1
|
Awda BJ, Mahoney IV, Pettitt M, Imran M, Katselis GS, Buhr MM. Existence and importance of Na +K +-ATPase in the plasma membrane of boar spermatozoa. Can J Physiol Pharmacol 2024; 102:254-269. [PMID: 38029410 DOI: 10.1139/cjpp-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Sodium-potassium-ATPase (Na+K+-ATPase), a target to treat congestive heart failure, is the only known receptor for cardiac glycosides implicated in intracellular signaling and additionally functions enzymatically in ion transport. Spermatozoa need transmembrane ion transport and signaling to fertilize, and Na+K+-ATPase is identified here for the first time in boar spermatozoa. Head plasma membrane (HPM) isolated from boar spermatozoa was confirmed pure by marker enzymes acid and alkaline phosphatase (218 ± 23% and 245 ± 38% enrichment, respectively, versus whole spermatozoa). Western immunoblotting detected α and β subunits (isoforms α1, α3, β1, β2, and β3) in different concentrations in whole spermatozoa and HPM. Immunofluorescence of intact sperm only detected α3 on the post-equatorial exterior membrane; methanol-permeabilized sperm also had α3 post-equatorially and other isoforms on the acrosomal ridge and cap. Mass spectrometry confirmed the presence of all isoforms in HPM. Incubating boar sperm in capacitating media to induce the physiological changes preceding fertilization significantly increased the percentage of capacitated sperm compared to 0 h control (33.0 ± 2.6% vs. 19.2 ± 2.6% capacitated sperm, respectively; p = 0.014) and altered the β2 immunofluorescence pattern. These results demonstrate the presence of Na+K+-ATPase in boar sperm HPM and that it changes during capacitation.
Collapse
Affiliation(s)
- Basim J Awda
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ian V Mahoney
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
| | - Murray Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Muhammad Imran
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
2
|
Najafi A, Mohammadi H, Sharifi SD, Rahimi A. Apigenin supplementation substantially improves rooster sperm freezability and post-thaw function. Sci Rep 2024; 14:4527. [PMID: 38402367 PMCID: PMC10894267 DOI: 10.1038/s41598-024-55057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
This pioneering research investigated apigenin potential to augment rooster sperm cryosurvival in an extender model. Apigenin is a natural antioxidant flavonoid showing promise for improved post-thaw sperm function. However, its effects on avian semen cryopreservation remain unexplored. This first study supplemented rooster sperm Lake extender with 0, 50, 100, 200, 400 μmol/L apigenin to determine the optimal concentrations for post-thaw quality. Supplementation with 100 μmol/L apigenin resulted in significant enhancements in total motility (from 41.5% up to 71.5%), progressive motility (18.1% to 29.1%) (p < 0.05), membrane integrity (40% to 68%), mitochondrial function (p < 0.001), viability (37% to 62%) and total antioxidant capacity (p < 0.001) compared to the control. It also substantially reduced percentages of abnormal morphology, reactive oxygen species and apoptosis (p < 0.001). Although 200 μmol/L apigenin significantly enhanced some attributes, effects were markedly lower than 100 μmol/L. Higher doses did not improve cryoprotective parameters. This indicates 100 μmol/L as the optimal apigenin concentration. This represents the first report of apigenin protecting rooster sperm from cryodamage. The natural antioxidant improved post-thaw sperm quality, likely by suppressing oxidative stress and apoptosis. Apigenin shows promise for enhancing rooster sperm cryosurvival.
Collapse
Affiliation(s)
- Abouzar Najafi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Amin Rahimi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
- Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran
| |
Collapse
|
3
|
Tiwari S, Rajamanickam G, Unnikrishnan V, Ojaghi M, Kastelic JP, Thundathil JC. Testis-Specific Isoform of Na +-K + ATPase and Regulation of Bull Fertility. Int J Mol Sci 2022; 23:7936. [PMID: 35887284 PMCID: PMC9317330 DOI: 10.3390/ijms23147936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
An advanced understanding of sperm function is relevant for evidence-based male fertility prediction and addressing male infertility. A standard breeding soundness evaluation (BSE) merely identifies gross abnormalities in bulls, whereas selection based on single nucleotide polymorphisms and genomic estimated breeding values overlooks sub-microscopic differences in sperm. Molecular tools are important for validating genomic selection and advancing knowledge on the regulation of male fertility at an interdisciplinary level. Therefore, research in this field is now focused on developing a combination of in vitro sperm function tests and identifying biomarkers such as sperm proteins with critical roles in fertility. The Na+-K+ ATPase is a ubiquitous transmembrane protein and its α4 isoform (ATP1A4) is exclusively expressed in germ cells and sperm. Furthermore, ATP1A4 is essential for male fertility, as it interacts with signaling molecules in both raft and non-raft fractions of the sperm plasma membrane to regulate capacitation-associated signaling, hyperactivation, sperm-oocyte interactions, and activation. Interestingly, ATP1A4 activity and expression increase during capacitation, challenging the widely accepted dogma of sperm translational quiescence. This review discusses the literature on the role of ATP1A4 during capacitation and fertilization events and its prospective use in improving male fertility prediction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob C. Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.T.); (G.R.); (V.U.); (M.O.); (J.P.K.)
| |
Collapse
|
4
|
Wang Y, Yuan X, Ali MA, Qin Z, Zhang Y, Zeng C. piR-121380 Is Involved in Cryo-Capacitation and Regulates Post-Thawed Boar Sperm Quality Through Phosphorylation of ERK2 via Targeting PTPN7. Front Cell Dev Biol 2022; 9:792994. [PMID: 35155446 PMCID: PMC8826432 DOI: 10.3389/fcell.2021.792994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Cryopreservation induces capacitation-like (cryo-capacitation) changes, similar to natural capacitation, and affects the fertility potential of post-thawed sperm. The molecular mechanism of sperm cryo-capacitation during cryopreservation remains unknown. PIWI-interacting RNAs (piRNAs) have been reported to be involved in cryo-capacitation of post-thawed sperm and regulation of sperm motility, capacitation, and chemotaxis. In this study, protein tyrosine phosphatase nonreceptor type 7 (PTPN7) was positively targeted by piR-121380 after a dual luciferase assay. The mRNA expression of PTPN7 and piR-121380 was significantly decreased (p < 0.01); however, PTPN7 protein was significantly increased (p < 0.01) in post-thawed boar sperm. Furthermore, E1RK1/2 phosphorylation was reduced during cryopreservation. Six hours after transfection with piR-121380 mimic and inhibitor, the phosphorylation of ERK2 was significantly increased and decreased (p < 0.01), respectively. Furthermore, the highest and lowest total sperm motility, forward motility, and capacitation rate were observed after piR-121380 mimic and inhibitor treatments, respectively. The concentration of intracellular calcium ([Ca2+]i) showed no significant difference after transfection with either piR-121380 mimic or inhibitor at 1, 3, and 6 h. In conclusion, we demonstrated that piR-121380 modulates ERK2 phosphorylation by targeting PTPN7, which induces sperm cryo-capacitation, and eventually affects the motility and fertility potential of post-thawed sperm.
Collapse
Affiliation(s)
- Yihan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Malik Ahsan Ali
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore, Pakistan
| | - Ziyue Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Changjun Zeng,
| |
Collapse
|
5
|
Sajeevadathan M, Pettitt MJ, Buhr MM. Are isoforms of capacitating Na + K + -ATPase localized to sperm head rafts? Mol Reprod Dev 2021; 88:731-743. [PMID: 34658111 DOI: 10.1002/mrd.23543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
Capacitation begins in the sperm head plasma membrane (HPM). Membrane rafts could house signaling molecules, but although these specialized microdomains have been microscopically visualized in sperm heads, rafts have been isolated for study only from homogenized whole sperm or tails, never purified HPM. Sodium/potassium ATPase (Na+ K+ -ATPase) is a membrane-bound signaling protein that induces capacitation in bull sperm in response to the steroid hormone ouabain, and its subunit isoforms α1, α3, β1, β2, and β3 are known in HPM. This study hypothesized that rafts exist in the HPM of bull sperm, with Na+ K+ -ATPase subunit isoforms preferentially localized there. Western immunoblotting (WB) of HPM from fresh, uncapacitated bull sperm (n = 7 ejaculates), and detergent-resistant membranes isolated by density gradient centrifugation from this HPM, contained the raft-marker protein Flotillin-1; the non-raft fraction did not. HPM, raft, and non-raft contained all known Na+ K+ -ATPase isoforms including, for the first time, the previously unknown α2 isoform. Quantification (ImageQuant Software) found α3 and β1 were relatively dominant isoforms in the HPM raft. WB profiles of raft isoforms differed significantly from HPM and non-raft profiles, with unique banding patterns and amounts, hinting that the capacitation signaling in the now-identified HPM rafts may depend on unique sequences within the isoform structure.
Collapse
Affiliation(s)
- Mrudhula Sajeevadathan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Murray J Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Prairie Swine Centre, Saskatoon, Saskatchewan, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Ge C, Feng N, Hu C, Tang Y, Li X, Wang X. Transwell isolation and difference analysis of capacitated boar sperm proteins based on the iTRAQ technique. Theriogenology 2021; 168:13-24. [PMID: 33839467 DOI: 10.1016/j.theriogenology.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
During capacitation, proteins in boar sperm are released to maintain the stability of their own state and membrane structure. No studies have analyzed the differences between retained proteins and released proteins during sperm capacitation. In the present study, a Transwell chamber and polycarbonate membrane were used to separate the proteins of boar sperm and their released proteins. Isotopically labeled relative and absolute quantification (iTRAQ) was used to analyze each compartment protein. A total of 108 differential proteins were identified in the upper and lower chambers of the Transwell, among which 27 were significantly upregulated (p-value≤0.05 and |log2 (fold change)|≥1) and 81 were significantly downregulated (p-value≤0.05 and |log2 (fold change)|≤1). These differential proteins were mainly involved in biological processes (e.g., the regulation of cysteine peptidase activity, transmembrane transportation, ion transportation and ATP synthesis) and major signaling pathways (e.g., glutathione/galactose metabolism, cellular adhesion and PI3K-Akt), and most of them interacted with each other to some extent. In conclusion, retained proteins and released proteins of capacitated sperm were effectively separated using a Transwell chamber, and differential proteins were successfully identified from among the proteins. Bioinformatics analysis suggested that these differential proteins affect sperm capacitation mainly by adjusting sperm energy metabolism, motion characteristics and acrosome membrane status.
Collapse
Affiliation(s)
- Chenling Ge
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Ni Feng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Yinsheng Tang
- Guangxi Work Station of Livestock & Poultry Breed Improvement, Nanning, 530001, China.
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Zhang H, Liu H, Kataoka S, Kinukawa M, Uchiyama K, Kambe J, Watanabe G, Jin W, Nagaoka K. L-amino acid oxidase 1 in sperm is associated with reproductive performance in male mice and bulls. Biol Reprod 2021; 104:1154-1161. [PMID: 33590844 DOI: 10.1093/biolre/ioab024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 11/14/2022] Open
Abstract
Sperm quality is an important indicator of male fertility, and a suitable biomarker enables the selection of high-quality spermatozoa. We previously found that L-amino acid oxidase encoded by the L-amino acid oxidase 1 (Lao1) gene exerts biological roles in the mammary gland and brain by converting specific L-amino acids into keto acids, ammonia, and hydrogen peroxide (H2O2). Here, we describe the role of Lao1 in male reproduction. Lao1-deficient (Lao1-/-) male mice generated fewer pregnant embryos and pups as well as lower ratios of fertilized oocytes and even ovulated number was not different, suggesting that male subfertility caused the smaller litters. We found that LAO1 expressed in acrosomes is associated with high malformation ratios and low viability of Lao1-/- sperm. Wild-type (WT) sperm produced more H2O2 than Lao1-/- sperm, and 10 μM H2O2 restored knockout (KO) sperm viability in vitro. In addition, the sperm ratio of induced acrosome reaction was higher in WT than in Lao1-/- sperm incubated with the calcium ionophore A23187. Moreover, LAO1 expression was abundant in bovine sperm with high fertilization ratios. We concluded that LAO1 localized in the sperm acrosome influences sperm viability and morphology as well as the acrosome reaction, and that LAO1-deficient sperm might cause male subfertility. Thus, LAO1 might serve as a novel marker for selecting high-quality spermatozoa, especially for livestock reproduction.
Collapse
Affiliation(s)
- Haolin Zhang
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Laboratory of Animal Physiology, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hong Liu
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sachi Kataoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Jun Kambe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wanzhu Jin
- Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Saha SR, Sakase M, Fukushima M, Harayama H. Effects of digoxin on full-type hyperactivation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades. Theriogenology 2020; 154:100-109. [PMID: 32540510 DOI: 10.1016/j.theriogenology.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous researches of our laboratory reported that addition of cAMP analog cBiMPS and protein phosphatase inhibitor calyculin A (stimulators of cAMP signaling cascades) improved the capacity of incubation medium to induce full-type hyperactivation in bovine ejaculated spermatozoa. However, this modified medium was valid only for samples with relatively good survivability for incubation with stimulators of cAMP signaling cascades. Thus, it is necessary to make further modified medium for evaluation of potentials to exhibit full-type hyperactivation in bovine sperm samples with relatively lower survivability. Na+/K+-ATPase is an integral membrane protein and involved with the regulation of rodent sperm motility. To make further modification of the medium, we examined effects of Na+/K+-ATPase inhibition with digoxin on motility, full-type hyperactivation and protein tyrosine phosphorylation in bovine ejaculated spermatozoa with relatively lower survivability for incubation with stimulators of cAMP signaling cascades and also performed the immunodetection of bovine sperm Na+/K+-ATPase. The addition of Na+/K+-ATPase inhibitor digoxin to the incubation medium containing cBiMPS and calyculin A had the tendency to lessen the decreases in the percentages of motile spermatozoa in all of 12 samples after the incubation for 1-3 h and significantly increased the percentages of full-type hyperactivation in one group of 4 samples (Sample-A1) and another group of 4 samples (Sample-A2) after 1 and 2 h respectively, though it had no significant effects on full-type hyperactivation in the other group of 4 samples (Sample-B). In addition, incubation time-related changes in the sperm protein tyrosine phosphorylation (a good marker for sperm capacitation) were correlated with those in the percentages of full-type hyperactivation in Sample-A1 containing digoxin. Immunodetection showed that Na+/K+-ATPase is present in the middle and principal pieces of the flagella, indicating that Na+/K+-ATPase has possible relations with sperm motility. These results obtained with bull ejaculated spermatozoa with relatively lower survivability indicate that incubation method using digoxin is useful to evaluate potentials of sperm samples to exhibit full-type hyperactivation, that digoxin has effects on suppressing reduction of sperm motility, and that prolonged incubation with digoxin induces reduction of capacitation state which may suppress the maintenance of full-type hyperactivation.
Collapse
Affiliation(s)
- Soma Rani Saha
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Mitsuhiro Sakase
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Moriyuki Fukushima
- Hokubu Agricultural Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Asago, Hyogo, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
9
|
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci 2020; 133:jcs239186. [PMID: 32107290 DOI: 10.1242/jcs.239186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown. Our previous data have shown that MAPK1 (hereafter referred to as ERK2) is activated during the first minutes of capacitation, and inhibition of ERK2 blocked actin polymerization and the acrosome reaction. In this current study, we found that FAK is involved in ERK2 activation - as FAK was phosphorylated at tyrosine residue 925 and bound to Grb2 - and that inhibition of FAK results in a significant decrease of ERK2 activation. We also confirmed the presence of Rho guanine nucleotide exchange factor 2 (ARHGEF2, hereafter referred to as GEF-H1), which is able to associate with RhoA during capacitation. RhoA activation and its participation in actin polymerization were also analyzed. Inhibition of FAK or ERK1/2 impeded GEF-H1 phosphorylation, RhoA activation, and the association between GEF-H1 and RhoA. Finally, we observed the presence of fibronectin on the sperm surface, its role in sperm-sperm interaction as well as participation of β-integrin in the activation of ERK2. Our results show that the signaling pathway downstream of fibronectin, via integrin, FAK, Grb2, MEK1/2, ERK2, GEF-H1 and RhoA regulates the actin polymerization associated with spermatozoa capacitation.
Collapse
Affiliation(s)
- Monica L Salgado-Lucio
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Danelia Ramírez-Ramírez
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Coral Y Jorge-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| |
Collapse
|
10
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Interaction of ouabain and progesterone on induction of bull sperm capacitation. Theriogenology 2019; 126:191-198. [DOI: 10.1016/j.theriogenology.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 12/01/2018] [Indexed: 01/16/2023]
|
12
|
Drevet JR, Aitken RJ. Oxidative Damage to Sperm DNA: Attack and Defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:107-117. [DOI: 10.1007/978-3-030-21664-1_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Han Y, Zhao X, Sun Y, Sui Y, Liu J. Retracted
: Effects of FOSL1 silencing on osteosarcoma cell proliferation, invasion and migration through the ERK/AP‐1 signaling pathway. J Cell Physiol 2018; 234:3598-3612. [DOI: 10.1002/jcp.27048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Han
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| | - Xingyu Zhao
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| | - Yifu Sun
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Beijing China
| | - Yutong Sui
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Beijing China
| | - Jianguo Liu
- Joint Surgery Department No.1 Hospital of Jilin University Changchun China
| |
Collapse
|
14
|
Luna C, Mendoza N, Casao A, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways link capacitation with apoptosis and seminal plasma proteins protect sperm by interfering with both routes†. Biol Reprod 2018; 96:800-815. [PMID: 28379343 DOI: 10.1093/biolre/iox017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38) signaling cascades are involved in triggering apoptosis in somatic cells. Given that spermatozoa are able to undergo apoptosis, we tested the hypothesis that these pathways might be functional in ram spermatozoa as two signal transduction mechanisms that contribute to the modulation of capacitation and apoptosis. Indirect immunofluorescence and western blot analysis evidenced the presence of JNK and p38 in ram spermatozoa. To verify the involvement of these enzymes in sperm physiology, we determined the effect of specific inhibitors of JNK or p38 on in vitro capacitation induced with either cAMP-elevating agents or epidermal growth factor (EGF). Both inhibitions reduced the EGF-induced capacitation with a decrease in the chlortetracycline capacitated-sperm pattern, protein tyrosine phosphorylation, phosphatidylserine externalization, caspase-3 and -7 activation, and the proportion of DNA-damaged spermatozoa. No significant changes were found in the high-cAMP capacitated samples. The addition of 3.4 mg/ml seminal plasma proteins (SPPs) to the EGF-containing samples, either alone or together with each inhibitor, resulted in a decreased proportion of capacitated sperm pattern, protein tyrosine phosphorylation, loss of plasma membrane integrity, and apoptotic alterations. Furthermore, SPPs significantly reduced the phosphorylation level of JNK and p38 MAPK (active forms). These findings show a relationship between capacitation and apoptosis, and represent a step forward in the knowledge of the SPP protective mechanism in spermatozoa.
Collapse
|
15
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL, Hong YQ. Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction. Oncotarget 2017; 8:93878-93898. [PMID: 29212196 PMCID: PMC5706842 DOI: 10.18632/oncotarget.21317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
Juglanin (Jug) is obtained from the crude extract of Polygonum aviculare, exerting suppressive activity against cancer cell progression in vitro and in vivo. Juglanin administration causes apoptosis and reactive oxygen species (ROS) in different types of cells through regulating various signaling pathways. In our study, the effects of juglanin on non-small cell lung cancer were investigated. A significant role of juglanin in suppressing lung cancer growth was observed. Juglanin promoted apoptosis in lung cancer cells through increasing Caspase-3 and poly ADP-ribose polymerase (PARP) cleavage, which is regulated by TNF-related apoptosis-inducing ligand/Death receptors (TRAIL/DRs) relied on p53 activation. Anti-apoptotic members Bcl-2 and Bcl-xl were reduced, and pro-apoptotic members Bax and Bad were enhanced in cells and animals receiving juglanin. Additionally, nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinases (MAPKs) activation were inhibited by juglanin. Further, juglanin improved ROS and induced autophagy. ROS inhibitor N-acetyl-l-cysteine (NAC) reversed apoptosis induced by juglanin in cancer cells. The formation of autophagic vacoules and LC3/autophagy gene7 (ATG7)/Beclin1 (ATG6) over-expression were observed in juglanin-treated cells. Also, juglanin administration to mouse xenograft models inhibited lung cancer progression. Our study demonstrated that juglanin could be a promising candidate against human lung cancer progression.
Collapse
Affiliation(s)
- Liang Chen
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ya-Qiong Xiong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Jing Xu
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ji-Peng Wang
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Zi-Li Meng
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Yong-Qing Hong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| |
Collapse
|
17
|
Gao S, Li C, Chen L, Zhou X. Actions and mechanisms of reactive oxygen species and antioxidative system in semen. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Rahamim Ben-Navi L, Almog T, Yao Z, Seger R, Naor Z. A-Kinase Anchoring Protein 4 (AKAP4) is an ERK1/2 substrate and a switch molecule between cAMP/PKA and PKC/ERK1/2 in human spermatozoa. Sci Rep 2016; 6:37922. [PMID: 27901058 PMCID: PMC5128789 DOI: 10.1038/srep37922] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mammalian spermatozoa undergo capacitation and acrosome reaction in order to fertilize the egg. The PKC-ERK1/2 pathway plays an important role in human spermatozoa motility, capacitation and the acrosome reaction. Here we demonstrate that ERK1/2 phosphorylates proAKAP4 on Thr265 in human spermatozoa in vitro and in vivo. Cyclic AMP (cAMP) had no effect on ERK1/2 activity in human spermatozoa, but stimulated the MAPK in mouse pituitary LβT2 gonadotrope cells. cAMP via PKA attenuates PKC-dependent ERK1/2 activation only in the presence of proAKAP4. St-HT31, which disrupts PKA-regulatory subunit II (PKA-RII) binding to AKAP abrogates the inhibitory effect of cAMP in human spermatozoa and in HEK293T cells expressing proAKAP4. In transfected HEK293T cells, PMA relocated proAKAP4, but not proAKAP4-T265A to the Golgi in an ERK1/2-dependnet manner. Similarly, AKAP4 is localized to the spermatozoa principal piece and is relocated to the mid-piece and the postacrosomal region by PMA. Furthermore, using capacitated sperm we found that cAMP reduced PMA-induced ERK1/2 activation and acrosome reaction. Thus, the physiological role of the negative crosstalk between the cAMP/PKA/AKAP4 and the PKC/ERK1/2 pathways is to regulate capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Liat Rahamim Ben-Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tal Almog
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zhong Yao
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
19
|
Del Olmo E, García-Álvarez O, Maroto-Morales A, Ramón M, Iniesta-Cuerda M, Martinez-Pastor F, Montoro V, Soler AJ, Garde JJ, Fernández-Santos MR. Oestrous sheep serum balances ROS levels to supply in vitro capacitation of ram spermatozoa. Reprod Domest Anim 2016; 51:743-50. [DOI: 10.1111/rda.12741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022]
Affiliation(s)
- E Del Olmo
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
| | - O García-Álvarez
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
- Biomedical Center; Medical Faculty in Pilsen; Pilsen Czech Republic
| | | | - M Ramón
- Regional Center of Animal Selection and Reproduction (CERSYRA) JCCM; Valdepeñas Spain
| | | | - F Martinez-Pastor
- Department of Molecular Biology; Institute for Animal Health and Cattle Development (INDEGSAL); University of León; León Spain
| | - V Montoro
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
| | - AJ Soler
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
| | - JJ Garde
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
| | - MR Fernández-Santos
- SaBio IREC (CSIC - UCLM - JCCM); Albacete Spain
- Faculty of Pharmacy; University of Castilla-La Mancha; Albacete Spain
| |
Collapse
|
20
|
Hurtado de Llera A, Martin-Hidalgo D, Gil M, Garcia-Marin L, Bragado M. New insights into transduction pathways that regulate boar sperm function. Theriogenology 2016; 85:12-20. [DOI: 10.1016/j.theriogenology.2015.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
21
|
Lackey BR, Gray SL. Second messengers, steroids and signaling cascades: Crosstalk in sperm development and function. Gen Comp Endocrinol 2015; 224:294-302. [PMID: 26188217 DOI: 10.1016/j.ygcen.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
Signaling cascades control numerous aspects of sperm physiology, ranging from creation to fertilization. Novel aspects of several kinases and their influence on sperm development will be discussed in the first section and cover proliferation, chromatin remodeling and morphology. In the second section, protein kinases (A, B and C) that affect sperm function and their regulation by second messengers, cyclic-AMP and phosphoinositides, as well as steroids will be featured. Key areas of integration will be presented on the topics of sperm motility, capacitation, acrosome reaction and fertilization.
Collapse
Affiliation(s)
- B R Lackey
- Endocrine Physiology Laboratory, AVS Department, Clemson University, Clemson, SC, USA
| | - S L Gray
- Endocrine Physiology Laboratory, AVS Department, Clemson University, Clemson, SC, USA.
| |
Collapse
|
22
|
Gangwar DK, Atreja SK. Signalling Events and Associated Pathways Related to the Mammalian Sperm Capacitation. Reprod Domest Anim 2015; 50:705-11. [PMID: 26294224 DOI: 10.1111/rda.12541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Abstract
Capacitation is a biological phenomenon occurring prior to fertilization and is a multiple event process. Many physiological and biochemical changes takes place during the process; these changes are related to lipid composition of membrane, intracellular modulation of ion concentration, protein phosphorylation, sperm movement and membrane permeability. These events occur when the sperm is exposed to the new environment of ion concentration in the female reproductive tract. Ions such as bicarbonate and calcium facilitate capacitation by activating adenylyl cyclase, thus initiating protein kinase A (PKA) signalling cascade. Extracellular-regulated kinase pathway is activated by ligand binding to the membrane receptors and intracellular activation by reactive oxygen species (ROS). Activation of these pathways leads to the phosphorylation of different proteins, which is associated with events such as capacitation, hyperactivation and acrosome reaction that are essential for successful fertilization. Extensive studies were carried out on protein phosphorylation in relation to capacitation, but its role still remains ambiguous.
Collapse
Affiliation(s)
- D K Gangwar
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
23
|
Silva JV, Freitas MJ, Correia BR, Korrodi-Gregório L, Patrício A, Pelech S, Fardilha M. Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation. Fertil Steril 2015. [PMID: 26209830 DOI: 10.1016/j.fertnstert.2015.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the correlation between semen basic parameters and the expression and activity of signaling proteins. DESIGN In vitro studies with human spermatozoa. SETTING Academic research institute. PATIENT(S) Thirty-seven men provided semen samples for routine analysis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Basic semen parameters tracked included sperm DNA fragmentation (SDF), the expression levels of 75 protein kinases, and the phosphorylation/cleavage patterns of 18 signaling proteins in human spermatozoa. RESULT(S) The results indicated that the phosphorylated levels of several proteins (Bad, GSK-3β, HSP27, JNK/SAPK, mTOR, p38 MAPK, and p53), as well as cleavage of PARP (at D214) and Caspase-3 (at D175), were significantly correlated with motility parameters. Additionally, the percentage of morphologically normal spermatozoa demonstrated a significant positive correlation with the phosphorylated levels of p70 S6 kinase and, in turn, head defects and the teratozoospermia index (TZI) showed a significant negative correlation with the phosphorylated levels of Stat3. There was a significant positive correlation between SDF and the teratozoospermia index, as well as the presence of head defects. In contrast, SDF negatively correlated with the percentage of morphologically normal spermatozoa and the phosphorylation of Akt and p70 S6 kinase. Subjects with varicocele demonstrated a significant negative correlation between head morphological defects and the phosphorylated levels of Akt, GSK3β, p38 MAPK, and Stat1. Additionally, 34 protein kinases were identified as expressed in their total protein levels in normozoospermic samples. CONCLUSION(S) This study contributed toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria João Freitas
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Bárbara Regadas Correia
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Steven Pelech
- Kinexus Bioinformatics Corporation, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Research in Biomedicine, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
24
|
Sun WJ, Zhu M, Wang YL, Li Q, Yang HD, Duan ZL, He L, Wang Q. ERK is involved in the process of acrosome reaction in vitro of the Chinese mitten crab, Eriocheir sinensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:305-316. [PMID: 25663286 DOI: 10.1007/s10126-015-9619-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Mitogen-activated protein kinases (MAPKs), also termed extracellular signal-regulated kinases (ERKs), are cytoplasmic and nuclear serine/threonine kinases involved in signal transduction of several extracellular effectors. In mammals, ERKs participate in the regulation of spermatogenesis, mature spermatozoa motility, hyperactivation, and the acrosome reaction. To investigate ERK functions in Eriocheir sinensis reproduction, we successfully cloned the full-length ERK from the testis of E. sinensis (ES-ERK). The 1098-nucleotide open reading frame encodes a 365-amino-acid protein with a predicted molecular weight of 42 kDa. Expressions of ES-ERK in different tissues and testis development stages were detected by the quantitative RT-PCR and Western blotting. ES-ERK is expressed relatively highly in the testis. The expression of ES-ERK protein gradually increased in the spermatid stage, reaching a peak in sperm stage. Western blotting showed a similar expression pattern for the total ES-ERK protein, but phospho-ERK (p-ERK) showed the higher expression in spermatid than sperm stage. We also used trypan blue and hematoxylin and eosin staining to identify structural changes in E. sinensis spermatozoa during the process of acrosome reaction (AR). After stimulating the process of AR, the ES-ERK has translocated from the nucleus to the acrosomal tubule. This result suggested that the ERK MAPK might be involved in the regulation of the E. sinensis acrosome reaction.
Collapse
Affiliation(s)
- Wen-Juan Sun
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Houston B, Curry B, Aitken RJ. Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function. Reproduction 2015; 149:587-96. [DOI: 10.1530/rep-14-0621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/12/2015] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are known to play an important role in the regulation of human sperm function. In this study, we demonstrate for the first time that human spermatozoa possess interleukin-induced gene 1 (IL4I1), anl-amino acid oxidase (LAAO) which is capable of generating ROS on exposure to aromatic amino acids in the presence of oxygen. The preferred substrates were found to be phenylalanine and tryptophan while the enzyme was located in the acrosomal region and midpiece of these cells. In contrast to equine and bovine spermatozoa, enzyme activity was lost as soon as the spermatozoa became non-viable. On a cell-to-cell basis human spermatozoa were also shown to generate lower levels of hydrogen peroxide than their equine counterparts on exposure to phenylalanine. Stimulation of LAAO activity resulted in the induction of several hallmarks of capacitation including tyrosine phosphorylation of the sperm flagellum and concomitant activation of phospho-SRC expression. In addition, stimulation of LAAO resulted in an increase in the levels of acrosomal exocytosis in both the presence and absence of progesterone stimulation, via mechanisms that could be significantly reversed by the presence of catalase. As is often the case with free radical-mediated phenomena, prolonged exposure of human spermatozoa to phenylalanine resulted in the stimulation of apoptosis as indicated by significant increases in mitochondrial superoxide generation and the activation of intracellular caspases. These results confirm the existence of an LAAO in human spermatozoa with a potential role in driving the redox regulation of sperm capacitation and acrosomal exocytosis.
Collapse
|
26
|
Surai PF, Fisinin VI. Selenium in pig nutrition and reproduction: boars and semen quality-a review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:730-46. [PMID: 25924964 PMCID: PMC4413004 DOI: 10.5713/ajas.14.0593] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/14/2014] [Accepted: 11/23/2014] [Indexed: 01/01/2023]
Abstract
Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, Gödöllo H-2103, Hungary ; Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria . ; Department of Veterinary Expertise and Microbiology, Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, 40021, Ukraine . ; Odessa National Academy of Food Technologies, Odessa 65039, Ukraine
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, Sergiev Posad, 141311, Russia
| |
Collapse
|
27
|
Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. ACTA ACUST UNITED AC 2015; 21:502-15. [DOI: 10.1093/molehr/gav014] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
|
28
|
Abstract
It is a need to define the line between pathological and physiological functions of reactive oxygen species (ROS) in order to understand their beneficial role over their injurious consequences.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Gourav Taneja
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Deepa Khanna
- Department of Pharmacology
- Rajendra Institute of Technology and Sciences
- Sirsa-125 055
- India
| | - Satyendra K. Rajput
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| |
Collapse
|
29
|
Zauli G, Celeghini C, Monasta L, Martinelli M, Luppi S, Gonelli A, Grill V, Ricci G, Secchiero P. Soluble TRAIL is present at high concentrations in seminal plasma and promotes spermatozoa survival. Reproduction 2014; 148:191-8. [DOI: 10.1530/rep-14-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL(TNFSF10)) and of its receptors (TRAILR1, TRAILR2, TRAILR3, and TRAILR4) have been documented in testis, but the presence of soluble TRAIL in seminal fluid, as well as the potential physiopathological role of the TRAIL/TRAILR system in spermatozoa, has not been previously investigated. Male donors (n=123) among couples presenting for infertility evaluation were consecutively enrolled in this study. The presence of soluble TRAIL was analyzed in seminal samples by ELISA, while the surface expression of TRAIL receptors was investigated by flow cytometry. High levels of soluble TRAIL were detected in seminal plasma (median, 11 621 pg/ml and mean±s.d., 13 371±8367 pg/ml) and flow cytometric analysis revealed a variable expression of TRAIL receptors in the sperm cellular fraction among different subjects. In addition, the effect of physiologically relevant concentrations of recombinant TRAIL was investigated on survival and motility of spermatozoa. Of interest, the in vitro exposure of capacitated spermatozoa to recombinant TRAIL (10 ng/ml) significantly preserved their overall survival. Therefore, the present study demonstrates for the first time the presence of elevated levels of the anti-inflammatory cytokine TRAIL in seminal fluids. Moreover, the demonstration that recombinant TRAIL promotes spermatozoa survival after capacitation suggests potential therapeutic implications.
Collapse
|
30
|
Abstract
Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.
Collapse
|
31
|
Kumar R, Singh V, Atreja S. Glutathione-S-transferase: Role in buffalo (Bubalus bubalis) sperm capacitation and cryopreservation. Theriogenology 2014; 81:587-98. [DOI: 10.1016/j.theriogenology.2013.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022]
|
32
|
Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 2014; 81:74-84. [DOI: 10.1016/j.theriogenology.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/07/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022]
|
33
|
Thaler CD, Miyata H, Haimo LT, Cardullo RA. Waveform generation is controlled by phosphorylation and swimming direction is controlled by Ca2+ in sperm from the mosquito Culex quinquefasciatus. Biol Reprod 2013; 89:135. [PMID: 24108305 DOI: 10.1095/biolreprod.113.109488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most animal sperm are quiescent in the male reproductive tract and become activated after mixing with accessory secretions from the male and/or female reproductive tract. Sperm from the mosquito Culex quinquefasciatus initiate flagellar motility after mixing with male accessory gland components, and the sperm flagellum displays three distinct motility patterns over time: a low amplitude, a long wavelength form (Wave A), a double waveform consisting of two superimposed waveforms over the length of the flagellum (Wave B), and finally, a single helical waveform that propels the sperm at high velocity (Wave C). This flagellar behavior is replicated by treating quiescent sperm with trypsin. When exposed to either broad spectrum or tyrosine kinase inhibitors, sperm activated by accessory gland secretions exhibited motility through Wave B but were unable to progress to Wave C. The MEK1/2 inhibitor UO126 and the ERK1/2 inhibitor FR180204 each blocked the transition from Wave B to Wave C, indicating a role for MAPK activity in the control of waveform and, accordingly, progressive movement. Furthermore, a MAPK substrate antibody stained the flagellum of activated sperm. In the absence of extracellular Ca(2+), a small fraction of sperm swam backwards, whereas most could not be activated by either accessory glands or trypsin and were immotile. However, the phosphatase inhibitor okadaic acid in the absence of extracellular Ca(2+) induced all sperm to swim backwards with a flagellar waveform similar to Wave A. These results indicate that flagellar waveform generation and direction of motility are controlled by protein phosphorylation and Ca(2+) levels, respectively.
Collapse
Affiliation(s)
- Catherine D Thaler
- Department of Biology, University of California, Riverside, Riverside, California
| | | | | | | |
Collapse
|
34
|
Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet 2013; 288:191-9. [PMID: 23543240 DOI: 10.1007/s00404-013-2801-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) are an array of molecules including oxygen-centered radicals, which are endowed with one or more unpaired electrons and non-radical oxygen derivatives such as hydrogen peroxide, which behave, to a large extent, like a double-edged sword in human sperm biology. This study aimed to overview the current knowledge of ROS in sperm physiology and pathology, as well as related therapies in spermatozoal dysfunction. METHODS We performed this study by searching for keywords from PUBMED, including reactive oxygen species, oxidative stress, sperm function, and antioxidant therapy. RESULTS AND CONCLUSIONS Low levels of ROS exert critical function in normal sperm physiology, such as fertilizing ability (acrosome reaction, hyperactivation, capacitation, and chemotaxis) and sperm motility; while increased ROS generation and/or decreased antioxidant capacity leads to the imbalance between oxidation and reduction in living systems, which is called sperm oxidative stress. This condition was widely considered to be a significant contributory factor to sperm DNA damage/apoptosis, lipid peroxidation, and reduced motility, which in turn, increased risk of male factor infertility/subfertility and birth defects. Under the current status quo, numerous subsequent studies have concentrated on antioxidant therapy. Although utility of such a therapeutic strategy significantly improved sperm function and motility in a myriad of experimental and clinical reports, the overall effectiveness still remains controversial mainly due to non-standardized assay to measure the level of ROS and sperm DNA damage, various antioxidant supplementation strategies, and inadequate fertilization and pregnancy data after clinical treatment. Therefore, standardized assessment and evaluation of ROS and total antioxidant capacity in semen should be established to keep ROS in a physiological level and prevent over-treatment of antioxidants toward reductive stress, which should be kept in mind, especially in assisted reproductive procedure. Moreover, the significance of large sample size populations, double-blind randomized, placebo-controlled clinical trials of antioxidant therapies is emphasized in this review to achieve optimal ingredients and dosage of antioxidants for patients with reactive oxygen-induced male fertility/subfertility.
Collapse
Affiliation(s)
- Shu-Jian Chen
- Department of Dermatology/Andrology Unit, Rheinische Friedrich-Wilhelms University, 53105 Bonn, Germany
| | | | | | | |
Collapse
|
35
|
He L, Jiang H, Cao D, Liu L, Hu S, Wang Q. Comparative transcriptome analysis of the accessory sex gland and testis from the Chinese mitten crab (Eriocheir sinensis). PLoS One 2013; 8:e53915. [PMID: 23342039 PMCID: PMC3547057 DOI: 10.1371/journal.pone.0053915] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/04/2012] [Indexed: 01/30/2023] Open
Abstract
The accessory sex gland (ASG) is an important component of the male reproductive system, which functions to enhance the fertility of spermatozoa during male reproduction. Certain proteins secreted by the ASG are known to bind to the spermatozoa membrane and affect its function. The ASG gene expression profile in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been conducted on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for the ASG of E. sinensis using Illumina sequencing technology. This analysis yielded a total of 33,221,284 sequencing reads, including 2.6 Gb of total nucleotides. Reads were assembled into 85,913 contigs (average 218 bp), or 58,567 scaffold sequences (average 292 bp), that identified 37,955 unigenes (average 385 bp). We assembled all unigenes and compared them with the published testis transcriptome from E. sinensis. In order to identify which genes may be involved in ASG function, as it pertains to modification of spermatozoa, we compared the ASG and testis transcriptome of E. sinensis. Our analysis identified specific genes with both higher and lower tissue expression levels in the two tissues, and the functions of these genes were analyzed to elucidate their potential roles during maturation of spermatozoa. Availability of detailed transcriptome data from ASG and testis in E. sinensis can assist our understanding of the molecular mechanisms involved with spermatozoa conservation, transport, maturation and capacitation and potentially acrosome activation.
Collapse
Affiliation(s)
- Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Hui Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Dandan Cao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lihua Liu
- School of Life Science, East China Normal University, Shanghai, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Kadirvel G, Machado SA, Korneli C, Collins E, Miller P, Bess KN, Aoki K, Tiemeyer M, Bovin N, Miller DJ. Porcine sperm bind to specific 6-sialylated biantennary glycans to form the oviduct reservoir. Biol Reprod 2012; 87:147. [PMID: 23115267 DOI: 10.1095/biolreprod.112.103879] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After mating, many female mammals store a subpopulation of sperm in the lower portion of the oviduct, forming a reservoir. The reservoir lengthens sperm lifespan, regulates sperm capacitation, controls polyspermy, and selects normal sperm. It is believed that sperm bind to glycans on the oviduct epithelium to form the reservoir, but the specific adhesion molecules that retain sperm are unclear. Herein, using a glycan array to test 377 glycans for their ability to bind porcine sperm, we found two glycan motifs in common among all glycans with sperm-binding ability: the Lewis X trisaccharide and biantennary structures containing a mannose core with 6-sialylated lactosamine at one or more termini. Binding to both motifs was specific; isomers of each motif did not bind sperm. Further work focused on sialylated lactosamine. Sialylated lactosamine was found abundantly on the apical side of epithelial cells collected from the oviduct isthmus, among N-linked and O-linked glycans. Sialylated lactosamine bound to the head of sperm, the region that interacts with the oviduct epithelium. After capacitation, sperm lost affinity for sialylated lactosamine. Receptor modification may contribute to release from the reservoir so that sperm can move to the site of fertilization. Sialylated lactosamine was required for sperm to bind oviduct cells. Simbucus nigra agglutinin or an antibody specific to sialylated lactosamine with a preference for Neu5Acalpha2-6Gal rather than Neu5Acalpha2-3Gal reduced sperm binding to oviduct isthmic cells, as did occupying putative receptors on sperm with sialylated biantennary glycans. These results demonstrate that sperm binding to oviduct 6-sialylated biantennary glycans is necessary for normal adhesion to the oviduct.
Collapse
Affiliation(s)
- Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luna C, Colás C, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. A Novel Epidermal Growth Factor-Dependent Extracellular Signal-Regulated MAP Kinase Cascade Involved in Sperm Functionality in Sheep1. Biol Reprod 2012; 87:93. [DOI: 10.1095/biolreprod.112.100073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Goodson SG, Qiu Y, Sutton KA, Xie G, Jia W, O'Brien DA. Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biol Reprod 2012; 87:75. [PMID: 22837480 PMCID: PMC3464911 DOI: 10.1095/biolreprod.112.102673] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/28/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023] Open
Abstract
Although substantial evidence exists that sperm ATP production via glycolysis is required for mammalian sperm function and male fertility, conflicting reports involving multiple species have appeared regarding the ability of individual glycolytic or mitochondrial substrates to support the physiological changes that occur during capacitation. Several mouse models with defects in the signaling pathways required for capacitation exhibit reductions in sperm ATP levels, suggesting regulatory interactions between sperm metabolism and signal transduction cascades. To better understand these interactions, we conducted quantitative studies of mouse sperm throughout a 2-h in vitro capacitation period and compared the effects of single substrates assayed under identical conditions. Multiple glycolytic and nonglycolytic substrates maintained sperm ATP levels and comparable percentages of motility, but only glucose and mannose supported hyperactivation. These monosaccharides and fructose supported the full pattern of tyrosine phosphorylation, whereas nonglycolytic substrates supported at least partial tyrosine phosphorylation. Inhibition of glycolysis impaired motility in the presence of glucose, fructose, or pyruvate but not in the presence of hydroxybutyrate. Addition of an uncoupler of oxidative phosphorylation reduced motility with pyruvate or hydroxybutyrate as substrates but unexpectedly stimulated hyperactivation with fructose. Investigating differences between glucose and fructose in more detail, we demonstrated that hyperactivation results from the active metabolism of glucose. Differences between glucose and fructose appeared to be downstream of changes in intracellular pH, which rose to comparable levels during incubation with either substrate. Sperm redox pathways were differentially affected, with higher levels of associated metabolites and reactive oxygen species generated during incubations with fructose than during incubations with glucose.
Collapse
Affiliation(s)
- Summer G. Goodson
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Yunping Qiu
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Keith A. Sutton
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guoxiang Xie
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Jia
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Deborah A. O'Brien
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
39
|
Thundathil JC, Rajamanickam GD, Kastelic JP, Newton LD. The Effects of Increased Testicular Temperature on Testis-Specific Isoform of Na+/K+-ATPase in Sperm and its Role in Spermatogenesis and Sperm Function. Reprod Domest Anim 2012; 47 Suppl 4:170-7. [DOI: 10.1111/j.1439-0531.2012.02072.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Delivering value from sperm proteomics for fertility. Cell Tissue Res 2012; 349:783-93. [PMID: 22688957 DOI: 10.1007/s00441-012-1452-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/14/2012] [Indexed: 12/20/2022]
Abstract
Fertilization of an egg by a spermatozoon sets the stage for mammalian development. Viable sperm are a prerequisite for successful fertilization and beyond. Spermatozoa have a unique cell structure where haploid genomic DNA is located in a tiny cytoplasmic space in the head, mitochondria in the midpiece and then the tail, all enclosed by several layers of membrane. Proteins in sperm play vital roles in motility, capacitation, fertilization, egg activation and embryo development. Molecular defects in these proteins are associated with low fertility or in some cases, infertility. This review will first summarize genesis, molecular anatomy and physiology of spermatozoa, fertilization, embryogenesis and then those proteins playing important roles in various aspects of sperm physiology.
Collapse
|
41
|
Radomil L, Pettitt MJ, Merkies KM, Hickey KD, Buhr MM. Stress and Dietary Factors Modify Boar Sperm for Processing. Reprod Domest Anim 2011; 46 Suppl 2:39-44. [DOI: 10.1111/j.1439-0531.2011.01865.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|