca(2+)) pathways as key regulators of FID signaling. Inhibition of PKA (H89) in FID-supplemented COCs or substitution of FID with calcium ionophore (A23187) demonstrated that FID activated primarily the PKA pathway which inhibited ERK1/2 phosphorylation and was upstream of calcium signaling. Furthermore, inhibition of ERK1/2 phosphorylation by FID supported a regulation by dual specific phosphatase (DUSP1) via PKA. Our findings imply that cAMP (FID) regulates cell metabolism, steroidogenesis, intracellular signaling and cumulus expansion through PKA which modulates these functions through optimization of ERK1/2 phosphorylation and coordination of calcium signaling. These findings have implications for development of new strategies for improving oocyte in vitro maturation leading to better developmental competence.
Collapse
Affiliation(s)
- D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - C Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - M A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| |
Collapse
|
37
|
De Cesaro MP, Macedo MP, Santos JT, Rosa PRA, Ludke CA, Rissi VB, Gasperin BG, Gonçalves PBD. Natriuretic peptides stimulate oocyte meiotic resumption in bovine. Anim Reprod Sci 2015; 159:52-9. [PMID: 26051611 DOI: 10.1016/j.anireprosci.2015.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to evaluate the expression of mRNA encoding natriuretic peptides (NPs) and their receptors in the cumulus-oocyte complex in cattle, a monovular mammalian species, and also to investigate the role of NPs in oocyte meiotic resumption in vitro. mRNA was observed for the NP precursor type-A (NPPA), type-C (NPPC), NP receptor-1 (NPR-1), receptor-2 (NPR-2) and receptor-3 (NPR-3) in bovine cumulus cells, and NPR-2 mRNA was observed in oocytes. These results are different from those obtained in mouse and pig models. The effects of NPPA, NP precursor type-B (NPPB) and NPPC on the resumption of arrested meiosis maintained by forskolin were studied at three different doses (10, 100 and 1000nM) with a 12h culture system. The germinal vesicle breakdown rates were greater (P≤0.05) in oocytes that were cultured in the presence of one or a combination of NPs (from 44% to 73%) than the negative control (from 24% to 27%). Additionally, it was demonstrated that the concentration of cyclic guanosine 3',5'-monophosphate (cGMP) is increased by NPPA and NPPC in oocytes and cumulus cells after 3h of in vitro maturation. However, in both groups, the concentration of cyclic adenosine 3',5'-monophosphate (cAMP) in the oocyte did not increase between 3 and 6h of culture, even when forskolin was used. In summary, we observed the presence of mRNA for NPs and their receptors in the bovine cumulus-oocyte complex and demonstrated that, in vitro, NPPA, NPPB and NPPC stimulate oocyte meiotic resumption in a monovular species.
Collapse
Affiliation(s)
- Matheus P De Cesaro
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Mariana P Macedo
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Joabel T Santos
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Paulo R A Rosa
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles A Ludke
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo G Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Paulo B D Gonçalves
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
38
|
The effect of pre-maturation culture using phosphodiesterase type 3 inhibitor and insulin, transferrin and selenium on nuclear and cytoplasmic maturation of bovine oocytes. ZYGOTE 2015; 24:219-29. [PMID: 25925275 DOI: 10.1017/s0967199415000064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aims to evaluate if a pre-maturation culture (PMC) using cilostamide as a meiotic inhibitor in combination with insulin, transferrin and selenium (ITS) for 8 or 24 h increases in vitro embryo production. To evaluate the effects of PMC on embryo development, cleavage rate, blastocyst rate, embryo size and total cell number were determined. When cilostamide (20 μM) was used in PMC for 8 or 24 h, 98% of oocytes were maintained in germinal vesicles. Although the majority of oocytes resumed meiosis after meiotic arrest, the cleavage and blastocyst rates were lower than the control (P 0.05) to the control. The deleterious effect of 20 μM cilostamide treatment for 24 h on a PMC was confirmed by lower cumulus cell viability, determined by trypan blue staining, in that group compared with the other groups. A lower concentration (10 μM) and shorter exposure time (8 h) minimized that effect but did not improve embryo production. More studies should be performed to determine the best concentration and the arresting period to increase oocyte competence and embryo development.
Collapse
|
39
|
Petersen TS, Stahlhut M, Andersen CY. Phosphodiesterases in the rat ovary: effect of cAMP in primordial follicles. Reproduction 2015; 150:11-20. [PMID: 25861799 DOI: 10.1530/rep-14-0436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 04/09/2015] [Indexed: 01/26/2023]
Abstract
Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal rat ovaries was also evaluated. We found varied expression of all eight families in the ovary with Pde7b and Pde8a having the highest expression each accounting for more than 20% of the total PDE mRNA. PDE4 accounted for 15-26% of the total PDE activity. Immunoreactive PDE11A was found in the oocytes and PDE2A in the corpora lutea. Incubating neonatal rat ovaries with PDE4 inhibitors did not increase primordial follicle activation or change the expression of the developing follicle markers Gdf9, Amh, Inha, the proliferation marker Mki67 or the primordial follicle marker Tmeff2. In addition, the cAMP analogue 8-bromo-cAMP did not increase AKT1 or FOXO3A phosphorylation associated with follicle activation or increase the expression of Kitlg known to be associated with follicle differentiation but did increase the Tmeff2, Mki67 and Inha expression in a dose-dependent manner. In conclusion, this study shows that both Pde7b and Pde8a are highly expressed in the rodent ovary and that PDE4 inhibition does not cause an increase in primordial follicle activation.
Collapse
Affiliation(s)
- Tonny Studsgaard Petersen
- Laboratory of Reproductive BiologyThe Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Copenhagen University, Department 5712, Blegdamsvej 9, Copenhagen 2100, DenmarkLEO PharmaBallerup 2750, Denmark Laboratory of Reproductive BiologyThe Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Copenhagen University, Department 5712, Blegdamsvej 9, Copenhagen 2100, DenmarkLEO PharmaBallerup 2750, Denmark
| | - Martin Stahlhut
- Laboratory of Reproductive BiologyThe Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Copenhagen University, Department 5712, Blegdamsvej 9, Copenhagen 2100, DenmarkLEO PharmaBallerup 2750, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive BiologyThe Juliane Marie Centre for Women, Children, and Reproduction, Copenhagen University Hospital, Copenhagen University, Department 5712, Blegdamsvej 9, Copenhagen 2100, DenmarkLEO PharmaBallerup 2750, Denmark
| |
Collapse
|
40
|
Petersen TS, Kristensen SG, Jeppesen JV, Grøndahl ML, Wissing ML, Macklon KT, Andersen CY. Distribution and function of 3',5'-Cyclic-AMP phosphodiesterases in the human ovary. Mol Cell Endocrinol 2015; 403:10-20. [PMID: 25578602 DOI: 10.1016/j.mce.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 12/29/2022]
Abstract
The concentration of the important second messenger cAMP is regulated by phosphodiesterases (PDEs) and hence an attractive drug target. However, limited human data are available about the PDEs in the ovary. The aim of the present study was to describe and characterise the PDEs in the human ovary. Results were obtained by analysis of mRNA microarray data from follicles and granulosa cells (GCs), combined RT-PCR and enzymatic activity analysis in GCs, immunohistochemical analysis of ovarian sections and by studying the effect of PDE inhibitors on progesterone production from cultured GCs. We found that PDE3, PDE4, PDE7 and PDE8 are the major families present while PDE11A was not detected. PDE8B was differentially expressed during folliculogenesis. In cultured GCs, inhibition of PDE7 and PDE8 increased basal progesterone secretion while PDE4 inhibition increased forskolin-stimulated progesterone secretion. In conclusion, we identified PDE3, PDE4, PDE7 and PDE8 as the major PDEs in the human ovary.
Collapse
Affiliation(s)
- T S Petersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark; Medical Department, LEO Pharma, Ballerup 2750, Denmark.
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - J V Jeppesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Herlev Hospital, Copenhagen University Hospital, Copenhagen University, Herlev 2730, Denmark
| | - M L Wissing
- The Fertility Clinic, Holbæk Sygehus, Holbæk 4300, Denmark
| | - K T Macklon
- The Fertility Clinic, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| | - C Y Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children, and Reproduction - Copenhagen University Hospital, Copenhagen University, Copenhagen 2100, Denmark
| |
Collapse
|
41
|
Herrick JR. Reversible meiotic arrest in feline oocytes. Reprod Fertil Dev 2014; 26:258-67. [PMID: 23327827 DOI: 10.1071/rd12341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/24/2012] [Indexed: 11/23/2022] Open
Abstract
Increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP) within the cumulus-oocyte complex (COC) inhibits or delays spontaneous oocyte maturation and improves the developmental competence of the oocyte in many species, but information for carnivores is limited. The objectives of the present study were to describe the effects of isobutyl methylxanthine (IBMX), which decreases cAMP degradation, and forskolin, which increases cAMP production, on spontaneous and induced maturation (by equine chorionic gonadotrophin (eCG) and epidermal growth factor (EGF)) of feline oocytes and to evaluate the reversibility of IBMX-induced arrest by measuring the resumption of meiosis and embryonic development following IVF. IBMX decreased (P<0.05) the incidence of spontaneous (6.7% vs 42.0%, metaphase II (MII)) and induced (5.6% vs 66.1% MII) maturation after 24 h of culture. In contrast, forskolin stimulated meiosis (81.7% MII; P<0.05). Following 12 h of culture with IBMX and an additional 24h with eCG and EGF in the absence of IBMX, the proportions of oocytes reaching MII (66.1%), cleaving (79.9%) and developing to the blastocyst stage (15.3%) were similar (P>0.05) to oocytes cultured continuously with eCG and EGF (70.2%, 83.0% and 18.1%, respectively). These results demonstrate that IBMX reversibly inhibits both spontaneous and eCG+EGF-induced meiosis in feline oocytes without compromising the oocyte's developmental competence.
Collapse
Affiliation(s)
- Jason R Herrick
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.Present address: National Foundation for Fertility Research, 10290 RidgeGate Cr, Lone Tree, CO 80124, USA.
| |
Collapse
|
42
|
Jensterle M, Kocjan T, Janez A. Phosphodiesterase 4 inhibition as a potential new therapeutic target in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 2014; 99:E1476-81. [PMID: 24823465 DOI: 10.1210/jc.2014-1430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CONTEXT Phosphodiesterase (PDE) enzymes, including members of PDE4, have been investigated in the regulation of endocrine and reproductive functions of ovaries. In addition, selective inhibition of PDE4 enzyme has recently been implicated in the regulation of metabolism with positive effects on glucose homeostasis and weight reduction. OBJECTIVE The aim of this study was to evaluate whether the PDE4 inhibitor roflumilast affects body weight and hormonal and metabolic status in obese women with polycystic ovary syndrome (PCOS). Design/Participants/Main Outcome Measures: A 12-week prospective randomized open-label study was conducted with 36 obese women with PCOS diagnosed by the National Eunice Kennedy Shriver Institute of Child Health and Human Development criteria that had been pretreated with metformin (MET). They were randomized to MET 1000 mg twice a day or combined treatment (COM) with MET 1000 mg twice a day and roflumilast 500 μg every day. The primary outcome was change in anthropometric measures of obesity. RESULTS Thirty-one patients (aged 33.8 ± 7.4 y, twice a day 36.4 ± 5.1 kg/m(2), mean ± SD) completed the study: 16 on MET and 15 on COM. Subjects treated with COM lost on average 4.2 ± 2.8 kg compared with a 0.9 ± 2.5 kg weight gain in the MET group (P = .025). Body mass index decreased for 1.6 ± 1.1 kg/m(2) in COM arm compared with increase for 0.9 ± 2.4 kg/m(2) in the MET arm (P = .046). Visceral adipose tissue area as assessed by dual-energy x-ray absorptiometry decreased from 136.7 ± 37.8 to 121.2 ± 36.2 cm(2) in the COM arm compared with an increase from 155.3 ± 61.9 to 166.7 ± 67.2 cm(2) in the MET arm (P = .02). From baseline to study end, both treatment interventions resulted in a significant reduction of androstenedione (P = .013), free T (P = .002), and homeostasis model assessment for insulin resistance score (P = .027) and a significant increase in SHBG (P = .024), although the between-treatment differences of the changes have not been statistically significant yet. CONCLUSION Roflumilast added to metformin reduced body weight in obese women with PCOS, primarily due to a loss of fat mass.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana 1525, Slovenia
| | | | | |
Collapse
|
43
|
Scantland S, Tessaro I, Macabelli CH, Macaulay AD, Cagnone G, Fournier É, Luciano AM, Robert C. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes. Biol Reprod 2014; 91:75. [PMID: 25078684 DOI: 10.1095/biolreprod.114.120931] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation.
Collapse
Affiliation(s)
- Sara Scantland
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Irene Tessaro
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - Carolina H Macabelli
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Angus D Macaulay
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Gaël Cagnone
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Éric Fournier
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - Claude Robert
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| |
Collapse
|
44
|
Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci 2014; 149:3-10. [PMID: 25028181 DOI: 10.1016/j.anireprosci.2014.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/18/2023]
Abstract
The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.
Collapse
Affiliation(s)
- Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Cecilia Dieci
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
45
|
Hudson NL, Berg MC, Green MP, Back PJ, Thorstensen EB, Peterson AJ, Pitman JL, McNatty KP. The microenvironment of the ovarian follicle in the postpartum dairy cow: effects on reagent transfer from cumulus cells to oocytes in vitro. Theriogenology 2014; 82:563-73. [PMID: 24958635 DOI: 10.1016/j.theriogenology.2014.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022]
Abstract
This study's hypothesis was that the nutrient composition in follicular fluid (FF) of ovarian follicles in early lactating postpartum cows may influence reagent transfer from cumulus cells (CC) to the oocyte. To test this, concentrations of amino acids (AA), cholesterol, glucose, and nonesterified fatty acids were measured in FF from the largest antral follicles at Days 21 and 46 postpartum during which time, most animals were expected to have resumed ovulatory activity. From the range of concentrations measured, two media compositions (Lac and Half-Lac) were prepared to compare with medium 199 (M199). The AA and cholesterol concentrations in FF were on average, approximately 35% and greater than 1000% higher than in M199, respectively. The nonesterified fatty acids, but not glucose, concentrations also exceeded those in M199. The transfer of fluorescent dye from CC to oocytes in bovine cumulus-oocyte complexes incubated with and without phosphodiesterase inhibitors (dipyridamole and milrinone) and/or forskolin was assessed. Maximum dye accumulation in oocytes incubated in M199 occurred after 4 hours and was further increased (P < 0.001) by dipyridamole. The addition of dipyridamole to Lac, but not Half-Lac, media also increased dye accumulation. There were effects of media (P < 0.001), cholesterol (P < 0.001), and forskolin (P < 0.05) on dye accumulation but no effects of stearic or palmitic acid in either Lac or Half-Lac media. The addition of oleic acid in Half-Lac (P < 0.01), but not Lac, media inhibited dye accumulation. These results support the hypothesis that reagent transfer from CC to oocytes is compromised when the AA composition in FF is low, as sometimes occurs during early lactation.
Collapse
Affiliation(s)
- Norma L Hudson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Marty C Berg
- Reproductive Technologies Section, AgResearch Ruakura, Hamilton, New Zealand
| | - Mark P Green
- Reproductive Technologies Section, AgResearch Ruakura, Hamilton, New Zealand; The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Penny J Back
- Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | | | - A Jim Peterson
- Reproductive Technologies Section, AgResearch Ruakura, Hamilton, New Zealand
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Kenneth P McNatty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
46
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
48
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
49
|
Castronovo C, Rossetti R, Rusconi D, Recalcati MP, Cacciatore C, Beccaria E, Calcaterra V, Invernizzi P, Larizza D, Finelli P, Persani L. Gene dosage as a relevant mechanism contributing to the determination of ovarian function in Turner syndrome. Hum Reprod 2013; 29:368-79. [PMID: 24324027 PMCID: PMC3896225 DOI: 10.1093/humrep/det436] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION What is the burden of X chromosome mosaicism in the occurrence of spontaneous menarche (SM) in Turner syndrome (TS)? SUMMARY ANSWER SM was significantly associated with X chromosome mosaicism in the TS patients; a mosaicism with around 10% euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques on uncultivated tissues. WHAT IS KNOWN ALREADY Spontaneous puberty can be observed in a minority of patients with TS, more frequently, but not exclusively, in those with a high level of 46,XX/45,X mosaicism at standard karyotype. The genetic mechanisms contributing to ovarian function in TS patients are still not determined. However, submicroscopic X-linked and autosomal copy number variations (CNVs) have recently emerged as an important genetic risk category for premature ovarian insufficiency and may be involved in modulating the TS ovarian phenotype. STUDY DESIGN, SIZE, DURATION A group of 40 patients with a diagnosis of TS at conventional karyotyping participated in the study; 6 patients had SM and 34 patients had primary amenorrhoea (PA). All clinical data and the patients’ DNA samples were collected over the years at a single paediatric clinic. PARTICIPANTS/MATERIALS, SETTING, METHODS The patients' samples were used to perform both genetic (Copy Number Assay) and molecular-cytogenetic (array-CGH and iFISH, interphase-FISH) analyses in order to evaluate the X chromosome mosaicism rate and to detect possible rare CNVs of genes with a known or predicted role in female fertility. MAIN RESULTS AND THE ROLE OF CHANCE All TS patients showed variable percentages of the 46,XX lineage, but these percentages were higher in the SM group (P < 0.01). A mosaicism around 10% for the euploid cell line may predict spontaneous pubertal development when determined by molecular-cytogenetic techniques performed in uncultivated tissues. A few CNVs involving autosomal and X-linked ovary-related loci were identified by array-CGH analysis and confirmed by real-time quantitative PCR, including a BMP15 gene duplication at Xp11.22, a deletion interrupting the PAPPA gene at 9q33.1, and an intragenic duplication involving the PDE8A gene at 15q25.3. LIMITATIONS, REASONS FOR CAUTION This is a pilot study on a relatively small sample size and confirmation in larger TS cohorts may be required. The ovarian tissue could not be studied in any patients and in a subgroup of patients, the mosaicism was estimated in tissues of different embryonic origin. WIDER IMPLICATIONS OF THE FINDINGS The combined determination of X chromosome mosaicism by molecular and molecular-cytogenetic techniques may become useful for the prediction of SM in TS. The detection of CNVs in both X-linked and autosomal ovary-related genes further suggests gene dosage as a relevant mechanism contributing to the ovarian phenotype of TS patients. These CNVs may pinpoint novel candidates relevant to female fertility and generate further insights into the mechanisms contributing to ovarian function. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Telethon Foundation (grant no: GGP09126 to L.P.), the Italian Ministry of the University and Research (grant number: 2006065999 to P.F.) and a Ministry of Health grant ‘Ricerca Corrente’ to IRCCS Istituto Auxologico Italiano (grant number: 08C704-2006). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Chiara Castronovo
- Medical Cytogenetics and Molecular Genetics Lab, IRCSS Istituto Auxologico Italiano, 20145 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes. Theriogenology 2013; 81:556-64. [PMID: 24331454 DOI: 10.1016/j.theriogenology.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) is a chemical messenger involved in the control of oocyte maturation. It stimulates guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases that may interfere with cAMP levels, a nucleotide also involved in meiosis resumption. The aim of this study was to determine the role played by NO on the cGMP/cAMP pathway during meiosis resumption in bovine oocytes. The effects of increasing NO generated by S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-3) mol/L) and of other drugs that may affect the NO/cGMP pathway (proptoporfirin IX and 8-Br-cGMP) on meiosis resumption were investigated in bovine cumulus-oocyte complexes (COCs) matured for 9 hours in a semidefined medium (TCM199 + 3 mg/mL BSA). The COCs matured with 10(-7) mol/L SNAP associated or not with 100 μmol/L oxadiazole-one quinoxaline, a guanylate cyclase inhibitor, also had their cGMP and cAMP levels measured during the first hours of maturation (1, 3, and 6 hours). Quantitative polymerase chain reaction was performed by real-time polymerase chain reaction to determine the effects of NO on expression of genes encoding for enzymes of the NO/guanylate cyclase/cGMP and cAMP pathways during the first 9 hours of oocyte maturation. Increasing NO levels using 10(-7) mol/L SNAP resulted in lower rate of germinal vesicle breakdown (36% germinal vesicle breakdown; P < 0.05) at 9 hours IVM, whereas control group and the treatments with 10(-9) and 10(-8) mol/L SNAP showed about 70% germinal vesicle breakdown (P > 0.05). A temporary increase in cGMP levels was also observed with the same treatment (4.51 pmol/COC) at 1 hour IVM, which was superior to the control group (2.97 pmol/COC; P < 0.05) and was reversed by inhibiting guanylate cyclase activity with 100 μmol/L oxadiazole-one quinoxaline. Neither cAMP levels nor gene expression were affected by NO. These results suggest that NO acts via guanylate cyclase/cGMP and that even a temporary increase in cGMP levels leads to a delay in meiosis resumption, even when cAMP levels have declined. Nitric oxide does not act on oocyte maturation by affecting cAMP levels or the expression of genes related to the NO/guanylate cyclase/cGMP and cAMP pathways. Also, to our knowledge this is the first report to detect PKG1, PKG2, phosphodiesterase-5A, ADCY3, ADCY6, and ADCY9 transcripts in bovine oocytes.
Collapse
|