1
|
Ireland JJ, Karl KR, Latham KE. Unraveling the Clinical FSH Conundrum: Insights From the Small Ovarian Reserve Heifer Model. Mol Reprod Dev 2025; 92:e70007. [PMID: 39935023 PMCID: PMC11814505 DOI: 10.1002/mrd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 02/13/2025]
Abstract
High doses of follicle stimulating hormone (FSH) are used during ovarian stimulation to maximize the number of oocytes recovered for in vitro fertilization (IVF) during assisted reproductive technology (ART) in women. Whether high FSH doses are detrimental to embryo viability remains controversial. Evidence from many clinical studies revealed that FSH dose is inversely correlated with live birth rate in women. The mechanistic basis for this effect has been elusive. This review summarizes over 20 years of work using a unique biomedical model, the small ovarian reserve heifer (SORH). Those studies revealed that excessive FSH doses can disrupt gene expression via multiple cell-signaling pathways in ovarian cells, resulting in follicular hyperstimulation dysgenesis (FHD). This compromises the capacity of ovulatory-size follicles to respond to gonadotropins, produce estradiol and ovulate, causes premature cumulus expansion and oocyte maturation, and impairs the fertilizability of oocytes. The SORH model has thus provided new insights into the nature and mechanisms of the deleterious effects of excessive FSH doses during ovarian stimulation. The SORH model has been and remains valuable for basic research and for the discovery of ways to optimize FSH dosing clinically to improve IVF success and ART outcomes.
Collapse
Affiliation(s)
- James J. Ireland
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Kaitlin R. Karl
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Keith E. Latham
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of Obstetrics, Gynecology, and Reproductive ScienceMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Jueraitetibaike K, Tang T, Ma R, Zhao S, Wu R, Yang Y, Huang X, Cheng X, Zhou C, Zhang H, Zheng L, Ge X, Chen L, Yao B. MiR-425-5p suppression of Crebzf regulates oocyte aging via chromatin modification. GeroScience 2024; 46:3723-3742. [PMID: 37532927 PMCID: PMC11226420 DOI: 10.1007/s11357-023-00875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
Female infertility due to declining oocyte quality with age remains a significant challenge for patients and physicians, despite extensive research efforts. Recent studies suggest that microRNAs (miRNAs), which respond to various stressors in the aging process, may provide a promising solution. With the approval of small RNA drugs for clinical use, miRNA-based treatment of oocyte aging appears to be a viable option. Through high-throughput sequencing, miR-425-5p was identified as the only miRNA elevated under natural aging and oxidative stress. Microinjection of inhibitors to inhibit miR-425-5p effectively improved compromised phenotypes of old oocytes in vitro. Further investigation revealed that Crebzf acts as a mediator of miR-425-5p's age-related functions in old oocytes. In vivo treatment with miR-425-5p antagomirs significantly improved impaired oocyte development in reproductively old females by targeting Crebzf. Single-cell RNA sequencing revealed that Crebzf plays a vital role in regulating mRNAs targeting histone H3, trimethylated lysine 4 (H3K4me3), a crucial marker for transcriptional silencing. Overexpression of miR-425-5p could hinder oocyte maturation by downregulating Crebzf expression and disrupting transcriptional regulation. Our findings provide new insights into the potential of miR-425-5p antagomirs as a treatment for female infertility and highlight an elegant mechanism by which miR-425-5p inhibition of Crebzf inhibits a developmental switch in GV oocytes by regulating a group of histone methyltransferase mRNAs.
Collapse
Affiliation(s)
- Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Ting Tang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Rujun Ma
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210002, People's Republic of China
| | - Ronghua Wu
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Yang Yang
- Basic Medical Laboratory, Institute of Clinical Laboratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xuan Huang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xi Cheng
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Cheng Zhou
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Hong Zhang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Lu Zheng
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xie Ge
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Li Chen
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Bing Yao
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
3
|
Richard S, Zhou Y, Jasoni CL, Pankhurst MW. Ovarian follicle size or growth rate can both be determinants of ovulatory follicle selection in mice†. Biol Reprod 2024; 110:130-139. [PMID: 37801701 PMCID: PMC10790341 DOI: 10.1093/biolre/ioad134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
The endocrinology regulating ovulation of the desired number of oocytes in the ovarian cycle is well described, particularly in mono-ovulatory species. Less is known about the characteristics that make one follicle suitable for ovulation while most other follicles die by atresia. Bromodeoxyuridine (BrdU) injection was used to characterize granulosa cell proliferation rates in developing ovarian follicles in the estrous cycle of mice. This methodology allowed identification of follicle diameters of secondary (80-130 μm), follicle-stimulating hormone (FSH)-sensitive (130-170 μm), FSH-dependent (170-350 μm), and preovulatory (>350 μm) follicles. Few preovulatory-sized follicles were present in the ovaries of mice at estrus, the beginning of the cycle. Progressive increases were seen at metestrus and diestrus, when full accumulation of the preovulatory cohort (~10 follicles) occurred. BrdU pulse-chase studies determined granulosa cell proliferation rates in the 24-48 h before the follicle reached the preovulatory stage. This showed that slow-growing follicles were not able to survive to the preovulatory stage. Mathematical modeling of follicle growth rates determined that the largest follicles at the beginning of the cycle had the greatest chance of becoming preovulatory. However, smaller follicles could enter the preovulatory follicle pool if low numbers of large antral follicles were present at the beginning of the cycle. In this instance, rapidly growing follicles had a clear selection advantage. The developing follicle pool displays heterogeneity in granulosa cell proliferation rates, even among follicles at the same stage of development. This parameter appears to influence whether a follicle can ovulate or become atretic.
Collapse
Affiliation(s)
- Sharon Richard
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yiran Zhou
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
5
|
Ludwig CLM, Bohleber S, Rebl A, Wirth EK, Venuto MT, Langhammer M, Schweizer U, Weitzel JM, Michaelis M. Endocrine and molecular factors of increased female reproductive performance in the Dummerstorf high-fertility mouse line FL1. J Mol Endocrinol 2022; 69:285-298. [PMID: 35388794 PMCID: PMC9175557 DOI: 10.1530/jme-22-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
The Dummerstorf high-fertility mouse line FL1 is a worldwide unique selection experiment for increased female reproductive performance. After more than 190 generations of selection, these mice doubled the amount of offspring per litter compared to the unselected control line. FL1 females have a superior lifetime fecundity and the highest Silver fecundity index that has been described in mice, while their offspring show no signs of growth retardation. The reasons for the increased reproductive performance remained unclear. Thus, this study aims to characterize the Dummerstorf high-fertility mouse line FL1 on endocrine and molecular levels on the female side. We analyzed parameters of the hypothalamic pituitary gonadal axis on both hormonal and transcriptional levels. Gonadotropin-releasing hormone and follicle-stimulating hormone (FSH) concentrations were decreased in FL1 throughout the whole estrous cycle. Luteinizing hormone (LH) was increased in FL1 mice in estrus. Progesterone concentrations were decreased in estrus in FL1 mice and not affected in diestrus. We used a holistic gene expression approach in the ovary to obtain a global picture of how the high-fertility phenotype is achieved. We found several differentially expressed genes in the ovaries of FL1 mice that are associated with different female fertility traits. Our results indicate that ovulation rates in mice can be increased despite decreased FSH levels. Cycle-related alterations of progesterone and LH levels have the potential to improve follicular maturation, and interactions of endocrine and molecular factors lead to enhanced follicular survival, more successful folliculogenesis and therefore higher ovulation rates in female FL1 mice.
Collapse
Affiliation(s)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Fish Genetics Unit, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Marzia Tindara Venuto
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Service Group Model Laboratory Animals, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Correspondence should be addressed to J M Weitzel or M Michaelis: or
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Correspondence should be addressed to J M Weitzel or M Michaelis: or
| |
Collapse
|
6
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
7
|
Gallagher CS, Mäkinen N, Harris HR, Rahmioglu N, Uimari O, Cook JP, Shigesi N, Ferreira T, Velez-Edwards DR, Edwards TL, Mortlock S, Ruhioglu Z, Day F, Becker CM, Karhunen V, Martikainen H, Järvelin MR, Cantor RM, Ridker PM, Terry KL, Buring JE, Gordon SD, Medland SE, Montgomery GW, Nyholt DR, Hinds DA, Tung JY, Perry JRB, Lind PA, Painter JN, Martin NG, Morris AP, Chasman DI, Missmer SA, Zondervan KT, Morton CC. Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. Nat Commun 2019; 10:4857. [PMID: 31649266 PMCID: PMC6813337 DOI: 10.1038/s41467-019-12536-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Uterine leiomyomata (UL) are the most common neoplasms of the female reproductive tract and primary cause for hysterectomy, leading to considerable morbidity and high economic burden. Here we conduct a GWAS meta-analysis in 35,474 cases and 267,505 female controls of European ancestry, identifying eight novel genome-wide significant (P < 5 × 10-8) loci, in addition to confirming 21 previously reported loci, including multiple independent signals at 10 loci. Phenotypic stratification of UL by heavy menstrual bleeding in 3409 cases and 199,171 female controls reveals genome-wide significant associations at three of the 29 UL loci: 5p15.33 (TERT), 5q35.2 (FGFR4) and 11q22.3 (ATM). Four loci identified in the meta-analysis are also associated with endometriosis risk; an epidemiological meta-analysis across 402,868 women suggests at least a doubling of risk for UL diagnosis among those with a history of endometriosis. These findings increase our understanding of genetic contribution and biology underlying UL development, and suggest overlapping genetic origins with endometriosis.
Collapse
Affiliation(s)
- C S Gallagher
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - N Mäkinen
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - H R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - N Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - O Uimari
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Obstetrics and Gynecology, Oulu University Hospital and PEDEGO Research Unit & Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90220, Oulu, Finland
| | - J P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - N Shigesi
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - T Ferreira
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Big Data Institute, Li Ka Shing Center for Health Information and Discovery, Oxford University, Oxford, OX3 7LF, UK
| | - D R Velez-Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - T L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - S Mortlock
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Z Ruhioglu
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - F Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - C M Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - V Karhunen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, 90220, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - H Martikainen
- Department of Obstetrics and Gynecology, Oulu University Hospital and PEDEGO Research Unit & Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90220, Oulu, Finland
| | - M-R Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90220, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, 90220, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK.,Biocenter Oulu, University of Oulu, 90220, Oulu, Finland.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - R M Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - P M Ridker
- Division of Preventative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - J E Buring
- Division of Preventative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - S E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - G W Montgomery
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - D R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - D A Hinds
- 23andMe, Mountain View, CA, 94041, USA
| | - J Y Tung
- 23andMe, Mountain View, CA, 94041, USA
| | | | - J R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - P A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - J N Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - N G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - A P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - D I Chasman
- Division of Preventative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S A Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - K T Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - C C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Horicks F, Van Den Steen G, Gervy C, Clarke HJ, Demeestere I. Both in vivo FSH depletion and follicular exposure to Gonadotrophin-releasing hormone analogues in vitro are not effective to prevent follicular depletion during chemotherapy in mice. Mol Hum Reprod 2019; 24:221-232. [PMID: 29438534 DOI: 10.1093/molehr/gay005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does fertility preservation using gonadotrophin-releasing hormone (GnRH) analogues during chemotherapy act through a direct effect on the ovary or through inhibition of FSH secretion? SUMMARY ANSWER The absence of FSH in vivo and the direct exposition of ovarian follicles to GnRH analogues in vitro did not prevent chemotherapy-induced ovarian damage. WHAT IS KNOWN ALREADY The potential mechanisms of action of GnRH analogues in protecting ovaries against chemotherapy damage remain poorly understood. We previously showed that GnRH analogues have a limited inhibitory effect on gonadotropin secretion and follicular growth in mice. STUDY DESIGN SIZE, DURATION Mouse models were developed to independently evaluate (i) the indirect effect of FSH depletion on chemotherapy-induced ovarian damage using Fshb-deficient (-/-) mice to mimic the profound inhibition of FSH secretion during GnRH analogues treatment and (ii) the direct in vitro effect of GnRH agonist and antagonist in follicles exposed to chemotherapy using a follicular culture system. PARTICIPANTS/MATERIALS, SETTING, METHODS To assess the indirect effect of GnRH analogues through FSH inhibition, Fshb-/- mice were treated with 1 IU pregnant mare serum gonadotropin (control group) or saline (study group) for 7 days and with cyclophosphamide (200 mg/kg) on Day 5. Ovaries were collected 48 h post-cyclophosphamide to evaluate ovarian reserve, cellular apoptosis and proliferation. To evaluate the direct effects of GnRH analogues on growing follicles, isolated preantral follicles from prepubertal mice were cultured in vitro for 13 days with 1 μM GnRH analogues and 20 μM of 4-hydroperoxycyclophosphamide or not at Day 4. Oocytes were matured by adding epidermal growth factor (EGF)/hCG on Day 12. Follicular development, follicular survival, oocyte maturation rates, cAMP production, and steroidogenesis were evaluated. To assess the direct GnRH analogues effects on follicular reserve, whole neonatal ovaries were cultured in vitro under the same conditions for 2 days. Ovaries were processed 24 h post-chemotherapy for ovarian reserve, cellular apoptosis and proliferation analysis. MAIN RESULTS AND THE ROLE OF CHANCE Cyclophosphamide induced a significant follicular loss of more than 50% in Fshb-/- mice regardless of previous treatment with gonadotropins and no difference was observed in cell proliferation or apoptosis. In vitro experiments on growing follicles showed that 4-hydroperoxycyclophosphamide significantly decreased preantral follicle survival and maturation rates (55% and 37%, respectively) and delayed follicular development, regardless of the presence of GnRH analogues. Chemotherapy reduced granulosa cell numbers in all groups, while no change in cAMP production/106 granulosa cells was observed. Similarly, 4-hydroperoxycyclophosphamide induced apoptosis and significant follicular loss in cultured neonatal ovaries irrespective of GnRH analogues exposure. LIMITATIONS REASONS FOR CAUTION As ovarian GnRH receptors expression differs in humans and mice, further studies are needed to validate our results in human ovaries. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that ovarian damage occurred even in the absence of FSH, suggesting that inhibition of the pituitary-gonadal axis is not involved in ovarian protection during GnRH analogues treatment. Using in vitro models, no evidence for direct protective effect of GnRH analogues against cyclophosphamide metabolite damage was observed. At present, clinical efficiency of GnRH analogues to prevent chemotherapy-induced ovarian damage remains highly debated and these experimental results reinforced the question as they did not bring evidence of direct or indirect mechanisms of protection. LARGE SCALE DATA N/A. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the Belgian FNRS, 'Le Fonds Emile DEFAY', and 'La Fondation Rose et Jean Hoguet'. Authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- F Horicks
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| | - G Van Den Steen
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| | - C Gervy
- Laboratory of Chemistry, Erasme Hospital, 808 route de Lennik, 1070 Brussels, Belgium
| | - H J Clarke
- Departments of Obstetrics and Gynaecology and Biology, McGill University; Research Institute - McGill University Health Centre, Glen Research Building, 1001 Decarie Blvd, Montreal, QC H4A3J1, Canada
| | - I Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 808 route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
9
|
Clarke HJ. History, origin, and function of transzonal projections: the bridges of communication between the oocyte and its environment. Anim Reprod 2018; 15:215-223. [PMID: 34178144 PMCID: PMC8202234 DOI: 10.21451/1984-3143-ar2018-0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Development and differentiation of a functional oocyte that following fertilization is
able to give rise to a new individual requires continuous physical contact with the supporting
somatic cells of the ovarian follicle. As the oocyte is surrounded by a thick extracellular
coat, termed the zona pellucida, this essential contact is mediated through
thin cytoplasmic filaments known as transzonal projections (TZPs) that project from the
somatic granulosa cells adjacent to the oocyte and penetrate through the zona pellucida
to reach the oocyte. Gap junctions assembled where the tips of the TZPs contact the
oocyte plasma membrane, and other contact-dependent signaling may also occur at these sites.
Here, I describe early studies of TZPs, which were first identified in the late 19th century,
discuss their similarities with classical filopodia, review their structure and function,
and compare two models that could account for their origin. Possible priorities and directions
for future studies close this contribution.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Rocha RMP, Lima LF, Brito IR, Silva GM, Correia HHV, Ribeiro de Sá NA, Ferreira ACA, Sales AD, Lobo CH, Campello CC, Smitz J, Wheeler MB, Figueiredo JR. Anti-Müllerian hormone reduces growth rate without altering follicular survival in isolated caprine preantral follicles cultured in vitro. Reprod Fertil Dev 2018; 29:1144-1154. [PMID: 27166082 DOI: 10.1071/rd15290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/13/2016] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to evaluate the effect of anti-Müllerian hormone (AMH), with and without FSH, on the in vitro development of isolated caprine preantral follicles, as well as follicular steroid production and mRNA levels of AMH, hormone receptors (AMH and FSH), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1), CYP17 (cytochrome P450, family 17, subfamily A, polypeptide 1), HSD3B (3-beta-hydroxysteroid dehydrogenase) and Myc (myelocytomatosis oncogene). Isolated secondary follicles were cultured in minimum essential medium alpha (α-MEM+) alone or supplemented with 50ng mL-1 AMH and/or 100ng mL-1 FSH added sequentially on different days of culture. Follicles were cultured for a total of 18 days, with different media during the first (Days 0-9) and second (Days 10-18) halves of the culture period, resulting in six treatment groups, as follows: α-MEM+/α-MEM+, FSH/FSH, AMH/AMH, AMH+FSH/AMH+FSH, AMH/FSH, and FSH/AMH. Follicle development was evaluated on the basis of follicular growth, oocyte maturation and steroid secretion. There was a decrease in follicular growth rate in the AMH, AMH+FSH and AMH/FSH treatment groups compared with α-MEM+ and FSH treatment groups (P<0.05). However, the different culture conditions had no effect on rates of meiotic resumption and steroid secretion (P>0.05). Moreover, follicles cultured in the presence of FSH had lower levels of AMH receptor type II (AMHRII) mRNA compared with non-cultured control (freshly isolated follicles), and the AMH and AMH/FSH treatment groups. In conclusion, AMH reduces the follicular growth rate of isolated goat preantral follicles in vitro without affecting follicular survival.
Collapse
Affiliation(s)
- R M P Rocha
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - L F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - I R Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - G M Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - H H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - N A Ribeiro de Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - A D Sales
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - C H Lobo
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - M B Wheeler
- Department of Animal Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles -LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, 60740-903 CE, Brazil
| |
Collapse
|
11
|
Kumar TR. Fshb Knockout Mouse Model, Two Decades Later and Into the Future. Endocrinology 2018; 159:1941-1949. [PMID: 29579177 PMCID: PMC5888209 DOI: 10.1210/en.2018-00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022]
Abstract
In 1997, nearly 20 years ago, we reported the phenotypes of follicle-stimulating hormone (FSH) β (Fshb) null mice. Since then, these mice have been useful for various physiological and genetic studies in reproductive and skeletal biology. In a 2009 review titled "FSHβ Knockout Mouse Model: A Decade Ago and Into the Future," I summarized the need for and what led to the development of an FSH-deficient mouse model and its applications, including delineation of the emerging extragonadal roles of FSH in bone cells by using this genetic model. These studies opened up exciting avenues of research on osteoporosis and now extend into those on adiposity in postmenopausal women. Here, I summarize the progress made with this mouse model since 2009 with regard to FSH rerouting in vivo, deciphering the role of N-glycosylation on FSHβ, roles of FSH in somatic-germ cell interactions in gonads, and provide a road map that is anticipated to emerge in the near future. Undoubtedly, the next 10 years should be an even more exciting time to explore the fertile area of FSH biology and its implications for basic and clinical reproductive physiology research.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado
- Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, RC-2 Complex, 15-3000B, Aurora, Colorado 80045. E-mail:
| |
Collapse
|
12
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Fathi R, Rezazadeh Valojerdi M, Ebrahimi B, Eivazkhani F, Akbarpour M, Tahaei LS, Abtahi NS. Fertility Preservation in Cancer Patients: In Vivo and In Vitro Options. CELL JOURNAL 2017; 19:173-183. [PMID: 28670510 PMCID: PMC5412777 DOI: 10.22074/cellj.2016.4880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 07/25/2016] [Indexed: 12/29/2022]
Abstract
Oocyte, embryo and ovarian tissue cryopreservation are being increasingly proposed for fertility preservation among cancer patients undergoing therapy to enable them to have babies after the cancer is cured. Embryo cryopreservation is not appropriate for single girls without any sperm partner and also because oocyte retrieval is an extended procedure, it is impossible in cases requiring immediate cancer cure. Thus ovarian tissue cryopreservation has been suggested for fertility preservation especial in cancer patients. The main goal of ovarian cryopreservation is re-implanting the tissue into the body to restore fertility and the hormonal cycle. Different cryopreservation protocols have been examined and established for vitrification of biological samples. We have used Cryopin to plunge ovarian tissue into the liquid nitrogen and promising results have been observed. Ovarian tissue re-implantation after cancer cure has one problem- the possibility of recurrence of malignancy in the reimplanted tissue is high. Xenografting-implantation of the preserved tissue in another species- also has its drawbacks such as molecular signaling from the recipient. In vitro follicle culturing is a safer method to obtain mature oocytes for fertilization and the various studies that have been carried out in this area are reviewed in this paper.
Collapse
Affiliation(s)
- Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahzad Akbarpour
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, USA
| | - Leila Sadat Tahaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Chakravarthi VP, Sireesha Y, Kumar YN, Siva kumar AVN, Bhaskar M. cGMP and epigenetic factor in the suppression of apoptosis in ovarian follicles. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abbassi L, Malki S, Cockburn K, Macaulay A, Robert C, Rossant J, Clarke HJ. Multiple Mechanisms Cooperate to Constitutively Exclude the Transcriptional Co-Activator YAP from the Nucleus During Murine Oogenesis. Biol Reprod 2016; 94:102. [PMID: 26985001 PMCID: PMC4939736 DOI: 10.1095/biolreprod.115.137968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 11/01/2022] Open
Abstract
Reproduction depends on the generation of healthy oocytes. Improving therapeutic strategies to prolong or rescue fertility depends on identifying the inter- and intracellular mechanisms that direct oocyte development under physiological conditions. Growth and proliferation of multiple cell types is regulated by the Hippo signaling pathway, whose chief effectors are the transcriptional co-activator YAP and its paralogue WWTR1. To resolve conflicting results concerning the potential role of Hippo in mammalian oocyte development, we systematically investigated the expression and localization of YAP in mouse oocytes. We report that that YAP is expressed in the germ cells beginning as early as Embryonic Day 15.5 and subsequently throughout pre- and postnatal oocyte development. However, YAP is restricted to the cytoplasm at all stages. YAP is phosphorylated at serine-112 in growing and fully grown oocytes, identifying a likely mechanistic basis for its nuclear exclusion, and becomes dephosphorylated at this site during meiotic maturation. Phosphorylation at serine-112 is regulated by a mechanism dependent on cyclic AMP and protein kinase A, which is known to be active in oocytes prior to maturation. Growing oocytes also contain a subpopulation of YAP, likely dephosphorylated, that is able enter the oocyte nucleus, but it is not retained there, implying that oocytes lack the cofactors required to retain YAP in the nucleus. Thus, although YAP is expressed throughout oocyte development, phosphorylation-dependent and -independent mechanisms cooperate to ensure that it does not accumulate in the nucleus. We conclude that nuclear YAP does not play a significant physiological role during oocyte development in mammals.
Collapse
Affiliation(s)
- Laleh Abbassi
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Canada Division of Experimental Medicine, McGill University Health Centre, Montreal, Canada Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Safia Malki
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Angus Macaulay
- Département des sciences animales, Université Laval, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Université Laval, Québec, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Canada Division of Experimental Medicine, McGill University Health Centre, Montreal, Canada Department of Biology, McGill University, McGill University Health Centre, Montreal, Canada Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
16
|
Histomorphometric Evaluation of Superovulation Effect on Follicular Development after Autologous Ovarian Transplantation in Mice. Vet Med Int 2015; 2015:236436. [PMID: 26693385 PMCID: PMC4674602 DOI: 10.1155/2015/236436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/14/2023] Open
Abstract
The effect of superovulation by pregnant mare serum gonadotropin (PMSG) on autologous transplanted ovaries in the lumbar muscles of mice was histomorphometrically evaluated using the indices of number and volume of different kind of follicles and volume of corpora lutea, ovary, and stroma. Angiogenesis was observed after mouse ovarian transplantation on days 14 and 21 after ovarian grafting. After transplantation, the total number and volume of primary and secondary follicles reduced, while PMSG superovulation increased the total number and total volume of tertiary follicles and also the ovarian volume after transplantation. Transplantation increased the average size of primary, secondary, and tertiary follicles. Therefore, primary and secondary follicles can survive after autologous transplantation but their reservations diminished by increasing the time of transplantation. However, number of tertiary follicles and their response to superovulation increased over time after transplantation.
Collapse
|
17
|
Toda K, Hayashi Y, Ono M, Saibara T. Co-administration of insulin with a gonadotropin partly improves ovulatory responses of estrogen-deficient mice. Mol Cell Endocrinol 2015; 411:177-86. [PMID: 25957088 DOI: 10.1016/j.mce.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Administration of 17-βestradiol (E2) with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) can induce ovulation in estrogen-deficient (ArKO) mice; nevertheless, ovulatory efficiency and rate are low. In this study, effects of insulin on the ovulatory responses were investigated. In ArKO ovary, hCG signal was found to be transmitted in an uncoordinated manner when phosphorylation levels of signaling molecules are examined. Co-administration of insulin with hCG improved the transmission of hCG signal as well as the ovulatory efficiency in ArKO mice. It also improved the ovulatory rate but far below the wild-type rate. Gene expression analysis demonstrated that Cyp11a1 and Cyp17a1 mRNAs were significantly induced 4 h after PMSG administration in the wild-type ovary, but not in ArKO ovary. Collectively, these results suggest that insulin improves ovulatory responses of ArKO mice, but it fails to ameliorate follicular dysfunctions caused possibly by an inappropriate intraovarian milieu during follicular maturation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
18
|
Edwards N, Farookhi R, Clarke HJ. Identification of a β-galactosidase transgene that provides a live-cell marker of transcriptional activity in growing oocytes and embryos. Mol Hum Reprod 2015; 21:583-93. [PMID: 25882542 PMCID: PMC4487448 DOI: 10.1093/molehr/gav020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Identifying the events and molecular mechanisms that regulate oocyte growth has emerged as a key objective of research in human fertility, fuelled by evidence from human and animal studies indicating that disease and environmental factors can act on oocytes to affect the health of the resulting individual and by efforts to grow oocytes in vitro to enable fertility preservation of cancer survivors. Techniques that monitor the development of growing oocytes would be valuable tools to assess the progression of growth under different conditions. Most methods used to assess oocytes grown in vitro are indirect, however, relying on characteristics of the somatic compartment of the follicle, or compromise the oocyte, preventing its subsequent culture or fertilization. We investigated the utility of T-cell factor/lymphoid enhancer-binding factor (TCF/Lef)-LacZ transgene expression as a predictor of global transcriptional activity in oocytes and early embryos. Using a fluorescent β-galactosidase substrate combined with live-cell imaging, we show that TCF/Lef-LacZ transgene expression is detectable in growing oocytes, lost in fully grown oocytes and resumes in late two-cell embryos. Transgene expression is likely regulated by a Wnt-independent mechanism. Using chromatin analysis, LacZ expression and methods to monitor and inhibit transcription, we show that TCF/Lef-LacZ expression mirrors transcriptional activity in oocytes and preimplantation embryos. Oocytes and preimplantation embryos that undergo live-cell imaging for TCF/Lef-LacZ expression are able to continue development in vitro. TCF/Lef-LacZ reporter expression in living oocytes and early embryos is thus a sensitive and faithful marker of transcriptional activity that can be used to monitor and optimize conditions for oocyte growth.
Collapse
Affiliation(s)
- Nicole Edwards
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Riaz Farookhi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Department of Physiology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada Research Institute of the McGill University Health Centre, Montreal, QC, Canada Department of Experimental Medicine, McGill University, Montreal, QC, Canada Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Wang X, Tsai T, Qiao J, Zhang Z, Feng HL. Impact of gonadotropins on oocyte maturation, fertilisation and developmental competence in vitro. Reprod Fertil Dev 2015; 26:752-7. [PMID: 23726536 DOI: 10.1071/rd13024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to evaluate the dose-dependent effects of gonadotropins, either singly (Bravelle (B), Luveris (L), Menupur (M), Repronex (R), Gonal-F (G), Follism (F) and Norvarel (N)) or in combination (Menupur+Bravelle; Repronext+Bravelle; and Bravelle+Norvarel), on rates of oocyte maturation, fertilisation and early embryo development in vitro in an animal model. Bovine cumulus-oocyte complexes (COCs) were purchased commercially and cultured in TCM-199 with 10% fetal bovine serum supplemented with varying concentrations of gonadotropin (0, 5, 10, 20, 40IU or United States Pharmacopoeia (USP) mL-1) for 24 and 48h according to current IVF clinical stimulation protocols. All gonadotropins enhanced oocyte maturation in vitro in a dose-dependent manner. Individually, Gonal-F (Merck KGaA, Darmstadt, Germany), Follism (Merck Co, Whitehouse Station, NJ, USA) and Repronext (Ferring, Parsippany, NJ, USA) promoted oocyte maturation; in combination, they effectively enhanced COC expansion and increased the maturation competence of MII oocytes. However, high concentrations of gonadotropins may result in maturation arrest. Specific combinations of gonadotropins may change the rate of early embryonic development (8-16-cells) and morula-blastocyst formation. These data provide support for the responsiveness of bovine oocytes to gonadotropins in vitro and the need to consider variations in the relative concentrations and ratio of combinations (FSH/LH or human chorionic gonadotropin) for optimisation of oocyte developmental competence. The results of the present study could be applied to therapeutic clinical stimulation protocols and help improve IVF success rates.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY 11355, USA
| | - Tony Tsai
- Department of Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY 11355, USA
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100083, China
| | - Zhan Zhang
- Reproductive Medical Center, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou , 450052, China
| | - Huai L Feng
- Department of Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY 11355, USA
| |
Collapse
|
20
|
Koh JY, Iwabuchi S, Huang Z, Harata NC. Rapid genotyping of animals followed by establishing primary cultures of brain neurons. J Vis Exp 2015. [PMID: 25742545 DOI: 10.3791/51879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Collapse
Affiliation(s)
- Jin-Young Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine; Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | | | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine;
| |
Collapse
|
21
|
Joo BS, Jung IK, Park MJ, Joo JK, Kim KH, Lee KS. Differential expression of pluripotent and germ cell markers in ovarian surface epithelium according to age in female mice. Reprod Biol Endocrinol 2014; 12:113. [PMID: 25421381 PMCID: PMC4280751 DOI: 10.1186/1477-7827-12-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/04/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have proposed that putative ovarian stem cells (OSCs) derived from the ovarian surface epithelium (OSE) layer of adult mammalian ovaries can produce oocytes. Few studies have reported that ovaries of aged mammalian females including mice and women possess rare premeiotic germ cells that can generate oocytes. However, no studies have reported the changes of OSCs according to the age of the female. Therefore, this study evaluated pluripotent and germ cell marker expression in the intact ovary, scraped OSE, and postcultured OSE according to age in female mice. METHODS C57BL/6 female mice of 2 age groups (6-8 and 28-31 weeks) were superovulated by injection with 5 IU equine chorionic gonadotropin (eCG). Both ovaries were removed after 48 hours and scrapped to obtain OSE. Gene expressions of pluripotent (Oct-4, Sox-2, Nanog) and germ cell markers (c-Kit, GDF-9, and VASA) were evaluated by RT-PCR. VASA and GDF-9 were immune-localized in oocyte-like structures. RESULTS Expressions of germ cell markers in the intact ovary were significantly decreased in aged females, whereas expressions of pluripotent markers were not detected, regardless of age. Scraped OSE expression of all pluripotent and germ cell markers, except for c-Kit, was similar between both age groups. Three weeks postcultured OSE had significantly decreased expression of GDF-9 and VASA , but not c-Kit, in old mice, as compared to young mice; however there was no difference in the expression of other genes. The number of positively stained Oct-4 by immunohistochemistry in postcultured OSE was 2.5 times higher in young mice than aged mice. Oocyte-like structure was spontaneously produced in postcultured OSE. However, while that of young mice revealed a prominent nucleus, zona pellucida-like structure and cytoplasmic organelles, these features were not observed in old mice. CONCLUSIONS These results show that aged female mice have putative OSCs in OSE, but their differentiation potential, as well as the number of OSCs differs from those of young mice.
Collapse
Affiliation(s)
- Bo Sun Joo
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - In Kook Jung
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Kyu-Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
22
|
Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc Natl Acad Sci U S A 2014; 111:16778-83. [PMID: 25385589 DOI: 10.1073/pnas.1414648111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.
Collapse
|
23
|
Sugimura S, Ritter LJ, Sutton-McDowall ML, Mottershead DG, Thompson JG, Gilchrist RB. Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply. ACTA ACUST UNITED AC 2014; 20:499-513. [DOI: 10.1093/molehr/gau013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2013; 20:74-9. [PMID: 23247096 DOI: 10.1097/med.0b013e32835cb529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
von Schönfeldt V, Chandolia R, Ochsenkühn R, Nieschlag E, Kiesel L, Sonntag B. FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting. Reprod Biol Endocrinol 2012; 10:98. [PMID: 23176179 PMCID: PMC3560100 DOI: 10.1186/1477-7827-10-98] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryopreservation and transplantation of ovarian tissue is one option for re-establishing ovarian function, but optimal conditions for graft sustainment and follicular survival are still considered experimental. The present study aims to analyze the effect of FSH treatment on the resting follicle pool in fresh and cryopreserved primate ovarian tissues following xenografting. METHODS Ovarian tissues from adult marmosets were grafted freshly or following cryopreservation to ovarectomized nude mice treated with FSH 25 IU twice daily post transplantation or left untreated as controls. Grafts were retrieved 2 or 4 weeks after transplantation to evaluate the number and morphological appearance of follicles. RESULTS Early start of FSH treatment within 1 week following transplantation partly prevents primordial follicle loss in fresh and frozen-thawed tissues, whereas after a 3 weeks time interval this effect is present only in fresh tissues. A similar positive effect of early, but not later FSH treatment on primary follicles is seen in fresh tissues compared to only marginal effects in frozen-thawed tissues. The percentage of morphologically normal follicles is generally increased in FSH treated tissues, whereas the percentage of primary follicles over all primordial and primary follicles is increased by FSH only in freshly-grafted tissues. CONCLUSIONS FSH treatment alleviates depletion of the resting follicle pool and promotes normal follicular morphology both in freshly and frozen-thawed grafted tissues. In previously cryopreserved tissues, applying to most of the tissues intended for clinical use in fertility preservation attempts, its positive effect on primordial follicle numbers and potential graft sustainment is dependent on an early start of treatment within one week of transplantation.
Collapse
Affiliation(s)
- Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, Campus Grosshadern Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Ramesh Chandolia
- Center for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | | | - Eberhard Nieschlag
- Center for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University of Münster, Münster, Germany
| | - Barbara Sonntag
- Department of Gynecology and Obstetrics, University of Münster, Münster, Germany
- Zentrum für Endokrinologie, Kinderwunsch und Pränatale Medizin, MVZ amedes, Hamburg, Germany
| |
Collapse
|
26
|
Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 2012; 5:32. [PMID: 23134576 PMCID: PMC3616927 DOI: 10.1186/1757-2215-5-32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants 'progenitors' ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. METHODS Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. RESULTS PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1-2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5-8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. CONCLUSIONS The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | | | | | | |
Collapse
|