1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Zhang J, Liu W, Cui F, Kolehmainen M, Chen J, Zhang L, Zarei I. Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective. J Pharm Anal 2025; 15:101148. [PMID: 39925697 PMCID: PMC11803829 DOI: 10.1016/j.jpha.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 02/11/2025] Open
Abstract
Microplastics and nanoplastics (MPs/NPs) are ubiquitous environmental pollutants that act as endocrine-disrupting chemicals (EDCs), raising significant concerns about their impact on human health. Research highlights the hazardous effects of MPs/NPs on both male and female reproductive systems, influencing germ cells, embryo development, and progeny. Additionally, studies show that MPs/NPs affect the gene expression of anabolic steroid hormones in vitro and in vivo, inducing reproductive toxicity through mechanisms such as oxidative stress and inflammation. Considering these adverse effects, identifying natural compounds that can mitigate the toxicity of MPs/NPs is increasingly important. Plants offer a wealth of antioxidants and anti-inflammatory compounds that can counteract these harmful effects. Among these, anthocyanins, natural colorants responsible for the vibrant hues of fruits and flowers, exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, and anti-neoplastic properties. Moreover, anthocyanins can modulate sex hormone levels and alleviate reproductive toxicity. Cyanidin-3-glucoside (C3G), one of the most extensively studied anthocyanins, shows promise in reducing reproductive toxicity, particularly in females, and in protecting male reproductive organs, including the testis and epididymis. This protective effect is believed to result from its interaction with steroid receptors, specifically the androgen and estrogen receptors (ERs). These findings highlight the need to explore the mechanisms by which anthocyanins mitigate the reproductive toxicity caused by MPs/NPs. This review provides novel insights into how natural compounds can be leveraged to lessen the impact of environmental contaminants on human health, especially concerning reproductive health.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fuqiang Cui
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jing Chen
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L3G1, Canada
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
3
|
Tombul OK, Akdağ AD, Thomas PB, Kaluç N. Assessing the impact of sub-chronic polyethylene terephthalate nanoplastic exposure on male reproductive health in mice. Toxicol Appl Pharmacol 2025; 495:117235. [PMID: 39832568 DOI: 10.1016/j.taap.2025.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The widespread use of polyethylene terephthalate (PET) in food and beverage packaging raises concerns about its potential health effects, particularly when PET-derived nanoplastics (PET-NPs) are released into the environment. This study investigates the reproductive toxicity of PET-NPs in male mice. Mice were exposed to PET-NPs at doses of 0.1 mg/day and 0.5 mg/day for 28 days, and the testes index, sperm count, sperm morphology, Reactive Oxygen Species (ROS) production, DNA integrity, histopathology, and spermatogenesis were evaluated. PET-NP exposure resulted in a significant decrease in sperm concentration and an increase in abnormal spermatozoa-particularly blunt-headed sperm and sperm with neck and tail anomalies- and elevated ROS levels in testicular tissue in a dose-dependent manner (p < 0.05). Additionally, PET-NPs induced DNA strand breaks, as demonstrated by the COMET assay (p < 0.05). Histopathological analysis revealed disorganization of the germinal epithelium, vacuolization, reduced sperm density, and increased interstitial spaces, accompanied by a significant decline in spermatogenic activity, as assessed by Johnsen scoring. These findings strongly suggest that the observed adverse effects on male reproductive health, including sperm abnormalities, DNA damage, and impaired spermatogenesis, are primarily driven by ROS-induced oxidative stress. The observed changes provide clear evidence of the adverse effects of subchronic exposure to PET nanoplastics on male reproductive health, highlighting the inherent risks associated with nanoplastic exposure and offering crucial insights for public health awareness and regulatory considerations.
Collapse
Affiliation(s)
- Oğuz Kaan Tombul
- Experimental Animal Application and Research Center, Maltepe University, İstanbul, Turkey; Department of Clinical Embryology, Institute of Graduate School, Maltepe University, Istanbul, Turkey
| | | | - Pınar Buket Thomas
- Department of Medical Biology and Genetics, School of Medicine, Maltepe University, Istanbul, Turkey
| | - Nur Kaluç
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
4
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Bovine Sperm Maturation. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:137-164. [PMID: 40272588 DOI: 10.1007/978-3-031-70126-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
On completion of spermatogenesis, testicular spermatozoa appear structurally mature but are infertile and must undergo a sequential maturational process in the epididymis to become motile and acquire fertilizing potential. This chapter provides a cell biological overview of the endocytic and secretory activities, along the extratesticular duct system, that provide appropriate conditions for epididymal maturation of bull spermatozoa. The compartmentalization of the bovine epididymis is illustrated and discussed in terms of epithelial cell types and merocrine and apocrine protein secretions by principal cells that influence maturation. Sequential maturational events are followed with examples, first, of testicular proteins associated with spermatozoa that are endocytosed to form a 'clean slate' and then, of epididymal secretory proteins that recondition the sperm milieu and bind to spermatozoa in order to attain its full fertilization potential. Finally, an assessment is made of the potential contributions to epididymal maturation of some well-characterized and identified secretory proteins that interact with the cytoplasmic membrane of spermatozoa.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
5
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
7
|
Kiyozumi D. Distinct actions of testicular endocrine and lumicrine signaling on the proximal epididymal transcriptome. Reprod Biol Endocrinol 2024; 22:40. [PMID: 38600586 PMCID: PMC11005294 DOI: 10.1186/s12958-024-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Research Institute for Microbial Diseases, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Kiyozumi D. Busulfan administration replicated the characteristics of the epididymal initial segment observed in mice lacking testis-epididymis lumicrine signaling. J Reprod Dev 2024; 70:104-114. [PMID: 38346723 PMCID: PMC11017096 DOI: 10.1262/jrd.2023-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024] Open
Abstract
The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, Tokyo 102-0076, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
9
|
Graceli JB, Zomer HD, Medrano TI, Hess RA, Korach KS, Cooke PS. Role for Nongenomic Estrogen Signaling in Male Fertility. Endocrinology 2024; 165:bqad180. [PMID: 38066676 PMCID: PMC10797322 DOI: 10.1210/endocr/bqad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 01/22/2024]
Abstract
Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
- Department of Morphology, Federal University of Espirito Santo, Vitoria, 29040-090, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Kiyozumi D. Expression of NELL2/NICOL-ROS1 lumicrine signaling-related molecules in the human male reproductive tract. Reprod Biol Endocrinol 2024; 22:3. [PMID: 38169386 PMCID: PMC10759339 DOI: 10.1186/s12958-023-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The maturation of spermatozoa is a regulated process, influenced by genes expressing essential secreted proteins in the proximal epididymis. Recent genetic studies in rodents have identified the non-sex steroidal molecular signals that regulate gene expression in the proximal epididymis. Germ cells in the testis secrete ligand proteins into the seminiferous tubule lumen The ligand proteins travel through the male reproductive tract lumen to the epididymis, where they bind to receptors, triggering the differentiation of the luminal epithelium for sperm maturation. It is, however, not fully unveiled if such a testis-epididymis trans-luminal signaling mechanism exists in other species, especially humans. In the present study, the rodent-type testis-epididymis trans-luminal signaling in the human male reproductive tract was evaluated in a step-by-step manner by analyzing testis and epididymis gene expression and signaling mediator protein function. There was a significant correlation between the epididymal expressions of mouse genes upregulated by the trans-luminal signaling and those of their human orthologs, as evaluated by the correlation coefficient of 0.604. The transcript expression of NELL2 and NICOL encoding putative ligand proteins was also observed in human testicular cells. In vitro experiments demonstrated that purified recombinant human NELL2 and NICOL formed a molecular complex with similar properties to rodent proteins, which was evaluated by a dissociation equilibrium constant of 110 nM. Recombinant human NELL2 also specifically bound to its putative receptor human ROS1 in vitro. Collectively, these findings suggest that the rodent-type testis-epididymis secreted signaling mechanism is also possible in the human male reproductive tract.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
11
|
Maluin SM, Jaffar FHF, Osman K, Zulkefli AF, Mat Ros MF, Ibrahim SF. Exploring edible bird nest's potential in mitigating Wi-Fi's impact on male reproductive health. Reprod Med Biol 2024; 23:e12606. [PMID: 39263384 PMCID: PMC11387989 DOI: 10.1002/rmb2.12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
Purpose This study aimed to evaluate the protective effects of edible bird nest (EBN) against the detrimental impact of Wi-Fi on male reproductive health. Specifically, it examines whether EBN can mitigate Wi-Fi-induced changes in male reproductive hormones, estrogen receptors (ER), spermatogenesis, and sperm parameters. Methods Thirty-six adult male rats were divided into six groups (n = 6): Control, Control EBN, Control E2, Wi-Fi, Wi-Fi+EBN, and Wi-Fi+E2. Control EBN and Wi-Fi+EBN groups received 250 mg/kg/day EBN, while Control E2 and Wi-Fi+E2 groups received 12 μg/kg/day E2 for 10 days. Wi-Fi exposure and EBN supplementation lasted eight weeks. Assessments included organ weight, hormone levels (FSH, LH, testosterone, and E2), ERα/ERβ mRNA and protein expression, spermatogenic markers (c-KIT and SCF), and sperm quality. Results Wi-Fi exposure led to decreased FSH, testosterone, ERα mRNA, and sperm quality (concentration, motility, and viability). EBN supplementation restored serum FSH and testosterone levels, increased serum LH levels, and the testosterone/E2 ratio, and normalized mRNA ERα expression. Additionally, EBN increased sperm concentration in Wi-Fi-exposed rats without affecting motility or viability. Conclusions EBN plays a crucial role in regulating male reproductive hormones and spermatogenesis, leading to improved sperm concentration. This could notably benefit men experiencing oligospermia due to excessive Wi-Fi exposure.
Collapse
Affiliation(s)
- Sofwatul Mokhtarah Maluin
- Department of Physiology, Faculty of Medicine and Health Sciences Universiti Sains Islam Malaysia (USIM) Nilai Malaysia
| | | | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences Universiti Kebangsaan Malaysia (UKM) Bangi Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Mohd Farisyam Mat Ros
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Godoi AR, Fioravante VC, Santos BM, Martinez FE, Pinheiro PFF. Maternal exposure of rats to sodium saccharin during gestation and lactation on male offspring†. Biol Reprod 2023; 108:98-106. [PMID: 36219170 DOI: 10.1093/biolre/ioac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.
Collapse
Affiliation(s)
- Alana Rezende Godoi
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Beatriz Melo Santos
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | |
Collapse
|
13
|
Wen Z, Zhu H, Wu B, Zhang A, Wang H, Cheng Y, Zhao H, Li J, Liu M, Gao J. Cathepsin B plays a role in spermatogenesis and sperm maturation through regulating autophagy and apoptosis in mice. PeerJ 2022; 10:e14472. [PMID: 36518274 PMCID: PMC9744162 DOI: 10.7717/peerj.14472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022] Open
Abstract
Spermatogenesis and sperm maturation are complex and highly ordered biological processes. Any failure or disorder in these processes can cause defects in sperm morphology, motility, and fertilization ability. Cathepsin B (CTSB) is involved in the regulation of a variety of pathological processes. In the present study, we found that CTSB was abundantly expressed in the male reproductive system, however, the specific role of CTSB in regulating spermatogenesis and sperm maturation remained elusive. Hence, we generated Ctsb -/- mice using CRISPR/Cas9 technology. In Ctsb -/- mice, sperm count was significantly decreased while the level of morphologically abnormal sperm was markedly increased. Additionally, these mice had significantly lower levels of progressive motility sperm and elevated levels of immobilized sperm. Histological analysis showed slight vacuolization in the testis epithelium, as well as the loss of epididymal epithelium cells. Further investigation showed that autophagic activity was inhibited and apoptotic activity was increased in both the testis and epididymis of Ctsb -/- mice. Together, our findings demonstrate that CTSB plays an important role in spermatogenesis and sperm maturation in mice.
Collapse
Affiliation(s)
- Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aizhen Zhang
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, Institute of Science and Technology, National Health Commission, Beijing, China
| | - Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China,School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
14
|
Dewaele A, Dujardin E, André M, Albina A, Jammes H, Giton F, Sellem E, Jolivet G, Pailhoux E, Pannetier M. Absence of Testicular Estrogen Leads to Defects in Spermatogenesis and Increased Semen Abnormalities in Male Rabbits. Genes (Basel) 2022; 13:2070. [PMID: 36360307 PMCID: PMC9690781 DOI: 10.3390/genes13112070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 10/28/2023] Open
Abstract
Estrogens are steroid hormones produced by the aromatization of androgens by the aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as "female sex hormones", estrogen is also produced in the adult testes of many mammals, including humans. To better understand the function of estrogens in the male, we used the rabbit model which is an important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules. Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1-/- genetically modified rabbits were analyzed. CYP19A1-/- males showed decreased fertility with lower sperm count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA methylation was unchanged, while sperm parameters were affected as CYP19A1-/- males exhibited reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens could be involved in the spermatocyte-spermatid transition in the testis, and in the acquisition of sperm motility in the epididymis.
Collapse
Affiliation(s)
- Aurélie Dewaele
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Emilie Dujardin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marjolaine André
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Audrey Albina
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Frank Giton
- APHP, Pôle Biologie-Pathologie Henri Mondor, 94040 Créteil, France
- INSERM IMRB U955, 94010 Créteil, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Geneviève Jolivet
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
15
|
Taaffe P, O'Meara C, Stiavnicka M, Byrne C, Eivers B, Lonergan P, Fair S. Increasing the frequency of ejaculate collection in young dairy bulls increases semen production and field fertility. Theriogenology 2022; 182:45-52. [DOI: 10.1016/j.theriogenology.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
|
16
|
Lavanya M, Selvaraju S, Krishnappa B, Krishnaswamy N, Nagarajan G, Kumar H. Microenvironment of the male and female reproductive tracts regulate sperm fertility: Impact of viscosity, pH, and osmolality. Andrology 2021; 10:92-104. [PMID: 34420258 DOI: 10.1111/andr.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Terminally differentiated mammalian sperm are exposed to gradients of viscosity, pH, and osmolality both in the male and female reproductive tract during their perilous journey to quest the ovum. The complex physicochemical factors play an integral role in preparing sperm for the fertilization process. OBJECTIVES To elucidate the influence of the reproductive tract microenvironment especially viscosity, pH, and osmolality in regulating sperm functional and fertilization competence. MATERIALS AND METHODS The data used in this review were collected from the research papers and online databases focusing on the influence of viscosity, pH, and osmolality on sperm function. DISCUSSION The gradients of viscosity, pH, and osmolality exist across various segments of the male and female reproductive tract. The changes in the viscosity create a physical barrier, pH aid in capacitation and hyperactivation, and the osmotic stress selects a progressive sperm subpopulation for accomplishing fertilization. The sperm function tests are developed based on the concept that the male genotype is the major contributor to the reproductive outcome. However, recent studies demonstrate the significance of sperm genotype-environment interactions that are essentially contributing to reproductive success. Hence, it is imperative to assess the impact of physicochemical stresses and the adaptive ability of the terminally differentiated sperm, which in turn would improve the outcome of the assisted reproductive technologies and male fertility assessment. CONCLUSION Elucidating the influence of the reproductive tract microenvironment on sperm function provides newer insights into the procedures that need to be adopted for selecting fertile males for breeding, and ejaculates for the assisted reproductive technologies.
Collapse
Affiliation(s)
- Maharajan Lavanya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Govindasamy Nagarajan
- Southern Regional Research Centre under ICAR-Central Sheep and Wool Research Institute (ICAR-CSWRI), Kodaikanal, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
17
|
Bai X, Tang Y, Li Q, Liu D, Liu G, Fan X, Liu Z, Yu S, Tang T, Wang S, Li L, Zhou K, Zheng Y, Liu Z. An Integrated Analysis of Network Pharmacology, Molecular Docking, and Experiment Validation to Explore the New Candidate Active Component and Mechanism of Cuscutae Semen-Mori Fructus Coupled-Herbs in Treating Oligoasthenozoospermia. Drug Des Devel Ther 2021; 15:2059-2089. [PMID: 34040346 PMCID: PMC8139735 DOI: 10.2147/dddt.s307015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE One of the most common types of male infertility is recognized as oligoasthenozoospermia (OA), characterized by low sperm count and quality in males. As a traditional Chinese medicine (TCM), Cuscutae Semen-Mori Fructus coupled-herbs (CSMFCH) has been known to act a curative effect on OA for thousands of years. Nevertheless, the substantial basis and molecular mechanism of CSMFCH in treating OA remain elusive. METHODS Herein, an integrated approach, including network pharmacology, molecular docking, and experiment validation, was utilized to reveal the new candidate active component and mechanism of CSMFCH in treating OA. RESULTS The results show that kaempferol is the most significant bioactive component of CSMFCH on OA. The mechanism and targets of CSMFCH against OA are relevant to hormone regulation, oxidant stress, and reproductive promotion. In order to validate network pharmacology results, molecular docking and experiment validation were conducted. In detail, molecular docking was employed to verify the strong binding interactions between kaempferol and the core targets. UHPLC-Q-Orbitrap-MS was used to identify kaempferol in the CSMFCH extract. In vitro and in vivo experiments further proved CSMFCH and kaempferol could enhance the mouse Leydig (TM3) and mouse Sertoli (TM4) cell viability, improve the male reproductive organ weights, sperm quality, and decrease testis tissue damage in the OA mouse model induced by CP. CONCLUSION Our results not only identify the new candidate active component of CSMFCH in treating OA but also provide new insights into the mechanisms of CSMFCH against OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Wen Z, Liu D, Zhu H, Sun X, Xiao Y, Lin Z, Zhang A, Ye C, Gao J. Deficiency for Lcn8 causes epididymal sperm maturation defects in mice. Biochem Biophys Res Commun 2021; 548:7-13. [PMID: 33631677 DOI: 10.1016/j.bbrc.2021.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
Lipocalin family members, LCN8 and LCN9, are specifically expressed in the initial segment of mouse caput epididymis. However, the biological functions of the molecules in vivo are yet to be clarified. In this study, CRISPR/Cas9 technology was used to generate Lcn8 and Lcn9 knockout mice, respectively. Lcn8-/- and Lcn9-/- male mice showed normal spermatogenesis and fertility. In the cauda epididymis of Lcn8-/- male mice, morphologically abnormal sperm was increased significantly, the proportion of progressive motility sperm was decreased, the proportion of immobilized sperm was elevated, and the sperm spontaneous acrosome reaction (AR) frequency was increased. Conversely, the knockout of Lcn9 did not have any effect on the ratio of morphologically abnormal sperm, sperm motility, and sperm spontaneous AR frequencies. These results demonstrated the role of LCN8 in maintaining the sperm quality in the epididymis, and suggested that the deficiency of LCN8 leads to epididymal sperm maturation defects.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Zhuchun Lin
- Jinan First People's Hospital, Jinan, 250011, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
19
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Menad R, Fernini M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Farida K, Bonnet X, Moudilou E, Exbrayat JM. Androgen and estrogen receptors immunolocalization in the sand rat (Psammomys Obesus) cauda epididymis. Acta Histochem 2021; 123:151683. [PMID: 33508524 DOI: 10.1016/j.acthis.2021.151683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/06/2022]
Abstract
Both androgens and estrogens play key, albeit incompletely described, roles in the functioning of the epididymis. Because this tightly-coiled tubular structure is compartmented, precise mapping of the distribution of sex steroid's receptors is important. Such receptors have been located in the first segments (caput, corpus), but the last part (cauda) remains poorly explored. We used immunochemistry to localize androgen (AR) and estrogen (ESR1 and ESR2) receptors in the cauda in the fat sand rat (Psammomys obesus). We compared results obtained during the breeding versus resting seasons. We also used individuals castrated, or castrated then treated with testosterone, or subjected to the ligation of their efferent ducts. During the breeding season, in principal cells, we found strong staining both for AR and ESR1 in the apical cytoplasm, and strong staining for ESR2 in the nucleus. During the resting season, principal cells were positive for AR and ESR1, but negative for ESR2. In castrated animals, staining was null for ESR2 and AR, and weak for ESR1. In castrated then treated animals, immuno-expression was restored but only for AR and ESR1. Following efferent duct ligation, AR reactivity decreased while ESR1 and ESR2 provided strong staining. Broadly similar, but not fully identical patterns were observed in basal cells. They were positive for ESR2 and AR during the breeding season, but not for ESR1. During the resting season, staining was modest for ESR1 and AR and negative for ESR2. In all experimentally treated animals, we observed weak staining for AR and ESR1, and a lack of signal for ESR2. Overall, this study provides strong evidence that androgens and estrogens are involved in the seasonal regulation of the whole epididymis in the fat sand rat, with marked differences between caput and cauda (the corpus is highly reduced in rodent).
Collapse
Affiliation(s)
- Rafik Menad
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria; Faculty of Sciences, Department of Natural and Life Sciences, University of Algiers, Algeria.
| | - Meriem Fernini
- Laboratory of Sciences and Techniques of Animal Production (LSTPA), Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Lynda Lakabi
- Natural Resources Laboratory, University Mouloud Mammeri, BP 15000, Tizi-Ouzou, Algeria
| | - Souaâd Smaï
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Thérèse Gernigon-Spychalowicz
- Small Vertebrates Reproduction, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, DZ-16111 El Alia, Algiers, Algeria
| | - Khammar Farida
- Mammal Ecophysiology, Laboratory of Research on Arid Areas, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | - Xavier Bonnet
- CEBC, UMR-7372 CNRS ULR, 79360 Villiers en Bois France
| | - Elara Moudilou
- University of Lyon, UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, 10 Place des Archives, 69002 Lyon, France
| | - Jean-Marie Exbrayat
- University of Lyon, UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, 10 Place des Archives, 69002 Lyon, France
| |
Collapse
|
21
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Cabs1 Maintains Structural Integrity of Mouse Sperm Flagella during Epididymal Transit of Sperm. Int J Mol Sci 2021; 22:ijms22020652. [PMID: 33440775 PMCID: PMC7827751 DOI: 10.3390/ijms22020652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The calcium-binding protein spermatid-associated 1 (Cabs1) is a novel spermatid-specific protein. However, its function remains largely unknown. In this study, we found that a long noncoding RNA (lncRNA) transcripted from the Cabs1 gene antisense, AntiCabs1, was also exclusively expressed in spermatids. Cabs1 and AntiCabs1 knockout mice were generated separately (using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 methods) to investigate their functions in spermatogenesis. The genetic loss of Cabs1 did not affect testicular and epididymal development; however, male mice exhibited significantly impaired sperm tail structure and subfertility. Ultrastructural analysis revealed defects in sperm flagellar differentiation leading to an abnormal annulus and disorganization of the midpiece-principal piece junction, which may explain the high proportion of sperm with a bent tail. Interestingly, the proportion of sperm with a bent tail increased during transit in the epididymis. Furthermore, Western blot and immunofluorescence analyses showed that a genetic loss of Cabs1 decreased Septin 4 and Krt1 and increased cyclin Y-like 1 (Ccnyl1) levels compared with the wild type, suggesting that Cabs1 deficiency disturbed the expression of cytoskeleton-related proteins. By contrast, AntiCabs1-/- mice were indistinguishable from the wild type regarding testicular and epididymal development, sperm morphology, concentration and motility, and male fertility. This study demonstrates that Cabs1 is an important component of the sperm annulus essential for proper sperm tail assembly and motility.
Collapse
|
23
|
Valeri C, Lovaisa MM, Racine C, Edelsztein NY, Riggio M, Giulianelli S, Venara M, Bedecarrás P, Ballerini MG, di Clemente N, Lamb CA, Schteingart HF, Rey RA. Molecular mechanisms underlying AMH elevation in hyperoestrogenic states in males. Sci Rep 2020; 10:15062. [PMID: 32934281 PMCID: PMC7492256 DOI: 10.1038/s41598-020-71675-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is secreted by Sertoli cells of the testes from early fetal life until puberty, when it is downregulated by androgens. In conditions like complete androgen insensitivity syndrome (CAIS), AMH downregulation does not occur and AMH increases at puberty, due in part to follicle-stimulating hormone (FSH) effect. However, other conditions like Peutz-Jeghers syndrome (PJS), characterised by low FSH, also have increased AMH. Because both CAIS and PJS may present as hyperoestrogenic states, we tested the hypothesis that oestradiol (E2) upregulates AMH expression in peripubertal Sertoli cells and explored the molecular mechanisms potentially involved. The results showed that E2 is capable of inducing an upregulation of endogenous AMH and of the AMH promoter activity in the prepubertal Sertoli cell line SMAT1, signalling through ERα binding to a specific ERE sequence present on the hAMH promoter. A modest action was also mediated through the membrane oestrogen receptor GPER. Additionally, the existence of ERα expression in Sertoli cells in patients with CAIS was confirmed by immunohistochemistry. The evidence presented here provides biological plausibility to the hypothesis that testicular AMH production increases in clinical conditions in response to elevated oestrogen levels.
Collapse
Affiliation(s)
- Clara Valeri
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María M Lovaisa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, 75013, Paris, France
| | - Nadia Y Edelsztein
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT (CENPAT-CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Marcela Venara
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María G Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Helena F Schteingart
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina. .,Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Elbashir S, Magdi Y, Rashed A, Henkel R, Agarwal A. Epididymal contribution to male infertility: An overlooked problem. Andrologia 2020; 53:e13721. [PMID: 32816323 DOI: 10.1111/and.13721] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
The diagnosis and treatment of male infertility, excluding assisted conception, are limited because of, but not limited to, poor understanding of sperm post-testicular development and storage. Many may think that sperm dysfunction is only self-contained in the sperm cell itself as a result of defective spermatogenesis. However, it can also be a consequence of inadequate epididymal maturation following disorders of the epididymis. Improper epididymal functions can disturb semen parameters and sperm DNA integrity, result in high leucocyte concentrations and high numbers of immature germ cells and debris or even cause idiopathic infertility. To date, the data are limited regarding critical markers of sperm maturation and studies that can identify such markers for diagnosis and managing epididymal dysfunction are scarce. Therefore, this article aims to draw attention to recognise a disturbed epididymal environment as a potential cause of male infertility.
Collapse
Affiliation(s)
- Salah Elbashir
- Department of Urology, Faculty of Medicine, Benha University, Egypt
| | - Yasmin Magdi
- Al-Yasmeen Fertility and Gynecology Center, Benha, Egypt
| | - Ayman Rashed
- Department of Urology, Faculty of Medicine, 6th of October University, Egypt
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Wen Z, Zhu H, Zhang A, Lin J, Zhang G, Liu D, Xiao Y, Ye C, Sun D, Wu B, Zhang J, Gao J. Cdc14a has a role in spermatogenesis, sperm maturation and male fertility. Exp Cell Res 2020; 395:112178. [PMID: 32679235 DOI: 10.1016/j.yexcr.2020.112178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
Cdc14a is an evolutionarily conserved dual-specific protein phosphatase, and it plays different roles in different organisms. Cdc14a mutations in human have been reported to cause male infertility, while the specific role of Cdc14a in regulation of the male reproductive system remains elusive. In the present study, we established a knockout mouse model to study the function of Cdc14a in male reproductive system. Cdc14a-/- male mice were subfertile and they could only produce very few offspring. The number of sperm was decreased, the sperm motility was impaired, and the proportion of sperm with abnormal morphology was elevated in Cdc14a-/- mice. When we mated Cdc14a-/- male mice with wild-type (WT) female mice, fertilized eggs could be found in female fallopian tubes, however, the majority of these embryos died during development. Some empty spaces were observed in seminiferous tubule of Cdc14a-/- testes. Compared with WT male mice, the proportions of pachytene spermatocytes were increased and germ cells stained with γH2ax were decreased in Cdc14a-/- male mice, indicating that knockout of Cdc14a inhibited meiotic initiation. Subsequently, we analyzed the expression levels of some substrate proteins of Cdc14a, including Cdc25a, Wee1, and PR-Set7, and compared those with WT testes, in which the expression levels of these proteins were significantly increased in Cdc14a-/- testes. Our results revealed that Cdc14a-/- male mice are highly subfertile, and Cdc14a is essential for normal spermatogenesis and sperm function.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jing Lin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Guangkai Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300041, PR China.
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, PR China.
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
26
|
Saraswat S, Kharche SD, Rout PK, Pawaiya R, Gangwar C, Swain DK, Kaushik R. Molecular expression and identification of caprine estrogen receptor gene 1 for fertility status in bucks. Reprod Domest Anim 2020; 55:1080-1092. [PMID: 32531861 DOI: 10.1111/rda.13746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022]
Abstract
Estrogen and its receptors are essential for sexual development and reproduction. Oestrogen receptor alpha (ERα) is a nuclear receptor activated by the hormone oestrogen. In male, ERα is encoded by the gene ESR1 (oestrogen receptor1) responsible for better fertility. ESR1 is involved in the reabsorption of luminal fluid during the transit of spermatozoa from the testis to the head of the epididymis which is important for their survival and maturation during epididymal storage. The absence of ESR1 leads to reduced epididymal sperm content, reduced sperm motility and fertilizing ability. The present study was undertaken to investigate the expression and presence of ESR1 gene in fertile and low-fertile male goat breeds. We identified ESR1 gene through various molecular tools. Genotyping was carried out by high resonance melting analysis using Roche Light Cycler 480(LC-480) system and found three different genotypes. Genotypic frequency-AA (blue-0.67), BB(Red-0.2), AB(Green-0.08) with allele frequency A(0.71 and B (0.29). The predominance of this gene in head of epididymis in fertile bucks was confirmed by SDS-PAGE, Western blotting and immunohistochemistry. From the results, we corroborated that the present study provides a useful and effective way to predict male fertility in goat breeds, which in turn increases the percentage of fertility in flock leading to more number of offspring in a kidding season.
Collapse
Affiliation(s)
- S Saraswat
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - S D Kharche
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - P K Rout
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - R Pawaiya
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - C Gangwar
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - D K Swain
- Department of Physiology, DUVASU, Mathura, Uttar Pradesh, India
| | - R Kaushik
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| |
Collapse
|
27
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
28
|
Linden LDS, Bustamante-Filho IC, Souza APB, Lopes TN, Silva AFT, Tomé LM, Timmers LFMS, Santos SI, Neves AP. Structural modelling of the equine protein disulphide isomerase A1 and its quantification in the epididymis and seminal plasma. Andrologia 2020; 52:e13530. [DOI: 10.1111/and.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liana de Salles Linden
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | | | | | - Tayná Nauê Lopes
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | - Luise Marcon Tomé
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | | | - Adriana Pires Neves
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Universidade Federal do Pampa (UNIPAMPA) Dom Pedrito Brazil
| |
Collapse
|
29
|
Antalikova J, Secova P, Horovska L, Krejcirova R, Simonik O, Jankovicova J, Bartokova M, Tumova L, Manaskova-Postlerova P. Missing Information from the Estrogen Receptor Puzzle: Where Are They Localized in Bull Reproductive Tissues and Spermatozoa? Cells 2020; 9:cells9010183. [PMID: 31936899 PMCID: PMC7016540 DOI: 10.3390/cells9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.
Collapse
Affiliation(s)
- Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Michaela Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Pavla Manaskova-Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-22438-2934
| |
Collapse
|
30
|
Liu Q, Yu W, Fan S, Zhuang H, Han Y, Zhang H, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, estrogen receptors, 5α-reductases and P450arom in the epididymis of the male muskrat (Ondatra zibethicus). J Steroid Biochem Mol Biol 2019; 194:105433. [PMID: 31376460 DOI: 10.1016/j.jsbmb.2019.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
The steroid hormones not only exert various endocrine functions but also act as the autocrine or paracrine factors in different tissues of mammals. In the present study, the seasonal expressions of androgen receptor (AR), estrogen receptors alpha and beta (ERα and ERβ), aromatase cytochrome P450 (P450arom) and 5α-reductase 1, 2 were investigated in the epididymis of the muskrat. HE staining showed enlarged lumen and abundant sperm in the breeding season while reduced lumen with no sperm in the non-breeding season. The staining of AR was presented in nuclei of epithelial cells of the epididymis in both seasons. The immunostaining of ERα was localized in both nuclei and cytoplasm of epithelial cells of the epididymis during the breeding season, while the weak staining of ERα was only in the nuclei of epithelial cells during the non-breeding season. In contrast, ERβ signal was negative in the epididymis of the muskrat in both seasons. The positive signals for P450arom and 5α-reductase 1, 2 were found in the cytoplasm of epithelial and smooth muscle cells during both seasons. Moreover, the protein and mRNA expression levels of AR, ERα, P450arom and 5α-reductase 1, 2 were significantly higher in the epididymis during the breeding season than those of the non-breeding season, and the expression level of 5α-reductase 1 was higher when compared with 5α-reductase 2. In addition, the levels of testosterone (T) and dihydrotestosterone (DHT) in the epididymis and serum were remarkably higher during the breeding season. Taken together, these findings suggested androgen and estrogen might play an important endocrine or autocrine/paracrine role to regulate the epididymal functions of the muskrat.
Collapse
Affiliation(s)
- Qian Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenyang Yu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haotong Zhuang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
NCOA5 Haplo-insufficiency Results in Male Mouse Infertility through Increased IL-6 Expression in the Epididymis. Sci Rep 2019; 9:15525. [PMID: 31664153 PMCID: PMC6820533 DOI: 10.1038/s41598-019-52105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
Male infertility might be caused by genetic and/or environmental factors that impair spermatogenesis and epididymal sperm maturation. Here we report that heterozygous deletion of the nuclear receptor coactivator-5 (Ncoa5) gene resulted in decreased motility and progression of spermatozoa in the cauda epididymis, leading to infertility in male mice. Light microscopic and ultrastructural analysis revealed morphological defects in the spermatozoa collected from the cauda epididymis of Ncoa5+/− mice. Immunohistochemistry showed that interleukin-6 (IL-6) expression in epithelial cells of Ncoa5+/− epididymis was higher than wild type counterparts. Furthermore, heterozygous deletion of Il-6 gene in Ncoa5+/− male mice partially improved spermatozoa motility and moderately rescued infertility phenotype. Our results uncover a previously unknown physiological role of NCOA5 in the regulation of epididymal sperm maturation and suggest that NCOA5 deficiency could cause male infertility through increased IL-6 expression in epididymis.
Collapse
|
32
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Genetic resistance to DEHP-induced transgenerational endocrine disruption. PLoS One 2019; 14:e0208371. [PMID: 31181066 PMCID: PMC6557477 DOI: 10.1371/journal.pone.0208371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Di(2-ethylhexyl)phthalate (DEHP) interferes with sex hormones signaling pathways (SHP). C57BL/6J mice prenatally exposed to 300 mg/kg/day DEHP develop a testicular dysgenesis syndrome (TDS) at adulthood, but similarly-exposed FVB/N mice are not affected. Here we aim to understand the reasons behind this drastic difference that should depend on the genome of the strain. In both backgrounds, pregnant female mice received per os either DEHP or corn oil vehicle and the male filiations were examined. Computer-assisted sperm analysis showed a DEHP-induced decreased sperm count and velocities in C57BL/6J. Sperm RNA sequencing experiments resulted in the identification of the 62 most differentially expressed RNAs. These RNAs, mainly regulated by hormones, produced strain-specific transcriptional responses to prenatal exposure to DEHP; a pool of RNAs was increased in FVB, another pool of RNAs was decreased in C57BL/6J. In FVB/N, analysis of non-synonymous single nucleotide polymorphisms (SNP) impacting SHP identified rs387782768 and rs29315913 respectively associated with absence of the Forkhead Box A3 (Foxa3) RNA and increased expression of estrogen receptor 1 variant 4 (NM_001302533) RNA. Analysis of the role of SNPs modifying SHP binding sites in function of strain-specific responses to DEHP revealed a DEHP-resistance allele in FVB/N containing an additional FOXA1-3 binding site at rs30973633 and four DEHP-induced beta-defensins (Defb42, Defb30, Defb47 and Defb48). A DEHP-susceptibility allele in C57BL/6J contained five SNPs (rs28279710, rs32977910, rs46648903, rs46677594 and rs48287999) affecting SHP and six genes (Svs2, Svs3b, Svs4, Svs3a, Svs6 and Svs5) epigenetically silenced by DEHP. Finally, targeted experiments confirmed increased methylation in the Svs3ab promoter with decreased SEMG2 persisting across generations, providing a molecular explanation for the transgenerational sperm velocity decrease found in C57BL/6J after DEHP exposure. We conclude that the existence of SNP-dependent mechanisms in FVB/N inbred mice may confer resistance to transgenerational endocrine disruption.
Collapse
|
34
|
Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest 2019; 129:1818-1826. [PMID: 31042159 DOI: 10.1172/jci125755] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Androgens and estrogens are known to be critical regulators of mammalian physiology and development. While these two classes of steroids share similar structures (in general, estrogens are derived from androgens via the enzyme aromatase), they subserve markedly different functions via their specific receptors. In the past, estrogens such as estradiol were thought to be most important in the regulation of female biology, while androgens such as testosterone and dihydrotestosterone were believed to primarily modulate development and physiology in males. However, the emergence of patients with deficiencies in androgen or estrogen hormone synthesis or actions, as well as the development of animal models that specifically target androgen- or estrogen-mediated signaling pathways, have revealed that estrogens and androgens regulate critical biological and pathological processes in both males and females. In fact, the concept of "male" and "female" hormones is an oversimplification of a complex developmental and biological network of steroid actions that directly impacts many organs. In this Review, we will discuss important roles of estrogens in males and androgens in females.
Collapse
Affiliation(s)
- Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Ellis R Levin
- Departments of Medicine and Biochemistry, UCI, Irvine, California, USA.,Division of Endocrinology, UCI and United States Department of Veterans Affairs Medical Center, Long Beach, California, USA
| |
Collapse
|
35
|
Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A 2019; 116:3584-3593. [PMID: 30659149 DOI: 10.1073/pnas.1817018116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cilia are cell-surface, microtubule-based organelles that project into extracellular space. Motile cilia are conserved throughout eukaryotes, and their beat induces the flow of fluid, relative to cell surfaces. In mammals, the coordinated beat of motile cilia provides highly specialized functions associated with the movement of luminal contents, as seen with metachronal waves transporting mucus in the respiratory tract. Motile cilia are also present in the male and female reproductive tracts. In the female, wave-like motions of oviductal cilia transport oocytes and embryos toward the uterus. A similar function has been assumed for motile cilia in efferent ductules of the male-i.e., to transport immotile sperm from rete testis into the epididymis. However, we report here that efferent ductal cilia in the male do not display a uniform wave-like beat to transport sperm solely in one direction, but rather exert a centripetal force on luminal fluids through whip-like beating with continual changes in direction, generating turbulence, which maintains immotile spermatozoa in suspension within the lumen. Genetic ablation of two miRNA clusters (miR-34b/c and -449a/b/c) led to failure in multiciliogenesis in murine efferent ductules due to dysregulation of numerous genes, and this mouse model allowed us to demonstrate that loss of efferent duct motile cilia causes sperm aggregation and agglutination, luminal obstruction, and sperm granulomas, which, in turn, induce back-pressure atrophy of the testis and ultimately male infertility.
Collapse
|
36
|
Wang J, Liu Q, Qi H, Wang Y, Gao Q, Gao F, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, P450arom and estrogen receptors in the epididymis of the wild ground squirrel (Citellus dauricus Brandt). Gen Comp Endocrinol 2019; 270:131-138. [PMID: 30539793 DOI: 10.1016/j.ygcen.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/08/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the seasonal expressions of androgen receptor (AR), estrogen receptors alpha and beta (ERα and ERβ) and aromatase cytochrome P450 (P450arom) in the epididymis of the wild ground squirrel. Histologically, the epididymis was with larger duct diameter and cell population during the breeding season. AR was presented in the peritubular smooth muscle cells and epithelial cells in the whole epididymis with stronger staining in the breeding period. P450arom was intensely localized in epithelial cells and spermatozoa during the breeding season, absent in the non-breeding season and moderately stained in pre-hibernation. During the breeding season, ERα was intensely expressed in epithelial cytoplasm and/or nucleus, whereas in the non-breeding season and pre-hibernation, weaker staining signal was found in nucleus of epithelial cells. ERβ was absent in the entire annual cycle by immunohistochemical and Real-time PCR detection. The mRNA levels of AR, P450arom and ERα were higher in the epididymis of the breeding season when compared to those of the non-breeding season and pre-hibernation. Taken together, these results suggest that epididymis of the wild ground squirrel is a primary target for androgen and estrogen, and the expression of P450arom represents that epididymis may be a potential source of estrogen.
Collapse
Affiliation(s)
- Junjie Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qian Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hongyu Qi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiong Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fuli Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
37
|
Davis K, Pearl CA. Effects of Estrogen Treatment on Aging in the Rat Epididymis. Anat Rec (Hoboken) 2018; 302:1447-1457. [PMID: 30365876 DOI: 10.1002/ar.24004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022]
Abstract
Previous studies from our laboratory demonstrated that estrogen signaling in the testis contributes to maintaining spermatogenesis in adult rats, and that estrogen treatment attenuated the age-associated decline in sperm production. The purpose of this study was to determine if epididymal function is also altered with age, and what effects estrogen treatment may have on the epididymis during aging. We compared untreated rats at 3 and 15 months of age to 18-month-old vehicle-treated and estrogen treated rats. In all four groups, tubule and lumen diameter of the cauda was significantly larger than more proximal regions of the epididymis. In the 3-, 15-, and 18-month-old treated animals, the epithelial cell height of the cauda was significantly shorter than that of more proximal regions. The caput cell height was shorter at 18 months compared to 3 months but this was not seen in estrogen treated animals. Thus, estrogen appears able to prevent some age related changes in epididymal morphology. Sperm transit time through the distal cauda was significantly delayed with aging. Estrogen treatment prevented this delay, indicating that sperm transit through the epididymis is an estrogen regulated function. Differences in estradiol and testosterone concentrations were observed between 3- and 15-month-old animals, but no further differences were noted between treated or untreated animals at 18 months. Interestingly, expression of androgen receptor and estrogen receptor alpha were similar between ages and treatments. Collectively, these results suggest epididymal morphology and function are affected by aging and estrogen treatment. Anat Rec, 302:1447-1457, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kathryn Davis
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan
| | - Christopher A Pearl
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan
| |
Collapse
|
38
|
Bao J, Perez CJ, Kim J, Zhang H, Murphy CJ, Hamidi T, Jaubert J, Platt CD, Chou J, Deng M, Zhou MH, Huang Y, Gaitán-Peñas H, Guénet JL, Lin K, Lu Y, Chen T, Bedford MT, Dent SY, Richburg JH, Estévez R, Pan HL, Geha RS, Shi Q, Benavides F. Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight 2018; 3:99767. [PMID: 30135305 DOI: 10.1172/jci.insight.99767] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Huan Zhang
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Caitlin J Murphy
- The University of Texas at Austin, College of Pharmacy, Austin, Texas, USA
| | - Tewfik Hamidi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jean Jaubert
- Unité de Génétique de la Souris, Institut Pasteur, Paris, France
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Héctor Gaitán-Peñas
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,U-750, CIBERER, ISCIII, Barcelona, Spain
| | | | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sharon Yr Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John H Richburg
- The University of Texas at Austin, College of Pharmacy, Austin, Texas, USA
| | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,U-750, CIBERER, ISCIII, Barcelona, Spain
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Qinghua Shi
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
39
|
Lück JC, Puchkov D, Ullrich F, Jentsch TJ. LRRC8/VRAC anion channels are required for late stages of spermatid development in mice. J Biol Chem 2018; 293:11796-11808. [PMID: 29880644 PMCID: PMC6066314 DOI: 10.1074/jbc.ra118.003853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is a highly complex developmental process that occurs primarily in seminiferous tubules of the testes and requires additional maturation steps in the epididymis and beyond. Mutations in many different genes can lead to defective spermatozoa and hence to male infertility. Some of these genes encode for ion channels and transporters that play roles in various processes such as cellular ion homeostasis, signal transduction, sperm motility, and the acrosome reaction. Here we show that germ cell–specific, but not Sertoli cell–specific, disruption of Lrrc8a leads to abnormal sperm and male infertility in mice. LRRC8A (leucine-rich repeat containing 8A) is the only obligatory subunit of heteromeric volume-regulated anion channels (VRACs). Its ablation severely compromises cell volume regulation by completely abolishing the transport of anions and osmolytes through VRACs. Consistent with impaired volume regulation, the cytoplasm of late spermatids appeared swollen. These cells failed to properly reduce their cytoplasm during further development into spermatozoa and later displayed severely disorganized mitochondrial sheaths in the midpiece region, as well as angulated or coiled flagella. These changes, which progressed in severity on the way to the epididymis, resulted in dramatically reduced sperm motility. Our work shows that VRAC, probably through its role in cell volume regulation, is required in a cell-autonomous manner for proper sperm development and explains the male infertility of Lrrc8a−/− mice and the spontaneous mouse mutant ébouriffé.
Collapse
Affiliation(s)
- Jennifer C Lück
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,the Graduate Program of the Freie Universität Berlin, 14195 Berlin, Germany, and
| | - Dmytro Puchkov
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany
| | - Florian Ullrich
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany, .,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,the Neurocure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
40
|
Pilsner JR, Shershebnev A, Medvedeva YA, Suvorov A, Wu H, Goltsov A, Loukianov E, Andreeva T, Gusev F, Manakhov A, Smigulina L, Logacheva M, Shtratnikova V, Kuznetsova I, Speranskiy-Podobed P, Burns JS, Williams PL, Korrick S, Lee MM, Rogaev E, Hauser R, Sergeyev O. Peripubertal serum dioxin concentrations and subsequent sperm methylome profiles of young Russian adults. Reprod Toxicol 2018; 78:40-49. [PMID: 29550351 PMCID: PMC6130911 DOI: 10.1016/j.reprotox.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND The association of exposure to endocrine disrupting chemicals in the peripubertal period with subsequent sperm DNA methylation is unknown. OBJECTIVE We examined the association of peripubertal serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations with whole-genome bisulfite sequencing (WGBS) of sperm collected in young adulthood. METHODS The Russian Children's Study is a prospective cohort of 516 boys who were enrolled at 8-9 years of age and provided semen samples at 18-19 years of age. WGBS of sperm was conducted to identify differentially methylated regions (DMR) between highest (n = 4) and lowest (n = 4) peripubertal TCDD groups. RESULTS We found 52 DMRs that distinguished lowest and highest peripubertal serum TCDD concentrations. One of the top scoring networks, "Cellular Assembly and Organization, Cellular Function and Maintenance, Carbohydrate Metabolism", identified estrogen receptor alpha as its central regulator. CONCLUSION Findings from our limited sample size suggest that peripubertal environmental exposures are associated with sperm DNA methylation in young adults.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Alex Shershebnev
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, Bld. 1, 117312, Moscow, Russia; Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Andrey Goltsov
- Department of Molecular Genetics, Research Center for Obstetrics, Gynecology and Perinatology, 4 Oparin St., 117997, Moscow, Russia; Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Evgeny Loukianov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Tatiana Andreeva
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Andrey Manakhov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Luidmila Smigulina
- Chapaevsk Medical Association, 3a Meditsinskaya st., 446100, Chapaevsk, Samara region, Russia.
| | - Maria Logacheva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143028, Moscow, Russia.
| | - Victoria Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143028, Moscow, Russia.
| | - Irina Kuznetsova
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Peter Speranskiy-Podobed
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia.
| | - Jane S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Susan Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Mary M Lee
- Pediatric Endocrine Division, Department of Pediatrics, University of Massachusetts Medical School, 55 N Lake Avenue, Worcester, MA, 01655, USA.
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia; Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, 01604 Worcester, MA, USA.
| | - Russ Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Oleg Sergeyev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991, Moscow, Russia; Chapaevsk Medical Association, 3a Meditsinskaya st., 446100, Chapaevsk, Samara region, Russia; A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory, House 1, Building 40, 119992, Moscow, Russia.
| |
Collapse
|
41
|
Wang YY, Chiang HS, Cheng CY, Wu YN, Lin YC, Liu HC, Tsai WK, Chen YL, Lin YH. SLC9A3 Protein Is Critical for Acrosomal Formation in Postmeiotic Male Germ Cells. Int J Mol Sci 2017; 19:ijms19010103. [PMID: 29286340 PMCID: PMC5796053 DOI: 10.3390/ijms19010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
Solute carrier family 9 isoform 3 (SLC9A3), a Na+/H+ exchanger, regulates the transepithelial absorption of Na+ and water and is primarily expressed on the apical membranes of the intestinal epithelium, renal proximal tubule, epididymis, and vas deferens. Loss of the Slc9a3 allele in mice enhances intestinal fluid and causes diarrhoea as a consequence of diminished Na+ and HCO3− absorption. Hence, the loss also causes male infertility and reveals the abnormal dilated lumen of the rete testis and calcification in efferent ductules. However, whether loss of Slc9a3 alleles also disrupts mammalian spermatogenesis remains unknown. First, through immunoblotting, we determined that SLC9A3 is highly expressed in the murine testis compared with the small intestine, epididymis, and vas deferens. During murine spermatogenesis, SLC9A3 is specifically expressed in the acrosome region of round, elongating, and elongated spermatids through immunostaining. Furthermore, SLC9A3 signals are enriched in the acrosome of mature sperm isolated from the vas deferens. In Slc9a3 knockout (KO) mice, compared with the same-aged controls, the number of spermatids on the testicular section of the mice progressively worsened in mice aged 20, 35, and 60 days. Sperm isolated from the epididymis of Slc9a3 KO mice revealed severe acrosomal defects. Our data indicated that SLC9A3 has a vital role in acrosomal formation during spermiogenesis.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Chiao-Yin Cheng
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yung-Chih Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Hsuan-Che Liu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Wei-Kung Tsai
- Department of Urology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Yen-Lin Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Pathology, Cardinal Tien Hospital, New Taipei City 242, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
42
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
43
|
Lozan E, Shinkaruk S, Al Abed SA, Lamothe V, Potier M, Marighetto A, Schmitter JM, Bennetau-Pelissero C, Buré C. Derivatization-free LC-MS/MS method for estrogen quantification in mouse brain highlights a local metabolic regulation after oral versus subcutaneous administration. Anal Bioanal Chem 2017; 409:5279-5289. [DOI: 10.1007/s00216-017-0473-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
|
44
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Nanjappa MK, Mesa AM, Tevosian SG, de Armas L, Hess RA, Bagchi IC, Cooke PS. Membrane estrogen receptor 1 is required for normal reproduction in male and female mice. JOURNAL OF ENDOCRINOLOGY AND REPRODUCTION : JER 2017; 21:1-14. [PMID: 34321782 PMCID: PMC8315114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Steroid hormones, acting through their cognate nuclear receptors, are critical for many reproductive and non-reproductive functions. Over the past two decades, it has become increasingly clear that in addition to cytoplasmic/nuclear steroid receptors that alter gene transcription when liganded, a small fraction of cellular steroid receptors are localized to the cell membranes, where they mediate rapid steroid hormone effects. 17β-Estradiol (E2), a key steroid hormone for both male and female reproduction, acts predominately through its main receptor, estrogen receptor 1 (ESR1). Most ESR1 is nuclear; however, 5-10% of ESR1 is localized to the cell membrane after being palmitoylated at cysteine 451 in mice. This review discusses reproductive phenotypes of a newly-developed mouse model with a C451A point mutation that precludes membrane targeting of ESR1. This transgenic mouse, termed the nuclear-only ESR1 (NOER) mouse, shows extensive male and female reproductive abnormalities and infertility despite normally functional nuclear ESR1 (nESR1). These results provide the first in vivo evidence that membrane-initiated E2/ESR1 signaling is required for normal male and female reproductive functions and fertility. Signaling mechanisms for membrane ESR1 (mESR1), as well as how mESR1 works with nESR1 to mediate estrogen effects, are still being established. We discuss some possible mechanisms by which mESR1 might facilitate nESR1 signaling, as well as the emerging evidence that mESR1 might be a major mediator of epigenetic effects of estrogens, which are potentially linked to various adult-onset pathologies.
Collapse
Affiliation(s)
| | - Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Laura de Armas
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
46
|
Zanatta AP, Brouard V, Gautier C, Goncalves R, Bouraïma-Lelong H, Mena Barreto Silva FR, Delalande C. Interactions between oestrogen and 1α,25(OH) 2-vitamin D 3 signalling and their roles in spermatogenesis and spermatozoa functions. Basic Clin Androl 2017; 27:10. [PMID: 28491323 PMCID: PMC5421336 DOI: 10.1186/s12610-017-0053-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023] Open
Abstract
Oestrogens and 1α,25(OH)2-vitamin D3 (1,25-D3) are steroids that can provide effects by binding to their receptors localised in the cytoplasm and in the nucleus or the plasma membrane respectively inducing genomic and non-genomic effects. As confirmed notably by invalidation of the genes, coding for their receptors as tested with mice with in vivo and in vitro treatments, oestrogens and 1,25-D3 are regulators of spermatogenesis. Moreover, some functions of ejaculated spermatozoa as viability, DNA integrity, motility, capacitation, acrosome reaction and fertilizing ability are targets for these hormones. The studies conducted on their mechanisms of action, even though not completely elicited, have allowed the demonstration of putative interactions between their signalling pathways that are worth examining more closely. The present review focuses on the elements regulated by oestrogens and 1,25-D3 in the testis and spermatozoa as well as the interactions between the signalling pathways of both hormones.
Collapse
Affiliation(s)
- Ana Paula Zanatta
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | - Vanessa Brouard
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Camille Gautier
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France
| | - Renata Goncalves
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Biochemistry Department, Laboratory of Hormones & Signal Transduction, UFSC, Florianópolis, Brazil
| | | | | | - Christelle Delalande
- INRA, OeReCa, Normandie University, UNICAEN, 14000 Caen, France.,Laboratoire Œstrogènes, Reproduction, Cancer (OeReCa), EA 2608 USC INRA1377, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032 CAEN cedex 5, France
| |
Collapse
|
47
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
48
|
Gautier C, Barrier-Battut I, Guénon I, Goux D, Delalande C, Bouraïma-Lelong H. Implication of the estrogen receptors GPER, ESR1, ESR2 in post-testicular maturations of equine spermatozoa. Gen Comp Endocrinol 2016; 233:100-108. [PMID: 27222348 DOI: 10.1016/j.ygcen.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
Abstract
Estrogen receptors ESR1, ESR2 and GPER are present on mature ejaculated horse spermatozoa, suggesting these cells as putative targets for estrogens. Indeed, spermatozoa are exposed to high level of estrogens during the transit in the male and female genital tracts but their roles are not investigated. So, we evaluated in vitro the role of 17β-estradiol during post-testicular maturations: regulation of motility, capacitation and acrosome reaction. Moreover according to the pseudo-seasonal breeder status of the stallion, we analyzed the putative seasonal variations in the presence of ESRs in spermatozoa. We showed that ESRs are more present on stallion sperm during the breeding season. We showed that capacitation and acrosome reaction are independent of estradiol action in horse. Estradiol can weakly modulate the motility and this effect is strictly associated with GPER and not with ESR1 and ESR2. The subcellular localization of GPER in the neck on stallion sperm is coherent with this effect. It seems that estrogens are not major regulators of sperm maturations associated to mare genital tract, so they could act during the epididymal maturations.
Collapse
Affiliation(s)
- Camille Gautier
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | | | - Isabelle Guénon
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | - Didier Goux
- Normandie Univ, France; UNICAEN, CMABIO, F-14032 Caen, France
| | - Christelle Delalande
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France.
| |
Collapse
|
49
|
Nanjappa MK, Hess RA, Medrano TI, Locker SH, Levin ER, Cooke PS. Membrane-Localized Estrogen Receptor 1 Is Required for Normal Male Reproductive Development and Function in Mice. Endocrinology 2016; 157:2909-19. [PMID: 27145009 PMCID: PMC4929544 DOI: 10.1210/en.2016-1085] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Estrogen receptor 1 (ESR1) mediates major reproductive functions of 17β-estradiol (E2). Male Esr1 knockout (Esr1KO) mice are infertile due to efferent ductule and epididymal abnormalities. The majority of ESR1 is nuclear/cytoplasmic; however, a small fraction is palmitoylated at cysteine 451 in mice and localized to cell membranes, in which it mediates rapid E2 actions. This study used an Esr1 knock-in mouse containing an altered palmitoylation site (C451A) in ESR1 that prevented cell membrane localization, although nuclear ESR1 was expressed. These nuclear-only estrogen receptor 1 (NOER) mice were used to determine the roles of membrane ESR1 in males. Epididymal sperm motility was reduced 85% in 8-month-old NOER mice compared with wild-type controls. The NOER mice had decreased epididymal sperm viability and greater than 95% of sperm had abnormalities, including coiled midpieces and tails, absent heads, and folded tails; this was comparable to 4-month Esr1KO males. At 8 months, daily sperm production in NOER males was reduced 62% compared with controls. The NOER mice had histological changes in the rete testes, efferent ductules, and seminiferous tubules that were comparable with those previously observed in Esr1KO males. Serum T was increased in NOER males, but FSH, LH, and E2 were unchanged. Critically, NOER males were initially subfertile, becoming infertile with advancing age. These findings identify a previously unknown role for membrane ESR1 in the development of normal sperm and providing an adequate environment for spermatogenesis.
Collapse
Affiliation(s)
- Manjunatha K Nanjappa
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| | - Rex A Hess
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| | - Theresa I Medrano
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| | - Seth H Locker
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| | - Ellis R Levin
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| | - Paul S Cooke
- Department of Physiological Sciences (M.K.N., T.I.M., S.H.L., P.S.C.), University of Florida, Gainesville, Florida 32610; Department of Comparative Biosciences (R.A.H.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Endocrinology (E.R.L.), Department of Medicine, University of California, Irvine, Irvine, California 92697; and Department of Veterans Affairs Medical Center (E.R.L.), Long Beach, Long Beach, California 90822
| |
Collapse
|
50
|
Cavalcanti FN, Lucas TFG, Lazari MFM, Porto CS. Estrogen receptor ESR1 mediates activation of ERK1/2, CREB, and ELK1 in the corpus of the epididymis. J Mol Endocrinol 2015; 54:339-49. [PMID: 26069273 DOI: 10.1530/jme-15-0086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Expression of the estrogen receptor ESR1 is higher in the corpus than it is in the initial segment/caput and cauda of the epididymis. ESR1 immunostaining in the corpus has been localized not only in the nuclei but also in the cytoplasm and apical membrane, which indicates that ESR1 plays a role in membrane-initiated signaling. The present study investigated whether ESR1 mediates the activation of rapid signaling pathways by estradiol (E2) in the epididymis. We investigated the effect of E2 and the ESR1-selective agonist (4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) on the activation of extracellular signal-regulated protein kinases (ERK1/2), CREB protein, and ETS oncogene-related protein (ELK1). Treatment with PPT did not affect ERK1/2 phosphorylation in the cauda, but it rapidly increased ERK1/2 phosphorylation in the initial segment/caput and corpus of the epididymis. PPT also activated CREB and ELK1 in the corpus of the epididymis. The PPT-induced phosphorylation of ERK1/2, CREB, and ELK1 was blocked by the ESR1-selective antagonist MPP and by pretreatment with a non-receptor tyrosine kinase SRC inhibitor, an EGFR kinase inhibitor, an MEK1/2 inhibitor, and a phosphatidylinositol-3-kinase inhibitor. In conclusion, these results indicate that the corpus, which is a region with high expression of the estrogen receptor ESR1, is a major target in the epididymis for the activation of rapid signaling by E2. The sequence of events that follow E2 interaction with ESR1 includes the SRC-mediated transactivation of EGFR and the phosphorylation of ERK1/2, CREB, and ELK1. This rapid estrogen signaling may modulate gene expression in the corpus of the epididymis, and it may play a role in the dynamic microenvironment of the epididymal lumen.
Collapse
Affiliation(s)
- Fernanda N Cavalcanti
- Section of Experimental EndocrinologyDepartment of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, São Paulo 04044-020, Brazil
| | - Thais F G Lucas
- Section of Experimental EndocrinologyDepartment of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, São Paulo 04044-020, Brazil
| | - Maria Fatima M Lazari
- Section of Experimental EndocrinologyDepartment of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, São Paulo 04044-020, Brazil
| | - Catarina S Porto
- Section of Experimental EndocrinologyDepartment of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|