1
|
Anderson NJ, Pankhurst MW. Is preovulatory follicle selection influenced by the production of oocyte-secreted factors? Reprod Fertil Dev 2025; 37:RD24149. [PMID: 40324059 DOI: 10.1071/rd24149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/07/2025] [Indexed: 05/07/2025] Open
Abstract
The mammalian ovary ovulates only a fraction of the oocytes it produces, as more than 99% are discarded during development. Females devote a large amount of energy to pregnancy, lactation and subsequent parental care, hence there is strong imperative to produce highly competitive offspring. It would be evolutionarily advantageous if the mammalian ovary had developed a method to detect which developing ovarian follicles contain good-quality oocytes, and preferentially select them for ovulation. No such mechanism has been clearly identified to date. Oocyte-secreted factors (OSFs) such as BMP15 and GDF9, represent one form of communication from oocyte to follicle somatic cells. Herein we discuss the hypothesis that OSFs can increase the growth rate of ovarian follicles, which provides the follicle with a greater ability to compete for follicle dominance and selection for ovulation. Some limited evidence suggests that oocytes with higher OSF secretion produce higher quality embryos but further investigation is needed to firmly link the two concepts of OSFs providing an indication of oocyte quality, and OSFs increasing the chances of follicle selection for ovulation.
Collapse
Affiliation(s)
- Nicholas J Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Shin H, Lee H, Park M, Son K, Lee M, Lee A, Cha S, You S. Butylphthalide identified via Samul-tang-induced transcriptomic signatures improves oocyte quality in aged mice. NPJ AGING 2025; 11:21. [PMID: 40140401 PMCID: PMC11947449 DOI: 10.1038/s41514-025-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Samul-tang (SM) is a traditional prescription widely used in clinical practice for the management of gynecological diseases, especially for menstrual regulation and infertility treatment. We previously reported its efficacy in increasing mature oocyte production and improving ovarian reserves, potentially regulated by rat sarcoma virus (Ras) signaling in the ovaries of aged mice. Although the main ingredients of SM are known, the bioactive compounds responsible for protecting ovarian function during aging remain unidentified. This study aimed to identify the active compounds that significantly contribute to the therapeutic potential of SM against age-related decline in ovarian function. The combination of butylphthalide and oleanolic acid improved mature oocyte production similar to that in SM-administered aged mice. Subsequently, we identified butylphthalide as an active compound that mimicked SM's effect on enhancing ovarian reserve. This study introduces a novel strategy for identifying active compounds in multi-component herbal medicines by evaluating compound combinations in an in vivo model, offering promising therapeutic avenues for age-related female infertility through targeted gene expression modulation.
Collapse
Affiliation(s)
- Hyejin Shin
- Korean Medicine (KM) Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Kyuwon Son
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ami Lee
- Korean Medicine (KM) Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Sooseong You
- Korean Medicine (KM) Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
3
|
Halloran KM, Zhou Y, Bellingham M, Lea RG, Evans NP, Sinclair KD, Smith P, Padmanabhan V. Developmental programming: preconceptional and gestational exposure of sheep to biosolids on offspring ovarian dynamics†. Biol Reprod 2025; 112:331-345. [PMID: 39561106 PMCID: PMC11833488 DOI: 10.1093/biolre/ioae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Developmental exposure to environmental chemicals perturbs establishment and maintenance of the ovarian reserve across the reproductive lifetime, leading to premature follicle depletion and ovarian aging. Considering humans are exposed to a complex mixture of environmental chemicals, real-life models assessing their cumulative impact on the ovarian reserve are needed. Biosolids are a source of a real-life mixture of environmental chemicals. While earlier studies demonstrated that grazing pregnant sheep on biosolids-treated pastures did not influence establishment of the ovarian reserve in fetal life, its impact on subsequent depletion of ovarian reserve during reproductive life of offspring is unknown. We hypothesized that developmental exposure to biosolids accelerates depletion of ovarian reserve. Ovaries were collected from F1 juveniles (9.5 weeks) and adults (2.5 years) born to F0 ewes grazed on control inorganic fertilizer pastures or biosolids-treated pastures from before conception and throughout gestation. The impact on follicular density, activation rate, and anti-Müllerian hormone (mediator of activation) expression by immunohistochemistry was determined. Activation rate was increased in F1 biosolids-treated pastures juveniles with a corresponding reduction in primordial follicle density. In contrast, activation rate and ovarian reserve were similar between control and F1 biosolids-treated pastures adults. The density of anti-Müllerian hormone-positive antral follicles was lower in biosolids-treated pastures juveniles, whereas anti-Müllerian hormone expression tended to be higher in antral follicles of biosolids-treated pastures adults, consistent with the changes in the ovarian reserve. These findings of detrimental effects of developmental exposure to biosolids during juvenile life that normalizes in adults is supportive of a shift in activation rate likely related to peripubertal hormonal changes.
Collapse
Affiliation(s)
| | - Yiran Zhou
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- Schools of Biomedicines and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Peter Smith
- Agricultural Systems and Reproduction, Animal Science, Invermay Agricultural Centre, AgResearch Ltd, Puddle Alley, Mosgiel, New Zealand
| | | |
Collapse
|
4
|
Aizawa E, Peters AHFM, Wutz A. In vitro gametogenesis: Towards competent oocytes: Limitations and future improvements for generating oocytes from pluripotent stem cells in culture. Bioessays 2025; 47:e2400106. [PMID: 39498732 DOI: 10.1002/bies.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Production of oocytes from pluripotent cell cultures in a dish represents a new paradigm in stem cell and developmental biology and has implications for how we think about life. The spark of life for the next generation occurs at fertilization when sperm and oocyte fuse. In animals, gametes are the only cells that transmit their genomes to the next generation. Oocytes contain in addition a large cytoplasm with factors that direct embryonic development. Reconstitution of mouse oocyte and embryonic development in culture provides experimental opportunities and facilitates an unprecedented understanding of molecular mechanisms. However, the application of in vitro gametogenesis to reproductive medicine or infertility treatment remains challenging. One significant concern is the quality of in vitro-derived oocytes. Here, we review the current understanding and identify limitations in generating oocytes in vitro. From this basis, we explore opportunities for future improvements of the in vitro approach to generating high-quality oocytes.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Elsherbiny NM, Abdel-Maksoud MS, Prabahar K, Mohammedsaleh ZM, Badr OAM, Dessouky AA, Salem HA, Refadah OA, Farid AS, Shamaa AA, Ebrahim N. MSCs-derived EVs protect against chemotherapy-induced ovarian toxicity: role of PI3K/AKT/mTOR axis. J Ovarian Res 2024; 17:222. [PMID: 39529187 PMCID: PMC11552115 DOI: 10.1186/s13048-024-01545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy detrimentally impacts fertility via depletion of follicular reserves in the ovaries leading to ovarian failure (OF) and development of estrogen deficiency-related complications. The currently proposed options to preserve fertility such as Oocyte or ovarian cortex cryopreservation are faced with many technical obstacles that limit their effective implementation. Therefore, developing new modalities to protect ovarian function remains a pending target. Exosomes are nano-sized cell-derived extracellular vesicles (EVs) with documented efficacy in the field of regenerative medicine. The current study sought to determine the potential beneficial effects of mesenchymal stem cells (MSCs)-derived EVs in experimentally induced OF. Female albino rats were randomly allocated to four groups: control, OF group, OF + MSCs-EVs group, OF + Rapamycin (mTOR inhibitor) group, and OF + Quercetin (PI3K/AKT inhibitor) group. Follicular development was assessed via histopathological and immunohistochemical examination, and ovarian function was evaluated by hormonal assay. PI3K/Akt/mTOR signaling pathway as a key modulator of ovarian follicular activation was also assessed. MSCs-EVs administration to OF rats resulted in restored serum hormonal levels, preserved primordial follicles and oocytes, suppressed ovarian PI3K/AKT axis and downstream effectors (mTOR and FOXO3), modulated miRNA that target this axis, decreased expression of ovarian apoptotic markers (BAX, BCl2) and increased expression of proliferation marker Ki67. The present study validated the effectiveness of MSCs-EVs therapy in preventing ovarian insufficiency induced by chemotherapy. Concomitant MSCs-EVs treatment during chemotherapy could significantly preserve ovarian function and fertility by suppressing the PI3K/Akt axis, preventing follicular overactivation, maintaining normal ovarian cellular proliferation, and inhibiting granulosa cell apoptosis.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda A Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omnia A Refadah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt.
- Faculty of Medicine, Benha National University, Al Obour City, Egypt.
- Cell and Tissue Engineering, School of Pharmacy and Bioengineering, Keele University, Keele, UK.
| |
Collapse
|
6
|
Galli C, Lazzari G. 40 years of AETE: the contribution of scientists and practitioners to the progress of reproductive biotechnologies in Europe. Anim Reprod 2024; 21:e20240061. [PMID: 39286367 PMCID: PMC11404877 DOI: 10.1590/1984-3143-ar2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 09/19/2024] Open
Abstract
This conference celebrates the 40th anniversary of AETE. Over the past 40 years, AETE has served as a forum for scientists, practitioners, and students working in assisted animal reproduction in livestock species. AETE conferences have reflected developments in the field, from basic to applied science, as well as regulatory changes in assisted animal reproduction practices. Europe has led the way in these developments for many years, progressing from artificial insemination, embryo transfer, and cryopreservation to semen sexing, in vitro production of embryos, cloning by nuclear transfer, genomic selection, and the rescue of highly endangered species. These significant contributions were made possible by the support of funding agencies, both at the national and European levels, promoting cooperation between scientists and practitioners. Assisted reproduction, and animal breeding more generally, face opposition from various groups, including animal rights activists, vegetarians, proponents of organic farming, environmentalists, certain political parties, and increasing regulatory burdens. These challenges seriously affect funding for scientific research, the work of practitioners, and the breeding industry as a whole. It is crucial to invest time and resources in communication to remind the public, politicians, and regulators of the achievements in this field and the contributions made to the food supply chain and the care of the rural and natural environment.
Collapse
Affiliation(s)
- Cesare Galli
- Avantea and Fondazione Avantea Onlus, Cremona, Italy
| | | |
Collapse
|
7
|
De La Cruz P, Woodman-Sousa MF, McAdams JN, Sweeney E, Hakim L, Morales Aquino M, Grive KJ. Immune checkpoint inhibitor treatment does not impair ovarian or endocrine function in a mouse model of triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607933. [PMID: 39229049 PMCID: PMC11370483 DOI: 10.1101/2024.08.14.607933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Representing 15-20% of all breast cancer cases, triple negative breast cancer (TNBC) is diagnosed more frequently in reproductive-age women and exhibits higher rates of disease metastasis and recurrence when compared with other subtypes. Few targeted treatments exist for TNBC, and many patients experience infertility and endocrine disruption as a result of frontline chemotherapy treatment. While they are a promising option for less toxic therapeutic approaches, little is known about the effects of immune checkpoint inhibitors on reproductive and endocrine function. Results Our findings in a syngeneic TNBC mouse model revealed that therapeutically relevant immunotherapies targeting PD-1, LAG-3, and TIM-3 had no effect on the quality and abundance of ovarian follicles, estrus cyclicity, or hormonal homeostasis. Similarly, in a tumor-free mouse model, we found that ovarian architecture, follicle abundance, estrus cyclicity, and ovulatory efficiency remain unchanged by PD-1 blockade. Conclusions Taken together, our results suggest that immunotherapy may be a promising component of fertility-sparing therapeutic regimens for patients that wish to retain ovarian and endocrine function after cancer treatment.
Collapse
Affiliation(s)
- Payton De La Cruz
- Brown University, Pathobiology Graduate Program, Providence, RI, 02906
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Morgan F Woodman-Sousa
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
- Brown University, Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Providence, RI, 02906
| | - Julia N McAdams
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Ellia Sweeney
- Brown University, Division of Biology and Medicine, Providence, RI, 02906
| | - Lola Hakim
- Brown University, Division of Biology and Medicine, Providence, RI, 02906
| | | | - Kathryn J Grive
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
- Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| |
Collapse
|
8
|
El Fouikar S, Van Acker N, Héliès V, Frenois FX, Giton F, Gayrard V, Dauwe Y, Mselli-Lakhal L, Rousseau-Ralliard D, Fournier N, Léandri R, Gatimel N. Folliculogenesis and steroidogenesis alterations after chronic exposure to a human-relevant mixture of environmental toxicants spare the ovarian reserve in the rabbit model. J Ovarian Res 2024; 17:134. [PMID: 38943138 PMCID: PMC11214233 DOI: 10.1186/s13048-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Industrial progress has led to the omnipresence of chemicals in the environment of the general population, including reproductive-aged and pregnant women. The reproductive function of females is a well-known target of endocrine-disrupting chemicals. This function holds biological processes that are decisive for the fertility of women themselves and for the health of future generations. However, insufficient research has evaluated the risk of combined mixtures on this function. This study aimed to assess the direct impacts of a realistic exposure to eight combined environmental toxicants on the critical process of folliculogenesis. METHODS Female rabbits were exposed daily and orally to either a mixture of eight environmental toxicants (F group) or the solvent mixture (NE group, control) from 2 to 19 weeks of age. The doses were computed from previous toxicokinetic data to reproduce steady-state serum concentrations in rabbits in the range of those encountered in pregnant women. Ovarian function was evaluated through macroscopic and histological analysis of the ovaries, serum hormonal assays and analysis of the expression of steroidogenic enzymes. Cellular dynamics in the ovary were further investigated with Ki67 staining and TUNEL assays. RESULTS F rabbits grew similarly as NE rabbits but exhibited higher total and high-density lipoprotein (HDL) cholesterol levels in adulthood. They also presented a significantly elevated serum testosterone concentrations, while estradiol, progesterone, AMH and DHEA levels remained unaffected. The measurement of gonadotropins, androstenedione, pregnenolone and estrone levels yielded values below the limit of quantification. Among the 7 steroidogenic enzymes tested, an isolated higher expression of Cyp19a1 was measured in F rabbits ovaries. Those ovaries presented a significantly greater density/number of antral and atretic follicles and larger antral follicles without any changes in cellular proliferation or DNA fragmentation. No difference was found regarding the count of other follicle stages notably the primordial stage, the corpora lutea or AMH serum levels. CONCLUSION Folliculogenesis and steroidogenesis seem to be subtly altered by exposure to a human-like mixture of environmental toxicants. The antral follicle growth appears promoted by the mixture of chemicals both in their number and size, potentially explaining the increase in atretic antral follicles. Reassuringly, the ovarian reserve estimated through primordial follicles number/density and AMH is spared from any alteration. The consequences of these changes on fertility and progeny health have yet to be investigated.
Collapse
Affiliation(s)
- Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Van Acker
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Virginie Héliès
- GenPhySE (Génétique Physiologie et Système d'Elevage), INRAE, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - François-Xavier Frenois
- Plateforme Imag'IN, Service d'anatomopathologie, CHU Toulouse, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Frank Giton
- Pôle Biologie-Pathologie Henri Mondor, AP-HP, Inserm IMRB U955, Créteil, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Dauwe
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laila Mselli-Lakhal
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, Jouy-en-Josas, 78350, BREED, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Natalie Fournier
- Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur l'efflux du cholestérol, Lip(Sys) Université Paris Saclay, UFR de Pharmacie, Orsay, EA, 7357, 91400, France
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Nicolas Gatimel
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité et Environnement) UMR1203 Inserm, Universités Toulouse et Montpellier, CHU Toulouse, Toulouse, France
| |
Collapse
|
9
|
Cushman RA, Akbarinejad V, Perry GA, Lents CA. Developmental programming of the ovarian reserve in livestock. Anim Reprod Sci 2024; 264:107458. [PMID: 38531261 DOI: 10.1016/j.anireprosci.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Mammalian females are born with a finite number of follicles in their ovaries that is referred to as the ovarian reserve. There is a large amount of variation between females in the number of antral follicles that they are born with, but this number is positively correlated to size of the ovarian reserve, has a strong repeatability within a female, and a moderate heritability. Although the heritability is moderate, numerous external factors including health, nutrition, ambient temperature, and litter size influence the size and function of the ovarian reserve throughout life. Depletion of the ovarian reserve contributes to reproductive senescence, and genetic and epigenetic factors can lead to a more rapid decline in follicle numbers in some females than others. The relationship of the size of the ovarian reserve to development of the reproductive tract and fertility is generally positive, although some studies report antagonistic associations of these traits. It seems likely that management decisions and environmental factors that result in epigenetic modifications to the genome throughout life may cause variability in the function of ovarian genes that influence fecundity and fertility, leading to differences in reproductive longevity among females born with ovarian reserves of similar size. This review summarizes our current understanding of factors influencing size of the ovarian reserve in cattle, sheep, and pigs and the relationship of the ovarian reserve to reproductive tract development and fertility. It provides strategies to apply this knowledge to improve diagnostics for better assessment of fertility and reproductive longevity in female livestock.
Collapse
Affiliation(s)
- Robert A Cushman
- USDA, Agricultural Research Service, U S Meat Animal Research Center, Clay Center NE 68933-0166, United States.
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - George A Perry
- Texas A&M AgriLife Research and Extension Center, Overton, TX 75684, United States
| | - Clay A Lents
- USDA, Agricultural Research Service, U S Meat Animal Research Center, Clay Center NE 68933-0166, United States
| |
Collapse
|
10
|
Tsui EL, McDowell HB, Laronda MM. Restoring Ovarian Fertility and Hormone Function: Recent Advancements, Ongoing Efforts and Future Applications. J Endocr Soc 2024; 8:bvae073. [PMID: 38698870 PMCID: PMC11065362 DOI: 10.1210/jendso/bvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 05/05/2024] Open
Abstract
The last 20 years have seen substantial improvements in fertility and hormone preservation and restoration technologies for a growing number of cancer survivors. However, further advancements are required to fill the gaps for those who cannot use current technologies or to improve the efficacy and longevity of current fertility and hormone restoration technologies. Ovarian tissue cryopreservation (OTC) followed by ovarian tissue transplantation (OTT) offers those unable to undergo ovarian stimulation for egg retrieval and cryopreservation an option that restores both fertility and hormone function. However, those with metastatic disease in their ovaries are unable to transplant this tissue. Therefore, new technologies to produce good-quality eggs and restore long-term cyclic ovarian function are being investigated and developed to expand options for a variety of patients. This mini-review describes current and near future technologies including in vitro maturation, in vitro follicle growth and maturation, bioprosthetic ovaries, and stem cell applications in fertility restoration research by their proximity to clinical application.
Collapse
Affiliation(s)
- Elizabeth L Tsui
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hannah B McDowell
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Monica M Laronda
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Iwase A, Asada Y, Sugishita Y, Osuka S, Kitajima M, Kawamura K. Anti-Müllerian hormone for screening, diagnosis, evaluation, and prediction: A systematic review and expert opinions. J Obstet Gynaecol Res 2024; 50:15-39. [PMID: 37964401 DOI: 10.1111/jog.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
AIM To present evidence-based recommendations for anti-Müllerian hormone (AMH) measurement as an ovarian reserve test. METHODS A systematic literature search for the clinical utility of AMH was conducted in PubMed from its inception to August 2022 to identify studies, including meta-analyses, reviews, randomized controlled trials, and clinical trials, followed by an additional systematic search using keywords. Based on this evidence, an expert panel developed clinical questions (CQs). RESULTS A total of 1895 studies were identified and 95 articles were included to establish expert opinions subdivided into general population, infertility treatment, primary ovarian insufficiency, polycystic ovary syndrome, surgery, and oncofertility. We developed 13 CQs and 1 future research question with levels of evidence and recommendations. CONCLUSION The findings of the current systematic review covered the clinical utility of AMH including its screening, diagnosis, evaluation, and prediction. Although some clinical implications of AMH remain debatable, these expert opinions may help promote a better understanding of AMH and establish its clinical significance.
Collapse
Affiliation(s)
- Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Yodo Sugishita
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michio Kitajima
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiro Kawamura
- Department of Obstetrics and Gynaecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Dias Nunes J, Demeestere I, Devos M. BRCA Mutations and Fertility Preservation. Int J Mol Sci 2023; 25:204. [PMID: 38203374 PMCID: PMC10778779 DOI: 10.3390/ijms25010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in BReast CAncer (BRCA) genes are responsible for the majority of cases of hereditary breast and ovarian cancer. BRCA1 and BRCA2 act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination. Evidence of the accumulation of DNA double-strand break has been reported in aging oocytes, while BRCA expression decreases, leading to the hypothesis that BRCA mutation may impact fertility. Moreover, patients exposed to anticancer treatments are at higher risk of fertility-related issues, and BRCA mutations could exacerbate the treatment-induced depletion of the ovarian reserve. In this review, we summarized the functions of both genes and reported the current knowledge on the impact of BRCA mutations on ovarian ageing, premature ovarian insufficiency, female fertility preservation strategies and insights about male infertility. Altogether, this review provides relevant up-to-date information on the impact of BRCA1/2 mutations on fertility. Notably, BRCA-mutated patients should be adequately counselled for fertility preservation strategies, considering their higher sensitivity to chemotherapy gonadotoxic effects.
Collapse
Affiliation(s)
- Joana Dias Nunes
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
- Fertility Clinic, HUB-Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| |
Collapse
|
13
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
14
|
Kashi O, Meirow D. Overactivation or Apoptosis: Which Mechanisms Affect Chemotherapy-Induced Ovarian Reserve Depletion? Int J Mol Sci 2023; 24:16291. [PMID: 38003481 PMCID: PMC10671775 DOI: 10.3390/ijms242216291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dormant primordial follicles (PMF), which constitute the ovarian reserve, are recruited continuously into the cohort of growing follicles in the ovary throughout female reproductive life. Gonadotoxic chemotherapy was shown to diminish the ovarian reserve pool, to destroy growing follicle population, and to cause premature ovarian insufficiency (POI). Three primary mechanisms have been proposed to account for this chemotherapy-induced PMF depletion: either indirectly via over-recruitment of PMF, by stromal damage, or through direct toxicity effects on PMF. Preventative pharmacological agents intervening in these ovotoxic mechanisms may be ideal candidates for fertility preservation (FP). This manuscript reviews the mechanisms that disrupt follicle dormancy causing depletion of the ovarian reserve. It describes the most widely studied experimental inhibitors that have been deployed in attempts to counteract these affects and prevent follicle depletion.
Collapse
Affiliation(s)
- Oren Kashi
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
| | - Dror Meirow
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Iwase A, Hasegawa Y, Tsukui Y, Kobayashi M, Hiraishi H, Nakazato T, Kitahara Y. Anti-Müllerian hormone beyond an ovarian reserve marker: the relationship with the physiology and pathology in the life-long follicle development. Front Endocrinol (Lausanne) 2023; 14:1273966. [PMID: 38027144 PMCID: PMC10657644 DOI: 10.3389/fendo.2023.1273966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Anti-Müllerian hormone (AMH), an indirect indicator of the number of remaining follicles, is clinically used as a test for ovarian reserve. Typically, a decline suggests a decrease in the number of remaining follicles in relation to ovarian toxicity caused by interventions, which may implicate fertility. In contrast, serum AMH levels are elevated in patients with polycystic ovary syndrome. AMH is produced primarily in the granulosa cells of the preantral and small antral follicles. Thus it varies in association with folliculogenesis and the establishment and shrinking of the follicle cohort. Ovarian activity during the female half-life, from the embryonic period to menopause, is based on folliculogenesis and maintenance of the follicle cohort, which is influenced by developmental processes, life events, and interventions. AMH trends over a woman's lifetime are associated with in vivo follicular cohort transitions that cannot be observed directly.
Collapse
Affiliation(s)
- Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Pelayo C, Ciampi E, Soler B, Uribe-San-Martín R, Reyes A, García L, Del-Canto A, Gutierrez-Carquin L, Barrerra-Hormazabal A, Jürgensen-Heinrich L, Guzman-Cárcamo I, Carvajal A, Troncoso C, Carvajal R, Cárcamo C. Frequency of diminished ovarian reserve in women with multiple sclerosis in Chile: An exploratory study. Mult Scler Relat Disord 2023; 79:105012. [PMID: 37797392 DOI: 10.1016/j.msard.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a chronic disease affecting around 2.8 million people worldwide. Two-thirds are women, and the mean age at diagnosis is about 30 years old. Social trends are moving towards older age at first pregnancy, both in women with and without MS. OBJECTIVES To determine the frequency of diminished ovarian reserve (DOR) through anti-Mullerian Hormone (AMH) measurement in women with MS at fertile age and Healthy Females (HF) in Chile. METHODS Case-control, multicentric, cross-sectional study including relapsing-remitting people with MS (pwMS) between 18 and 40 years and sex and age-matched HF. We obtained a blood sample to determine AMH levels. We defined DOR as AMH <1.5 ng/mL and very-low AMH levels as <0.5 ng/mL. Also, we performed questions regarding reproductive decision-making. RESULTS We included 79 sex and age-matched HF and 92 pwMS, median age 32(19-40) years, median disease duration 6 (1-17)years, median EDSS 1.0 (0-6), 95% were receiving disease-modifying therapy (DMT), 70% high-efficacy DMT and 37% with a treatment that contraindicates pregnancy. DOR was observed in 24% (n = 22) of the pwMS, compared to 14% (n = 11) of the HF (p = 0.09), while very-low AMH levels were observed in 7.6% (n = 7) of pwMS and none of the HF (p = 0.0166). We observed an inverse correlation between age and AMH levels. Age was the only significant risk factor for low AMH levels in pwMS (OR 1.14 95%CI(1.00-1-31), p = 0.04), including smoking, body mass index (BMI), hormonal contraception, autoimmune comorbidity, high/low-moderate efficacy DMT, and active disease as covariables. We did not find statistically significant differences in age at diagnosis, BMI, disease duration, EDSS, autoimmune comorbidity, use of hormonal contraception, or percentage of active disease between MS women with normal vs DOR. Over 70% of pwMS desired to become pregnant in the future, while 60% considered that the diagnosis of MS was a limitation for pregnancy planning. CONCLUSIONS No differences in DOR, measured by levels of AMH, were observed between pwMS MS and HF in Chile. As expected, AMH levels were correlated only with ageing. This information may be evaluated early during the disease course to help patients and neurologists with fertility counselling and family planning considerations regarding DMT use.
Collapse
Affiliation(s)
- Carolina Pelayo
- Neurology Department, Pontifical Catholic University of Chile, Chile
| | - Ethel Ciampi
- Neurology Department, Pontifical Catholic University of Chile, Chile; Neurology Service, Sótero Del Río Hospital, Chile.
| | - Bernardita Soler
- Neurology Department, Pontifical Catholic University of Chile, Chile; Neurology Service, Sótero Del Río Hospital, Chile
| | - Reinaldo Uribe-San-Martín
- Neurology Department, Pontifical Catholic University of Chile, Chile; Neurology Service, Sótero Del Río Hospital, Chile
| | - Ana Reyes
- Neurology Department, Pontifical Catholic University of Chile, Chile
| | - Lorena García
- Neurology Department, Pontifical Catholic University of Chile, Chile; Neurology Service, Sótero Del Río Hospital, Chile
| | - Adolfo Del-Canto
- Neurology Department, Pontifical Catholic University of Chile, Chile
| | | | | | | | | | | | | | | | - Claudia Cárcamo
- Neurology Department, Pontifical Catholic University of Chile, Chile
| |
Collapse
|
17
|
Cramer DW. Incessant ovulation: a review of its importance in predicting cancer risk. Front Oncol 2023; 13:1240309. [PMID: 37869082 PMCID: PMC10588628 DOI: 10.3389/fonc.2023.1240309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 10/24/2023] Open
Abstract
Estrous cycles are recurring changes in therian mammals induced by estrogen, progesterone, and other hormones culminating in endometrial proliferation, ovulation, and implantation if fertilization occurred. In women, the estrous cycle is the menstrual cycle; but, unlike most mammals, the end of an infertile cycle is marked by endometrial sloughing and the start of another without an anestrous phase. Women stop cycling at menopause, while in most mammals, cycles continue until death. Epidemiologic studies identified menarche, menopause, births, lactation, and oral contraceptive (OC) use as key risk factors for ovarian, breast, and endometrial cancers. A composite variable was created to estimate the number of cycles not interrupted by events that stop ovulation. Captured by the phrase "incessant ovulation", repetitive cycles were first postulated to affect ovarian cancer risk and later extended to breast and endometrial cancers. These associations could be explained by cumulative effects of repetitive tissue changes within reproductive organs, immune consequences of repetitive ovulation through the glycoprotein mucin 1, and residual effects of past ovulations that enhance ovarian production of testosterone. The latter two pathways could affect the risk for cancers in other organs not considered "reproductive".
Collapse
Affiliation(s)
- Daniel W. Cramer
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
19
|
Cramer DW, Vitonis AF, Huang T, Shafrir AL, Eliassen AH, Barbieri RL, Hankinson SE. Estimated Ovulatory Years Prior to Menopause and Postmenopausal Endogenous Hormone Levels. Cancer Epidemiol Biomarkers Prev 2023; 32:976-985. [PMID: 37127868 PMCID: PMC10630892 DOI: 10.1158/1055-9965.epi-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Lifetime ovulatory years (LOY) is estimated by the difference between ages at menopause and menarche subtracting time for events interrupting ovulation. We tested whether LOY influences sex hormone levels in postmenopausal women with at least one intact ovary not using hormones. METHODS Estradiol, estrone, estrone sulfate, total testosterone, dehydroepiandrostendione sulfate, prolactin, and sex hormone binding globulin were measured in 1,976 postmenopausal women from the Nurses' Health Study. Associations of age, body mass index (BMI), smoking, alcohol use, and other factors on hormones were assessed by t tests and ANOVA. Linear regression was used to assess multivariable adjusted associations between LOY and hormones and trends in hormone levels per 5-year increases in LOY were estimated. RESULTS Women averaged 61.4 years old, 11.0 years since menopause, with BMI of 25.8 kg/m2. A total of 13.6% had irregular cycles, 17.5% hysterectomy, 6.4% unilateral oophorectomy, and 13.8% were current smokers. Variables associated with one or more hormone levels were included as covariates. Each 5-year increase in LOY was significantly associated with a 5.2% increase in testosterone in women with BMI < 25 kg/m2 and a 7.4% increase in testosterone and 7.3% increase in estradiol in women with above-average BMI. CONCLUSIONS This is the first study to show that greater LOY is associated with higher testosterone in postmenopausal women and higher estradiol in those with elevated BMI, suggesting accumulation of functioning stromal and thecal cells from repeated ovulations and peripheral conversion of testosterone. IMPACT A possible explanation for why greater LOY increases risk for breast, endometrial, and ovarian cancer is offered.
Collapse
Affiliation(s)
- Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, 221 Longwood Ave, Boston, Massachusetts 02115
- Harvard Medical School, 260 Longwood Avenue, Boston, Massachusetts 02115
| | - Allison F. Vitonis
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, 221 Longwood Ave, Boston, Massachusetts 02115
| | - Tianyi Huang
- Harvard Medical School, 260 Longwood Avenue, Boston, Massachusetts 02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Amy L. Shafrir
- Division of Adolescent/Young Adult Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - A. Heather Eliassen
- Harvard Medical School, 260 Longwood Avenue, Boston, Massachusetts 02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115
| | - Robert L. Barbieri
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, 75 Francis Street, Boston, Massachusetts 02115
| | - Susan E. Hankinson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst MA 01003
| |
Collapse
|
20
|
Mossa F, Evans ACO. Review: The ovarian follicular reserve - implications for fertility in ruminants. Animal 2023; 17 Suppl 1:100744. [PMID: 37567673 DOI: 10.1016/j.animal.2023.100744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 08/13/2023] Open
Abstract
Ruminants are born with a finite number of healthy ovarian follicles and oocytes (ovarian reserve) and germ cell proliferation in the developing foetal gonad predominantly occurs during early gestation. Two markers have been established to reliably estimate the size of the ovarian reserve in cattle: the number of antral follicles ≤3 mm in diameter recruited per follicular wave (Antral Follicle Count, AFC) and peripheral concentrations of the Anti-Müllerian hormone (AMH). Studies that used one or both indicators show that the size of ovarian reserve varies greatly among age-matched individuals, but is highly repeatable in the same animal. Conditions during prenatal life are likely among the causes of such variation in the ovarian reserve. In addition, the size of the ovarian reserve is a moderately heritable trait in cattle. The association between ovarian reserve and fertility is controversial. Several studies indicate that cattle with a low ovarian reserve have phenotypic characteristics that are associated with suboptimal fertility. On the contrary, the presence and absence of a positive association between AFC and/or AMH and fertility measures (i.e. no. on services/conception, pregnancy rates, pregnancy loss) have been equally reported in cattle. In conclusion, the size of the ovarian reserve in the progeny can be enhanced by improving management of the dam from preconception to early gestation and also through genetic selection. However, although the ovarian reserve may be among the determinants of reproductive success in ruminants, the use of AFC/AMH as reliable predictors of fertility is yet to be established. Furthermore, the possibility that there is a complex interaction of AFC, AMH and reproduction has yet to be fully characterised and exploited to improve fertility in cattle.
Collapse
Affiliation(s)
- F Mossa
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - A C O Evans
- School of Agriculture and Food Science, College of Health and Agricultural Sciences, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
21
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
22
|
Geijer-Simpson AV, Tinning H, De Bem THC, Tsagakis I, Taylor AS, Hume L, Collins LM, Forde N. Sex bias in utero alters ovarian reserve but not uterine capacity in female offspring†. Biol Reprod 2023; 108:304-315. [PMID: 36394270 PMCID: PMC9930395 DOI: 10.1093/biolre/ioac208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Environmental stressors to which a fetus is exposed affect a range of physiological functions in postnatal offspring. We aimed to determine the in utero effect of steroid hormones on the reproductive potential of female offspring using a porcine model. Reproductive tracts of pigs from female-biased (>65% female, n = 15), non-biased (45-54.9% female, n = 15), and male-biased litters (<35% females, n = 9) were collected at slaughter (95-115 kg). Ovaries and uterine horns were processed for H&E or immunohistochemistry. Variability of data within groups was analyzed with a Levene's test, while data were analyzed using mixed linear models in R. In the ovarian reserve, there was a significant birth weight by sex ratio interaction (P = 0.015), with low birth weight pigs from male-biased litters having higher numbers of primordial follicles with opposite trends seen in pigs from female-biased litters. Sex bias held no effect on endometrial gland development. A lower birth weight decreased the proportion of glands found in the endometrium (P = 0.045) and was more variable in both male-biased and female-biased litters (P = 0.026). The variability of primordial follicles from male-biased litters was greater than non- and female-biased litters (P = 0.014). Similarly, endometrial stromal nuclei had a greater range in male- and female-biased litters than non-biased litters (P = 0.028). A crucial finding was the greater variability in primordial follicles in the ovaries from females derived from male-biased litters and stromal cell count in the endometrium of females from male- and female-biased litters. This could be inflating the variability of reproductive success seen in females from male-biased litters.
Collapse
Affiliation(s)
- Annika V Geijer-Simpson
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Tiago H C De Bem
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ioannis Tsagakis
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alysha S Taylor
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Laura Hume
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lisa M Collins
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
Dela Cruz C, Kinnear HM, Hashim PH, Wandoff A, Nimmagadda L, Chang FL, Padmanabhan V, Shikanov A, Moravek MB. A mouse model mimicking gender-affirming treatment with pubertal suppression followed by testosterone in transmasculine youth. Hum Reprod 2023; 38:256-265. [PMID: 36484619 PMCID: PMC10167862 DOI: 10.1093/humrep/deac257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can mice serve as a translational model to examine the reproductive consequences of pubertal suppression with GnRH agonist (GnRHa) followed by testosterone (T) administration, a typical therapy in peripubertal transmasculine youth? SUMMARY ANSWER An implanted depot with 3.6 mg of GnRHa followed by T enanthate at 0.45 mg weekly can be used in peripubertal female mice for investigating the impact of gender-affirming hormone therapy in transmasculine youth. WHAT IS KNOWN ALREADY There is limited knowledge available in transgender medicine to provide evidence-based fertility care, with the current guidelines being based on the assumption of fertility loss. We recently successfully developed a mouse model to investigate the reproductive consequences of T therapy given to transgender men. On the other hand, to our knowledge, there is no mouse model to assess the reproductive outcomes in peripubertal transmasculine youth. STUDY DESIGN, SIZE, DURATION A total of 80 C57BL/6N female mice were used in this study, with n = 7 mice in each experimental group. PARTICIPANTS/MATERIALS, SETTING, METHODS We first assessed the effectiveness of GnRHa in arresting pubertal development in the female mice. In this experiment, 26-day-old female mice were subcutaneously implanted with a GnRHa (3.6 mg) depot. Controls underwent a sham surgery. Animals were euthanized at 3, 9, 21 and 28 days after the day of surgery. In the second experiment, we induced a transmasculine youth mouse model. C57BL/6N female mice were subcutaneously implanted with a 3.6 mg GnRHa depot on postnatal day 26 for 21 days and this was followed by weekly injections of 0.45 mg T enanthate for 6 weeks. The control for the GnRH treatment was sham surgery and the control for T treatment was sesame oil vehicle injections. Animals were sacrificed 0.5 weeks after the last injection. The data collected included the day of the vaginal opening and first estrus, daily vaginal cytology, weekly and terminal reproductive hormones levels, body/organ weights, ovarian follicular distribution and corpora lutea (CL) counts. MAIN RESULTS AND THE ROLE OF CHANCE GnRHa implanted animals remained in persistent diestrus and had reduced levels of FSH (P = 0.0013), LH (P = 0.0082) and estradiol (P = 0.0155), decreased uterine (P < 0.0001) and ovarian weights (P = 0.0002), and a lack of CL at 21 days after GnRHa implantation. T-only and GnRHa+T-treated animals were acyclic throughout the treatment period, had sustained elevated levels of T, suppressed LH levels (P < 0.0001), and an absence of CL compared to controls (P < 0.0001). Paired ovarian weights were reduced in the T-only and GnRHa+T groups compared with the control and GnRHa-only groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although it is an appropriate tool to provide relevant findings, precaution is needed to extrapolate mouse model results to mirror human reproductive physiology. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this study describes the first mouse model mimicking gender-affirming hormone therapy in peripubertal transmasculine youth. This model provides a tool for researchers studying the effects of GnRHa-T therapy on other aspects of reproduction, other organ systems and transgenerational effects. The model is supported by GnRHa suppressing puberty and maintaining acyclicity during T treatment, lower LH levels and absence of CL. The results also suggest GnRHa+T therapy in peripubertal female mice does not affect ovarian reserve, since the number of primordial follicles was not affected by treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Michigan Institute for Clinical and Health Research grants KL2 TR 002241 and UL1 TR 002240 (C.D.C.); National Institutes of Health grants F30-HD100163 and T32-HD079342 (H.M.K.); University of Michigan Office of Research funding U058227 (A.S.); American Society for Reproductive Medicine/Society for Reproductive Endocrinology and Infertility grant (M.B.M.); and National Institutes of Health R01-HD098233 (M.B.M.). The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core Facility was supported by the Eunice Kennedy Shriver NICHD/NIH grants P50-HD028934 and R24-HD102061. The authors declare that they have no competing interests.
Collapse
Affiliation(s)
- Cynthia Dela Cruz
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Postdoctoral Translational Scholar Program, Michigan Institute for Clinical & Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Hadrian M Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Prianka H Hashim
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Abigail Wandoff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Faith L Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Ariella Shikanov
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Molly B Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Tan Z, Gong X, Li Y, Hung SW, Huang J, Wang CC, Chung JPW. Impacts of endometrioma on ovarian aging from basic science to clinical management. Front Endocrinol (Lausanne) 2023; 13:1073261. [PMID: 36686440 PMCID: PMC9848590 DOI: 10.3389/fendo.2022.1073261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Endometriosis is a common reproductive disorder characterized by the presence of endometrial implants outside of the uterus. It affects ~1 in 10 women of reproductive age. Endometriosis in the ovary, also known as endometrioma (OMA), is the most frequent implantation site and the leading cause of reproductive failure in affected women. Ovarian aging is one of the characteristic features of OMA, however its underlying mechanism yet to be determined. Accumulated evidence has shown that pelvic and local microenvironments in women with OMA are manifested, causing detrimental effects on ovarian development and functions. Whilst clinical associations of OMA with poor ovarian reserve, premature ovarian insufficiency, and early menopause have been reported. Moreover, surgical ablation, fenestration, and cystectomy of OMA can further damage the normal ovarian reservoir, and trigger hyperactivation of primordial follicles, subsequently resulting in the undesired deterioration of ovarian functions. Nevertheless, there is no effective treatment to delay or restore ovarian aging. This review comprehensively summarised the pathogenesis and study hypothesis of ovarian aging caused by OMA in order to propose potential therapeutic targets and interventions for future studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xue Gong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jin Huang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Wang J, Jia R, Celi P, Zhuo Y, Ding X, Zeng Q, Bai S, Xu S, Yin H, Lv L, Zhang K. Resveratrol Alleviating the Ovarian Function Under Oxidative Stress by Alternating Microbiota Related Tryptophan-Kynurenine Pathway. Front Immunol 2022; 13:911381. [PMID: 35911670 PMCID: PMC9327787 DOI: 10.3389/fimmu.2022.911381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) is a key factor regulating the systemic pathophysiological effects and one of the fundamental mechanisms associated with aging and fertility deterioration. Previous studies revealed that resveratrol (RV) exhibits a preventive effect against oxidative stress in the ovary. However, it remains unknown whether gut microbiota respond to resveratrol during an OS challenge. In Exp. 1, layers received intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 μmol/kg BW) or received resveratrol diets (0 or 600 mg/kg) for 28 days. In Exp. 2, the role of intestinal microbiota on the effects of resveratrol on tBHP-induced oxidative stress was assessed through fecal microbiota transplantation (FMT). The OS challenge reduced the egg-laying rate and exhibited lower pre-hierarchical follicles and higher atretic follicles. Oral RV supplementation ameliorated the egg-laying rate reduction and gut microbiota dysbiosis. RV also reversed the tryptphan-kynurenine pathway, upregulated nuclear factor E2-related factor 2 (Nrf2) and silent information regulator 1(SIRT1) levels, and decreased the expression of forkhead box O1 (FoxO1) and P53. These findings indicated that the intestinal microbiota-related tryptophan-kynurenine pathway is involved in the resveratrol-induced amelioration of ovary oxidative stress induced by tBHP in the layer model, while SIRT1-P53/FoxO1 and Nrf2-ARE signaling pathway were involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jianping Wang,
| | - Ru Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Zhuo Y, Yang P, Hua L, Zhu L, Zhu X, Han X, Pang X, Xu S, Jiang X, Lin Y, Che L, Fang Z, Feng B, Wang J, Li J, Wu D, Huang J, Jin C. Effects of Chronic Exposure to Diets Containing Moldy Corn or Moldy Wheat Bran on Growth Performance, Ovarian Follicular Pool, and Oxidative Status of Gilts. Toxins (Basel) 2022; 14:toxins14060413. [PMID: 35737074 PMCID: PMC9230446 DOI: 10.3390/toxins14060413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Background: We investigated the effect of replacing normal corn (NC) or normal wheat bran (NW) with moldy corn (MC) or moldy wheat bran (MW) on growth, ovarian follicular reserves, and oxidative status. Methods: Sixty-three Landrace × Yorkshire gilts were assigned to seven diets formulated by using MC to replace 0% (control), 25% (25% MC), 50% (50% MC), 75% (75% MC), and 100% NC (100% MC), MW to replace 100% NW (100% MW), and MC and MW to replace 100% NC and 100% NW (100% MC + MW), from postnatal day 110 to day 19 of the second estrous cycle. Results: Feeding the gilts with MC or MW induced a lower average daily gain at days 29−56 of the experiment. Age at puberty remained unchanged, but MC inclusion resulted in a linear decrease in antral follicles with diameter >3.0 mm, and control gilts had a 12.7 more large antral follicles than gilts in the 100% MC + MW treatment. MC inclusion linearly decreased the numbers of primordial follicles, growing follicles, and corpora lutea, associated with a lower anti-Müllerian hormone level in serum and 17β-estradiol level in follicular fluid. MC inclusion decreased the serum concentrations of insulin-like growth factor 1 and its mRNA levels in the liver, combined with higher malondialdehyde concentration and lower total superoxide dismutase activities in serum and liver. Conclusion: Chronic exposure to MC-containing diets caused the loss of follicles, even if levels of deoxynivalenol, zearalenone, and aflatoxin B1 were below the levels allowed by China and Europe standards.
Collapse
Affiliation(s)
- Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lei Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfa Han
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Xiaoxue Pang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jiankui Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- Guangxi Shangda Technology, Co., Ltd., Guangxi Research Center for Nutrition and Engineering Technology of Breeding Swine, Nanning 530105, China
- Correspondence: (J.H.); (C.J.)
| | - Chao Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- Correspondence: (J.H.); (C.J.)
| |
Collapse
|
27
|
Setti AS, Braga DPDAF, Guilherme P, Iaconelli A, Borges E. High oocyte immaturity rates impact embryo morphokinetics: lessons of time-lapse imaging system. Reprod Biomed Online 2022; 45:652-660. [DOI: 10.1016/j.rbmo.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
28
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
29
|
Woodman MF, Ozcan MCH, Gura MA, De La Cruz P, Gadson AK, Grive KJ. The Requirement of Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in Mouse Ovarian Development and Fertility †. Biol Reprod 2022; 107:500-513. [PMID: 35512140 PMCID: PMC9382372 DOI: 10.1093/biolre/ioac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme enriched in neuronal and gonadal tissues known to regulate the cellular stores of mono-ubiquitin and protein turnover. While its function in maintaining proper motor neuron function is well-established, investigation into its role in the health and function of reproductive processes is only just beginning to be studied. Single-cell-sequencing analysis of all ovarian cells from the murine perinatal period revealed that Uchl1 is very highly expressed in the developing oocyte population, an observation which was corroborated by high levels of oocyte-enriched UCHL1 protein expression in oocytes of all stages throughout the mouse reproductive lifespan. To better understand the role UCHL1 may be playing in oocytes, we utilized a UCHL1-deficient mouse line, finding reduced number of litters, reduced litter sizes, altered folliculogenesis, morphologically abnormal oocytes, disrupted estrous cyclicity and apparent endocrine dysfunction in these animals compared to their wild-type and heterozygous littermates. These data reveal a novel role of UCHL1 in female fertility as well as overall ovarian function, and suggest a potentially essential role for the ubiquitin proteasome pathway in mediating reproductive health. Summary sentence: Ubiquitin C-Terminal Hydrolase L1 (UCHL1) is required for proper ovarian folliculogenesis, estrous cyclicity, and fertility in the female mouse.
Collapse
Affiliation(s)
- Morgan F Woodman
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905
| | - Meghan C H Ozcan
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Megan A Gura
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology, and Biochemistry, Providence, RI, 02906
| | - Payton De La Cruz
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Brown University, Pathobiology Graduate Program, Providence, RI, 02906
| | - Alexis K Gadson
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905.,Warren Alpert Medical School of Brown University, Department of Obstetrics and Gynecology, Providence, RI 02905
| | - Kathryn J Grive
- Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI 02905.,Women and Infants Hospital of Rhode Island, Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Providence, RI 02905
| |
Collapse
|
30
|
Xue W, Xue F, Jia T, Hao A. Research and experimental verification of the molecular mechanism of berberine in improving premature ovarian failure based on network pharmacology. Bioengineered 2022; 13:9885-9900. [PMID: 35420511 PMCID: PMC9161839 DOI: 10.1080/21655979.2022.2062104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Based on the research methods of network pharmacology, this study analyzed the improvement effect of berberine (BBR) on premature ovarian failure (POF) and its molecular mechanism. Carry out GO and KEGG enrichment analysis by R language to obtain the potential targets and pathways of BBR in the improvement of POF. Use SD rats and ovarian granulosa cells (GCs) for experimental verification. ELISA was used to measure the content of related hormones in the serum, CCK-8 was used to measure cell viability, western blot was used to measure the content of the target protein in the ovaries and GCs, and q-RT-PCR was used to detect the expression of the target genes in the ovaries and GCs. Predicted by network pharmacology: PTEN, AKT1, FoxO1, FasL, and Bim are the targets with the highest relative correlation between BBR and POF. The results of experiments show that the treatment of low and medium doses of BBR can increase the ovarian index of rats; BBR can increase the levels of Estradiol (E2) and Anti-Mullerian hormone (AMH) in the serum of rats and reduce the levels of Follicle stimulating hormone (FSH) and Luteinizing hormone (LH). BBR can increase the cell viability of GCs; BBR can inhibit the PTEN/AKT1/FoxO1 signaling pathway and its phosphorylation level and reduce the expression of Fas/FasL and Bim mRNA. Overall, BBR can promote the ovarian to maintain normal hormone levels, protect GCs, and enhance the function of POF.
Collapse
Affiliation(s)
- Wu Xue
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Fan Xue
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tao Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ai Hao
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
31
|
Fibroblast growth factor-2 promotes in vitro activation of cat primordial follicles. ZYGOTE 2022; 30:730-734. [PMID: 35416145 DOI: 10.1017/s0967199421000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study evaluated the effect of fibroblast growth factor-2 (FGF-2) on the morphology, primordial follicle activation and growth after in vitro culture of domestic cat ovarian tissue. Ovaries (n = 12) from prepubertal domestic cats were collected and fragmented. One fragment was fixed for histological analysis (fresh control). The remaining fragments were incubated in control medium alone or with 10, 50 or 100 ng/ml FGF-2 for 7 days. After in vitro culture, the following endpoints were analyzed: morphology, activation by counting primordial and developing follicles, and growth (follicle and oocyte diameters). Treatment with 100 ng/ml FGF-2 maintained (P > 0.05) the percentage of normal follicles similar to fresh control. Follicle survival was greater (P < 0.05) after culture in 100 ng/ml FGF-2 than in 50 ng/ml FGF-2. The percentage of primordial follicles decreased (P < 0.05) and the percentage of developing follicles increased (P < 0.05) in all treatments compared with fresh tissue. The proportion of developing follicles increased (P < 0.05) in tissues incubated with 100 ng/ml FGF-2 compared with control medium and other FGF-2 concentrations. Furthermore, culture in 10 or 100 ng/ml FGF-2 resulted in increased (P < 0.05) follicle and oocyte diameters compared with fresh tissues and MEM+. In conclusion, FGF-2 at 100 ng/ml maintains follicle survival and promotes the in vitro activation and growth of cat primordial follicles.
Collapse
|
32
|
Lipovac M, Aschauer J, Imhof H, Herrmann C, Sima M, Weiß P, Imhof M. The effect of micronutrient supplementation on serum anti-Mullerian hormone levels: a retrospective pilot study. Gynecol Endocrinol 2022; 38:310-313. [PMID: 35147056 DOI: 10.1080/09513590.2022.2028770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The anti-Müllerian-hormone (AMH) is secreted by the granulosa cells of the oocytes and can be used as a marker of the ovarian reserve; helpful to estimate female fertility or the menopause onset. Although various factors may influence AMH levels, the correlation with nutritional factors needs more research. OBJECTIVE To evaluate the effect of a micronutrient supplementation on female AMH levels. METHODS This retrospective analysis includes a total of 244 women, who attended the Karl Landsteiner Institute, Korneuburg, Austria from January 2013 to June 2019 due to an unfulfilled desire for a child. All women were treated with an oral micronutrient preparation consisting the dosage of one soft capsule and one tablet per day for 3 months. The soft capsule contains omega-3 fatty acids and the tablet is a standardized combination of coenzyme Q10, vitamin E, folic acid, selenium, catechins from green tea extract, and glycyrrhizin from licorice extract. Serum AMH levels before and after 3 months were compared. In addition, available clinical data such as ovulation frequency, endometrium thickness, and luteal phase duration were analyzed. RESULTS The mean age of the women was 37.3 ± 1.8 years, the mean body mass index of 24.3 ± 4.6 k/m2. The mean serum AMH levels and endometrial thickness values were significantly higher after micronutrient supplementation as compared to baseline (1.42 ± 0.86 versus 1.86 ± 0.82 ng/mL and 6.10 ± 1.76 versus 7.29 ± 1.65 mm, respectively). In addition, ovulation frequency and luteal phase duration significantly improved in more than 60%. CONCLUSION Proposed micronutrient supplementation had a positive effect on serum AMH levels, endometrial thickness, ovulation frequency, and luteal phase duration. It could be a simple, risk-free therapeutic option to improve female fertility. More research is warranted to prove this effect.
Collapse
Affiliation(s)
- Markus Lipovac
- IMI Fertility Center, Vienna, Austria
- Karl Landsteiner Institute for Cell-Based Therapy in Gynecology, Korneuburg, Austria
| | | | | | | | | | | | - Martin Imhof
- IMI Fertility Center, Vienna, Austria
- Karl Landsteiner Institute for Cell-Based Therapy in Gynecology, Korneuburg, Austria
| |
Collapse
|
33
|
U-krit W, Wadsungnoen S, Yama P, Jitjumnong J, Sangkate M, Promsao N, Montha N, Sudwan P, Mektrirat R, Panatuk J, Inyawilert W, Intawicha P, Tang PC, Moonmanee T. Understanding the Ovarian Interrelationship with Low Antral Follicle Counts (AFC) in the In Vivo Bos indicus Cow Model: Unilateral and Bilateral Main AFC as Possible Biomarkers of Ovarian Response to Hormonal Synchronisation. BIOLOGY 2022; 11:biology11040523. [PMID: 35453722 PMCID: PMC9029639 DOI: 10.3390/biology11040523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022]
Abstract
The antral follicle count (AFC) is a test in which the number of oocyte-containing follicles that are developing in both ovaries are visually counted. The count of these follicles strongly relates to the population of the growing follicle reserve on the ovaries. However, the importance of the main number of antral follicle populations (mAFC) in mono-ovulatory animal species has yet to be completely elucidated. Moreover, the investigation of the ovarian interrelationship with unilateral mAFC (main number of antral follicle populations appearing on only one side of the ovary) and bilateral mAFC (main number of antral follicle populations appearing in equivalent numbers on both sides of the ovary) and how understanding this interrelationship can offer possible indicators of ovarian response to hormonal induction have not yet been investigated in mono-ovulatory Bos indicus beef cows. The aim of this study is to investigate the different ovarian interrelationships of mAFC (unilateral and bilateral mAFC) at the time of exogenous hormonal stimulation on the total number of AFC (left and right ovaries) at the beginning of the hormonal protocol for ovarian stimulation and ovarian response at the completion of exogenous hormonal stimulation as well as their usefulness as possible biomarkers of successful hormonal stimulation in Bos indicus beef cattle. Beef cows (n = 104) with low total numbers of AFC (4.7 ± 2.4 follicles) were stimulated with a gonadotropin-releasing hormone-progesterone-prostaglandin F2α-based protocol. At the beginning of the hormonal protocol, ovarian ultrasound scans were performed to evaluate AFC from both ovaries of cows. Beef cows were divided into two groups, unilateral (n = 74) and bilateral mAFC (n = 30), according to the ovarian interrelationship. At the completion of the hormonal stimulation, ovarian ultrasound scans were performed to evaluate the dominant follicle (DF) and cows with DF > 8.5 mm in diameter emerging on their ovaries were defined as having experienced a response to hormonal stimuli. There was a difference of 19.1% between Bos indicus cows bearing unilateral mAFC that produced an increase in ovarian response (odds ratio = 2.717, p < 0.05) compared to the responsive rate of cows displaying bilateral mAFC (82.4% vs. 63.3%). In unilateral mAFC, cows bearing mAFC ipsilateral to the ovary of dominant follicle (DF) had a higher responsive rate than cows bearing mAFC contralateral to the DF ovary (50.0% vs. 32.4%, p < 0.05). In mAFC ipsilateral to the DF ovary, pregnancy rates were greatest in cows bearing mAFC and DF on the right ovary compared with cows bearing mAFC and DF on the left ovary (25.0% vs. 9.1%, p < 0.05). In primiparous and multiparous cows, unilateral mAFC occurs with a greater (p < 0.05) frequency than bilateral mAFC (69.0% and 72.0% vs. 31.0% and 28.0%, respectively). In unilateral mAFC, primiparous cows bearing mAFC ipsilateral to the DF ovary had a greater responsive rate than primiparous cows bearing mAFC contralateral to the DF ovary (55.0% vs. 20.0%, p < 0.05). In mAFC ipsilateral to the DF ovary, responsive and pregnancy rates were greatest (p < 0.05) in multiparous cows bearing mAFC and DF on the right ovary compared with multiparous cows bearing mAFC and DF on the left ovary (58.1% and 22.6% vs. 25.8% and 3.2%, respectively). Furthermore, there was a positive correlation between the mean diameter of AFC at the time of the exogenous hormonal trigger and the mean diameter of DF at the completion of hormonal synchronisation (p < 0.05). Our findings emphasise that the ovarian interrelationship with unilateral mAFC at the time of the hormonal trigger might be a promising biomarker for predicting success in ovarian response to hormonal stimulation of mono-ovulatory Bos indicus beef cows with low AFCs.
Collapse
Affiliation(s)
- Warittha U-krit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
- Chiang Mai College of Agriculture and Technology, Sanpatong 50120, Thailand
| | | | - Punnawut Yama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
| | - Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (J.J.); (P.-C.T.)
| | - Molarat Sangkate
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
| | - Nalinthip Promsao
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Julakorn Panatuk
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand;
| | - Wilasinee Inyawilert
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand;
| | - Payungsuk Intawicha
- Division of Animal Science, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (J.J.); (P.-C.T.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (W.U.-k.); (P.Y.); (M.S.); (N.P.); (N.M.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944342
| |
Collapse
|
34
|
Witek P, Grzesiak M, Koziorowski M, Slomczynska M, Knapczyk-Stwora K. Long-Term Changes in Ovarian Follicles of Gilts Exposed Neonatally to Methoxychlor: Effects on Oocyte-Derived Factors, Anti-Müllerian Hormone, Follicle-Stimulating Hormone, and Cognate Receptors. Int J Mol Sci 2022; 23:ijms23052780. [PMID: 35269923 PMCID: PMC8911393 DOI: 10.3390/ijms23052780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities on ovarian follicles of adult pigs. Piglets were injected with MXC (20 μg/kg body weight) or corn oil (controls) from postnatal Day 1 to Day 10 (n = 5 per group). Then, mRNA expression, protein abundance and immunolocalization of growth and differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), anti-Müllerian hormone (AMH) and cognate receptors (ACVR1, BMPR1A, BMPR1B, TGFBR1, BMPR2, and AMHR2), as well as FSH receptor (FSHR) were examined in preantral and small antral ovarian follicles of sexually mature gilts. The plasma AMH and FSH levels were also assessed. In preantral follicles, neonatal exposure to MXC increased GDF9, BMPR1B, TGFBR1, and BMPR2 mRNAs, while the levels of AMH and BMP15 mRNAs decreased. In addition, MXC also decreased BMP15 and BMPR1B protein abundance. Regarding small antral follicles, neonatal exposure to MXC upregulated mRNAs for BMPR1B, BMPR2, and AMHR2 and downregulated mRNAs for AMH, BMPR1A, and FSHR. MXC decreased the protein abundance of AMH, and all examined receptors in small antral follicles. GDF9 and BMP15 were immunolocalized in oocytes and granulosa cells of preantral follicles of control and treated ovaries. All analyzed receptors were detected in the oocytes and granulosa cells of preantral follicles, and in the granulosa and theca cells of small antral follicles. The exception, however, was FSHR, which was detected only in the granulosa cells of small antral follicles. In addition, MXC decreased the plasma AMH and FSH concentrations. In conclusion, the present study may indicate long-term effects of neonatal MXC exposure on GDF9, BMP15, AMH, and FSH signaling in ovaries of adult pigs. However, the MXC effects varied at different stages of follicular development. It seems that neonatal MXC exposure may result in accelerated initial recruitment of ovarian follicles and impaired cyclic recruitment of antral follicles.
Collapse
Affiliation(s)
- Patrycja Witek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Marek Koziorowski
- Department of Physiology and Reproduction of Animals, Institute of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland;
| | - Maria Slomczynska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| |
Collapse
|
35
|
Effects of neonatal methoxychlor exposure on the ovarian transcriptome in piglets. Anim Reprod Sci 2022; 238:106956. [DOI: 10.1016/j.anireprosci.2022.106956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
|
36
|
Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Recently, we have demonstrated that neonatal exposure to androgen and estrogen agonists or antagonists influenced the number of ovarian follicles in piglets. Since the FOXL2 transcription factor is required for proper ovarian follicle formation and activation, the objective of the study was to examine effects of exposure of the neonatal porcine ovary to testosterone propionate (TP; an androgen), flutamide (FLU; an antiandrogen), 4-tert-octylphenol (OP; compound with estrogenic activity), ICI 182,780 (ICI; an antiestrogen), and methoxychlor (MXC; compound with estrogenic, antiestrogenic and antiandrogenic properties) on FOXL2 expression and expression of its target genes, AMH and CYP19A1. Piglets were injected subcutaneously with TP, FLU, OP, ICI, MXC, or corn oil (control) between postnatal days 1 and 10 (n = 4/each group). Ovaries were excised from the 11-day-old piglets and the expression of FOXL2, AMH and CYP19A1 was examined using immunohistochemistry and/or real-time PCR and Western blot. FOXL2 was localized in stroma cells surrounding egg nests and in granulosa cells. TP, OP and MXC increased both FOXL2 and AMH mRNAs, while FLU and ICI decreased CYP19A1 mRNA. The increased FOXL2 protein abundance was found in all examined groups. In addition, TP, OP, ICI and MXC increased AMH protein abundance, while TP, FLU and OP decreased CYP19A1 protein abundance. In conclusion, neonatal exposure to sex steroid receptor agonists and antagonists increased FOXL2 expression at mRNA and/or protein levels and affected FOXL2 target genes in the ovaries of 11-day-old piglets. Therefore, it seems that impaired ovarian folliculogenesis induced by altered steroid milieu during the neonatal development period in pigs may, at least in part, involve FOXL2.
Collapse
|
37
|
A Single-Cell Omics Network Model of Cell Crosstalk during the Formation of Primordial Follicles. Cells 2022; 11:cells11030332. [PMID: 35159142 PMCID: PMC8834074 DOI: 10.3390/cells11030332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The fate of fetal germ cells (FGCs) in primordial follicles is largely determined by how they interact with the surrounding granulosa cells. However, the molecular mechanisms underlying this interactive process remain poorly understood. Here, we develop a computational model to characterize how individual genes program and rewire cellular crosstalk across FGCs and somas, how gene regulatory networks mediate signaling pathways that functionally link these two cell types, and how different FGCs diversify and evolve through cooperation and competition during embryo development. We analyze single-cell RNA-seq data of human female embryos using the new model, identifying previously uncharacterized mechanisms behind follicle development. The majority of genes (70%) promote FGC–soma synergism, only with a small portion (4%) that incur antagonism; hub genes function reciprocally between the FGC network and soma network; and germ cells tend to cooperate between different stages of development but compete in the same stage within a developmental embryo. Our network model could serve as a powerful tool to unravel the genomic signatures that mediate folliculogenesis from single-cell omics data.
Collapse
|
38
|
Desmarchais A, Téteau O, Kasal-Hoc N, Cognié J, Lasserre O, Papillier P, Lacroix M, Vignault C, Jarrier-Gaillard P, Maillard V, Binet A, Pellicer-Rubio MT, Fréret S, Elis S. Chronic low BPS exposure through diet impairs in vitro embryo production parameters according to metabolic status in the ewe. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113096. [PMID: 34952380 DOI: 10.1016/j.ecoenv.2021.113096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA), an endocrine disruptor, has been replaced by structural analogues including bisphenol S (BPS). BPA and BPS exhibited similar effects regarding reproductive functions. Moreover, metabolic status and lipid metabolism are related to female fertility and could worsen BPS effects. The objective was to determine BPS in vivo effects on folliculogenesis and embryo production after chronic exposure through diet, and the influence of metabolic status in adult ewes. Sixty primiparous 2.5 year-old ewes, undergoing a restricted or well fed diet, were exposed to BPS (0, 4 or 50 µg/kg/day) for at least three months. After hormonal oestrus synchronisation and ovarian stimulation, ewes were subjected to ovum pick-up (OPU) procedures to collect immature oocytes, that underwent in vitro maturation, fertilisation and embryo production. Body weight, body condition score and plasma glucose were higher in well-fed compared to restricted ewes, while plasma NEFA was lower during the 4-5 months after the beginning of the diets. Plasma progesterone levels increased on day 5 before OPU session in well-fed compared to restricted ewes. No effect of BPS dose was observed on follicle population, plasma AMH levels and embryo production numbers and rates. However, a significant diet x BPS dose interaction was reported for cleaved embryos, > 4-cell embryos, blastocyst and early blastocyst numbers, and plasma triiodothyronine levels. Our study showed that a contrasted diet did not affect follicle population nor embryo production in adult ewes but could affect the quality and progesterone secretion of the corpus luteum. Chronic low BPS exposure had no effect on follicular population and oocyte competence. Nevertheless, the significant diet x dose interactions observed on embryo production suggest that BPS effect is modulated by metabolic status. Further studies are required to assess the risk of BPS exposure for public reproductive health.
Collapse
Affiliation(s)
| | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | - Juliette Cognié
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Marlène Lacroix
- INTHERES, INRAE, ENVT, Université de Toulouse, 31076 Toulouse, France
| | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique et Brûlés, CHRU de Tours, 37000 Tours, France
| | | | - Sandrine Fréret
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France.
| |
Collapse
|
39
|
Derisoud E, Auclair-Ronzaud J, Palmer E, Robles M, Chavatte-Palmer P. Female age and parity in horses: how and why does it matter? Reprod Fertil Dev 2021; 34:52-116. [PMID: 35231230 DOI: 10.1071/rd21267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although puberty can occur as early as 14-15months of age, depending on breed and use, the reproductive career of mares may continue to advanced ages. Once mares are used as broodmares, they will usually produce foals once a year until they become unfertile, and their productivity can be enhanced and/or prolonged through embryo technologies. There is a general consensus that old mares are less fertile, but maternal age and parity are confounding factors because nulliparous mares are usually younger and older mares are multiparous in most studies. This review shows that age critically affects cyclicity, folliculogenesis, oocyte and embryo quality as well as presence of oviductal masses and uterine tract function. Maternal parity has a non-linear effect. Primiparity has a major influence on placental and foal development, with smaller foals at the first gestation that remain smaller postnatally. After the first gestation, endometrial quality and uterine clearance capacities decline progressively with increasing parity and age, whilst placental and foal birthweight and milk production increase. These combined effects should be carefully balanced when breeding mares, in particular when choosing and caring for recipients and their foals.
Collapse
Affiliation(s)
- Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | | - Eric Palmer
- Académie d'Agriculture de France, 75007 Paris, France
| | - Morgane Robles
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France; and INRS Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, H7V 1B7 Laval, QC, Canada
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
40
|
Kohama T, Masago M, Tomioka I, Morohaku K. In vitro production of viable eggs from isolated mouse primary follicles by successive culture. J Reprod Dev 2021; 68:38-44. [PMID: 34776458 PMCID: PMC8872750 DOI: 10.1262/jrd.2021-095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To produce viable eggs from single primary follicles in vitro, primary follicles containing oocytes (average 39.0 ± 0.2 µm in diameter) were isolated from the ovaries of
1-week-old mice, and cultured in combination with culture membranes for the first 8 days up to the secondary follicle stage, followed by the next 12 days to the later stages. After culture
with a combination of first and second culture membranes using high and low adhesion characteristics, the average oocyte diameters of the surviving follicles increased by almost two-fold in
all four groups. Further, the oocyte maturation rate was the highest (74.1%) in the culture group with low adhesion with collagenase and high adhesion. In this culture group, when the
O2 concentration was changed from 20% in the first culture to 5% in the second culture, the cleavage rate increased to 47.5%, which was comparable to the level of the in
vivo control (34.6%). Finally, 39 embryos at the 2- to 8-cell stages were transferred into the oviducts of three pseudopregnant females, and eight live pups (20.5%) were obtained.
Of the eight pups, six survived for at least six months and were fertile. The present study shows successive in vitro cultures of single isolated primary follicles for the
production of viable eggs. We believe that this culture system, with a combination of culture membranes under controlled O2 conditions, is applicable to other mammalian species,
including humans.
Collapse
Affiliation(s)
- Tomohiro Kohama
- Laboratory of Germ Cell Physiology and Engineering, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Maika Masago
- Laboratory of Germ Cell Physiology and Engineering, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Kanako Morohaku
- Laboratory of Germ Cell Physiology and Engineering, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.,Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan
| |
Collapse
|
41
|
Puy V, Barroca V, Messiaen S, Ménard V, Torres C, Devanand C, Moison D, Lewandowski D, Guerquin MJ, Martini E, Frydman N, Livera G. Mouse model of radiation-induced premature ovarian insufficiency reveals compromised oocyte quality: implications for fertility preservation. Reprod Biomed Online 2021; 43:799-809. [PMID: 34602345 DOI: 10.1016/j.rbmo.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
RESEARCH QUESTION What is the impact of radiation exposure on oocyte quality and female fertility? DESIGN Prepubertal mice underwent whole-body irradiation with a single dose (0.02, 0.1, 0.5, 2, 8 Gy) of gamma- or X-rays. Oocytes were quantified in irradiated (n = 36) and sham-treated (n = 8) mice. After a single exposure to 2 Gy, formation of DNA double-strand breaks (n = 10), activation of checkpoint kinase (Chk2) (n = 10) and dynamics of follicular growth (n = 18) were analysed. Fertility assessment was performed in adult irradiated mice and controls from the number of pups per mouse (n = 28) and the fetal abortion rate (n = 24). Ploidy of mature oocytes (n = 20) was analysed after CREST immunostaining, and uterine sections were examined. RESULTS Radiation exposure induced a massive loss of primordial follicles with LD50 below 50 mGy for both gamma and X-rays. Growing follicles survived doses up to 8 Gy. This difference in radiosensitivity was not due to a different amount of radio-induced DNA damage, and Chk2 was activated in all oocytes. Exposure to a 2 Gy dose abolished the long-term fertility of females due to depletion of the ovarian reserve. Detailed analysis indicates that surviving oocytes were able to complete folliculogenesis and could be fertilized. This transient fertility allowed irradiated females to produce a single litter albeit with a high rate of fetal abortion (23%, P = 0.0096), related to altered ploidy in the surviving oocytes (25.5%, P = 0.0035). CONCLUSIONS The effects of radiation on surviving oocyte quality question natural conception as a first-line approach in cancer survivors. Together, the data emphasize the need for fertility preservation before radiation exposure and call for reassessment of the use of cryopreserved oocytes.
Collapse
Affiliation(s)
- Vincent Puy
- Reproductive Biology Unit, University Hospital Antoine-Béclère-AP-HP, Clamart, France; Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Animal Experimentation Platform-UMR Genetic Stability - Stem Cells & Radiation, INSERM U1274, CEA-Universities Paris Diderot and Paris Saclay, Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Véronique Ménard
- CEA Irradiation platform-UMRE008 Stabilité Génétique Cellules Souches et Radiations, INSERM U1274, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Claire Torres
- CEA/DRF/IBFJ/iRCM/LRTS, INSERM UMR1274, Université Paris-Diderot (Paris 7), Université Paris-Sud (Paris 11), Paris, France
| | - Caroline Devanand
- Animal Experimentation Platform-UMR Genetic Stability - Stem Cells & Radiation, INSERM U1274, CEA-Universities Paris Diderot and Paris Saclay, Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, INSERM UMR1274, Université Paris-Diderot (Paris 7), Université Paris-Sud (Paris 11), Paris, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Emmanuelle Martini
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nelly Frydman
- Reproductive Biology Unit, University Hospital Antoine-Béclère-AP-HP, Clamart, France; Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, Fontenay-aux-Roses, France.
| |
Collapse
|
42
|
Björvang RD, Hassan J, Stefopoulou M, Gemzell-Danielsson K, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Acharya G, Damdimopoulou P. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. ENVIRONMENT INTERNATIONAL 2021; 155:106589. [PMID: 33945905 DOI: 10.1016/j.envint.2021.106589] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Industrial chemicals such as persistent organic pollutants (POPs) have been associated with reduced fertility in women, including longer time-to-pregnancy (TTP), higher odds for infertility, and earlier reproductive senescence. Fertility is highly dependent on the ovarian reserve, which is composed of a prenatally determined stock of non-growing follicles. The quantity and quality of the follicles decline with age, thereby eventually leading to menopause. In the clinical setting, assessing ovarian reserve directly through the histological analysis of follicular density in ovaries is not practical. Therefore, surrogate markers of ovarian reserve, such as serum anti-Müllerian hormone (AMH) are typically used. Here, we studied associations between chemical exposure and ovarian reserve in a cohort of pregnant women undergoing elective caesarean section (n = 145) in Stockholm, Sweden. Full data (histological, clinical, serum) were available for 50 women. We estimated the size of the reserve both directly by determining the density of follicles in ovarian cortical tissue samples, and indirectly by measuring AMH in associated serum samples. Concentrations of 9 organochlorine pesticides (OCPs), 10 polychlorinated biphenyls (PCBs), 3 polybrominated diphenylethers (PBDEs) and 9 perfluoroalkyl substances (PFAS) were determined in serum, and clinical data were retrieved from electronic medical records. Healthy follicle densities (median 0, range 0-193 follicles/mm3) and AMH levels (median 2.33 ng/mL, range 0.1-14.8 ng/mL) varied substantially. AMH correlated with the density of growing follicles. Twenty-three chemicals detected in more than half of the samples were included in the analyses. None of the chemicals, alone or as a mixture, correlated with AMH, growing or atretic follicles. However, HCB, transnonachlor, PCBs 74 and 99 were associated with decreased non-growing follicle densities. HCB and transnonachlor were also negatively associated with healthy follicle density. Further, mixture of lipophilic POPs (PBDE 99, p,p'-DDE, and PCB 187) was associated with lower non-growing follicle densities. In addition, exposure to HCB, p,p'-DDE, and mixture of OCPs were significantly associated with higher odds of infertility. The results suggest that exposure to chemicals may reduce the size of ovarian reserve in humans, and strongly encourage to study mechanisms behind POP-associated infertility in women in more detail.
Collapse
Affiliation(s)
- Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Maria Stefopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 141 52 Stockholm, Sweden.
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland.
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland.
| | - Päivi Ruokojärvi
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland.
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden.
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| |
Collapse
|
43
|
Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice. ZYGOTE 2021; 30:227-233. [PMID: 34405787 DOI: 10.1017/s096719942100054x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus-oocyte complex (COC) expansion, maternal-fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4-/- (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4-/- mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4-/- mice oviducts after superovulation, and in heterozygous pairs, TLR4-/- females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.
Collapse
|
44
|
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P. The Mare: A Pertinent Model for Human Assisted Reproductive Technologies? Animals (Basel) 2021; 11:2304. [PMID: 34438761 PMCID: PMC8388489 DOI: 10.3390/ani11082304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are large differences between horses and humans for reproductive anatomy, follicular dynamics, mono-ovulation, and embryo development kinetics until the blastocyst stage are similar. In contrast to humans, however, horses are seasonal animals and do not have a menstrual cycle. Moreover, horse implantation takes place 30 days later than in humans. In terms of artificial reproduction techniques (ART), oocytes are generally matured in vitro in horses because ovarian stimulation remains inefficient. This allows the collection of oocytes without hormonal treatments. In humans, in vivo matured oocytes are collected after ovarian stimulation. Subsequently, only intra-cytoplasmic sperm injection (ICSI) is performed in horses to produce embryos, whereas both in vitro fertilization and ICSI are applied in humans. Embryos are transferred only as blastocysts in horses. In contrast, four cells to blastocyst stage embryos are transferred in humans. Embryo and oocyte cryopreservation has been mastered in humans, but not completely in horses. Finally, both species share infertility concerns due to ageing and obesity. Thus, reciprocal knowledge could be gained through the comparative study of ART and infertility treatments both in woman and mare, even though the horse could not be used as a single model for human ART.
Collapse
Affiliation(s)
- Achraf Benammar
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Palmer
- Académie d’Agriculture de France, 75007 Paris, France;
| | - Jean Marc Ayoubi
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Marine Poulain
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
45
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
46
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
47
|
Comparison of Ovarian Morphology and Follicular Disturbances between Two Inbred Strains of Cotton Rats ( Sigmodon hispidus). Animals (Basel) 2021; 11:ani11061768. [PMID: 34204816 PMCID: PMC8231567 DOI: 10.3390/ani11061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Multi-oocyte follicles have been reported in several mammals, especially in rabbits and hamsters, although their significance remains unclear. The present study compared ovarian histology, focusing on folliculogenesis, between two inbred cotton rat strains maintained at Hokkaido Institute of Public Health and the University of Miyazaki. Abundant multi-oocyte follicles and double-nucleated oocytes were observed in the Hokkaido strain, whereas Miyazaki had fewer multi-oocyte follicles and lacked double-nucleated oocytes. These findings indicate that early folliculogenesis events such as oocyte nest breakdown and oocyte vitality, rather than proliferation and cell death in each oocyte, affect the unique ovarian phenotypes found in cotton rats, including multi-oocyte follicles or double-nucleated oocytes, and their differences between strains. Therefore, these results can clarify mammalian folliculogenesis and its abnormal processes. Abstract Most mammalian ovarian follicles contain only a single oocyte having a single nucleus. However, two or more oocytes and nuclei are observed within one follicle and one oocyte, respectively, in several species, including cotton rat (CR, Sigmodon hispidus). The present study compared ovarian histology, focusing on folliculogenesis, between two inbred CR strains, HIS/Hiph and HIS/Mz. At 4 weeks of age, ovarian sections from both the strains were analyzed histologically. Multi-oocyte follicles (MOFs) and double-nucleated oocytes (DNOs) were observed in all stages of developing follicles in HIS/Hiph, whereas HIS/Mz had MOFs up to secondary stages and lacked DNOs. The estimated total follicles in HIS/Mz were almost half that of HIS/Hiph, but interstitial cells were well developed in HIS/Mz. Furthermore, immunostaining revealed no clear strain differences in the appearance of oocytes positive for Ki67, PCNA, and p63 in MOF or DNOs; no cell death was observed in these oocytes. Ultrastructural analysis revealed more abundant mitochondrial clouds in oocytes of HIS/Hiph than HIS/Mz. Thus, we clarified the strain differences in the CR ovary. These findings indicate that early events during folliculogenesis affect the unique ovarian phenotypes found in CRs, including MOFs or DNOs, and their strain differences.
Collapse
|
48
|
The Scientific and Cultural Journey to Ovarian Rejuvenation: Background, Barriers, and Beyond the Biological Clock. MEDICINES 2021; 8:medicines8060029. [PMID: 34201170 PMCID: PMC8228162 DOI: 10.3390/medicines8060029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Female age has been known to define reproductive outcome since antiquity; attempts to improve ovarian function may be considered against a sociocultural landscape that foreshadows current practice. Ancient writs heralded the unlikely event of an older woman conceiving as nothing less than miraculous. Always deeply personal and sometimes dynastically pivotal, the goal of achieving pregnancy often engaged elite healers or revered clerics for help. The sorrow of defeat became a potent motif of barrenness or miscarriage lamented in art, music, and literature. Less well known is that rejuvenation practices from the 1900s were not confined to gynecology, as older men also eagerly pursued methods to turn back their biological clock. This interest coalesced within the nascent field of endocrinology, then an emerging specialty. The modern era of molecular science is now offering proof-of-concept evidence to address the once intractable problem of low or absent ovarian reserve. Yet, ovarian rejuvenation by platelet-rich plasma (PRP) originates from a heritage shared with both hormone replacement therapy (HRT) and sex reassignment surgery. These therapeutic ancestors later developed into allied, but now distinct, clinical fields. Here, current iterations of intraovarian PRP are discussed with historical and cultural precursors centering on cell and tissue regenerative effects. Intraovarian PRP thus shows promise for women in menopause as an alternative to conventional HRT, and to those seeking pregnancy—either with advanced reproductive technologies or as unassisted conceptions.
Collapse
|
49
|
Yang C, Liu Q, Chen Y, Wang X, Ran Z, Fang F, Xiong J, Liu G, Li X, Yang L, He C. Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve. Commun Biol 2021; 4:534. [PMID: 33958705 PMCID: PMC8102596 DOI: 10.1038/s42003-021-02042-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Studies have shown that melatonin (MLT) can delay ovarian aging, but the mechanism has not been fully elucidated. Here we show that granulosa cells isolated from mice follicles can synthesize MLT; the addition of MLT in ovary culture system inhibited follicle activation and growth; In vivo experiments indicated that injections of MLT to mice during the follicle activation phase can reduce the number of activated follicles by inhibiting the PI3K-AKT-FOXO3 pathway; during the early follicle growth phase, MLT administration suppressed follicle growth and atresia, and multiple pathways involved in folliculogenesis, including PI3K-AKT, were suppressed; MLT deficiency in mice increased follicle activation and atresia, and eventually accelerated age-related fertility decline; finally, we demonstrated that prolonged high-dose MLT intake had no obvious adverse effect. This study presents more insight into the roles of MLT in reproductive regulation that endogenous MLT delays ovarian aging by inhibiting follicle activation, growth and atresia.
Collapse
Affiliation(s)
- Chan Yang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinghua Liu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingjun Chen
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaodong Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zaohong Ran
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Fang Fang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiajun Xiong
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guoshi Liu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiang Li
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liguo Yang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Changjiu He
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
50
|
Danggui Buxue Tang Rescues Folliculogenesis and Ovarian Cell Apoptosis in Rats with Premature Ovarian Insufficiency. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614302. [PMID: 34035823 PMCID: PMC8118728 DOI: 10.1155/2021/6614302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Premature ovarian insufficiency (POI) is a common female endocrine disease that is closely linked to ovarian function. Danggui Buxue Tang (DBT) is a classic prescription of traditional Chinese medicine that is helpful for rescuing ovarian function. However, the mechanism by which DBT rescues ovarian function remains unclear. This study explored the molecular mechanism of DBT with respect to apoptosis and related signals in ovarian cells. The quality control of DBT was performed by HPLC. After DBT intervention in the POI rat model, serum AMH/FSH/LH/E2 levels were detected by ELISA, follicles at various developmental stages were observed by HE staining, apoptosis was detected by TUNEL, and the expression profiles of Bcl-2 family proteins and key proteins in the Jak2/Foxo3a signaling pathway were evaluated by western blot. The results demonstrated that DBT could encourage the development of primary/secondary/antral follicles and increase the secretion of AMH. Moreover, DBT might inhibit Foxo3a by upregulating Jak2, thereby mediating Bcl-2 family activities and inhibiting apoptosis in ovarian cells. In conclusion, DBT promotes follicular development and rescues ovarian function by regulating Bcl-2 family proteins to inhibit cell apoptosis, which could be related to the Jak2/Foxo3a signaling pathway.
Collapse
|