1
|
Chen S, Fu J, Long J, Liu C, Ai X, Long D, Leng X, Zhang Y, Liao Z, Li C, Zhou Y, Dong S, Huang B, Feng C. Bulk RNA-seq conjoined with ScRNA-seq analysis reveals the molecular characteristics of nucleus pulposus cell ferroptosis in rat aging intervertebral discs. Arthritis Res Ther 2025; 27:90. [PMID: 40247370 PMCID: PMC12004870 DOI: 10.1186/s13075-025-03550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Recently, several studies have reported that nucleus pulposus (NP) cell ferroptosis plays a key role in IDD. However, the characteristics and molecular mechanisms of cell subsets involved remain unclear. We aimed to define the key factors driving ferroptosis, and the characteristics of ferroptotic NP cells subsets during IDD. METHODS The accumulation of iron ions in NP tissues of rats caudal intervertebral discs (IVDs) was determined by Prussian blue staining. Fluorescent probe Undecanoyl Boron Dipyrromethene (C11-BODIPY) and lipid peroxidation product 4-Hydroxynonenal (4-HNE) staining were performed to assess lipid peroxidation level of NP cells. The differentially expressed genes in NP tissues with aging were overlapped with FerrDB database to screen ferroptosis driving genes associated with aging-related IDD. In addition, single cell sequencing (ScRNA-seq) was used to map the NP cells, and further identify ferroptotic NP cell subsets, as well as their crucial drivers. Finally, cluster analysis was performed to identify the marker genes of ferroptotic NP cells. RESULTS Histological staining showed that, compared with 10 months old (10M-old) group, the accumulation of iron ions increased in NP tissues of 20 months old (20M-old) rats, and the level of lipid peroxidation was also enhanced. 15 ferroptosis driving factors related to IDD were selected by cross-enrichment. ScRNA-seq identified 14 subsets in NP tissue cells, among which the number and ratio of 5 subsets was reduced, and the intracellular ferroptosis related signaling pathways were significantly enriched, accompanied by enhanced cell lipid peroxidation. Notably, ranking the up-regulation fold of ferroptosis related genes, we found Atf3 was always present within TOP2 of these five cell subsets, suggests it is the key driving factor in NP cell ferroptosis. Finally, cluster cross-enrichment and fluorescence colocalization analysis revealed that Rps6 +/Cxcl1- was a common molecular feature among the 5 ferroptotic NP cell subsets. CONCLUSIONS This study reveals that ATF3 is a key driver of NP cell ferroptosis during IDD, and Rps6 +/Cxcl1- is a common molecular feature of ferroptotic NP cell subsets. These findings provide evidence and theoretical support for subsequent targeted intervention of NP cell ferroptosis, as well as provide directions for preventing and delaying IDD.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiang Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Dan Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xue Leng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Zhengao Liao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| |
Collapse
|
2
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
3
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
4
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
5
|
Matsuno Y, Kusama K, Imakawa K. Characterization of lncRNA functioning in ovine conceptuses and endometria during the peri-implantation period. Biochem Biophys Res Commun 2022; 594:22-30. [PMID: 35066376 DOI: 10.1016/j.bbrc.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
In ruminants, RNA-sequence analyses have revealed many characteristics of transcripts expressed in conceptuses (embryo and extraembryonic membrane) during peri-implantation periods; however, lncRNA profiles are yet characterized. In this study, we aimed to characterize the lncRNA expression profile in conceptuses during peri-implantation periods in sheep. We analyzed the RNA-sequence data of ovine conceptuses and endometria obtained from pregnant animals on days 15, 17, 19 and 21 (day 0 = day of estrus, n = 3 or 4/day). We predicted the protein coding ability of the assembled transcripts to identify the lncRNA candidates. This analysis identified 8808 lncRNAs, 3423 of which were novel lncRNAs. Gene ontology analysis revealed that lncRNA target genes were enriched for biological processes involved in the respiratory electron transport chain (RETC). qPCR analysis demonstrated that the expression levels on transcripts encoding RETC such as mitochondrially encoded cytochrome c oxidase II (MTCO2) and mitochondria DNA copy number in conceptuses were not increased on P21, although western blotting analysis and immunohistochemistry demonstrated that MTCO2 protein in conceptuses was increased on P21. NAD/NADH assay revealed that NADH level in conceptuses was increased on P21. These results indicate that lncRNAs could regulate the RETC through post-transcriptional levels in the conceptuses. Therefore, lncRNA is a potential new regulator in ovine conceptus development during peri-implantation periods.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Kumamoto, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Kumamoto, Japan.
| |
Collapse
|
6
|
Halloran KM, Stenhouse C, Moses RM, Seo H, Johnson GA, Wu G, Bazer FW. Progesterone and interferon tau regulate expression of polyamine enzymes during the ovine peri-implantation period. Biol Reprod 2022; 106:865-878. [DOI: 10.1093/biolre/ioac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75 mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8–15, and twice daily intrauterine injections (25 μg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11–15, resulting in four treatment groups: 1) P4 + CX; 2) P4 + IFNT; 3) RU486 + P4 + CX; or 4) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
7
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Dahlen CR, Borowicz PP, Ward AK, Caton JS, Czernik M, Palazzese L, Loi P, Reynolds LP. Programming of Embryonic Development. Int J Mol Sci 2021; 22:11668. [PMID: 34769097 PMCID: PMC8583791 DOI: 10.3390/ijms222111668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via "programming" of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.
Collapse
Affiliation(s)
- Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| |
Collapse
|
9
|
Arginine Regulates TOR Signaling Pathway through SLC38A9 in Abalone Haliotis discus hannai. Cells 2021; 10:cells10102552. [PMID: 34685533 PMCID: PMC8534056 DOI: 10.3390/cells10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5–4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.
Collapse
|
10
|
Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 2021; 12:46. [PMID: 33827696 PMCID: PMC8028684 DOI: 10.1186/s40104-021-00567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of progesterone (P4) to ewes during the first 9 to 12 days of pregnancy accelerates blastocyst development by day 12 of pregnancy, likely due to P4-induced up-regulation of key genes in uterine epithelia responsible for secretion and transport of components of histotroph into the uterine lumen. This study determined if acceleration of blastocyst development induced by exogenous P4 during the pre-implantation period affects fetal-placental development on day 125 of pregnancy. Suffolk ewes (n = 35) were mated to fertile rams and assigned randomly to receive daily intramuscular injections of either corn oil vehicle (CO, n = 18) or 25 mg progesterone in CO (P4, n = 17) for the first 8 days of pregnancy. All ewes were hysterectomized on day 125 of pregnancy and: 1) fetal and placental weights and measurements were recorded; 2) endometrial and placental tissues were analyzed for the expression of candidate mRNAs involved in nutrient transport and arginine metabolism; and 3) maternal plasma, fetal plasma, allantoic fluid, and amniotic fluid were analyzed for amino acids, agmatine, polyamines, glucose, and fructose. RESULTS Treatment of ewes with exogenous P4 did not alter fetal or placental growth, but increased amounts of aspartate and arginine in allantoic fluid and amniotic fluid, respectively. Ewes that received exogenous P4 had greater expression of mRNAs for SLC7A1, SLC7A2, SLC2A1, AGMAT, and ODC1 in endometria, as well as SLC1A4, SLC2A5, SLC2A8 and ODC1 in placentomes. In addition, AZIN2 protein was immunolocalized to uterine luminal and glandular epithelia in P4-treated ewes, whereas AZIN2 localized only to uterine luminal epithelia in CO-treated ewes. CONCLUSIONS This study revealed that exogenous P4 administered in early pregnancy influenced expression of selected genes for nutrient transporters and the expression of a protein involved in polyamine synthesis on day 125 of pregnancy, suggesting a 'programming' effect of P4 on gene expression that affected the composition of nutrients in fetal-placental fluids.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
11
|
O'Neil EV, Spencer TE. Insights into the lipidome and primary metabolome of the uterus from day 14 cyclic and pregnant sheep†. Biol Reprod 2021; 105:87-99. [PMID: 33768235 DOI: 10.1093/biolre/ioab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
In ruminants, conceptus elongation requires the endometrium and its secretions. The amino acid, carbohydrate, and protein composition of the uterine lumen during early pregnancy has been defined in sheep; however, a comprehensive understanding of metabolomic changes in the uterine lumen is lacking, particularly with respect to lipids. Here, the lipidome and primary metabolome of the uterine lumen, endometrium, and/or conceptus was determined on day 14 of the estrous cycle and pregnancy. Lipid droplets and select triglycerides were depleted in the endometrium of pregnant ewes. In contrast, select ceramides, diglycerides, and non-esterified fatty acids as well as several phospholipid classes (phosphatidylcholine, phosphatidylinositol, phosphatidylglycerols, and diacylglycerols) were elevated in the uterine lumen of pregnant ewes. Lipidomic analysis of the conceptus revealed that triglycerides are particularly abundant within the conceptus. Primary metabolite analyses found elevated amino acids, carbohydrates, and energy substrates, among others, in the uterine lumen of pregnant ewes. Collectively, this study supports the hypothesis that lipids are important components of the uterine lumen that govern conceptus elongation and growth during early pregnancy.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. The effects of maternal nutrition during the first 50 d of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer uteroplacental tissues. J Anim Sci 2021; 99:skaa386. [PMID: 33247721 PMCID: PMC7799587 DOI: 10.1093/jas/skaa386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that maternal nutrition during the first 50 d of gestation would influence the abundance of hexose transporters, SLC2A1, SLC2A3, and SLC2A5, and cationic amino acid transporters, SLC7A1 and SLC7A2, in heifer uteroplacental tissues. Angus-cross heifers (n = 43) were estrus synchronized, bred via artificial insemination, and assigned at breeding to 1 of 2 dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d of BW gain or RES = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d) in a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross-sections were collected from the horn ipsilateral to the corpus luteum, fixed in 10% neutral buffered formalin, sectioned at 5 µm, and stained via immunofluorescence for transporters. For each image, areas of fetal membrane (FM; chorioallantois), luminal epithelium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted for days 34 and 50. No transporters in target areas were influenced by a day × treatment interaction (P ≥ 0.06). In ENDO, all transporters were differentially abundant from days 16 to 50 of gestation (P ≤ 0.04), and SLC7A2 was greater (P = 0.05) for RES vs. CON. In SG, SLC7A1 and SLC7A2 were greater (P ≤ 0.04) at day 34 vs. day 16. In DG, SLC2A3 and SLC7A1 were greater (P ≤ 0.05) for CON vs. RES heifers; furthermore, SLC7A1 was greater (P < 0.01) at day 50 vs. days 16 and 34 of gestation. In MYO, SLC7A1 was greater (P < 0.01) for CON vs. RES and was greater (P = 0.02) at days 34 and 50 vs. day 16. There were no differences in FM (P ≥ 0.06). Analysis of all uterine tissues at day 16 determined that SLC2A1, SLC2A3, and SLC7A2 were all differentially abundant across uterine tissue type (P < 0.01), and SLC7A1 was greater (P = 0.02) for CON vs. RES. Analysis of all uteroplacental tissues at days 34 and 50 demonstrated that all transporters differed (P < 0.01) across uteroplacental tissues, and SLC7A1 was greater (P < 0.01) for CON vs. RES. These data are interpreted to imply that transporters are differentially affected by day of gestation, and that hexose and cationic amino acid transporters are differentially abundant across utero-placental tissue types, and that SLC7A1 is responsive to maternal nutritional treatment.
Collapse
Affiliation(s)
- Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Josephine Dwamena
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| |
Collapse
|
13
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
14
|
Gootwine E, Rosov A, Alon T, Stenhouse C, Halloran KM, Wu G, Bazer FW. Effect of supplementation of unprotected or protected arginine to prolific ewes on maternal amino acids profile, lamb survival at birth, and pre- and post-weaning lamb growth. J Anim Sci 2020; 98:skaa284. [PMID: 32860700 PMCID: PMC7694597 DOI: 10.1093/jas/skaa284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
This research determined the effects of dietary supplementation with rumen-protected arginine (Pro-Arg) on metabolites and amino acids in maternal plasma and lamb survival rate at birth (LSRAB) in prolific Afec-Assaf ewes. The hypothesis was that Pro-Arg, the precursor for nitric oxide and polyamines, would increase placental development and vascularity, uteroplacental blood flow, and nutrient transport and reduce oxidative stress to increase LSRAB. Ewes were fed either their basal diet, basal diet with Pro-Arg, or basal diet with unprotected arginine (Unp-Arg; 18 g/head/d). The supplemental arginine was about 1% of the dry matter intake from day 40 or 60 of gestation until parturition. Ninety-two of 98 ewes produced live lambs. Ewes fed Pro-Arg had greater (P = 0.002) concentrations of arginine and other amino acids in plasma, whereas Unp-Arg did not affect concentrations of arginine, but decreased (P < 0.05) concentrations of some amino acids. There was no effect of treatments on gestation length (144 ± 2 d), prolificacy (2.65 lambs born per ewe), LSRAB (0.80), body weight (88.8 ± 10.8 kg), and body condition score (2.8 ± 0.6) of ewes, or birth weight and crown-rump length of lambs. The GI (BW/CRL1.5) was affected by sex of lamb (P = 0.008), parity of ewe (P = 0.002), litter size (P = 0.0001), and lamb status (P = 0.003). Of 229 lambs born, 32 were dead and 16 died before 5 mo of age, leaving 181 lambs with records on weights at birth and 5 mo of age. Interestingly, lambs born to ewes fed the Unp-Arg and Pro-Arg weighed 3.6 kg less at postnatal day 150 than lambs from control ewes.
Collapse
Affiliation(s)
- Elisha Gootwine
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Alexander Rosov
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Tamir Alon
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
15
|
Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G. Ruminal microbes of adult sheep do not degrade extracellular l-citrulline. J Anim Sci 2020; 98:skaa164. [PMID: 32415842 PMCID: PMC7344112 DOI: 10.1093/jas/skaa164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
This study determined whether extracellular citrulline is degraded by ruminal bacteria of sheep. In the first experiment, whole rumen fluid (3 mL) from six adult Suffolk sheep was incubated at 37 °C with 5 mM l-glutamine (Gln), l-glutamate (Glu), l-arginine (Arg), or l-citrulline (Cit) for 0, 0.5, 1, and 2 h or with 0, 0.5, 2, or 5 mM Gln, Glu, Arg, or Cit for 2 h. An aliquot (50 µL) of the incubation solution was collected at the predetermined time points for amino acids (AA) analyses. Results showed extensive hydrolysis of Gln into Glu and ammonia, of Arg into l-ornithine and l-proline, but little or no degradation of extracellular Cit or Glu by ruminal microbes. In the second experiment, six adult Suffolk sheep were individually fed each of three separate supplements (8 g Gln , Cit, or urea) on three separate days along with regular feed (800 g/animal). Blood (2 mL) was sampled from the jugular vein prior to feeding (time 0) and at 0.5, 1, 2, and 4 h after consuming the supplement. Plasma was analyzed for AA, glucose, ammonia, and urea. The concentrations of Cit in the plasma of sheep consuming this AA increased (P < 0.001) by 117% at 4 h and those of Arg increased by 23% at 4 h, compared with the baseline values. Urea or Gln feeding did not affect (P > 0.05) the concentrations of Cit or Arg in plasma. These results indicate that Cit is not metabolized by ruminal microbes of sheep and is, therefore, absorbed as such by the small intestine and used for the synthesis of Arg by extrahepatic tissues.
Collapse
Affiliation(s)
- Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Jason J Cleere
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
16
|
Mathew DJ, Sánchez JM, Passaro C, Charpigny G, Behura SK, Spencer TE, Lonergan P. Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome†. Biol Reprod 2020; 100:365-380. [PMID: 30203055 DOI: 10.1093/biolre/ioy199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
This study investigated bovine conceptus-induced modifications to the endometrial transcriptome related to effects of interferon tau (IFNT), conceptus origin (in vivo vs. in vitro), and conceptus sex. In vitro (IVF) or in vivo (superovulation and artificial insemination, AI) produced blastocysts were transferred into recipient heifers on day 7 of the estrous cycle. On day 15, IVF- or AI-derived conceptuses were obtained by uterine flushing and individually placed on endometrial explants in media for 6 h. Explants were also cultured with media alone as a control or media containing 100 ng/mL IFNT. Total explant RNA was analyzed by RNA-Seq. Incubation of endometrium with IFNT or IVF- or AI-derived conceptuses changed (P ≤ 0.001) expression of 491, 498, and 576 transcripts, respectively, compared to the control. Further, 369 differentially expressed genes (DEGs) were common between explants exposed to IFNT or a conceptus. A total of 240 DEGs were uniquely altered by conceptuses (IVF- and AI-derived) but not IFNT. Of these transcripts, 46 were shared between the IVF and AI groups, while 61 and 133 were specific to IVF and AI conceptuses, respectively. Five genes [melanophilin (MLPH), prominin-2 (PROM2), myeloid associated differentiation marker (MYADM), vomeronasal 1 receptor 4 like (VN1R4L) and 5-hydroxytryptamine receptor 1A (HTR1A)] were more abundant in endometrium exposed to female compared to male conceptuses (P < 0.001). A single gene [ADP-ribosylation factor like GTPase 4C (ARL4C)] was more abundant in response to male conceptuses (P < 0.001) than female conceptuses. These data support the hypothesis that conceptus regulation of gene expression in the endometrium is complex and involves factors other than IFNT that may have a biological role in pregnancy establishment.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
17
|
Interferon tau: Influences on growth and development of the conceptus. Theriogenology 2020; 150:75-83. [PMID: 32088030 DOI: 10.1016/j.theriogenology.2020.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Interferon tau (IFNT), the pregnancy recognition signal secreted from trophectoderm cells of ruminant conceptuses abrogates the uterine luteolytic mechanism to ensure maintenance of functional corpora lutea for production of progesterone (P4). Importantly, IFNT, in concert with P4, also induces expression of genes in uterine luminal (LE) and superficial glandular (sGE) epithelia for transport and/or secretion of histotroph into the uterine lumen to support growth and development of the conceptus. For example, IFNT and P4 induce transporters responsible foer transport of glucose and arginine into the uterine lumen during the peri-implantation period of pregnancy. Arginine activates the mechanistic target of rapamycin (MTOR) nutrient sensing cell signaling pathway to stimulate proliferation, migration, differentiation and translation of mRNAs essential for growth and development of the conceptus. Glucose not utilized by the conceptus is converted to fructose and those two hexose sugars are metabolized via aerobic glycolysis to produce metabolites used in the hexosamine biosynthesis pathway, pathways for one-carbon metabolism, and pentose phosphate pathway for synthesis of ribose sugars and NADPH. Arginine is metabolized to nitric oxide (NO) that stimulates angiogenesis in uterine and placental tissues, and to polyamines required for many cellular functions critical for growth and development of the conceptus. In summary, IFNT and P4 regulate expression of genes for transport of select nutrients into the pregnant uterus during the peri-implantation period of pregnancy. Those nutrients are then metabolized via multiple metabolic pathways to not only provide ATP, but also substrates for synthesis of nucleotides, amino acids, co-factors required for growth, development, and survival of conceptuses during the peri-implantation period of pregnancy.
Collapse
|
18
|
Sciascia QL, van der Linden DS, Sales FA, Wards NJ, Blair HT, Pacheco D, Oliver MH, McCoard SA. Parenteral administration of l-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J Dairy Sci 2019; 102:3071-3081. [PMID: 30712927 DOI: 10.3168/jds.2018-15433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022]
Abstract
Maternal milk is the primary source of nutrition for suckling mammals, and its yield and composition are important determinants of survival during the early neonatal period. The objective of this study was to examine whether parenteral administration of l-Arg to twin-bearing ewes, during mid to late pregnancy, influenced prepartum maternal mammary gland development and subsequent lactation performance in the early postpartum period (14 d). At 80 d of pregnancy, multiparous Romney ewes were housed indoors in group pens, split into 2 cohorts, and fed a lucerne-based pellet diet, formulated to meet 100% of National Research Council-recommended requirements for twin-bearing pregnant ewes, once a day. Cohort 1 was administered l-Arg (72.7 mg/kg of live weight via i.v, 3 times a day) from d 100 of pregnancy until d 140. At d 140, ewes were euthanized and maternal mammary tissues were collected for analysis of the biochemical indices total DNA, RNA, protein, protein synthetic efficiency (protein:RNA), cell size (protein:DNA), transcriptional efficiency (RNA:DNA), and the abundance of mammalian target of rapamycin (mTOR) and mTORSer2448 protein. Cohort 2 was administered an identical l-Arg regimen as cohort 1, but from d 100 until parturition. Milk was collected over a 14-d period (d 1, 4, 7, 10, and 14) to assess milk yield and composition. In cohort 1, total mammary DNA (cell number) tended to be higher in l-Arg ewes, with no change in total mammary RNA or protein content, biochemical indices of protein synthetic efficiency, cell size or transcriptional efficiency, or mTOR protein abundance or phosphorylation. In cohort 2, milk composition analysis from l-Arg ewes showed lower (d 7-14) milk somatic cell counts, greater crude protein percentage from d 7 to 10 but lower at d 14, and altered absolute concentrations of some free AA (d 7 and 14) compared with controls. We propose that parenteral administration of l-Arg during late pregnancy is associated with increased mammary gland cellular content and decreased somatic cell counts during early lactation.
Collapse
Affiliation(s)
- Quentin L Sciascia
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Danitsja S van der Linden
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Francisco A Sales
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Nina J Wards
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Hugh T Blair
- Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand; International Sheep Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - David Pacheco
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Mark H Oliver
- Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand; Ngapouri Research Farm, Liggins Institute, University of Auckland, Auckland 3083, New Zealand
| | - Susan A McCoard
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
19
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
20
|
Effects of Bisphenol-A on proliferation and expression of genes related to synthesis of polyamines, interferon tau and insulin-like growth factor 2 by ovine trophectoderm cells. Reprod Toxicol 2018; 78:90-96. [PMID: 29635046 DOI: 10.1016/j.reprotox.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
Abstract
This study evaluated the effects of bisphenol A (BPA) on proliferation of ovine trophectoderm (oTr1) cells, as well as expression of genes for transport of arginine and synthesis of polyamines. BPA reduced proliferation of oTr1 cells at concentrations of 1 × 10-6, 1 × 10-5, 1 × 10-4 M compared to concentrations of 0, 1 × 10-9, and 1 × 10-8 M at 24 and 96 h of culture. Lower concentrations of BPA significantly increased expression of mRNAs for agmatinase (AGMAT), arginine decarboxylase (ADC), ornithine decarboxylase (ODC1) and solute carrier family 7 member 1 (SLC7A1). Similarly, synthesis of polyamines by oTr1 cells was greatest at lower concentrations of BPA and decreased as the dose of BPA increased. Expression of mRNAs for interferon tau (IFNT) and insulin-like growth factor 2 (IGF2) by oTr1 cells was greater than for controls at 1 × 10-9 M BPA. Overall, the effects of BPA on proliferation and gene expression by oTr1 cells were highly dose-dependent.
Collapse
|
21
|
Lenis YY, Johnson GA, Wang X, Tang WW, Dunlap KA, Satterfield MC, Wu G, Hansen TR, Bazer FW. Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep. J Anim Sci Biotechnol 2018; 9:10. [PMID: 29410783 PMCID: PMC5781304 DOI: 10.1186/s40104-017-0225-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Background Polyamines stimulate DNA transcription and mRNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses (embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine (Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase (ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine (Agm) by arginine decarboxylase (ADC), and Agm is converted to putrescine by agmatinase (AGMAT). Methods Morpholino antisense oligonucleotides (MAOs) were designed and synthesized to inhibit translational initiation of the mRNAs for ODC1 and ADC, in ovine conceptuses. Results The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC (MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphologically and functionally normal (phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality (phenotype b). Furthermore, MAO-ODC1:ADC (a) conceptuses had greater tissue concentrations of Agm, putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC (b) conceptuses only had greater tissue concentrations of Agm . Uterine flushes from ewes with MAO-ODC1:ADC (a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC (b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate, glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine. Conclusions The double-knockdown of translation of ODC1 and ADC mRNAs was most detrimental to conceptus development and their production of interferon tau (IFNT). Agm, polyamines, amino acids, and adequate secretion of IFNT are critical for establishment and maintenance of pregnancy during the peri-implantation period of gestation in sheep. Electronic supplementary material The online version of this article (10.1186/s40104-017-0225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Y Lenis
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,3Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Calle 70 No, 52-21 Medellín, Colombia.,Faculty of Agricultural Sciences, Calle 222 No. 55-37, UDCA, Bogota, Colombia
| | - Gregory A Johnson
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Xiaoqiu Wang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA.,5Present address: National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Wendy W Tang
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| | - Thomas R Hansen
- 6Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA.,2Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
22
|
Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai Z, Wang J, Wu Z, Wang X. Functional amino acids in the development of the pig placenta. Mol Reprod Dev 2017; 84:870-882. [PMID: 28390193 DOI: 10.1002/mrd.22809] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
The mammalian placenta is essential for supplying nutrients (e.g., amino acids and water) and oxygen from the mother to fetus and for removing fetal metabolites (e.g., ammonia and CO2 ) from fetus to mother. Thus, placental growth and development are determinants of fetal survival, growth, and development. Indeed, low birth weight is closely associated with reduced placental growth. Providing gestating gilts or sows with dietary supplementation of arginine and glutamine, increases placental growth (including vascular growth), improves embryonic/fetal growth and survival, and reduces the large variation in birth weight among litters. These two amino acids serve as building blocks for tissue protein as well as substrates for the production of polyamines and nitric oxide, which stimulate DNA and protein synthesis and angiogenesis and vascular growth in the placenta. These recent findings not only greatly advance the field of mammalian amino acid metabolism and nutrition, but also provide practical, mechanism-based methods to enhance reproductive efficiency in swine. These results may also help improve embryonic/fetal survival and growth in other livestock species (e.g., sheep and cattle) and in humans.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Cassandra Herring
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan, China
| |
Collapse
|
23
|
Abstract
Polyamines are polycationic molecules that contain two or more amino groups (-NH3 +) and are present in all eukaryotic and prokaryotic cells. Polyamines are synthesized from arginine, ornithine, and proline, and from methionine as the methyl-group donor. In the traditional pathway for polyamine synthesis, arginase converts arginine into ornithine, which is decarboxylated by ornithine decarboxylase (ODC1) to generate putrescine. The latter is converted to spermidine and spermine. Recent studies have indicated the existence of 'non-classical pathways' for the generation of putrescine from arginine and proline in animal cells. Specifically, arginine decarboxylase (ADC) catalyzes the conversion of arginine into agmatine, which is hydrolyzed by agmatinase (AGMAT) to form putrescine. Additionally, proline is oxidized by proline oxidase to yield pyrroline-5-carboxylate, which undergoes transamination with glutamate to produce ornithine for decarboxylation by ODC1. Intracellular production of polyamines is controlled by antizymes binding to and inactivating ODC1. Polyamines exert effects that include stimulation of cell division and proliferation, gene expression for the survival of cells, DNA and protein synthesis, regulation of apoptosis, oxidative stress, angiogenesis, and cell-cell communication activity. Accordingly, polyamines are essential for early embryonic development and successful pregnancy outcome in mammals. In this paper the main concepts on the history, structure and molecular pathways of polyamines as well as their physiological role on angiogenesis, and reproductive physiology are reviewed.
Collapse
|
24
|
Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase-dimethylarginine dimethylaminohydrolase-nitric oxide axis. Reprod Fertil Dev 2017; 27:655-66. [PMID: 25765074 DOI: 10.1071/rd14293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/14/2015] [Indexed: 12/15/2022] Open
Abstract
Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo's transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide-DDAH-PRMT axis.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Kimberly J Tessanne
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Lee D Spate
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Clifton N Murphy
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Invited review: impact of specific nutrient interventions during mid-to-late gestation on physiological traits important for survival of multiple-born lambs. Animal 2017; 11:1727-1736. [PMID: 28222833 DOI: 10.1017/s1751731117000313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To improve production efficiency, the sheep meat industry has increased flock prolificacy. However, multiple-born lambs have lower birth weights, increased mortality and reduced growth rate compared with single-born lambs. Lamb mortality is a major issue for livestock farming globally and solutions are required to increase survival to realise the value of increased flock fecundity. Nutrition during gestation can influence maternal-foetal placental nutrient transfer and thus foetal growth and organ/tissue development, as well as improve postnatal productivity. This review covers the challenges and opportunities associated with increased prolificacy, highlights gaps in our knowledge and identifies some opportunities for how targeted intervention with specific nutrients during mid-to-late pregnancy may influence lamb survival and productivity with a specific focus on pasture-based systems. This time frame was selected as intervention strategies in short-time windows post-pregnancy scanning and before lambing to improve lamb survival in high-risk groups (e.g. triplets) are likely to be the most practical and economically feasible options for pasture-based extensive farming systems.
Collapse
|
26
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
27
|
Guo P, Jiang ZY, Gao KG, Wang L, Yang XF, Hu YJ, Zhang J, Ma XY. Low-level arginine supplementation (0.1%) of wheat-based diets in pregnancy increases the total and live-born litter sizes in gilts. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was conducted to test the effects of l-arginine supplementation of wheat-based diets on the pregnancy outcome of gilts. Pregnant gilts (Yorkshire × Landrace, n = 113) were assigned randomly into two groups representing dietary supplementation with 0.1% l-arginine as l-arginine-HCl or 0.17% l-alanine (isonitrogenous control) between Days 30 and 110 of pregnancy. Blood samples were obtained from the ear vein on Days 30, 70 and 90 of pregnancy. Compared with the control, arginine supplementation increased the total number of piglets born by 1.10 per litter and the number of live-born piglets by 1.10 per litter (P < 0.05). Plasma concentration of spermine was higher in gilts fed arginine diets than in those fed control diets at Day 90 of pregnancy (P < 0.05). Dietary arginine supplementation increased plasma concentration of IGF-I of gilts at Day 90 of pregnancy (P < 0.01) and plasma concentrations of arginine, proline and ornithine at Days 70 and 90 of pregnancy (P < 0.05). These results indicated that low-level supplementation (0.1%) of l-arginine–HCl of wheat-based diets beneficially enhances the reproductive performance of gilts and is feasible for use in commercial production.
Collapse
|
28
|
Liu G, Xiao L, Cao W, Fang T, Jia G, Chen X, Zhao H, Wu C, Wang J. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy. Food Funct 2016; 7:964-74. [PMID: 26732548 DOI: 10.1039/c5fo01486g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P < 0.05) in plasma. Compared with the diquat group, the arginine + diquat group had significantly higher levels of citrate, creatinine, homogentisate, and α-ketoglutarate while lower levels of acetamide, citrulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, propionate, and β-glucose (P < 0.05) in urine. Compared with the diquat group, the N-carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol, hippurate, lactate, N-acetylglutamate, nicotinamide, ornithine, and trigonelline (P < 0.05) in urine. Overall, these results suggest that arginine and N-carbamylglutamate can alter the metabolome associated with energy metabolism, amino acid metabolism, and gut microbiota metabolism under oxidative stress.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
29
|
Liu G, Wu X, Jia G, Chen X, Zhao H, Wang J, Wu C, Cai J. Arginine: New Insights into Growth Performance and Urinary Metabolomic Profiles of Rats. Molecules 2016; 21:E1142. [PMID: 27589702 PMCID: PMC6273504 DOI: 10.3390/molecules21091142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/06/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023] Open
Abstract
Arginine regulates growth performance, nutrient metabolism and health effects, but the underlying mechanism remains unknown. This study aims to investigate the effect of dietary arginine supplementation on rat growth performance and urinary metabolome through ¹H-NMR spectroscopy. Twenty rats were randomly assigned to two groups supplemented with 0% or 1.0% l-arginine for 4 weeks. Urine samples were analyzed through NMR-based metabolomics. Arginine supplementation significantly increased the urine levels of 4-aminohippurate, acetate, creatine, creatinine, ethanolamine, formate, hippurate, homogentisate, indoxyl sulfate, and phenylacetyglycine. Conversely, arginine decreased the urine levels of acetamide, β-glucose, cirtulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, and propionate. Results suggested that arginine can alter common systemic metabolic processes, including energy metabolism, amino acid metabolism, and gut microbiota metabolism. Moreover, the results also imply a possible physiological role of the metabolism in mediating the arginine supplementation-supported growth of rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| |
Collapse
|
30
|
Sciascia Q, Sales F, van der Linden D, Wards N, Oliver M, Blair H, McCoard S. Nutritional plane of twin-bearing ewes alters fetal mammary gland biochemical composition and mTOR/MAPK pathway signaling. J Anim Sci 2016; 93:699-708. [PMID: 26020751 DOI: 10.2527/jas.2014-8394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying the biochemical changes and molecular pathways that regulate fetal mammary development in response to maternal nutrition is important for understanding the link between fetal programming of mammary development and future lactation performance. Although there are published studies regarding biochemical changes in the developing mammary gland, there are currently no data on molecular pathway involvement in regulating ruminant fetal mammary development. This study investigated changes in fetal mammary biochemical indices and mechanistic target of rapamycin (mTOR)/mitogen activated protein kinase (MAPK) signaling at d 100 and 140 of gestation in an ovine model of restricted maternal nutrition. Ewes were randomly allocated to ad libitum (A) or maintenance (M) nutritional regimens, under New Zealand pastoral grazing conditions, from d 21 to 140 of pregnancy. At d 100 and 140 of pregnancy, a subgroup of twin-bearing dams was euthanized, and whole fetal mammary glands (fiber, skin, fat, and ducts) were collected. Mammary glands of fetuses carried by M-fed dams were heavier at d 100 than those of fetuses carried by A-fed dams ( = 0.03), with no difference in the abundance of mTOR/MAPK signaling proteins observed. At d 140, mammary glands of fetuses carried by M-fed dams were lighter ( = 0.07) than fetuses carried by A-fed dams because of decreased hyperplasia ( = 0.04) and hypertrophy ( = 0.09) but had increased protein synthetic capacity ( = 0.02). Increased protein synthetic capacity was associated with increased abundance of MAPK pathway signaling proteins eukaryotic intiation factor 4E (eIF4E)/eIF4E and mTOR pathway signaling proteins eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/4E-BP1 and ribosomal protein S6 (RPS6)/RPS6 ( ≤ 0.05). Increased abundance of MAPK/mTOR pathway proteins is proposed to mediate increased protein synthetic capacity via ribosome biogenesis and the availability of factors required to initiate protein translation. The primary regulator of 4E-BP1 phosphorylation at Ser65 and RPS6 at Ser235/236 is the activated form of mTOR: mTOR. To study potential tissue-specific mTOR, mTOR abundance mammary glands, separated into parenchyma and fat pad, were collected from d 140 fetuses carried by dams fed a lucerne-based pellet diet formulated to meet 100% of the NRC-recommended maintenance requirements. Results showed that the abundance of mTOR was primarily localized to the fat pad, indicating that the fat pad plays a potential role in regulating development of the fetal mammary gland.
Collapse
|
31
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
32
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
33
|
Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional roles of arginine during the peri-implantation period of pregnancy. III. Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod 2015; 92:75. [PMID: 25653279 DOI: 10.1095/biolreprod.114.125989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammal species, arginine is a multifunctional amino acid required for survival, growth, and development of conceptuses (embryo/fetus and associated extraembryonic membranes) during the peri-implantation period of pregnancy. However, functional roles of arginine with respect to it being a substrate for production of nitric oxide (NO) and polyamines on trophectoderm cell proliferation and function remain largely unknown. To systematically assess roles of arginine in conceptus development and its effect on interferon tau (IFNT) production for pregnancy recognition signaling in ruminants, an established ovine trophectoderm (oTr1) cell line isolated from Day-15 ovine conceptuses were used to determine their response to arginine, putrescine, and NO donors, as well as their associated inhibitors. Arginine at physiological concentration (0.2 mM) stimulated maximum oTr cell proliferation (increased 2.0-fold at 48 h and 2.6-fold at 96 h; P < 0.05), stimulated IFNT production (IFNT/cell increased 3.1-fold; P < 0.05), and increased total protein per cell by more than 1.5-fold (P < 0.05). It also increased phosphorylated tuberous sclerosis protein (p-TSC2) and phosphorylated mechanistic target of rapamycin (MTOR) abundance by more than 2.7- and 4.3-fold (P < 0.0001) after long-term incubation, respectively. When Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; NO synthase inhibitor), DL-α-difluoromethylornithine hydrochloride hydrate (DFMO; ornithine decarboxylase inhibitor), and the combination (L-NAME + DFMO) were added, the effects of arginine on cell proliferation was reduced by 10.7%, 16.1%, and 22.3% (P < 0.05) at 48 h, and 15.3%, 27.2%, and 39.1% (P < 0.05) at 96 h of incubation, respectively, but values remained 1.5-fold higher (P < 0.05) than for the arginine-free control, which suggests that arginine, per se, serves as a growth factor. Both putrescine and NO stimulate cell proliferation via activation of the TSC2-MTOR signaling cascade, whereas only putrescine increased IFNT production. Collectively, our results indicate that arginine is essential for oTr1 cell proliferation and IFNT production via the NO/polyamine-TSC2-MTOR signaling pathways, particularly the pathway involving polyamine biosynthesis.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jared J Romero
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
34
|
Bazer FW, Johnson GA, Wu G. Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:23-52. [DOI: 10.1007/978-1-4939-2480-6_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Wang X, Johnson GA, Burghardt RC, Wu G, Bazer FW. Uterine histotroph and conceptus development. I. cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod 2014; 92:51. [PMID: 25550342 DOI: 10.1095/biolreprod.114.125971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The greatest limitation to reproductive performance in most mammals, including humans, is embryonic mortality, which, in general, claims 20%-40% of the embryos during the peri-implantation period of pregnancy. Both arginine and secreted phosphoprotein 1 (SPP1) are multifunctional molecules that increase significantly in ovine uterine histotroph during early pregnancy. However, little is known about the relationship and underlying mechanisms for synergistic effects of arginine and SPP1, if any, on conceptus (embryo/fetus and associated extraembryonic membranes) development. Therefore, we conducted in vitro experiments using our established ovine trophectoderm cell line (oTr1) isolated from Day 15 ovine conceptuses to determine their proliferative response to individual and synergistic effects of arginine and recombinant SPP1 (rSPP1) that contains an RGD binding sequence. At physiological concentrations, arginine (0.2 mM) stimulated oTr1 cell proliferation 1.7-fold (P < 0.05) at 48 h, whereas rSPP1 (10 ng/ml) had no such effect. However, an additive effect on oTr1 cell proliferation was induced by combination of arginine and SPP1 as compared to the control (2.1-fold increase; P < 0.01), arginine alone (1.3-fold increase; P < 0.05), and rSPP1 alone (1.5-fold increase; P < 0.01). This additive effect was mediated through cooperative activation of the PDK1-Akt/PKB-TSC2-MTORC1 cell signaling cascade. Collectively, results suggest that arginine and SPP1 in histotroph act cooperatively to enhance survival, growth, and development of ovine conceptuses.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
36
|
Santana PDPB, Silva TVG, da Costa NN, da Silva BB, Carter TF, Cordeiro MDS, da Silva BJM, Santos SDSD, Herculano AM, Adona PR, Ohashi OM, Miranda MDS. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production. Mol Reprod Dev 2014; 81:918-27. [PMID: 25236163 DOI: 10.1002/mrd.22387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/01/2014] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is a cell-signaling molecule that regulates a variety of molecular pathways. We investigated the role of NO during preimplantation embryonic development by blocking its production with an inhibitor or supplementing in vitro bovine embryo cultures with its natural precursor, L-arginine, over different periods. Endpoints evaluated included blastocyst rates, development kinetics, and embryo quality. Supplementation with the NO synthase inhibitor N-Nitro-L-arginine-methyl ester (L-NAME) from Days 1 to 8 of culture decreased blastocyst (P < 0.05) and hatching (P < 0.05) rates. When added from Days 1 to 8, 50 mM L-arginine decreased blastocyst rates (P < 0.001); in contrast, when added from Days 5 to 8, 1 mM L-arginine improved embryo hatching rates (P < 0.05) and quality (P < 0.05) as well as increased POU5F1 gene expression (P < 0.05) as compared to the untreated control. Moreover, NO levels in the medium during this culture period positively correlated with the increased embryo hatching rates and quality (P < 0.05). These data suggest exerts its positive effects during the transition from morula to blastocyst stage, and that supplementing the embryo culture medium with L-arginine favors preimplantation development of bovine embryos.
Collapse
|
37
|
Wang X, Frank JW, Xu J, Dunlap KA, Satterfield MC, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol Reprod 2014; 91:59. [PMID: 25061098 DOI: 10.1095/biolreprod.114.121202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) is a gaseous molecule that regulates angiogenesis and vasodilation via activation of the cGMP pathway. However, functional roles of NO during embryonic development from spherical blastocysts to elongated filamentous conceptuses (embryo and extraembryonic membrane) during the peri-implantation period of pregnancy have not been elucidated in vivo. In order to assess roles of NO production in survival and development of the ovine conceptus, we conducted an in vivo morpholino antisense oligonucleotide (MAO)-mediated knockdown trial of nitric oxide synthase-3 (NOS3) mRNA, the major isoform of NO synthase, in ovine conceptus trophectoderm (Tr). Translational knockdown of NOS3 mRNA results in small, thin, and underdeveloped conceptuses, but normal production of interferon-tau, the pregnancy recognition signal in sheep. MAO-NOS3 knockdown in conceptuses decreased the abundance of NOS3 (72%, P < 0.05) and the arginine transporter SLC7A1 proteins in conceptus Tr. Furthermore, the amounts of ornithine and polyamines were less (P < 0.01) in uterine fluid, whereas the amounts of arginine (58%, P < 0.01), citrulline (68%, P < 0.05), ornithine (68%, P < 0.001), glutamine (78%, P < 0.001), glutamate (68%, P < 0.05), and polyamines (P < 0.01) were less in conceptuses, which likely accounts for the failure of MAO-NOS3 conceptuses to develop normally. For MAO-NOS3 conceptuses, there were no compensatory increases in the expression levels of either nitric oxide synthase-1 (NOS1) or nitric oxide synthase-2 (NOS2) or in expression of enzymes for synthesis of polyamines (ornithine decarboxylase, arginine decarboxylase, agmatinase) from arginine or ornithine with which to rescue development of MAO-NOS3 conceptuses. Thus, the adverse effect of MAO-NOS3 to reduce NO generation and the transport of arginine and ornithine into conceptuses is central to an explanation for failure of normal development of MAO-NOS3, compared to control conceptuses. The study, for the first time, created an NO-deficient mammalian conceptus model in vivo and provided new insights into the orchestrated events of conceptus development during the peri-implantation period of pregnancy. Our data suggest that NOS3 is the key enzyme for NO production by conceptus Tr and that this protein also regulates the availability of arginine in conceptus tissues for synthesis of polyamines that are essential for conceptus survival and development.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - James W Frank
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jing Xu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, Texas
| | | | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jared J Romero
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
38
|
Bazer FW, Song G, Thatcher WW. Roles of conceptus secretory proteins in establishment and maintenance of pregnancy in ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1-16. [PMID: 25049471 PMCID: PMC4092924 DOI: 10.5713/ajas.2011.r.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA ; WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - William W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0691, USA
| |
Collapse
|
39
|
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 2014; 9:e100010. [PMID: 24960174 PMCID: PMC4069017 DOI: 10.1371/journal.pone.0100010] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022] Open
Abstract
In cattle, conceptus-maternal interactions are critical for the establishment and maintenance of pregnancy. A major component of this early interaction involves the transport of nutrients and secretion of key molecules by uterine epithelial cells to help support conceptus development during the peri-implantation period of pregnancy. Objectives were to: 1) analyze temporal changes in the amino acid (AA) content of uterine luminal fluid (ULF) during the bovine estrous cycle; 2) understand conceptus-induced alterations in AA content; 3) determine expression of AA transporters in the endometrium and conceptus; and 4) determine how these transporters are modulated by (Progesterone) P4. Concentrations of aspartic acid, arginine, glutamine, histidine, lysine, isoleucine, leucine, phenylalanine and tyrosine decreased on Day 16 of the estrous cycle but increased on Day 19 in pregnant heifers (P<0.05). Glutamic acid only increased in pregnant heifers on Day 19 (P<0.001). Asparagine concentrations were greater in ULF of cyclic compared to pregnant heifers on Day 7 (P<0.05) while valine concentrations were higher in pregnant heifers on Day 16 (P<0.05). Temporal changes in expression of the cationic AA transporters SLC7A1 SLC7A4 and SLC7A6 occurred in the endometrium during the estrous cycle/early pregnancy coordinate with changes in conceptus expression of SLC7A4, SLC7A2 and SLC7A1 (P<0.05). Only one acidic AA transporter (SLC1A5) increased in the endometrium while conceptus expression of SLC1A4 increased (P<0.05). The neutral AA transporters SLC38A2 and SLC7A5 increased in the endometrium in a temporal manner while conceptus expression of SLC38A7, SLC43A2, SLC38A11 and SLC7A8 also increased (P<0.05). P4 modified the expression of SLC1A1, -1A4, -1A5, -38A2, -38A4, -38A7, -43A2, -6A14, -7A1, -7A5 and -7A7 in the endometrium. Results demonstrate that temporal changes in AA in the ULF reflect changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle, some of which are modified by P4.
Collapse
|
40
|
da Costa CMB, de Freitas MRB, Brazão V, dos Santos CD, Sala MA, do Prado Júnior JC, Abrahão AAC. Does L-arginine availability during the early pregnancy alters the immune response of Trypanosoma cruzi infected and pregnant Wistar rats? Exp Parasitol 2014; 142:59-66. [PMID: 24786713 DOI: 10.1016/j.exppara.2014.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022]
Abstract
Chagas disease induces a strong immune response and L-arginine is an essential amino acid which plays an important role in homeostasis of the immune system. The aims of this study were to evaluate parasitemia, corticosterone levels, production of nitric oxide (NO), fetal morphological measurements, and histology of heart and placenta. Twenty pregnant Wistar rats (180-220 g) were grouped in: pregnant control (PC), pregnant control and L-arginine supplied (PCA), pregnant infected (PI), pregnant infected and L-arginine supplied (PIA). Females were infected with 1×10(5) trypomastigotes of the Y strain (3rd day of pregnancy). Animals were supplied with 21 mg of L-arginine/kg/day during 14 days. PIA showed significant decreased levels of corticosterone and parasitemia. For control groups, any alteration in NO production was found with L-arginine supplementation; for PIA, enhanced nitrite concentrations were observed as compared to PI. Weights and lengths of fetuses were higher in L-arginine treated and infected pregnant rats as compared to untreated ones. Placental weight from the PIA group was significantly increased when compared to PI. In L-arginine treated animals, cardiac tissue showed reduced amastigote burdens. PIA and PI displayed similar placental parasitism. Based on these results, L-arginine supplementation may be potentially useful for the protection against Trypanosoma cruzi during pregnancy.
Collapse
Affiliation(s)
| | | | - Vânia Brazão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | - Miguel Angel Sala
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
41
|
Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 2014; 90:84. [PMID: 24648395 DOI: 10.1095/biolreprod.113.114637] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ornithine decarboxylase (ODC1) is considered the rate-controlling enzyme for the classical de novo biosynthesis of polyamines (putrescine, spermidine, and spermine) in mammals. However, metabolism of arginine to agmatine via arginine decarboxylase (ADC) and conversion of agmatine to polyamines via agmatinase (AGMAT) is an alternative pathway long recognized in lower organisms, but only recently suggested for neurons and liver cells of mammals. We now provide evidence for a functional ADC/AGMAT pathway for the synthesis of polyamines in mammalian reproductive tissue for embryonic survival and development. We first investigated cellular functions of polyamines by in vivo knockdown of translation of mRNA for ODC1 in ovine conceptus trophectoderm using morpholino antisense oligonucleotides (MAOs) and found that one-half of the conceptuses were morphologically and functionally either normal or abnormal. Furthermore, we found that increases in ADC/AGMAT mRNA levels and in the translation of AGMAT mRNA among conceptuses in MAO-ODC1 knockdown compensated for the loss of ODC1, supporting polyamine synthesis from arginine and accounting for the normal and abnormal phenotypes of conceptuses. We conclude that the majority of polyamine synthesis is by the conventional ODC1-dependent pathway (arginine-ornithine-putrescine) and that deficiencies in ODC1 result in increased activity of the rescue ADC/AGMAT-dependent pathway (arginine-agmatine-putrescine) for production of polyamines. The presence of an alternative ADC/AGMAT pathway for converting arginine into putrescine is functionally important for supporting survival and development of mammalian conceptuses.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang X, Frank JW, Little DR, Dunlap KA, Satterfield MC, Burghardt RC, Hansen TR, Wu G, Bazer FW. Functional role of arginine during the peri‐implantation period of pregnancy. I. Consequences of loss of function of arginine transporter
SLC7A1
mRNA in ovine conceptus trophectoderm. FASEB J 2014; 28:2852-63. [DOI: 10.1096/fj.13-248757] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and GenomicsTexas A&M UniversityCollege StationTexasUSA
- Department of Animal ScienceTexas A&M UniversityCollege StationTexasUSA
| | - James W. Frank
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| | | | - Kathrin A. Dunlap
- Department of Animal ScienceTexas A&M UniversityCollege StationTexasUSA
| | | | | | - Thomas R. Hansen
- Department of Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Guoyao Wu
- Center for Animal Biotechnology and GenomicsTexas A&M UniversityCollege StationTexasUSA
- Department of Animal ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Fuller W. Bazer
- Center for Animal Biotechnology and GenomicsTexas A&M UniversityCollege StationTexasUSA
- Department of Animal ScienceTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
43
|
Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu Rev Anim Biosci 2014; 2:387-417. [DOI: 10.1146/annurev-animal-022513-114113] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| |
Collapse
|
44
|
Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 2013; 46:375-84. [PMID: 24337831 DOI: 10.1007/s00726-013-1626-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary L-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % L-arginine. All diets were made isonitrogenous by addition of L-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % L-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % L-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % L-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.
Collapse
|
45
|
Jeong W, Kim J, Bazer FW, Song G. Epidermal growth factor stimulates proliferation and migration of porcine trophectoderm cells through protooncogenic protein kinase 1 and extracellular-signal-regulated kinases 1/2 mitogen-activated protein kinase signal transduction cascades during early pregnancy. Mol Cell Endocrinol 2013; 381:302-11. [PMID: 24012778 DOI: 10.1016/j.mce.2013.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
For successful implantation and establishment of early epitheliochorial placentation, porcine conceptuses require histotroph, including nutrients and growth factors, secreted by or transported into the lumen of the uterus. Epidermal growth factor (EGF), an essential component of histotroph, is known to have potential growth-promoting activities on the conceptus and uterine endometrium. However, little is known about its effects to transactivate cell signaling cascades responsible for proliferation, growth and differentiation of conceptus trophectoderm. In the present study, therefore, we determined that EGFR mRNA and protein were abundant in endometrial luminal and glandular epithelia, stratum compactum stroma and conceptus trophectoderm on days 13-14 of pregnancy, but not in any other cells of the uterus or conceptus. In addition, primary porcine trophectoderm (pTr) cells treated with EGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2 MAPK and p-P90RSK over basal levels within 5min, and effect that was maintained to between 30 and 120min. Immunofluorescence microscopy revealed abundant amounts of p-ERK1/2 MAPK and p-AKT1 proteins in the nucleus and, to a lesser extent, in the cytoplasm of pTr cells treated with EGF as compared to control cells. Furthermore, the abundance of p-AKT1 and p-ERK1/2 MAPK proteins was inhibited in control and EGF-treated pTr cells transfected with EGFR siRNA. Compared to the control siRNA transfected pTr cells, pTr cells transfected with EGFR siRNA exhibited an increase in expression of IFND and TGFB1, but there was no effect of expression of IFNG. Further, EGF stimulated proliferation and migration of pTr cells through activation of the PI3K-AKT1 and ERK1/2 MAPK-P90RSK cell signaling pathways. Collectively, these results support the hypothesis that EGF coordinately activates multiple cell signaling pathways critical to proliferation, migration and survival of trophectoderm cells that are critical to development of porcine conceptuses during implantation and placentation.
Collapse
Affiliation(s)
- Wooyoung Jeong
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod 2013; 88:113. [PMID: 23486913 DOI: 10.1095/biolreprod.112.105080] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the peri-implantation and early placentation periods in pigs, conceptuses (embryo and its extra-embryonic membranes) undergo dramatic morphological changes and differentiation that require the exchange of nutrients (histotroph) and gasses across the trophectoderm and a true epitheliochorial placenta. Of these nutrients, arginine (Arg), leucine (Leu), and glutamine (Gln) are essential components of histotroph; however, little is known about changes in their total amounts in the uterine lumen of cyclic and pregnant gilts and their effects on cell signaling cascades. Therefore, we determined quantities of Arg, Leu, and Gln in uterine luminal fluids and found that total recoverable amounts of these amino acids increased in pregnant but not cyclic gilts between Days 12 and 15 after onset of estrus. We hypothesized that Arg, Leu, and Gln have differential effects on hypertrophy, hyperplasia, and differentiated functions of trophectoderm cells that are critical to conceptus development. Primary porcine trophectoderm (pTr) cells treated with either Arg, Leu, or Gln had increased abundance of phosphorylated RPS6K, RPS6, and EIF4EBP1 compared to basal levels, and this effect was maintained for up to 120 min. When pTr cells were treated with Arg, Leu, and Gln, low levels of pRPS6K and pEIF4EBP1 were detected in the cytosol, but the abundance of nuclear pRPS6K increased. Immunofluorescence analyses revealed abundant amounts of pRPS6 protein in the cytoplasm of pTr cells treated with Arg, Leu, and Gln. These amino acids also increased proliferation of pTr cells. Furthermore, when Arg, Leu, and Gln were combined with siRNAs for either MTOR, RPTOR, or RICTOR, effects of those amino acids on proliferation of pTr cells were significantly inhibited. Collectively, these results indicate that Arg, Leu, and Gln act coordinately to stimulate proliferation of pTr cells through activation of the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway.
Collapse
Affiliation(s)
- Jinyoung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Greene JM, Feugang JM, Pfeiffer KE, Stokes JV, Bowers SD, Ryan PL. L-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod Biol Endocrinol 2013; 11:15. [PMID: 23442442 PMCID: PMC3598371 DOI: 10.1186/1477-7827-11-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/24/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at the level of the endometrium. To this end, this study determined the effect that L-arginine has on apoptosis and cell proliferation in human endometrial RL95-2 cells. RESULTS L-arginine at physiological (200 micromol/L) and supra-physiological (800 micromol/L) concentrations increased cell proliferation at days 2 and 4 post-treatment with a dose-dependent effect being observed on day 2. Additionally, inhibition of nitric oxide (NO) synthase and arginase, which are responsible for the conversion of L-arginine to NO and polyamines, respectively, reduced the proliferative effect of L-arginine. L-arginine also decreased the proportion of cells with TUNEL positive nuclei and increased the ratio of cells with healthy mitochondria compared to cells with a disrupted mitochondrial membrane potential, indicating that L-arginine prevents mitochondrial mediated apoptosis in endometrial RL95-2 cells. Furthermore, exposure to L-arginine did not affect total BAD protein expression; however, L-arginine increased the abundance of phosphorylated BAD protein. CONCLUSIONS In summary, L-arginine added to the culture media at physiological (200 micromol/L) and supraphysiological concentrations (800 micromol/L) enhanced endometrial RL95-2 cell proliferation through mechanisms mediated by NO and polyamine biosynthesis. In addition, L-arginine reduced endometrial RL95-2 mitochondrial mediated apoptosis through increased phosphorylation of BAD protein.
Collapse
Affiliation(s)
- Jonathan M Greene
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kathryn E Pfeiffer
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - John V Stokes
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Susan D Bowers
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| | - Peter L Ryan
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
- Facility for Organismal and Cellular Imaging, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
48
|
Zeng X, Mao X, Huang Z, Wang F, Wu G, Qiao S. Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction 2013; 145:1-7. [DOI: 10.1530/rep-12-0254] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our previous study has demonstrated that dietary arginine supplementation during early pregnancy enhanced embryo implantation in rats. However, the mechanism was not clear. The objective of this study was to determine the mechanism that arginine enhanced embryo implantation during early pregnancy. Rats were fed the basal diets supplemented with 1.3% (wt:wt)l-arginine–HCl or 2.2% (wt:wt)l-alanine (isonitrogenous control) once pregnancy. On d4 of pregnancy, rats were given intrauterine injection ofl-NG-nitro arginine methyl ester (l-NAME, nitric oxide synthase inhibitor), α-difluoromethylornithine (DFMO, polyamine synthesis inhibitor), wortmannin (PI3K inhibitor), or rapamycin (mTOR inhibitor). On d7 of pregnancy, rats were killed. Intrauterine injection ofl-NAME decreased the implantation sites, while dietary arginine supplementation increased the implantation sites. Intrauterine injection of DFMO decreased the pregnancy rate, which was reversed by dietary arginine supplementation. Intrauterine injection of rapamycin or wortmannin inhibited embryo implantation. However, dietary arginine supplementation did not reverse this inhibition. Western blot analysis revealed that the expression of uterine p-PKB and p-S6K1 was greater in rats fed the arginine-supplemented diet in the presence ofl-NAME treatment compared with rats fed the control diet. In the presence of DFMO treatment, the expression of uterine iNOS and eNOS was significantly enhanced in the arginine group compared with the control group. Similarly, intrauterine injection of wortmannin or rapamycin decreased the expression of uterine iNOS and eNOS, which was enhanced by dietary arginine supplementation. These data indicated that dietary arginine supplementation during early pregnancy could enhance embryo implantation through stimulation of PI3K/PKB/mTOR/NO signaling pathway.
Collapse
|
49
|
Bazer FW. Contributions of an animal scientist to understanding the biology of the uterus and pregnancy. Reprod Fertil Dev 2013; 25:129-47. [DOI: 10.1071/rd12266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
I developed a passion for reproductive biology when taking a course in Physiology of Reproduction at Louisiana State University while preparing to apply for Veterinary School at Texas A&M University. My career path changed. I entered graduate school, obtained a Ph.D. and have enjoyed an academic career conducting research in uterine biology and pregnancy in animal science departments at the University of Florida and at Texas A&M University. My contributions to science include: (1) identification of molecules secreted by or transported by uterine epithelia into the uterine lumen that are critical to successful establishment and maintenance of pregnancy, (2) discovery of steroids and proteins required for pregnancy-recognition signalling and their mechanisms of action in pigs and ruminants, (3) patterns of fetal–placental development and placental transport of nutrients, (4) identification of links between nutrients and components of histotroph that affect fetal–placental development, (5) characterising aspects of the endocrinology of pregnancy and (6) contributing to efforts to exploit the therapeutic value of interferon tau, particularly for treatment of autoimmune and inflammatory diseases. Current research focuses on select nutrients in the uterine lumen, specifically amino acids, glucose and fructose, that affect conceptus development, the therapeutic potential for interferon tau, stromal–epithelial cell signalling whereby progesterone and oestrogen act via steroid receptors in uterine stromal cells to stimulate secretion of growth factors (e.g. fibroblast growth factors and hepatocyte growth factor) that regulate uterine epithelial cells and conceptus trophectoderm, and roles of toll-like receptors expressed by uterine epithelia and conceptus trophectoderm in pregnancy.
Collapse
|
50
|
Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 2012; 1271:88-96. [PMID: 23050969 PMCID: PMC3485747 DOI: 10.1111/j.1749-6632.2012.06741.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|