1
|
Estermann MA, Grimm SA, Kitakule AS, Rodriguez KF, Brown PR, McClelland K, Amato CM, Yao HHC. NR2F2 regulation of interstitial cell fate in the embryonic mouse testis and its impact on differences of sex development. Nat Commun 2025; 16:3987. [PMID: 40295478 PMCID: PMC12038043 DOI: 10.1038/s41467-025-59183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Testicular fetal Leydig cells produce androgens essential for male reproductive development. Impaired fetal Leydig cell differentiation leads to differences of sex development including hypospadias, cryptorchidism, and infertility. Despite fetal Leydig cells are thought to originate from proliferating progenitor cells in the testis interstitium, the precise mechanisms governing the interstitial cells to fetal Leydig cell transition remain elusive. Using mouse models and single-nucleus multiomics, we find that fetal Leydig cells arise from a Nr2f2-positive interstitial population. Embryonic deletion of Nr2f2 in mouse testes results in differences of sex development, including dysgenic testes, Leydig cell hypoplasia, cryptorchidism, and hypospadias. By combining single-nucleus multiomics and NR2F2 ChIP-seq we find that NR2F2 promotes the progenitor fate while suppresses Leydig cell differentiation by modulating key transcription factors and downstream genes. Our findings establish Nr2f2 as a crucial regulator of fetal Leydig cell differentiation and provide molecular insights into differences of sex development linked to Nr2f2 mutations.
Collapse
Affiliation(s)
- Martín Andrés Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Abigail S Kitakule
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Paula R Brown
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Kathryn McClelland
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Ciro M Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| |
Collapse
|
2
|
de Mattos K, Scott-Boyer MP, Droit A, Viger RS, Tremblay JJ. Identification of MEF2A, MEF2C, and MEF2D interactomes in basal and Fsk-stimulated mouse MA-10 Leydig cells. Andrology 2025. [PMID: 40277654 DOI: 10.1111/andr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Myocyte enhancer factor 2 transcription factors regulate essential transcriptional programs in various cell types. The activity of myocyte enhancer factor 2 factors is modulated through interactions with cofactors, chromatin remodelers, and other regulatory proteins, which are dependent on cell context and physiological state. In steroidogenic Leydig cells, MEF2A, MEF2C, and MEF2D are key regulators of genes involved in steroid hormone synthesis, reproductive function, and oxidative stress defense. However, the specific network of myocyte enhancer factor 2-interacting proteins in Leydig cells remains unknown. OBJECTIVE To identify the interactome of each MEF2 factor present in Leydig cells. MATERIALS AND METHODS TurboID proximity-mediated biotinylation combined with mass spectrometry and bioinformatic analyses were used to identify the protein‒protein interaction networks of MEF2A, MEF2C, and MEF2D in MA-10 Leydig cells under basal and stimulated conditions. RESULTS We identified 109 potential myocyte enhancer factor 2-interacting proteins, including some previously known myocyte enhancer factor 2 partners. The interactome for each myocyte enhancer factor 2 factor is dynamic and exhibits unique and shared interaction networks between basal and stimulated conditions. Further analysis through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment categorized these interactions, revealing involvement in pathways related to cellular metabolism, transcriptional regulation, and steroidogenesis. DISCUSSION AND CONCLUSION These findings suggest that myocyte enhancer factor 2 factors can participate in diverse transcriptional activities, capable of gene activation or repression, depending on different protein‒protein interactions. In addition, the differential interactome for each myocyte enhancer factor 2 factor suggests unique regulatory roles for each factor in modulating Leydig cell function. Overall, this study provides new mechanistic insights into myocyte enhancer factor 2 action in Leydig cells by identifying interacting partners that likely influence their functions.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Marie-Pier Scott-Boyer
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Robert S Viger
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jacques J Tremblay
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
3
|
Acosta Ingram D, Turkes E, Kim TY, Vo S, Sweeney N, Bonte MA, Rutherford R, Julian DL, Pan M, Marsh J, Argouarch AR, Wu M, Scharre DW, Bell EH, Honig LS, Vonsattel JP, Serrano GE, Beach TG, Karch CM, Kao AW, Hester ME, Han X, Fu H. GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau. Nat Commun 2025; 16:3312. [PMID: 40204713 PMCID: PMC11982250 DOI: 10.1038/s41467-025-58585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.
Collapse
Affiliation(s)
- Diana Acosta Ingram
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Emir Turkes
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheeny Vo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas Sweeney
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marie-Amandine Bonte
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Argouarch
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica H Bell
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Paul Vonsattel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aimee W Kao
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Robert NM, Ferrier-Tarin S, Tremblay JJ. A New Leydig Cell-Exclusive Cre Line Allows Lineage Tracing of Fetal and Adult Leydig Cell Populations in the Mouse. Endocrinology 2025; 166:bqaf012. [PMID: 39823408 PMCID: PMC11772553 DOI: 10.1210/endocr/bqaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells, which are active during fetal life, and adult Leydig cells, which are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells. Taking advantage of the Leydig cell-exclusive expression pattern of the Insl3 gene, we used a CRISPR/Cas9 gene-editing strategy to knock-in iCre recombinase into the mouse Insl3 locus. To demonstrate the Leydig cell-exclusive nature of our iCre line, lineage-tracing experiments were performed by crossing Insl3iCre mice with a Rosa26LoxSTOPLox-TdTomato reporter. iCre activity was restricted to male offspring. TdTomato fluorescence was detected both in fetal and adult Leydig cells and colocalized with CYP17A1, a classic Leydig cell marker. Prior to birth, fluorescence was observed in fetal Leydig cells beginning at embryonic day 13.0. Fluorescence was also detected in adult Leydig cells starting at postnatal day 5 and continuing to the mature testis. Fluorescence was not detected in any other fetal or adult tissue examined, except for the unexpected finding that the adrenal cortex contains some Insl3-expressing Leydig-like cells. Our Leydig cell-exclusive iCre line therefore constitutes an invaluable new tool to study not only the origin of Leydig cells but also to target genes that have been long-proposed to be important for the development and functioning of these critical endocrine cells.
Collapse
Affiliation(s)
- Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec–Université Laval, Québec City, QC G1V 4G2, Canada
| | - Shirley Ferrier-Tarin
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec–Université Laval, Québec City, QC G1V 4G2, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec–Université Laval, Québec City, QC G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Estermann MA, Grimm S, Kitakule A, Rodriguez K, Brown P, McClelland K, Amato C, Yao HHC. NR2F2 regulation of interstitial to fetal Leydig cell differentiation in the testis: insights into differences of sex development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613312. [PMID: 39345510 PMCID: PMC11429913 DOI: 10.1101/2024.09.16.613312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Testicular fetal Leydig cells are a specialized cell type responsible for embryo masculinization. Fetal Leydig cells produce androgens, that induce the differentiation of male reproductive system and sexual characteristics. Deficiencies in Leydig cell differentiation leads to various disorders of sex development and male reproductive defects such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility. Fetal Leydig cells are thought to originate from proliferating progenitor cells in the testis interstitium, marked by genes like Arx , Pdgfra , Tcf21 and Wnt5a . However, the precise mechanisms governing the transition from interstitial cells to fetal Leydig cells remain elusive. Through integrated approaches involving mouse models and single-nucleus multiomic analyses, we discovered that fetal Leydig cells originate from a Nr2f2 -positive non-steroidogenic interstitial cell population. Embryonic deletion of Nr2f2 in mouse testes resulted in disorders of sex development, including dysgenic testes, Leydig cell hypoplasia, cryptorchidism, and hypospadias. We found that NR2F2 promotes the progenitor cell fate while suppresses Leydig cell differentiation by directly and indirectly controlling a cohort of transcription factors and downstream genes. Bioinformatic analyses of single-nucleus ATAC-seq and NR2F2 ChIP-seq data revealed putative transcription factors co-regulating the process of interstitial to Leydig cell differentiation. Collectively, our findings not only highlight the critical role of Nr2f2 in orchestrating the transition from interstitial cells to fetal Leydig cells, but also provide molecular insight into the disorders of sex development as a result of Nr2f2 mutations.
Collapse
|
6
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
7
|
Reyer H, Abou-Soliman I, Schulze M, Henne H, Reinsch N, Schoen J, Wimmers K. Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars. Genes (Basel) 2024; 15:382. [PMID: 38540441 PMCID: PMC10969825 DOI: 10.3390/genes15030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen characteristics. These traits comprise sperm morphology and sperm motility under different temporal and thermal storage conditions, in addition to standard semen quality parameters. Two consecutive samples of the fourth and fifth ejaculates from the same boar were comprehensively analyzed in a genotyped Piétrain boar population. A total of 13 genomic regions on different chromosomes were identified that contain single-nucleotide polymorphisms significantly associated with these traits. Subsequent analysis of the genomic regions revealed candidate genes described to be involved in spermatogenesis, such as FOXL3, GPER1, PDGFA, PRKAR1B, SNRK, SUN1, and TSPO, and sperm motility, including ARRDC4, CEP78, DNAAF5, and GPER1. Some of these genes were also associated with male fertility or infertility in mammals (e.g., CEP78, GPER1). The analyses based on these laboriously determined and valuable phenotypes contribute to a better understanding of the genetic background of male fertility traits in pigs and could prospectively contribute to the improvement of sperm quality through breeding approaches.
Collapse
Affiliation(s)
- Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
| | - Ibrahim Abou-Soliman
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
- Department of Animal and Poultry Breeding, Desert Research Center, Cairo 11753, Egypt
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, 16321 Bernau, Germany;
| | | | - Norbert Reinsch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
| | - Jennifer Schoen
- Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
- Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
8
|
Ham J, Jang H, Song G, Lim W. Cypermethrin induces endoplasmic reticulum stress and autophagy, leads to testicular dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166167. [PMID: 37567297 DOI: 10.1016/j.scitotenv.2023.166167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Cypermethrin is a pyrethroid insecticide that is used to control insects and protect crops. However, pesticide residues and their possible toxicity to non-target animals such as mammals are concerning. Although cypermethrin reduces testosterone levels, the molecular mechanisms involved, particularly those regarding endoplasmic reticulum (ER) stress and autophagy regulation, have not yet been fully elucidated. In this study, we demonstrated testicular toxicity of cypermethrin in mouse Leydig (TM3) and Sertoli (TM4) cells. Cypermethrin suppresses TM3 and TM4 cell proliferation and induces apoptosis. Moreover, it interrupted calcium homeostasis in intracellular organelles and dissipated mitochondrial membrane polarization in mouse testicular cells. Moreover, we verified the accumulation of Sqstm1/p62 protein in the mitochondria of cypermethrin-treated TM3 and TM4 cells. Furthermore, we confirmed that cypermethrin activated autophagy and the ER stress pathway in a time-dependent manner in both cell types. Finally, we determined that cypermethrin downregulated testicular function-related genes, steroidogenesis, and spermatogenesis in mouse testis cells. Therefore, we conclude that cypermethrin regulates autophagy and ER stress, leading to testicular dysfunction.
Collapse
Affiliation(s)
- Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
de Mattos K, Dumas FO, Campolina-Silva GH, Belleannée C, Viger RS, Tremblay JJ. ERK5 Cooperates With MEF2C to Regulate Nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology 2023; 164:bqad120. [PMID: 37539861 PMCID: PMC10435423 DOI: 10.1210/endocr/bqad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Félix-Olivier Dumas
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Gabriel Henrique Campolina-Silva
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Clémence Belleannée
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
10
|
Basque A, Touaibia M, Martin LJ. Sinapic and ferulic acid phenethyl esters increase the expression of steroidogenic genes in MA-10 tumor Leydig cells. Toxicol In Vitro 2023; 86:105505. [DOI: 10.1016/j.tiv.2022.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
11
|
A 35-bp Conserved Region Is Crucial for Insl3 Promoter Activity in Mouse MA-10 Leydig Cells. Int J Mol Sci 2022; 23:ijms232315060. [PMID: 36499388 PMCID: PMC9738330 DOI: 10.3390/ijms232315060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. Insl3 gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed. The regulatory region of the Insl3 gene has been described in various species; moreover, functional studies have revealed that the Insl3 promoter is regulated by various transcription factors that include the nuclear receptors AR, NUR77, COUP-TFII, LRH1, and SF1, as well as the Krüppel-like factor KLF6. However, these transcription factors are also found in several tissues that do not express Insl3, indicating that other, yet unidentified factors, must be involved to drive Insl3 expression specifically in Leydig cells. Through a fine functional promoter analysis, we have identified a 35-bp region that is responsible for conferring 70% of the activity of the mouse Insl3 promoter in Leydig cells. All tri- and dinucleotide mutations introduced dramatically reduced Insl3 promoter activity, indicating that the entire 35-bp sequence is required. Nuclear proteins from MA-10 Leydig cells bound specifically to the 35-bp region. The 35-bp sequence contains GC- and GA-rich motifs as well as potential binding elements for members of the CREB, C/EBP, AP1, AP2, and NF-κB families. The Insl3 promoter was indeed activated 2-fold by NF-κB p50 but not by other transcription factors tested. These results help to further define the regulation of Insl3 gene transcription in Leydig cells.
Collapse
|
12
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
13
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
14
|
The Urokinase-Type Plasminogen Activator Contributes to cAMP-Induced Steroidogenesis in MA-10 Leydig Cells. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leydig cells produce androgens which are essential for male sex differentiation and reproductive functions. Steroidogenesis, as well as expression of several genes in Leydig cells, are stimulated by LH/cAMP and repressed by AMP/AMPK. One of those genes is Plau, which codes for the urokinase-type plasminogen activator (uPA), a secreted serine protease. The role of uPA and the regulation of Plau expression in Leydig cells remain unknown. Using siRNA-mediated knockdown, uPA was required for maximal cAMP-induced STAR and steroid hormone production in MA-10 Leydig cells. Analysis of Plau mRNA levels and promoter activity revealed that its expression is strongly induced by cAMP; this induction is blunted by AMPK. The cAMP-responsive region was located, in part, in the proximal Plau promoter that contains a species-conserved GC box at −56 bp. The transcription factor Krüppel-like factor 6 (KLF6) activated the Plau promoter. Mutation of the GC box at −56 bp abolished KLF6-mediated activation and significantly reduced cAMP-induced Plau promoter activity. These data define a role for uPA in Leydig cell steroidogenesis and provide insights into the regulation of Plau gene expression in these cells.
Collapse
|
15
|
Hébert-Mercier PO, Bergeron F, Robert NM, Mehanovic S, Pierre KJ, Mendoza-Villarroel RE, de Mattos K, Brousseau C, Tremblay JJ. Growth Hormone-induced STAT5B Regulates Star Gene Expression Through a Cooperation With cJUN in Mouse MA-10 Leydig Cells. Endocrinology 2022; 163:6490116. [PMID: 34967898 PMCID: PMC8765792 DOI: 10.1210/endocr/bqab267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/01/2023]
Abstract
Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star messenger RNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (electrophoretic mobility shift assay and supershift) and in vivo (chromatin immunoprecipitation) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.
Collapse
Affiliation(s)
- Pierre-Olivier Hébert-Mercier
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Correspondence: Jacques J. Tremblay, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de recherche du CHU de Québec – Université Laval CHUL, 2705 Laurier Blvd, Québec City, QC, G1V 4G2, Canada.
| |
Collapse
|
16
|
Dynamic Expression of the Homeobox Factor PBX1 during Mouse Testis Development. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Members of the pre-B-cell leukemia transcription factor (PBX) family of homeoproteins are mainly known for their involvement in hematopoietic cell differentiation and in the development of leukemia. The four PBX proteins, PBX1, PBX2, PBX3 and PBX4, belong to the three amino acid loop extension (TALE) superfamily of homeoproteins which are important transcriptional cofactors in several developmental processes involving homeobox (HOX) factors. Mutations in the human PBX1 gene are responsible for cases of gonadal dysgenesis with absence of male sex differentiation while Pbx1 inactivation in the mouse causes a failure in Leydig cell differentiation and function. However, no data is available regarding the expression profile of this transcription factor in the testis. To fill this knowledge gap, we have characterized PBX1 expression during mouse testicular development. Real time PCRs and Western blots confirmed the presence Pbx1 mRNA and PBX1 protein in different Leydig and Sertoli cell lines. The cellular localization of the PBX1 protein was determined by immunohistochemistry and immunofluorescence on mouse testis sections at different embryonic and postnatal developmental stages. PBX1 was detected in interstitial cells and in peritubular myoid cells from embryonic life until puberty. Most interstitial cells expressing PBX1 do not express the Leydig cell marker CYP17A1, indicating that they are not differentiated and steroidogenically active Leydig cells. In adults, PBX1 was mainly detected in Sertoli cells. The presence of PBX1 in different somatic cell populations during testicular development further supports a direct role for this transcription factor in testis cell differentiation and in male reproductive function.
Collapse
|
17
|
de Mattos K, Viger RS, Tremblay JJ. Transcription Factors in the Regulation of Leydig Cell Gene Expression and Function. Front Endocrinol (Lausanne) 2022; 13:881309. [PMID: 35464056 PMCID: PMC9022205 DOI: 10.3389/fendo.2022.881309] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation and acquisition of specialized functions are inherent steps in events that lead to normal tissue development and function. These processes require accurate temporal, tissue, and cell-specific activation or repression of gene transcription. This is achieved by complex interactions between transcription factors that form a unique combinatorial code in each specialized cell type and in response to different physiological signals. Transcription factors typically act by binding to short, nucleotide-specific DNA sequences located in the promoter region of target genes. In males, Leydig cells play a crucial role in sex differentiation, health, and reproductive function from embryonic life to adulthood. To better understand the molecular mechanisms regulating Leydig cell differentiation and function, several transcription factors important to Leydig cells have been identified, including some previously unknown to this specialized cell type. This mini review summarizes the current knowledge on transcription factors in fetal and adult Leydig cells, describing their roles and mechanisms of action.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
| | - Robert S. Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- *Correspondence: Jacques J. Tremblay,
| |
Collapse
|
18
|
McElreavey K, Bashamboo A. Monogenic forms of DSD: An update. Horm Res Paediatr 2021; 96:144-168. [PMID: 34963118 DOI: 10.1159/000521381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
DSD encompasses a wide range of pathologies that impact gonad formation, development and function in both 46,XX and 46,XY individuals. The majority of these conditions are considered to be monogenic, although the expression of the phenotype may be influenced by genetic modifiers. Although considered monogenic, establishing the genetic etiology in DSD has been difficult compared to other congenital disorders for a number of reasons including the absence of family cases for classical genetic association studies and the lack of evolutionary conservation of key genetic factors involved in gonad formation. In recent years, the widespread use of genomic sequencing technologies has resulted in multiple genes being identified and proposed as novel monogenic causes of 46,XX and/or 46,XY DSD. In this review, we will focus on the main genomic findings of recent years, which consists of new candidate genes or loci for DSD as well as new reproductive phenotypes associated with genes that are well established to cause DSD. For each gene or loci, we summarise the data that is currently available in favor of or against a role for these genes in DSD or the contribution of genomic variants within well-established genes to a new reproductive phenotype. Based on this analysis we propose a series of recommendations that should aid the interpretation of genomic data and ultimately help to improve the accuracy and yield genetic diagnosis of DSD.
Collapse
|
19
|
Basque A, Nguyen HT, Touaibia M, Martin LJ. Gigantol Improves Cholesterol Metabolism and Progesterone Biosynthesis in MA-10 Leydig Cells. Curr Issues Mol Biol 2021; 44:73-93. [PMID: 35723385 PMCID: PMC8929061 DOI: 10.3390/cimb44010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
In aging males, androgen production by testicular Leydig cells decreases at a rate of approximately 1% per year. Phenolic compounds may enhance testosterone biosynthesis and delay the onset of male hypogonadism. Gigantol is a bibenzyl compound isolated from several types of orchids of the genus Dendrobium. This compound has various biological activities, including antioxidant activity. However, its capacity to regulate gene expression and steroid production in testicular Leydig cells has never been evaluated. We investigated the effect of gigantol on MA-10 Leydig cells' gene expression using an RNA-Seq approach. To further investigate the structure-function relationship of the hydroxy-methoxyphenyl moiety of gigantol, experiments were also performed with ferulic acid and isoferulic acid. According to transcriptomic analysis, all genes coding for cholesterol biosynthesis-related enzymes are increased in response to gigantol treatment, resulting in increased lipid droplets accumulation. Moreover, treatments with 10 μM gigantol increased StAR protein levels and progesterone production from MA-10 Leydig cells. However, neither ferulic acid nor isoferulic acid influenced StAR protein synthesis and progesterone production in MA-10 Leydig cells. Thus, our findings indicate that gigantol improves cholesterol and steroid biosynthesis within testicular Leydig cells.
Collapse
Affiliation(s)
- Audrey Basque
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
20
|
Nguyen HT, Martin LJ. Transcriptomic analysis of MA-10 tumor Leydig cells treated with adipose derived hormones adiponectin and resistin. Reprod Biol 2021; 22:100598. [PMID: 34929619 DOI: 10.1016/j.repbio.2021.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Obesity contributes to a decrease in testosterone production in men. Indeed, adipose tissue produces several hormones, including adiponectin and resistin, and these may influence the activity of signaling pathways responsible for regulating the expression of genes related to steroidogenesis. In this study, we wanted to identify which genes are directly regulated by these hormones using the MA-10 tumor Leydig cell model. To do this, we treated these cells with adiponectin or resistin, followed by RNA extraction and RNA-Seq transcriptome analysis. Interestingly, genes upregulated by the globular form of adiponectin (gACRP30) were associated to steroid hormones biosynthesis, whereas resistin had no effect on the transcriptome of MA-10 Leydig cells. Moreover, the expression of the Star gene, encoding the steroidogenic acute regulatory protein, was increased in response to treatments with 0.5 mM 8Br-cAMP. Such stimulation was further increased by adiponectin, resulting in increased progesterone production. However, resistin had no effect on steroid production from MA-10 tumor Leydig cells under the treatment conditions investigated. Thus, our data suggest that a direct regulation of steroidogenic genes' expressions in Leydig cells by adipose derived hormones involves cooperation between the cAMP/PKA pathway and adiponectin, but not resistin, to activate Star expression and improve progesterone synthesis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada.
| |
Collapse
|
21
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
22
|
Development of a putative adverse outcome pathway network for male rat reproductive tract abnormalities with specific considerations for the androgen sensitive window of development. Curr Res Toxicol 2021; 2:254-271. [PMID: 34401750 PMCID: PMC8350458 DOI: 10.1016/j.crtox.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Structured approaches like the adverse outcome pathway (AOP) framework offer great potential for depicting complex toxicological processes in a manner that can facilitate informed integration of mechanistic information in regulatory decisions. While this concept provides a structure for organizing evidence and facilitates consistency in evidence integration; the process, inputs, and manner in which AOPs and AOP networks are developed is still evolving. Following the OECD guiding principles of AOP development, we propose three AOPs for male reproductive tract abnormalities and derive a putative AOP network. The AOPs were developed using a fundamental understanding of the developmental biology of the organs of interest, paying close attention to the gestational timing of key events (KEs) to very specifically inform the domain of life stage applicability for the key event relationships (KERs). Chemical stressor data primarily from studies on low molecular weight phthalates (LMWPs) served to 'bound' the pathways of focus in this dynamic period of development and were integrated with the developmental biology data through an iterative process to define KEs and conclude on the extent of evidence in support of the KERs. The AOPs developed describe the linkage between 1) a decrease in Insl3 gene expression and cryptorchidism, 2) the sustained expression of Coup-tfII and hypospadias and 3) the sustained expression of Coup-tfII and altered Wolffian duct development/ epididymal agenesis. A putative AOP network linking AOP2 and AOP3 through decreased steroidogenic biosynthetic protein expression and converging of all AOPS at the population level impaired fertility adverse outcome is proposed. The network depiction specifies and displays the KEs aligned with their occurrence in gestational time. The pathways and network described herein are intended to catalyze collaborative initiatives for expansion into a larger network to enable effective data collection and inform alternative approaches for identifying stressors impacting this sensitive period of male reproductive tract development.
Collapse
Key Words
- AGD, Anogenital distance
- AO, Adverse Outcome
- AOP, Adverse Outcome Pathway
- Adverse outcome pathway
- Adverse outcome pathway network
- DBP, Dibutyl phthalate
- DEHP, Di(2-ethylhexyl)phthalate
- DHT, 5α-dihydrotestosterone
- DPP, Dipentyl phthalate
- E, Embryonic day (ED1=GD1 gestational day 1)
- GD, Gestational day (GD1=ED1 embryonic day 1)
- KE, Key event
- KER, Key event relationship
- LMWP, low molecular weight phthalate straight chain length of the esterified alcohols between 3 and 6 carbon atoms
- MPW, male programming window
- Male programming window
- Phthalate
Collapse
|
23
|
Mehanovic S, Mendoza-Villarroel RE, Mattos K, Talbot P, Viger RS, Tremblay JJ. Identification of novel genes and pathways regulated by the orphan nuclear receptor COUP-TFII in mouse MA-10 Leydig cells†. Biol Reprod 2021; 105:1283-1306. [PMID: 34225363 DOI: 10.1093/biolre/ioab131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
In males, Leydig cells are the main producers of testosterone and insulin-like 3 (INSL3), two hormones essential for sex differentiation and reproductive functions. Chicken ovalbumin upstream promoter-transcription factors I (COUP-TFI/NR2F1) and COUP-TFII (NR2F2) belong to the steroid/thyroid hormone nuclear receptor superfamily of transcription factors. In the testis, COUP-TFII is expressed and plays a role in the differentiation of cells committed to give rise to fully functional steroidogenic adult Leydig cells. Steroid production has also been shown to be diminished in COUP-TFII-depleted Leydig cells, indicating an important functional role in steroidogenesis. Until now, only a handful of target genes have been identified for COUP-TFII in Leydig cells. To provide new information into the mechanism of action of COUP-TFII in Leydig cells, we performed microarray analyses of COUP-TFII-depleted MA-10 Leydig cells. We identified 262 differentially expressed genes in COUP-TFII-depleted MA-10 cells. Many of the differentially expressed genes are known to be involved in lipid biosynthesis, lipid metabolism, male gonad development, and steroidogenesis. We validated the microarray data for a subset of the modulated genes by RT-qPCR. Downregulated genes included Hsd3b1, Cyp11a1, Prlr, Shp/Nr0b2, Fdx1, Scarb1, Inha and Gsta3. Finally, analysis of the Gsta3 and Inha gene promoters showed that at least two of the downregulated genes are potentially new direct targets for COUP-TFII. These data provide new evidence that further strengthens the important nature of COUP-TFII in steroidogenesis, androgen homeostasis, cellular defense, and differentiation in mouse Leydig cells.
Collapse
Affiliation(s)
- Samir Mehanovic
- Recipient of a doctoral studentship from the Fondation du CHU de Québec-Université Laval.,Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Karine Mattos
- Recipient of a doctoral studentship from the Fondation du CHU de Québec-Université Laval.,Recipient of a doctoral studentship from the Fonds de recherche du Québec-Santé.,Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Philippe Talbot
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
24
|
Park HJ, Lee WY, Do JT, Park C, Song H. Evaluation of testicular toxicity upon fetal exposure to bisphenol A using an organ culture method. CHEMOSPHERE 2021; 270:129445. [PMID: 33421752 DOI: 10.1016/j.chemosphere.2020.129445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Humans are exposed to a multitude of endocrine disruptor chemicals (EDCs) that can interfere with the action of endogenous hormones and the normal development of reproductive organs. Bisphenol A (BPA) is one of the most common EDCs found in the environment. Here, we evaluated BPA toxicity on fetal testes using an in vitro organ culture system. Mouse fetal testes sampled at 15.5 days post coitus were cultured in a medium containing BPA for 5 days. The number of germ cells was reduced by BPA treatment, whereas the number of Sertoli cells was slightly increased by BPA at the highest dose (100 μM). Consistently, BPA treatment reduced the protein and gene expression levels of germ cell markers, but it increased the expression levels of Sertoli cell markers. The expression levels of fetal Leydig cell markers such as Cyp11a1, Thbs2, Cyp17a1, and Pdgf-α were significantly increased, whereas those of adult Leydig cell markers such as Hsd17b3, Ptgds, Sult1e1, Vcam1, and Hsd11b1 were decreased in the testes exposed to BPA. Generally, Notch signaling restricts Leydig cell differentiation from progenitor cells during fetal testis development. The expression levels of Notch1, Notch2, Notch3, Hes1, Ptch1, Jag1, Jag2, c-Myc, Hey1, and Hey2, which are involved in Notch signaling, were markedly higher in BPA-treated fetal testes than in the controls, indicating that BPA interrupts fetal Leydig cell development. BPA also disrupted steroidogenesis in the fetal testis organ culture system. In conclusion, our study showed that BPA inhibits fetal germ cell growth, Leydig cell development, and steroidogenesis.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk, 54874, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
25
|
Yu J, Wu Y, Li H, Zhou H, Shen C, Gao T, Lin M, Dai X, Ou J, Liu M, Huang X, Zheng B, Sun F. BMI1 Drives Steroidogenesis Through Epigenetically Repressing the p38 MAPK Pathway. Front Cell Dev Biol 2021; 9:665089. [PMID: 33928089 PMCID: PMC8076678 DOI: 10.3389/fcell.2021.665089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Testosterone biosynthesis progressively decreases in aging males primarily as a result of functional changes to Leydig cells. Despite this, the mechanisms underlying steroidogenesis remain largely unclear. Using gene knock-out approaches, we and others have recently identified Bmi1 as an anti-aging gene. Herein, we investigate the role of BMI1 in steroidogenesis using mouse MLTC-1 and primary Leydig cells. We show that BMI1 can positively regulate testosterone production. Mechanistically, in addition to its known role in antioxidant activity, we also report that p38 mitogen-activated protein kinase (MAPK) signaling is activated, and testosterone levels reduced, in BMI1-deficient cells; however, the silencing of the p38 MAPK pathway restores testosterone production. Furthermore, we reveal that BMI1 directly binds to the promoter region of Map3k3, an upstream activator of p38, thereby modulating its chromatin status and repressing its expression. Consequently, this results in the inhibition of the p38 MAPK pathway and the promotion of steroidogenesis. Our study uncovered a novel epigenetic mechanism in steroidogenesis involving BMI1-mediated gene silencing and provides potential therapeutic targets for the treatment of hypogonadism.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tingting Gao
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Meng Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Jian Ou
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Meiling Liu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China.,National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
26
|
Zhou J, Wang Y, Wu D, Wang S, Chen Z, Xiang S, Chan FL. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene 2021; 40:2625-2634. [PMID: 33750894 PMCID: PMC8049868 DOI: 10.1038/s41388-021-01737-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
Castration-resistant prostate cancer (CRPC) almost invariably occurs after androgen-deprivation therapy (ADT) for the advanced metastatic disease. It is generally believed that among multiple mechanisms and signaling pathways, CRPC is significantly driven by the reactivation of androgen receptor (AR) signaling in ADT-treated patients with castrate levels of androgen, partially at least mediated by the androgen biosynthesis within the tumor, also known as intratumoral or intraprostatic androgen biosynthesis. Steroidogenic enzymes, such as CYP11A1, CYP17A1, HSD3B1, AKR1C3 and SRD5A, are essential to catalyze the conversion of the initial substrate cholesterol into potent androgens that confers the CRPC progression. Accumulating evidences indicate that many steroidogenic enzymes are upregulated in the progression setting; however, little is known about the dysregulation of these enzymes in CRPC. Orphan nuclear receptors (ONRs) are members of the nuclear receptor superfamily, of which endogenous physiological ligands are unknown and which are constitutively active independent of any physiological ligands. Studies have validated that besides AR, ONRs could be the potential therapeutic targets for prostate cancer, particularly the lethal CRPC progression. Early studies reveal that ONRs play crucial roles in the transcriptional regulation of steroidogenic enzyme genes. Notably, we and others show that three distinct ONRs, including liver receptor homolog-1 (LRH-1, NR5A2), steroidogenic factor 1 (SF-1, AD4BP, NR5A1) and estrogen-related receptor α (ERRα, NR3B1), can contribute to the CRPC progression by promotion of the intratumoral androgen synthesis via their direct transcriptional regulation on multiple steroidogenic enzymes. This review presents an overview of the current understanding on the intratumoral androgen biosynthesis in CRPC, with a special focus on the emerging roles of ONRs in this process.
Collapse
Affiliation(s)
- Jianfu Zhou
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.411866.c0000 0000 8848 7685The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- grid.488521.2Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shusheng Wang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songtao Xiang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Franky Leung Chan
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Ham J, You S, Lim W, Song G. Pyridaben induces mitochondrial dysfunction and leads to latent male reproductive abnormalities. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104731. [PMID: 33357553 DOI: 10.1016/j.pestbp.2020.104731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
As an organochloride pesticide, pyridaben (PDB) has been used on various plants, including fruiting plants and other crops. Because of emerging concerns regarding exposure to pesticides, the deleterious effects of PDB, including neuronal disease and reproductive abnormalities, have been determined. However, the intracellular mechanisms that contribute to the effects of PDB on the male reproductive system are still unknown. Therefore, we investigated the effects of PDB on the male reproductive organ, focusing on the testes using mouse testicular cells. We demonstrated that PDB suppressed cellular proliferation of mouse Leydig (TM3) and Sertoli (TM4) cells. Additionally, PDB disturbed calcium homeostasis via mitochondrial dysfunction and activation of endoplasmic reticulum stress. Furthermore, PDB inhibited transcriptional gene expression regarding the cell cycle, as well as steroidogenesis and spermatogenesis, which are the primary functions of TM3 and TM4 cells. Moreover, we verified via western blot analysis that PDB dysregulated the intracellular cell signaling pathways in mitochondrial-associated membranes and the Mapk/Pi3k pathway. Lastly, we confirmed that PDB efficiently suppressed the spheroid formation of TM3 and TM4 cells mimicking an in vivo environment. Collectively, the current results indicate that PDB induces testicular toxicity and male reproductive abnormalities by inducing mitochondrial dysfunction, endoplasmic reticulum stress and calcium imbalance.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Gao T, Lin M, Shao B, Zhou Q, Wang Y, Chen X, Zhao D, Dai X, Shen C, Cheng H, Yang S, Li H, Zheng B, Zhong X, Yu J, Chen L, Huang X. BMI1 promotes steroidogenesis through maintaining redox homeostasis in mouse MLTC-1 and primary Leydig cells. Cell Cycle 2020; 19:1884-1898. [PMID: 32594840 PMCID: PMC7469621 DOI: 10.1080/15384101.2020.1779471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In males, aging is accompanied by decline in serum testosterone levels due to impairment of testicular Leydig cells. The polycomb protein BMI1 has recently been identified as an anti-aging factor. In our previous study, BMI1 null mice showed decreased serum testosterone and Leydig cell population, excessive oxidative stress and p16/p19 signaling activation. However, a cause-and-effect relationship between phenotypes and pathways was not investigated. Here, we used the rescue approach to study the role of oxidative stress or p16/p19 in BMI1-mediated steroidogenesis. Our results revealed that treatment with antioxidant NAC, but not down-regulation of p16/p19, largely rescued cell senescence, DNA damage and steroidogenesis in BMI1-deficient mouse MLTC-1 and primary Leydig cells. Collectively, our study demonstrates that BMI1 orchestrates steroidogenesis mainly through maintaining redox homeostasis, and thus, BMI1 may be a novel and potential therapeutic target for treatment of hypogonadism.
Collapse
Affiliation(s)
- Tingting Gao
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University , Changzhou, China
| | - Meng Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital , Nanjing, China
| | - Qiao Zhou
- Department of Reproduction, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital , Nanjing, China
| | - Yufeng Wang
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University , Changzhou, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Jiangsu University , Zhenjiang, China
| | - Dan Zhao
- Fourth Affiliated Hospital of Jiangsu University , Zhenjiang, China
| | - Xiuliang Dai
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University , Changzhou, China
| | - Cong Shen
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China
| | - Hongbo Cheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China
| | - Hong Li
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China
| | - Bo Zheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China.,State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou, China
| | - Xingming Zhong
- NHC Key Laboratory of Male Reproduction and Genetics , Guangdong, China.,Department of Reproductive Immunity and Genetics, Family Planning Research Institute of Guangdong Province , Guangdong, China.,Department of Reproductive Immunity and Genetics, Family Planning Special Hospital of Guangdong Province , Guangzhou, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Jiangsu University , Zhenjiang, China
| | - Li Chen
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University , Changzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing, China
| |
Collapse
|
29
|
Disorders of Sex Development-Novel Regulators, Impacts on Fertility, and Options for Fertility Preservation. Int J Mol Sci 2020; 21:ijms21072282. [PMID: 32224856 PMCID: PMC7178030 DOI: 10.3390/ijms21072282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Disorders (or differences) of sex development (DSD) are a heterogeneous group of congenital conditions with variations in chromosomal, gonadal, or anatomical sex. Impaired gonadal development is central to the pathogenesis of the majority of DSDs and therefore a clear understanding of gonadal development is essential to comprehend the impacts of these disorders on the individual, including impacts on future fertility. Gonadal development was traditionally considered to involve a primary 'male' pathway leading to testicular development as a result of expression of a small number of key testis-determining genes. However, it is increasingly recognized that there are several gene networks involved in the development of the bipotential gonad towards either a testicular or ovarian fate. This includes genes that act antagonistically to regulate gonadal development. This review will highlight some of the novel regulators of gonadal development and how the identification of these has enhanced understanding of gonadal development and the pathogenesis of DSD. We will also describe the impact of DSDs on fertility and options for fertility preservation in this context.
Collapse
|
30
|
Guo R, Chen F, Shi Z. Suppression of Notch Signaling Stimulates Progesterone Synthesis by Enhancing the Expression of NR5A2 and NR2F2 in Porcine Granulosa Cells. Genes (Basel) 2020; 11:genes11020120. [PMID: 31978970 PMCID: PMC7073743 DOI: 10.3390/genes11020120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
The conserved Notch pathway is reported to be involved in progesterone synthesis and secretion; however, the exact effects remain controversial. To determine the role and potential mechanisms of the Notch signaling pathway in progesterone biosynthesis in porcine granulosa cells (pGCs), we first used a pharmacological γ-secretase inhibitor, N-(N-(3,5-difluorophenacetyl-l-alanyl))-S-phenylglycine t-butyl ester (DAPT), to block the Notch pathway in cultured pGCs and then evaluated the expression of genes in the progesterone biosynthesis pathway and key transcription factors (TFs) regulating steroidogenesis. We found that DAPT dose- and time-dependently increased progesterone secretion. The expression of steroidogenic proteins NPC1 and StAR and two TFs, NR5A2 and NR2F2, was significantly upregulated, while the expression of HSD3B was significantly downregulated. Furthermore, knockdown of both NR5A2 and NR2F2 with specific siRNAs blocked the upregulatory effects of DAPT on progesterone secretion and reversed the effects of DAPT on the expression of NPC1, StAR, and HSD3B. Moreover, knockdown of NR5A2 and NR2F2 stimulated the expression of Notch3. In conclusion, the inhibition of Notch signaling stimulated progesterone secretion by enhancing the expression of NPC1 and StAR, and the two TFs NR5A2 and NR2F2 acted as downstream TFs of Notch signaling in regulating progesterone synthesis.
Collapse
Affiliation(s)
- Rihong Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| |
Collapse
|
31
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
32
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
33
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
34
|
Li L, Mu X, Ye L, Ze Y, Hong F. Suppression of testosterone production by nanoparticulate TiO 2 is associated with ERK1/2-PKA-PKC signaling pathways in rat primary cultured Leydig cells. Int J Nanomedicine 2018; 13:5909-5924. [PMID: 30319256 PMCID: PMC6167999 DOI: 10.2147/ijn.s175608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Nanoparticulate titanium dioxide (nano-TiO2) enters the body through various routes and causes organ damage. Exposure to nano-TiO2 is reported to cause testicular injury in mice or rats and decrease testosterone synthesis, sperm number, and motility. Importantly, nano-TiO2 suppresses testosterone production by Leydig cells (LCs) and impairs the reproductive capacity of animals. Methods In an attempt to establish the molecular mechanisms underlying the inhibitory effect of nano-TiO2 on testosterone synthesis, primary cultured rat LCs were exposed to varying concentrations of nano-TiO2 (0, 10, 20, and 40 µg/mL) for 24 hours, and alterations in cell viability, cell injury, testosterone production, testosterone-related factors (StAR, 3βHSD, P450scc, SR-BI, and DAX1), and signaling molecules (ERK1/2, PKA, and PKC) were investigated. Results The data show that nano-TiO2 crosses the membrane into the cytoplasm or nucleus, triggering cellular vacuolization and nuclear condensation. LC viability decreased in a time-dependent manner at the same nano-TiO2 concentration, nano-TiO2 treatment (10, 20, and 40 µg/mL) decreased MMP (36.13%, 45.26%, and 79.63%), testosterone levels (11.40% and 44.93%), StAR (14.7%, 44.11%, and 72.05%), 3βHSD (26.56%, 50%, and 79.69%), pERK1/2 (27.83%, 63.61%, and 78.89%), PKA (47.26%, 70.54%, and 85.61%), PKC (30%, 50%, and 71%), SR-BI (16.41%, 41.79%, and 67.16%), and P450scc (39.41%, 55.26%, and 86.84%), and upregulated DAX1 (1.31-, 1.63-, and 3.18-fold) in primary cultured rat LCs. Conclusion Our collective findings indicated that nano-TiO2-mediated suppression of testosterone in LCs was associated with regulation of ERK1/2–PKA–PKC signaling pathways.
Collapse
Affiliation(s)
- Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou 215123, China,
| | - Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou 215123, China,
| | - Lingqun Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou 215123, China,
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou 215123, China,
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an 223300, China, .,Jiangsu Key Laboratory for Food Safety and Nutritional Function Evaluation, Huaiyin Normal University, Huai'an 223300, China, .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China, .,School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China,
| |
Collapse
|
35
|
Lyu G, Zhang C, Ling T, Liu R, Zong L, Guan Y, Huang X, Sun L, Zhang L, Li C, Nie Y, Tao W. Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genomics 2018; 19:428. [PMID: 29866040 PMCID: PMC5987557 DOI: 10.1186/s12864-018-4814-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the leading non-infectious cause of death in infants. Monozygotic (MZ) twins share nearly all of their genetic variants before and after birth. Nevertheless, MZ twins are sometimes discordant for common complex diseases. The goal of this study is to identify genomic and epigenomic differences between a pair of twins discordant for a form of congenital heart disease, double outlet right ventricle (DORV). RESULTS A monoamniotic monozygotic (MZ) twin pair discordant for DORV were subjected to genome-wide sequencing and methylation analysis. We identified few genomic differences but 1566 differentially methylated regions (DMRs) between the MZ twins. Twenty percent (312/1566) of the DMRs are located within 2 kb upstream of transcription start sites (TSS), containing 121 binding sites of transcription factors. Particularly, ZIC3 and NR2F2 are found to have hypermethylated promoters in both the diseased twin and additional patients suffering from DORV. CONCLUSIONS The results showed a high correlation between hypermethylated promoters at ZIC3 and NR2F2 and down-regulated gene expression levels of these two genes in patients with DORV compared to normal controls, providing new insight into the potential mechanism of this rare form of CHD.
Collapse
Affiliation(s)
- Guoliang Lyu
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Chao Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Te Ling
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Rui Liu
- Department of Cardiovascular Surgery, Center for Cardiovascular Regenerative Medicine, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100871 China
| | - Le Zong
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yiting Guan
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Xiaoke Huang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Lei Sun
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Lijun Zhang
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- Department of Cardiovascular Surgery, Center for Cardiovascular Regenerative Medicine, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100871 China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
36
|
Cormier M, Ghouili F, Roumaud P, Martin LJ, Touaibia M. Influence of flavonols and quercetin derivative compounds on MA-10 Leydig cells steroidogenic genes expressions. Toxicol In Vitro 2017; 44:111-121. [DOI: 10.1016/j.tiv.2017.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
|
37
|
Zhang C, Gong P, Ye Y, Zhang L, Chen M, Hu Y, Gu A, Chen S, Wang Y. NF-κB-vimentin is involved in steroidogenesis stimulated by mono-butyl phthalate in primary cultured ovarian granulosa cells. Toxicol In Vitro 2017; 45:25-30. [PMID: 28735033 DOI: 10.1016/j.tiv.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 01/20/2023]
Abstract
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicated the effects of MBP on male steroidogenesis, however, little attention have been paid on the effects of low levels of MBP on female steroidogenesis. This study was aimed to assess steroidogenesis stimulated by low-dose MBP on primary cultured ovarian granulosa cells (mGCs). Ovarian granulosa cells were isolated from ICR female mice. Hormone levels in medium were detected by ELISA, mRNA and protein expressions of vimentin, NF-κB p65 and phosphorylation of NF-κB p65 (p-p65) were assayed by qRT-PCR, western blot and immunohistochemistry, respectively. Besides, confocal immunofluorescence and electrophoretic mobility shift assay (EMSA) were used for detecting vimentin expression and activity of NF-κB p65 binding to the promoter of vimentin, respectively. Progesterone levels, mRNA and protein levels of vimentin and p-p65 in cells were increased significantly in mGCs treated by MBP at 10-10M. Additionally, MBP-induced steroidogenesis was blocked when vimentin protein was knocked down or activity of NF-κB was inhibited. EMSA assay showed that binding activity of NF-κB to the promoter regions of vimentin was boosted after MBP exposure. Accordingly, the results suggested that MBP could up-regulated steroidogenesis through NF-κB-vimentin signal in mGCs.
Collapse
Affiliation(s)
- Chang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yan Ye
- Donghai Town Community Health Service Center, Qidong County, Jiangsu Province 226253, PR China
| | - Lulu Zhang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, PR China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, PR China.
| |
Collapse
|
38
|
Roumaud P, Rwigemera A, Martin LJ. Transcription factors SF1 and cJUN cooperate to activate the Fdx1 promoter in MA-10 Leydig cells. J Steroid Biochem Mol Biol 2017; 171:121-132. [PMID: 28274746 DOI: 10.1016/j.jsbmb.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
The Ferredoxin 1 (FDX1) protein supports steroid biosynthesis in steroidogenic cells through electron transfer to the rate-limiting steroidogenic enzyme, CYP11A1. The latter catalyzes the conversion of cholesterol to pregnenolone through side chain cleavage inside the mitochondria. Thus far, only several transcription factors have been implicated in the regulation of mouse Fdx1 promoter activity in Leydig cells. These include the nuclear receptor SF1 and SP1. Since two conserved regulatory elements for AP1 transcription factors have been located at -764 and -617bp of the Fdx1 promoter, we hypothesized that cJUN may cooperate with other partners to regulate Fdx1 in Leydig cells. Indeed, we report that SF1 and cJUN interact and cooperate to activate the Fdx1 promoter in MA-10 and TM3 Leydig cells. Furthermore, we found that such activation requires different regulatory elements located between -124 and -306bp of the Fdx1 promoter and involves recruitment of SF1 to this region. Using RNA interference, the importance of SF1 in transcriptional regulation of Fdx1 was confirmed, whereas cJUN was dispensable even though it cooperated with SF1 to upregulate Fdx1 expression in MA-10 cells. Thus, our data provides new insights in the molecular mechanisms that control mouse Fdx1 transcription, possibly leading to regulation of CYP11A1 enzyme activation, in Leydig cells.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Arlette Rwigemera
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada,.
| |
Collapse
|
39
|
Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells. Cell Biol Toxicol 2017; 34:23-38. [DOI: 10.1007/s10565-017-9395-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
40
|
Landry DA, Sormany F, Haché J, Roumaud P, Martin LJ. Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells. Mol Cell Biochem 2017; 433:79-95. [PMID: 28343310 DOI: 10.1007/s11010-017-3017-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 01/14/2023]
Abstract
The adipose tissue is an important endocrine organ secreting numerous peptide hormones, including leptin. Increased circulating levels of leptin, as a result of hormonal resistance in obese individuals, may contribute to lower androgen production in obese males. However, the molecular mechanisms involved need to be better defined. Androgens are mainly produced by Leydig cells within the testis. In male rodents, activation of the leptin receptor modulates a cascade of intracellular signal transduction pathways which may lead to regulation of transcription factors having influences on steroidogenesis in Leydig cells. Thus, as a result of high leptin levels interacting with its receptor and modulating the activity of the JAK/STAT signaling pathway, the activity of transcription factors important for steroidogenic genes expressions may be inhibited in Leydig cells. Here we show that Lepr is increasingly expressed within Leydig cells according to postnatal development. Although high levels of leptin (corresponding to obesity condition) alone had no effect on Leydig cells' steroidogenic genes expression, it downregulated cAMP-dependent activations of the cholesterol transporter Star and of the rate-limiting steroidogenic enzyme Cyp11a1. Our results suggest that STAT transcriptional activity is downregulated by high levels of leptin, leading to reduced cAMP-dependent steroidogenic genes (Star and Cyp11a1) expressions in MA-10 Leydig cells. However, other transcription factors such as members of the SMAD and NFAT families may be involved and need further investigation to better define how leptin regulates their activities and their relevance for Leydig cells function.
Collapse
Affiliation(s)
- David A Landry
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - François Sormany
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Josée Haché
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Pauline Roumaud
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
41
|
Jones S, Boisvert A, Naghi A, Hullin-Matsuda F, Greimel P, Kobayashi T, Papadopoulos V, Culty M. Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology 2016; 355-356:21-30. [PMID: 27181934 DOI: 10.1016/j.tox.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Previous work in our laboratory demonstrated that in-utero exposure to a mixture of the phytoestrogen Genistein (GEN), and plasticizer DEHP, induces short- and long-term alterations in testicular gene and protein expression different from individual exposures. These studies identified fetal and adult Leydig cells as sensitive targets for low dose endocrine disruptor (ED) mixtures. To further investigate the direct effects and mechanisms of toxicity of GEN and DEHP, MA-10 mouse tumor Leydig cells were exposed in-vitro to varying concentrations of GEN and MEHP, the principal bioactive metabolite of DEHP. Combined 10μM GEN+10μM MEHP had a stimulatory effect on basal progesterone production. Consistent with increased androgenicity, the mRNA of steroidogenic and cholesterol mediators Star, Cyp11a, Srb1 and Hsl, as well as upstream orphan nuclear receptors Nr2f2 and Sf1 were all significantly increased uniquely in the mixture treatment group. Insl3, a sensitive marker of Leydig endocrine disruption and cell function, was significantly decreased by combined GEN+MEHP. Lipid analysis by high-performance thin layer chromatography demonstrated the ability of combined 10μM combined GEN+MEHP, but not individual exposures, to increase levels of several neutral lipids and phospholipid classes, indicating a generalized deregulation of lipid homeostasis. Further investigation by qPCR analysis revealed a concomitant increase in cholesterol (Hmgcoa) and phospholipid (Srebp1c, Fasn) mediator mRNAs, suggesting the possible involvement of upstream LXRα agonism. These results suggest a deregulation of MA-10 Leydig function in response to a combination of GEN+MEHP. We propose a working model for GEN+MEHP doses relevant to human exposure involving LXR agonism and activation of other transcription factors. Taken more broadly, this research highlights the importance of assessing the impact of ED mixtures in multiple toxicological models across a range of environmentally relevant doses.
Collapse
Affiliation(s)
- Steven Jones
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrada Naghi
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan; INSERM UMR1060, University Lyon 1, Villeurbanne, France
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN Institute, Wakoshi, Saitama, Japan
| | | | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Martin LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev 2016; 83:470-87. [DOI: 10.1002/mrd.22648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Luc J. Martin
- Department of Biology; Université de Moncton; Moncton New-Brunswick Canada
| |
Collapse
|
43
|
Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, Sinclair AH, Wilhelm D, Western PS. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol 2016; 412:250-60. [DOI: 10.1016/j.ydbio.2016.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/06/2023]
|
44
|
Inoue M, Shima Y, Miyabayashi K, Tokunaga K, Sato T, Baba T, Ohkawa Y, Akiyama H, Suyama M, Morohashi KI. Isolation and Characterization of Fetal Leydig Progenitor Cells of Male Mice. Endocrinology 2016; 157:1222-33. [PMID: 26697723 DOI: 10.1210/en.2015-1773] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal and adult Leydig cells develop in mammalian prenatal and postnatal testes, respectively. In mice, fetal Leydig cells (FLCs) emerge in the interstitial space of the testis at embryonic day 12.5 and thereafter increase in number, possibly through differentiation from progenitor cells. However, the progenitor cells have not yet been identified. Previously, we established transgenic mice in which FLCs are labeled strongly with enhanced green fluorescent protein (EGFP). Interestingly, fluorescence-activated cell sorting provided us with weakly EGFP-labeled cells as well as strongly EGFP-labeled FLCs. In vitro reconstruction of fetal testes demonstrated that weakly EGFP-labeled cells contain FLC progenitors. Transcriptome from the 2 cell populations revealed, as expected, marked differences in the expression of genes required for growth factor/receptor signaling and steroidogenesis. In addition, genes for energy metabolisms such as glycolytic pathways and the citrate cycle were activated in strongly EGFP-labeled cells, suggesting that metabolism is activated during FLC differentiation.
Collapse
Affiliation(s)
- Miki Inoue
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuichi Shima
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kanako Miyabayashi
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kaori Tokunaga
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tetsuya Sato
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takashi Baba
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yasuyuki Ohkawa
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Akiyama
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Mikita Suyama
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Ken-ichirou Morohashi
- Division of Molecular Life Science (M.I., Y.S., T.B., K.-i.M.), Graduate School of Systems Life Science; Department of Molecular Biology (Y.S., K.M., K.T., T.B., K.-i.M.), Graduate School of Medical Sciences; Division of Bioinformatics (T.S., M.S.), Medical Institute of Bioregulation; and Department of Advanced Medical Initiatives (Y.O.), Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; and Department of Orthopaedics (H.A.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
45
|
Di-Luoffo M, Brousseau C, Tremblay JJ. MEF2 and NR2F2 cooperate to regulate Akr1c14
gene expression in mouse MA-10 Leydig cells. Andrology 2016; 4:335-44. [DOI: 10.1111/andr.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
- M. Di-Luoffo
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - C. Brousseau
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - J. J. Tremblay
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
- Centre de recherche en biologie de la reproduction; Department of Obstetrics, Gynecology and Reproduction; Faculty of Medicine; Université Laval; Québec City QC Canada
| |
Collapse
|
46
|
Li Y, Hu Y, Dong C, Lu H, Zhang C, Hu Q, Li S, Qin H, Li Z, Wang Y. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB. PLoS One 2016; 11:e0146138. [PMID: 26745512 PMCID: PMC4706347 DOI: 10.1371/journal.pone.0146138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/13/2015] [Indexed: 11/29/2022] Open
Abstract
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters.
Collapse
Affiliation(s)
- Yuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Congcong Dong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongchao Lu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shifeng Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Heng Qin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
47
|
miRNA-200c mediates mono-butyl phthalate-disrupted steroidogenesis by targeting vimentin in Leydig tumor cells and murine adrenocortical tumor cells. Toxicol Lett 2016; 241:95-102. [DOI: 10.1016/j.toxlet.2015.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022]
|
48
|
Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10. [PMID: 26254606 DOI: 10.1016/j.steroids.2015.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. Consequently, the process of steroid hormone biosynthesis is finely regulated. In the testis, the main steroidogenic cells are the Leydig cells. There are two distinct populations of Leydig cells that arise during development: fetal and adult Leydig cells. Fetal Leydig cells are responsible for masculinizing the male urogenital tract and inducing testis descent. These cells atrophy shortly after birth and do not contribute to the adult Leydig cell population. Adult Leydig cells derive from undifferentiated precursors present after birth and become fully steroidogenic at puberty. The differentiation of both Leydig cell populations is controlled by locally produced paracrine factors and by endocrine hormones. In fully differentially and steroidogenically active Leydig cells, androgen production and hormone-responsiveness involve various signaling pathways and downstream transcription factors. This review article focuses on recent developments regarding the origin and function of Leydig cells, the regulation of their differentiation by signaling molecules, hormones, and structural changes, the signaling pathways, kinases, and transcription factors involved in their differentiation and in mediating LH-responsiveness, as well as the fine-tuning mechanisms that ensure adequate production steroid hormones.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec G1V 4G2, Canada; Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada.
| |
Collapse
|
49
|
Daems C, Di-Luoffo M, Paradis É, Tremblay JJ. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:2693-703. [PMID: 25860031 DOI: 10.1210/en.2014-1964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Mickaël Di-Luoffo
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Élise Paradis
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|