1
|
Ahn SH, Halgren K, Grzesiak G, MacRenaris KW, Sue A, Xie H, Demireva E, O'Halloran TV, Petroff MG. Autoimmune regulator deficiency causes sterile epididymitis and impacts male fertility through disruption of inorganic physiology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf054. [PMID: 40267393 DOI: 10.1093/jimmun/vkaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/12/2025] [Indexed: 04/25/2025]
Abstract
Autoimmune regulator (AIRE), a transcriptional regulator expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. In humans, AIRE mutations caues autoimmune polyglandular syndrome type 1. Among other symptoms, men with autoimmune polyglandular syndrome type 1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown. Using an Aire-deficient mouse model, we demonstrate that male subfertility is caused by sterile epididymitis characterized by immune cell infiltration and extensive fibrosis. In addition, we reveal that the presence of autoreactive immune cells and inflammation in epididymides of Aire-deficient mice are required for iron deposition in the interstitium, which is brought on by macrophages. We further demonstrate that male subfertility is associated with a decrease in metals zinc, copper, and selenium, which serve as cofactors in several antioxidant enzymes. We also show an increase in DNA damage of epididymal sperm of Aire-/- animals as a key contributing factor to subfertility. The absence of Aire results in autoimmune attack of the epididymis leading to fibrosis, iron deposition, and copper, zinc, and selenium imbalance, ultimately resulting in sperm DNA damage and subfertility. These results highlight the requirement of Aire to promote immune tolerance to the epididymis, and that its disruption causes an imbalance of inorganic elements with resulting consequence on male fertility.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Katrina Halgren
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Pathobiology & Diagnostic Investigation, Lyman Briggs College, Michigan State University, East Lansing, MI, United States
| | - Geoffrey Grzesiak
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Keith W MacRenaris
- Elemental Health Institute and Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| | - Aaron Sue
- Elemental Health Institute and Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, United States
| | - Elena Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, United States
| | - Thomas V O'Halloran
- Elemental Health Institute and Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| | - Margaret G Petroff
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Jansova D, Sedmikova V, Berro FJ, Aleshkina D, Dvoran M, Kubelka M, Rezacova J, Rutarova J, Kohoutek J, Susor A. Absence of CDK12 in oocyte leads to female infertility. Cell Death Dis 2025; 16:213. [PMID: 40148269 PMCID: PMC11950339 DOI: 10.1038/s41419-025-07536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.
Collapse
Affiliation(s)
- Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.
| | - Veronika Sedmikova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Fatima J Berro
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Jitka Rezacova
- Assisted reproductive center, Institute for Mother and Child Care, Podolske nabrezi 157, Prague, Czech Republic
| | - Jana Rutarova
- Assisted reproductive center, Institute for Mother and Child Care, Podolske nabrezi 157, Prague, Czech Republic
| | - Jiri Kohoutek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.
| |
Collapse
|
3
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
4
|
Ahn SH, Halgren K, Grzesiak G, MacRenaris KW, Sue A, Xie H, Demireva E, O'Halloran TV, Petroff MG. Autoimmune regulator deficiency causes sterile epididymitis and impacts male fertility through disruption of inorganic physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632558. [PMID: 39868100 PMCID: PMC11761525 DOI: 10.1101/2025.01.11.632558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autoimmune regulator (AIRE), a transcription factor expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. Humans with mutations in AIRE suffer from Autoimmune Polyglandular Syndrome Type 1 (APS-1). Among many symptoms, men with APS-1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown. Using an Aire -deficient mouse model, we demonstrate that male subfertility is caused by sterile epididymitis characterized by immune cell infiltration and extensive fibrosis. In addition, we reveal that the presence of autoreactive immune cells and inflammation in epididymides of Aire- deficient mice are required for iron (Fe) deposition in the interstitium, which is brought on by macrophages. We further demonstrate that male subfertility is associated with a decrease in metals zinc (Zn), copper (Cu), and selenium (Se) which serve as cofactors in several antioxidant enzymes. We also show increase in DNA damage of epididymal sperm of Aire -/- animals as a key contributing factor to subfertility. The absence of Aire results in autoimmune attack of the epididymis leading to fibrosis, Fe deposition, and Cu, Zn and Se imbalance, ultimately resulting in sperm DNA damage and subfertility. These results highlight the requirement of Aire to promote immune tolerance throughout the epididymis, disruption of which causes an imbalance of inorganic elements with resulting consequence on male fertility. Key points Breakdown of epididymal self-tolerance promotes disruption of inorganic elements. Autoimmunity causes interstitial fibrosis resulting in sperm DNA damage and subfertility. Elevated interstitial iron and macrophages contribute to fibrosis.
Collapse
|
5
|
Kunicki M, Rzewuska N, Gross-Kępińska K. Immunophenotypic profiles and inflammatory markers in Premature Ovarian Insufficiency. J Reprod Immunol 2024; 164:104253. [PMID: 38776714 DOI: 10.1016/j.jri.2024.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Premature Ovarian Insufficiency (POI), also known as Premature Ovarian Failure (POF), is a heterogeneous disorder characterized by the cessation of ovarian function before age 40. Clinical symptoms include menstrual disorders: amenorrhea/oligomenorrhea or symptoms of estrogen deficiency. This review aims to provide the most important summary of the immunophenotypic profile of premature ovarian failure syndrome, along with a review of the latest reports on the usefulness of inflammatory markers. The inflammatory microenvironment in POI applies to many levels. Concomitants of autoimmune ovarian inflammation and impaired cellular immune response may be a picture of impaired regulation in autoimmune ovarian disease. The serum concentration of pro-inflammatory cytokines, like IL-6, IL-8, IL-17, tumor necrosis factor α (TNF-α), and interferon-gamma (IFN-γ), tend to increase, whereas levels of the anti-inflammatory cytokine, IL-10, tend to decrease. In our review, we focus on whether the measured immunological parameters could help in the diagnosis and prognosis of the syndrome. Among the inflammatory markers, neutrophil-to-lymphocyte ratio (NLR) is noteworthy, as it is decreased in patients with POI. It is important to stress that besides case series, we need properly powered studies with randomization to answer which treatment is effective, and how to deal with concurrent autoimmunity. In this review, we emphasize the importance of the premature ovarian failure syndrome immunoprofile for a proper understanding of the complexity of this syndrome, potential diagnostic points, and therapeutic targets.
Collapse
Affiliation(s)
- Michał Kunicki
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw 00-315, Poland; INVICTA Fertility and Reproductive Center, Warsaw 00-019, Poland
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw 00-315, Poland.
| | | |
Collapse
|
6
|
Aytekin ES, Cagdas D. APECED and the place of AIRE in the puzzle of the immune network associated with autoimmunity. Scand J Immunol 2023; 98:e13299. [PMID: 38441333 DOI: 10.1111/sji.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 03/07/2024]
Abstract
In the last 20 years, discoveries about the autoimmune regulator (AIRE) protein and its critical role in immune tolerance have provided fundamental insights into understanding the molecular basis of autoimmunity. This review provides a comprehensive overview of the effect of AIRE on immunological tolerance and the characteristics of autoimmune diseases in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), which is caused by biallelic AIRE mutations. A better understanding of the immunological mechanisms of AIRE deficiency may enlighten immune tolerance mechanisms and new diagnostic and treatment strategies for autoimmune diseases. Considering that not all clinical features of APECED are present in a given follow-up period, the diagnosis is not easy in a patient at the first visit. Longer follow-up and a multidisciplinary approach are essential for diagnosis. It is challenging to prevent endocrine and other organ damage compared with other diseases associated with multiple autoimmunities, such as FOXP3, LRBA, and CTLA4 deficiencies. Unfortunately, no curative therapy like haematopoietic stem cell transplantation or specific immunomodulation is present that is successful in the treatment.
Collapse
Affiliation(s)
- Elif Soyak Aytekin
- Pediatric Allergy and Immunology, Department of Pediatrics, SBU Dr. Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Ihsan Dogramaci Children`s Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
7
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
8
|
Araishi K, Shima T, Yasuda I, Tsuda S, Morita K, Yamaki-Ushijima A, Nakashima A, Saito S. Dynamics of neuropilin1 (Nrp1)-positive thymus-derived and Nrp1-negative peripherally induced paternal antigen specific regulatory T cells in the uterus and spleen during pregnancy in mice. J Reprod Immunol 2023; 155:103792. [PMID: 36587463 DOI: 10.1016/j.jri.2022.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Paternal antigen-specific regulatory T (PA-Treg) cells suppress the immune response against the fetus. Naturally occurring Treg (nTreg) cells derived from the thymus and peripherally induced Treg (iTreg) cells are functional for sustaining pregnancy. This study aimed to compare the variation in PA-Treg cells between the feto-maternal interface and the spleen and to elucidate the dynamics of nTreg and iTreg cells during the gestational period. PA-Treg cells, defined as Treg cells with paternally derived Mls-1a antigen-specific T cell receptors Vβ6, from allogeneic pregnant mice on days 3.5, 5.5, 11.5, and 18.5 post-coitum (pc) were evaluated by flow cytometry. The percentage of Vβ6+ Ki67+ PA-Treg cells activated by the paternal antigen increased on day 11.5 pc in the decidua (p < 0.05) compared to non-pregnant mice. On day 18.5 pc, this percentage in the decidua parietalis decreased to the level of the non-pregnant state but was significantly higher (p < 0.05) in the decidua basalis. No changes were observed in the spleens. We used two nTreg cell markers, neuropilin1 (Nrp1) and Helios, to distinguish between nTreg cells and iTreg cells. Nrp1+ PA-Treg cell levels decreased in late pregnancy compared to those observed in early pregnancy (day 3.5 pc: 57.14 ± 6.16% vs. day 18.5 pc: 30.43 ± 3.09%; p < 0.05), whereas Helios+ cell levels did not change. In conclusion, PA immune tolerance is induced by Nrp1+ nTreg cells in early pregnancy and Nrp1-negative Treg cells in late pregnancy.
Collapse
Affiliation(s)
- Kohei Araishi
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | | |
Collapse
|
9
|
Sun IH, Gillis-Buck E, Mackenzie TC, Gardner JM. Thymic and extrathymic Aire-expressing cells in maternal-fetal tolerance. Immunol Rev 2022; 308:93-104. [PMID: 35535447 DOI: 10.1111/imr.13082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Healthy pregnancy requires maternal immune tolerance to both fetal and placental tissues which contain a range of self- and non-self-antigens. While many of the components and mechanisms of maternal-fetal tolerance have been investigated in detail and previously and thoroughly reviewed (Erlebacher A. Annu Rev Immunol. 2013;31:387-411), the role of autoimmune regulator (Aire), a critical regulator of central tolerance expressed by medullary thymic epithelial cells (mTECs), has been less explored. Aire is known to facilitate the expression of a range of otherwise tissue-specific antigens (TSAs) in mTECs, and here we highlight recent work showing a role for mTEC-mediated thymic selection in maintaining maternal-fetal tolerance. Recently, however, our group and others have identified additional populations of extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. These hematopoietic antigen-presenting cells possess the ability to induce functional inactivation and/or deletion of cognate T cells, and deletion of maternal eTACs during pregnancy increases T-cell activation in the lymph nodes and lymphocytic infiltration of the uterus, leading to pregnancy complications including intrauterine growth restriction (IUGR) and fetal resorption. In this review, we briefly summarize findings related to essential Aire biology, discuss the known roles of Aire-deficiency related to pregnancy complications and infertility, review the newly discovered role for eTACs in the maintenance of maternal-fetal tolerance-as well as recent work defining eTACs at the single-cell level-and postulate potential mechanisms by which eTACs may regulate this process.
Collapse
Affiliation(s)
- Im-Hong Sun
- Department of Surgery, University of California, San Francisco, California, USA.,Diabetes Center, University of California, San Francisco, California, USA
| | - Eva Gillis-Buck
- Department of Surgery, University of California, San Francisco, California, USA
| | - Tippi C Mackenzie
- Department of Surgery, University of California, San Francisco, California, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, California, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, California, USA.,Diabetes Center, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Petroff MG, Nguyen SL, Ahn SH. Fetal‐placental
antigens and the maternal immune system: Reproductive immunology comes of age. Immunol Rev 2022; 308:25-39. [PMID: 35643905 PMCID: PMC9328203 DOI: 10.1111/imr.13090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Reproductive physiology and immunology as scientific disciplines each have rich, largely independent histories. The physicians and philosophers of ancient Greece made remarkable observations and inferences to explain regeneration as well as illness and immunity. The scientific enlightenment of the renaissance and the technological advances of the past century have led to the explosion of knowledge that we are experiencing today. Breakthroughs in transplantation, immunology, and reproduction eventually culminated with Medawar’s discovery of acquired immunological tolerance, which helped to explain the transplantation success and failure. Medawar’s musings also keenly pointed out that the fetus apparently breaks these newly discovered rules, and with this, the field of reproductive immunology was launched. As a result of having stemmed from transplantation immunology, scientist still analogizes the fetus to a successful allograft. Although we now know of the fundamental differences between the two, this analogy remains a useful tool to understand how the fetus thrives despite its immunological disparity with the mother. Here, we review the history of reproductive immunology, and how major and minor histocompatibility antigens, blood group antigens, and tissue‐specific “self” antigens from the fetus and transplanted organs parallel and differ.
Collapse
Affiliation(s)
- Margaret G. Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Departments of Microbiology and Molecular Genetics, College of Veterinary Medicine and College of Human Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Sean L. Nguyen
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
- Cell and Molecular Biology Program, College of Natural Science Michigan State University East Lansing Michigan USA
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| |
Collapse
|
11
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Goldfarb Y, Givony T, Kadouri N, Dobeš J, Peligero-Cruz C, Zalayat I, Damari G, Dassa B, Ben-Dor S, Gruper Y, Oftedal BE, Bratland E, Erichsen MM, Berger A, Avin A, Nevo S, Haljasorg U, Kuperman Y, Ulman A, Haffner-Krausz R, Porat Z, Atasoy U, Leshkowitz D, Husebye ES, Abramson J. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J Exp Med 2021; 218:e20201076. [PMID: 34477806 PMCID: PMC8421262 DOI: 10.1084/jem.20201076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.
Collapse
Affiliation(s)
- Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Itay Zalayat
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bergithe E. Oftedal
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | | | - Amund Berger
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Ayelet Avin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Uku Haljasorg
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S. Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Haukeland University and Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Warren BD, Ahn SH, Brittain KS, Nanjappa MK, Wang H, Wang J, Blanco G, Sanchez G, Fan Y, Petroff BK, Cooke PS, Petroff MG. Multiple Lesions Contribute to Infertility in Males Lacking Autoimmune Regulator. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1592-1609. [PMID: 34126085 PMCID: PMC8420865 DOI: 10.1016/j.ajpath.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/21/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022]
Abstract
Male factors, including those of autoimmune origin, contribute to approximately 50% of infertility cases in humans. However, the mechanisms underlying autoimmune male infertility are poorly understood. Deficiency in autoimmune regulator (AIRE) impairs central immune tolerance because of diminished expression of self-antigens in the thymus. Humans with AIRE mutations and mice with engineered ablation of Aire develop multiorgan autoimmunity and infertility. To determine the immune targets contributing to infertility in male Aire-deficient (-/-) mice, Aire-/- or wild-type (WT) males were paired with WT females. Aire-/- males exhibited dramatically reduced mating frequency and fertility, hypogonadism, and reduced serum testosterone. Approximately 15% of mice exhibited lymphocytic infiltration into the testis, accompanied by atrophy, azoospermia, and reduced numbers of mitotically active germ cells; the remaining mice showed normal testicular morphology, sperm counts, and motility. However, spermatozoa from all Aire-/- mice were defective in their ability to fertilize WT oocytes in vitro. Lymphocytic infiltration into the epididymis, seminal vesicle, and prostate gland was evident. Aire-/- male mice generated autoreactive antibodies in an age-dependent manner against sperm, testis, epididymis, prostate gland, and seminal vesicle. Finally, expression of Aire was evident in the seminiferous epithelium in an age-dependent manner, as well as in the prostate gland. These findings suggest that Aire-dependent central tolerance plays a critical role in maintaining male fertility by stemming autoimmunity against multiple reproductive targets.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo H Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kathryn S Brittain
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, Michigan
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Hao Wang
- Department of Computational Mathematics, Science and Engineering, College of Engineering, Michigan State University, East Lansing, Michigan
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, College of Engineering, Michigan State University, East Lansing, Michigan
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gladis Sanchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yong Fan
- Institute of Cellular Therapeutics, Alleghany Health Network, Pittsburgh, Pennsylvania
| | - Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
14
|
Gillis-Buck E, Miller H, Sirota M, Sanders SJ, Ntranos V, Anderson MS, Gardner JM, MacKenzie TC. Extrathymic Aire-expressing cells support maternal-fetal tolerance. Sci Immunol 2021; 6:eabf1968. [PMID: 34272228 PMCID: PMC9363019 DOI: 10.1126/sciimmunol.abf1968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Healthy pregnancy requires tolerance to fetal alloantigens as well as syngeneic embryonic and placental antigens. Given the importance of the autoimmune regulator (Aire) gene in self-tolerance, we investigated the role of Aire-expressing cells in maternal-fetal tolerance. We report that maternal ablation of Aire-expressing (Aire +) cells during early mouse pregnancy caused intrauterine growth restriction (IUGR) in both allogeneic and syngeneic pregnancies. This phenotype is immune mediated, as IUGR was rescued in Rag1-deficient mice, and involved a memory response, demonstrated by recurrence of severe IUGR in second pregnancies. Single-cell RNA sequencing demonstrated that Aire + cell depletion in pregnancy results in expansion of activated T cells, particularly T follicular helper cells. Unexpectedly, selective ablation of either Aire-expressing medullary thymic epithelial cells or extrathymic Aire-expressing cells (eTACs) mapped the IUGR phenotype exclusively to eTACs. Thus, we report a previously undescribed mechanism for the maintenance of maternal-fetal immune homeostasis and demonstrate that eTACs protect the conceptus from immune-mediated IUGR.
Collapse
Affiliation(s)
- Eva Gillis-Buck
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Haleigh Miller
- Department of Epidemiology and Biostatistics University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Diabetes Center University of California, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Pediatrics University of California, San Francisco, CA, USA
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA, USA
| | - Vasilis Ntranos
- Department of Epidemiology and Biostatistics University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Diabetes Center University of California, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - James M Gardner
- Department of Surgery, University of California, San Francisco, CA, USA.
- Diabetes Center University of California, San Francisco, CA, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, CA, USA.
- Department of Pediatrics University of California, San Francisco, CA, USA
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Jiao X, Zhang X, Li N, Zhang D, Zhao S, Dang Y, Zanvit P, Jin W, Chen Z, Chen W, Qin Y. T reg deficiency-mediated T H 1 response causes human premature ovarian insufficiency through apoptosis and steroidogenesis dysfunction of granulosa cells. Clin Transl Med 2021; 11:e448. [PMID: 34185428 PMCID: PMC8214854 DOI: 10.1002/ctm2.448] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Immune dysregulation has long been proposed as a component of premature ovarian insufficiency (POI), but the underlying mediators and mechanisms remain largely unknown. Here we showed that patients with POI had augmented T helper 1 (TH 1) responses and regulatory T (Treg ) cell deficiency in both the periphery and the ovary compared to the control women. The increased ratio of TH 1:Treg cells was strongly correlated with the severity of POI. In mouse models of POI, the increased infiltration of TH 1 cells in the ovary resulted in follicle atresia and ovarian insufficiency, which could be prevented and reversed by Treg cells. Importantly, interferon (IFN) -γ and tumor necrosis factor (TNF) -α cooperatively promoted the apoptosis of granulosa cells and suppressed their steroidogenesis by modulating CTGF and CYP19A1. We have thus revealed a previously unrecognized Treg cell deficiency-mediated TH 1 response in the pathogenesis of POI, which should have implications for therapeutic interventions in patients with POI.
Collapse
Affiliation(s)
- Xue Jiao
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- Mucosal Immunology SectionNIDCRNational Institutes of HealthBethesdaMarylandUSA
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Xiruo Zhang
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Nianyu Li
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Dunfang Zhang
- Mucosal Immunology SectionNIDCRNational Institutes of HealthBethesdaMarylandUSA
| | - Shidou Zhao
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Yujie Dang
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Peter Zanvit
- Mucosal Immunology SectionNIDCRNational Institutes of HealthBethesdaMarylandUSA
| | - Wenwen Jin
- Mucosal Immunology SectionNIDCRNational Institutes of HealthBethesdaMarylandUSA
| | - Zi‐Jiang Chen
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
- Center for Reproductive MedicineRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Wanjun Chen
- Mucosal Immunology SectionNIDCRNational Institutes of HealthBethesdaMarylandUSA
| | - Yingying Qin
- Center for Reproductive MedicineCheeloo College of MedicineShandong UniversityJinanShandongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Key laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| |
Collapse
|
16
|
Zou X, Zhang Y, Wang X, Zhang R, Yang W. The Role of AIRE Deficiency in Infertility and Its Potential Pathogenesis. Front Immunol 2021; 12:641164. [PMID: 33679804 PMCID: PMC7933666 DOI: 10.3389/fimmu.2021.641164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The increasing number of patients with infertility is recognized as an emerging problem worldwide. However, little is known about the cause of infertility. At present, it is believed that infertility may be related to genetic or abnormal immune responses. It has long been indicated that autoimmune regulator (AIRE), a transcription factor, participates in immune tolerance by regulating the expression of thousands of promiscuous tissue-specific antigens in medullary thymic epithelial cells (mTECs), which play a pivotal role in preventing autoimmune diseases. AIRE is also expressed in germ cell progenitors. Importantly, the deletion of AIRE leads to severe oophoritis and age-dependent depletion of follicular reserves and causes altered embryonic development in female mice. AIRE-deficient male mice exhibit altered apoptosis during spermatogenesis and have a significantly decreased breeding capacity. These reports suggest that AIRE deficiency may be responsible for infertility. The causes may be related to the production of autoantibodies against sperm, poor development of germ cells, and abnormal ovarian function, which eventually lead to infertility. Here, we focus on the potential associations of AIRE deficiency with infertility as well as the possible pathogenesis, providing insight into the significance of AIRE in the development of infertility.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, Jansova D, Iyyappan R, Roucova K, Bruce AW, Kubelka M, Susor A. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell 2020; 19:e13231. [PMID: 32951297 PMCID: PMC7576272 DOI: 10.1111/acel.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome‐wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age‐related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.
Collapse
Affiliation(s)
- Edgar Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Marketa Koncicka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Kristina Roucova
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Alexander W. Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| |
Collapse
|
18
|
The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse. Exp Gerontol 2020; 138:110975. [DOI: 10.1016/j.exger.2020.110975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/27/2022]
|
19
|
Tang R, Yu Q. Novel variants in women with premature ovarian function decline identified via whole-exome sequencing. J Assist Reprod Genet 2020; 37:2487-2502. [PMID: 32789750 DOI: 10.1007/s10815-020-01919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the potential etiologies of premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). METHODS Fourteen women with sporadic POI and 6 women with DOR were enrolled. We used whole-exome sequencing (WES) and bioinformatics analysis to identify variants in a subset of 599 selected POI candidate genes. The identified genes were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein-protein interaction (PPI) network analyses to uncover key genes and pathways. RESULTS Among the 20 patients, 79 heterozygous variants were detected in 49 genes, which were classified as "likely pathogenic" or "variants of uncertain significance" according to the guidelines of the American College of Medical Genetics and Genomics. Most patients (17/20) carried two or more variants. Monoacylglycerol O-acyltransferase 1 mutations were found in six patients, and cytochrome P450 family 26 subfamily B member 1 and Bardet-Biedl syndrome 9 mutations were each found in four patients. Some variants were shared between DOR and POI. Enrichment analyses showed that the identified genes participate in key ovarian processes, such as follicular development, gonadal development, meiosis, Fanconi anemia, homologous recombination, and transforming growth factor β signaling. A PPI network revealed interactions between these proteins. CONCLUSION Premature ovarian function decline may be polygenic, and overlap exists between the genetic backgrounds of DOR and POI. WES and in silico analyses may be a useful clinical tool for etiological diagnosis and risk prediction for high-risk women in the future.
Collapse
Affiliation(s)
- Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
| |
Collapse
|
20
|
Ahn SH, Nguyen SL, Petroff MG. Exploring the Origin and Antigenic Specificity of Maternal Regulatory T Cells in Pregnancy. Front Immunol 2020; 11:1302. [PMID: 32670288 PMCID: PMC7330120 DOI: 10.3389/fimmu.2020.01302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Successful pregnancy outcome is partially determined by the suppression of reactive effector T cells by maternal regulatory T cells (TRegs) at the maternal-fetal interface. While a large area of research has focused on the regulation of peripherally-induced TReg (pTReg) distribution and differentiation using transgenic mouse models and human samples, studies focusing on the role of TRegs derived from the thymus (tTRegs), and the potential role of central tolerance in maternal-fetal tolerance is less explored. The genome of the fetus is composed of both the tissue-specific and paternally-inherited antigens, and a break in maternal immune tolerance to either antigen may result in adverse pregnancy outcomes. Notably, "self"-antigens, including antigens that are highly restricted to the fetus and placenta, are promiscuously expressed by medullary thymic epithelial cells under the control of Autoimmune Regulator (Aire), which skews the tTReg T cell receptor (TCR) repertoire to be specific toward these antigens. TRegs that circulate in mothers during pregnancy may be comprised of TRegs that stem from the thymus as well as those induced in the periphery. Moreover, despite a wealth of research dedicated to elucidating the function of TRegs in maternal-fetal tolerance, little is understood about the origin of these cells, and whether/how tTRegs may contribute. Investigation into this question is complicated by the absence of reliable markers to distinguish between the two. In this review, we discuss how distinct types of fetal/placental antigens may determine the generation of different subtypes of TReg cells in the mother, and in turn how these may promote maternal tolerance to the fetus in pregnancy.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sean L Nguyen
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
| | - Margaret G Petroff
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Vazquez SE, Ferré EMN, Scheel DW, Sunshine S, Miao B, Mandel-Brehm C, Quandt Z, Chan AY, Cheng M, German M, Lionakis M, DeRisi JL, Anderson MS. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 2020; 9:e55053. [PMID: 32410729 PMCID: PMC7228772 DOI: 10.7554/elife.55053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sara E Vazquez
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Elise MN Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David W Scheel
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda Miao
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Zoe Quandt
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Alice Y Chan
- Department of Pediatrics, University of California, San FranciscoSan FranciscoUnited States
| | - Mickie Cheng
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Michael German
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Michail Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
Warren BD, Ahn SH, McGinnis LK, Grzesiak G, Su RW, Fazleabas AT, Christenson LK, Petroff BK, Petroff MG. Autoimmune Regulator is required in female mice for optimal embryonic development and implantation†. Biol Reprod 2019; 100:1492-1504. [PMID: 30770532 PMCID: PMC6561863 DOI: 10.1093/biolre/ioz023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/18/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Autoimmune Regulator (AIRE) regulates central immune tolerance by inducing expression of tissue-restricted antigens in thymic medullary epithelial cells, thereby ensuring elimination of autoreactive T cells. Aire mutations in humans and targeted Aire deletion in mice result in multiorgan autoimmune disease, known in humans as autoimmune polyglandular syndrome type 1 (APS-1). APS-1 is characterized by the presence of adrenal insufficiency, chronic mucosal candidiasis, and/or hypoparathyroidism. Additionally, females often present with gonadal insufficiency and infertility. Aire-deficiency (KO) in mice results in oophoritis and age-dependent depletion of follicular reserves. Here, we found that while the majority of young 6-week-old Aire-KO females had normal follicular reserves, mating behavior, and ovulation rates, 50% of females experienced embryonic loss between gestation day (GD) 5.5 and 7.5 that could not be attributed to insufficient progesterone production or decidualization. The quality of GD0.5 embryos recovered from Aire KO mice was reduced, and when cultured in vitro, embryos displayed limited developmental capacity in comparison to those recovered from wild-type (WT) mice. Further, embryos flushed from Aire KO dams at GD3.5 were developmentally delayed in comparison to WT controls and had reduced trophoblastic outgrowth in vitro. We conclude that AIRE does not play a direct role in uterine decidualization. Rather, reduced fertility of Aire-deficient females is likely due to multiple factors, including oophoritis, delayed preimplantation development, and compromised implantation. These effects may be explained by autoimmune targeting of the ovary, embryo, or both. Alternatively, altered embryonic development could be due to a direct role for AIRE in early embryogenesis.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Soo H Ahn
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Lynda K McGinnis
- Department of Physiology and Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Geoffrey Grzesiak
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ren-Wei Su
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lane K Christenson
- Department of Physiology and Integrative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Brian K Petroff
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
23
|
Effects of VEGF
+
Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Rev Rep 2019; 15:558-573. [DOI: 10.1007/s12015-019-09892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Mohan JJ, Narayan P, Padmanabhan RA, Joseph S, Kumar PG, Laloraya M. Silencing of dedicator of cytokinesis (DOCK180) obliterates pregnancy by interfering with decidualization due to blockage of nuclear entry of autoimmune regulator (AIRE). Am J Reprod Immunol 2018; 80:e12844. [PMID: 29516628 DOI: 10.1111/aji.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. METHOD OF STUDY The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. RESULTS Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. CONCLUSION DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry.
Collapse
Affiliation(s)
- Jasna Jagan Mohan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Prashanth Narayan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Renjini Ambika Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Selin Joseph
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pradeep G Kumar
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
25
|
Dong Y, Li H, Li Y, Liu Y, Chen H, Xu P, Zhao T, He W. The role of regulatory T cells in thymectomy-induced autoimmune ovarian disease. Am J Reprod Immunol 2017; 78. [PMID: 28660639 DOI: 10.1111/aji.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yajun Dong
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Hongmei Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yuyan Li
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Yonggang Liu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Huiling Chen
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Pingping Xu
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| | - Tingting Zhao
- Institute of Immunology; Third Military Medical University; Chongqing China
| | - Wei He
- Reproductive Medical Center; Department of Obstetrics and Gynecology; Southwest Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
26
|
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2016; 91:183-198. [PMID: 27861765 DOI: 10.1111/cge.12921] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Primary ovarian insufficiency (POI) is characterized by a loss of ovarian function before the age of 40 and account for one major cause of female infertility. POI relevance is continuously growing because of the increasing number of women desiring conception beyond 30 years of age, when POI prevalence is >1%. POI is highly heterogeneous and can present with ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea, and it can be associated with other congenital or acquired abnormalities. In most cases POI remains classified as idiopathic. However, the age of menopause is an inheritable trait and POI has a strong genetic component. This is confirmed by the existence of several candidate genes, experimental and natural models. The variable expressivity of POI defect may indicate that, this disease may frequently be considered as a multifactorial or oligogenic defect. The most common genetic contributors to POI are the X chromosome-linked defects. Here, we review the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI with the expectation that this list will soon be upgraded, thus allowing the possibility to predict the risk of an early age at menopause in families with POI.
Collapse
Affiliation(s)
- R Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - I Ferrari
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Soumya V, Padmanabhan RA, Titus S, Laloraya M. Murine uterine decidualization is a novel function of autoimmune regulator-beyond immune tolerance. Am J Reprod Immunol 2016; 76:224-34. [PMID: 27432359 DOI: 10.1111/aji.12538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2023] Open
Abstract
PROBLEM Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED, APS-1) patients characterized by Aire (autoimmune regulator) mutations and Aire homozygous knockouts (Aire(-/-) ) exhibit infertility. It is not clear as to what contributes to infertility in the above. METHOD OF STUDY This study investigates the expression of "AIRE in the uterus" and its contribution to early pregnancy of mice by using quantitative real-time PCR analysis, immunohistochemistry, Western blotting, and in vivo Aire silencing experiments. RESULTS Aire (Isoform 1a) is expressed in the uterus during the "window of implantation" and decidualization. In vivo Aire silencing interfered with formation of implantation sites and stromal cell transformation by regulating bone morphogenetic protein-2,4 (Bmp2, Bmp4), homeobox A10 (Hoxa10), and insulin-like growth factor-binding protein 1(Igfbp1) leading to pregnancy failure. CONCLUSION Our consolidated results on extrathymic uterine expression of AIRE during early pregnancy and decidualization and impaired fertility on in vivo silencing are suggestive of its importance in pregnancy via a role beyond immune tolerance.
Collapse
Affiliation(s)
- Vasanthi Soumya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Renjini A Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shiny Titus
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
28
|
Vega M, Barad DH, Yu Y, Darmon SK, Weghofer A, Kushnir VA, Gleicher N. Anti-mullerian hormone levels decline with the presence of antiphospholipid antibodies. Am J Reprod Immunol 2016; 76:333-7. [DOI: 10.1111/aji.12551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Mario Vega
- The Center for Human Reproduction; New York NY USA
- Department of Obstetrics and Gynecology; Albert Einstein College of Medicine; Bronx NY USA
| | - David H. Barad
- The Center for Human Reproduction; New York NY USA
- Department of Obstetrics and Gynecology; Albert Einstein College of Medicine; Bronx NY USA
- Foundation for Reproductive Medicine; New York NY USA
| | - Yao Yu
- The Center for Human Reproduction; New York NY USA
| | | | - Andrea Weghofer
- The Center for Human Reproduction; New York NY USA
- Department of Obstetrics and Gynecology; Vienna University School of Medicine; Vienna Austria
| | - Vitaly A. Kushnir
- The Center for Human Reproduction; New York NY USA
- Department of Obstetrics and Gynecology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Norbert Gleicher
- The Center for Human Reproduction; New York NY USA
- Foundation for Reproductive Medicine; New York NY USA
- Department of Obstetrics and Gynecology; Vienna University School of Medicine; Vienna Austria
- Laboratory for Stem Cell Biology and Molecular Embryology; The Rockefeller University; New York NY USA
| |
Collapse
|
29
|
McGinnis LK, Luense LJ, Christenson LK. MicroRNA in Ovarian Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a022962. [PMID: 25986593 DOI: 10.1101/cshperspect.a022962] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are posttranscriptional gene regulatory molecules that show regulated expression within ovarian tissue. Most research investigating miRNAs in the ovary has relied exclusively on in vitro analyses. In this review, we highlight those few studies in which investigators have illustrated an in vivo effect of miRNAs on ovarian function. We also provide a synopsis of how these small noncoding RNAs can impact ovarian disease. miRNAs have great potential as novel diagnostic biomarkers for the detection of ovarian disease and in the assisted reproductive technologies (ART) for selection of healthy viable oocytes and embryos.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J Luense
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
30
|
Kekäläinen E, Pöntynen N, Meri S, Arstila TP, Jarva H. Autoimmunity, Not a Developmental Defect, is the Cause for Subfertility of Autoimmune Regulator (Aire) Deficient Mice. Scand J Immunol 2015; 81:298-304. [PMID: 25689230 DOI: 10.1111/sji.12280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/24/2015] [Indexed: 01/26/2023]
Abstract
Autoimmune regulator's (AIRE) best characterized role is in the generation immunological tolerance, but it is also involved in many other processes such as spermatogenesis. Loss-of-function mutations in AIRE cause a disease called autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED; also called autoimmune polyendocrinopathy syndrome type 1, APS-1) that is dominated by various autoimmune manifestations, mainly endocrinopathies. Both patients with APECED and Aire(-/-) mice suffer from varying levels of infertility, but it is not clear if it is a result of an autoimmune tissue damage or more of a developmental defect. In this study, we wanted to resolve whether or not the reduced fertility of Aire(-/-) mice is dependent on the adaptive immune system and therefore a manifestation of autoimmunity in these mice. We generated lymphopenic mice without Aire expression that were devoid of the autoimmune manifestations previously reported in immunocompetent Aire(-/-) mice. These Aire(-/-) Rag1(-/-) mice regained full fertility. This confirms that the development of infertility in Aire(-/-) mice requires a functional adaptive immune system. We also show that only the male Aire(-/-) mice are subfertile, whereas Aire(-/-) females produce litters normally. Moreover, the male subfertility can be adoptively transferred with lymphocytes from Aire(-/-) donor mice to previously fertile lymphopenic Aire(-/-) recipients. Our data show that subfertility in Aire(-/-) mice is dependent on a functional adaptive immune system thus confirming its autoimmune aetiology.
Collapse
Affiliation(s)
- E Kekäläinen
- Department of Bacteriology and Immunology and Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
31
|
Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y. MRL/MpJ-Faslprmice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity 2015; 48:402-11. [DOI: 10.3109/08916934.2015.1031889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Warren BD, Kinsey WK, McGinnis LK, Christenson LK, Jasti S, Stevens AM, Petroff BK, Petroff MG. Ovarian autoimmune disease: clinical concepts and animal models. Cell Mol Immunol 2014; 11:510-21. [PMID: 25327908 PMCID: PMC4220844 DOI: 10.1038/cmi.2014.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in association with other autoimmune diseases, particularly autoimmune adrenal disease, and takes a toll on both society and individual health. Studies in mice have revealed at least two mechanisms that protect the ovary from autoimmune attack. These mechanisms include control of autoreactive T cells by thymus-derived regulatory T cells, as well as a role for the autoimmune regulator (AIRE), a transcriptional regulator that induces expression of tissue-restricted antigens in medullary thymic epithelial cells during development of T cells. Although the latter mechanism is incompletely defined, it is well established that failure of either results in autoimmune-mediated targeting and depletion of ovarian follicles. In this review, we will address the clinical features and consequences of autoimmune-mediated ovarian infertility in women, as well as the possible mechanisms of disease as revealed by animal models.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - William K Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Susmita Jasti
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anne M Stevens
- Research Center for Immunity and Immunotherapies, Children's Hospital and Regional Medical Center, and Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brian K Petroff
- 1] Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA [2] Present address: Department of Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, MI, USA
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
34
|
Falorni A, Minarelli V, Eads CM, Joachim CM, Persani L, Rossetti R, Yurttas Beim P, Pellegrini VA, Schnatz PF, Rafique S, Kissell K, Calis KA, Popat V, Nelson LM. A clinical research integration special program (CRISP) for young women with primary ovarian insufficiency. Panminerva Med 2014; 56:245-261. [PMID: 25288327 PMCID: PMC4532281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Large-scale medical sequencing provides a focal point around which to reorganize health care and health care research. Mobile health (mHealth) is also currently undergoing explosive growth and could be another innovation that will change the face of future health care. We are employing primary ovarian insufficiency (POI) as a model rare condition to explore the intersection of these potentials. As both sequencing capabilities and our ability to intepret this information improve, sequencing for medical purposes will play an increasing role in health care beyond basic research: it will help guide the delivery of care to patients. POI is a serious chronic disorder and syndrome characterized by hypergonadotrophic hypogonadism before the age of 40 years and most commonly presents with amenorrhea. It may have adverse health effects that become fully evident years after the initial diagnosis. The condition is most commonly viewed as one of infertility, however, it may also be associated with adverse long-term outcomes related to inadequate bone mineral density, increased risk of cardiovascular disease, adrenal insufficiency, hypothyroidism and, if pregnancy ensues, having a child with Fragile X Syndrome. There may also be adverse outcomes related to increased rates of anxiety and depression. POI is also a rare disease, and accordingly, presents special challenges. Too often advances in research are not effectively integrated into community care at the point of service for those with rare diseases. There is a need to connect community health providers in real time with investigators who have the requisite knowledge and expertise to help manage the rare disease and to conduct ongoing research. Here we review the pathophysiology and management of POI and propose the development of an international Clinical Research Integration Special Program (CRISP) for the condition.
Collapse
Affiliation(s)
- A Falorni
- Department of Medicine University of Perugia, Perugia, Italy -
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Greene AD, Patounakis G, Segars JH. Genetic associations with diminished ovarian reserve: a systematic review of the literature. J Assist Reprod Genet 2014; 31:935-46. [PMID: 24840722 DOI: 10.1007/s10815-014-0257-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/08/2014] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Diminished ovarian reserve (DOR) affects 10 % of women seeking fertility treatment. Although it is much more prevalent than premature ovarian failure, less is known about its etiology. The purpose of this article is to review the possible genetic causes of, and associations with, pathologic DOR. METHODS A systematic review was conducted using PubMed from 1966 through November 2013. RESULTS Twenty-one articles identified genes associated with DOR: one gene mutation (FMR1), three polymorphisms (GDF9, FSHR, and ESR1), and seven genes differentially expressed between women with DOR and controls (AMH, LHCGR, IGF1, IGF2, IGF1R, IGF2R and GREM1). Six candidate genes were discovered in mice, including Foxl2, Gdf9, Bmp15, Aire, Wnt4, and Gpr3. Two case reports of chromosomal translocations were also identified. CONCLUSIONS While the etiology of pathologic DOR is likely multifactorial, it is possible that many cases attributed to an idiopathic cause may have a genetic component. Larger studies are needed to expose the impact gene mutations, polymorphisms, and epigenetics have on pathologic DOR.
Collapse
Affiliation(s)
- Alexis D Greene
- Obstetrics & Gynecology Department, St Luke's Roosevelt Hospital Center, 1000 Tenth Ave, Suite 10 C, New York, NY, 10019, USA
| | | | | |
Collapse
|
36
|
Abstract
An increasing body of evidence suggests that immune-mediated processes affect female reproductive success at multiple levels. Crosstalk between endocrine and immune systems regulates a large number of biological processes that affect target tissues, and this crosstalk involves gene expression, cytokine and/or lymphokine release and hormone action. In addition, endocrine-immune interactions have a major role in the implantation process of the fetal (paternally derived) semi-allograft, which requires a reprogramming process of the maternal immune system from rejection to temporary tolerance for the length of gestation. Usually, the female immune system is supportive of all of these processes and, therefore, facilitates reproductive success. Abnormalities of the female immune system, including autoimmunity, potentially interfere at multiple levels. The relevance of the immune system to female infertility is increasingly recognized by investigators, but clinically is often not adequately considered and is, therefore, underestimated. This Review summarizes the effect of individual autoimmune endocrine diseases on female fertility, and points towards selected developments expected in the near future.
Collapse
Affiliation(s)
- Aritro Sen
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Vitaly A Kushnir
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - David H Barad
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- The Center for Human Reproduction (CHR), 21 East 69th Street, New York, NY 10021, USA
| |
Collapse
|
37
|
Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 752:77-96. [PMID: 24170355 DOI: 10.1007/978-1-4614-8887-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792-796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399-412, 2009; Anim Genet 43:442-446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.
Collapse
|
38
|
Abstract
Ovarian reserve and its utilization, over a reproductive life span, are determined by genetic, epigenetic, and environmental factors. The establishment of the primordial follicle pool and the rate of primordial follicle activation have been under intense study to determine genetic factors that affect reproductive lifespan. Much has been learned from transgenic animal models about the developmental origins of the primordial follicle pool and mechanisms that lead to primordial follicle activation, folliculogenesis, and the maturation of a single oocyte with each menstrual cycle. Recent genome-wide association studies on the age of human menopause have identified approximately 20 loci, and shown the importance of factors involved in double-strand break repair and immunology. Studies to date from animal models and humans show that many genes determine ovarian aging, and that there is no single dominant allele yet responsible for depletion of the ovarian reserve. Personalized genomic approaches will need to take into account the high degree of genetic heterogeneity, family pedigree, and functional data of the genes critical at various stages of ovarian development to predict women's reproductive life span.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|