1
|
Bazer FW, Johnson GA. Early Embryonic Development in Agriculturally Important Species. Animals (Basel) 2024; 14:1882. [PMID: 38997994 PMCID: PMC11240814 DOI: 10.3390/ani14131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus. The equine blastocyst, surrounded by external membranes, does not elongate but migrates throughout the uterine lumen before attaching to the uterine luminal epithelium (LE) to begin implantation. Pregnancy recognition signaling in pigs requires the trophectoderm to express interleukin 1 beta, estrogens, prostaglandin E2, and interferon gamma. Sheep and cow conceptus trophectoderm expresses interferon tau that induces interferon regulatory factor 2 that inhibits transcription of estrogen and oxytocin receptors by uterine epithelia. This prevents oxytocin-induced luteolytic pulses of prostaglandin F2-alpha from regressing the corpora lutea, as well as ensuring the secretion of progesterone required for maintenance of pregnancy. The pregnancy recognition signal produced by equine blastocysts is not known. Implantation in these species requires interactions between extracellular matrix (ECM) proteins and integrins as the conceptus undergoes apposition and firm attachment to the uterine LE. This review provides details with respect to early embryonic development and the transition from spherical to filamentous conceptuses in pigs, sheep, and cows, as well as pre-implantation development of equine blastocysts and implantation of the conceptuses.
Collapse
Affiliation(s)
- Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA;
| |
Collapse
|
2
|
Bedir Ö, Gram A, Grazul-Bilska AT, Kowalewski MP. The effects of follicle stimulating hormone (FSH)-induced controlled ovarian hyperstimulation and nutrition on implantation-related gene expression in caruncular tissues of non-pregnant sheep. Theriogenology 2022; 195:229-237. [DOI: 10.1016/j.theriogenology.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
3
|
Guadagnin A, Fehlberg L, Thomas B, Sugimoto Y, Shinzato I, Cardoso F. Effect of feeding rumen-protected lysine through the transition period on postpartum uterine health of dairy cows. J Dairy Sci 2022; 105:7805-7819. [DOI: 10.3168/jds.2022-21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
4
|
Orzechowska K, Kopij G, Paukszto L, Dobrzyn K, Kiezun M, Jastrzebski J, Kaminski T, Smolinska N. Chemerin effect on transcriptome of the porcine endometrium during implantation determined by RNA-sequencing†. Biol Reprod 2022; 107:557-573. [PMID: 35349661 DOI: 10.1093/biolre/ioac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
It is well known that the body's metabolism and reproduction are closely related. Chemerin is one of many biologically active proteins secreted by the adipose tissue involved in the regulation of the energy homeostasis of the organism. In the present study, RNA-Sequencing (RNA-Seq) was performed to investigate the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs) and alternatively spliced (AS) transcripts in the cultured in vitro porcine endometrium exposed to chemerin for 24 hours (CHEM; 400 ng/ml) collected during the implantation period (15 to 16 days of gestation). High-throughput sequencing of transcriptomes was performed on the Illumina NovaSeq 6000 platform (Illumina, USA). In the current study, among all 130 DEGs, 58 were up-regulated and were 72 down-regulated in the CHEM-treated group. DEGs were assigned to 73 functional annotations. Twelve identified lncRNAs indicated a difference in the expression profile after CHEM administration. Additionally, we detected 386 differentially AS events encompassed 274 protein-coding genes and 2 lncRNAs. All AS events were divided into 5 alternative splicing types: alternative 3' splice site (A3SS), 5' splice site (A5SS), mutually exclusive exons (MXE), retention intron (RI), and skipping exon (SE). Within all AS events, we identified 42 A3SS, 43 A5SS, 53 MXE, 9 RI, and 239 SE. In summary, CHEM affects the transcriptomic profile of the porcine endometrium, controlling the expression of numerous genes, including those involved in the cell migration and adhesion, angiogenesis, inflammation, and steroidogenesis. It can be assumed that CHEM may be an important factor for a proper course of gestation and embryo development.
Collapse
Affiliation(s)
- Kinga Orzechowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Abdulkhalikova D, Sustarsic A, Vrtačnik Bokal E, Jancar N, Jensterle M, Burnik Papler T. The Lifestyle Modifications and Endometrial Proteome Changes of Women With Polycystic Ovary Syndrome and Obesity. Front Endocrinol (Lausanne) 2022; 13:888460. [PMID: 35813634 PMCID: PMC9258031 DOI: 10.3389/fendo.2022.888460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Polycystic ovary syndrome (PCOS) is a polyendocrine disorder and the most common endocrinopathy in women of reproductive age. Affected women have an elevated prevalence of being overweight and obese. Our study sought to determine how weight loss associated with lifestyle changes affects the endometrium specific proteome, endocrine-metabolic characteristics, and motor capabilities of obese women with PCOS and infertility. A group of 12 infertile women under the age of 38 with PCOS and BMI ≥30 kg/m2 were included in the study. An evaluation was performed by a gynecologist and an endocrinologist. The weight-loss program lasted 8 weeks under the guidance of a professional trainer. Endometrial sampling during a period of implantation window for proteome determination was performed before and after weight loss. In endometrial samples at the end of the study increased protein abundance was recorded for Legumain, Insulin-like growth factor-binding protein 7, Hepatocyte growth factor receptor, Keratin, type II cytoskeletal 7, and Cystatin-B, while the B-lymphocyte antigen CD20 protein abundance decreased. Our results also indicate significantly lowered fasting blood glucose level and free testosterone concentration and significant improvements in body composition and physical capacity. This study may open up the venues for investigating important biomarkers that may affect endometrial receptivity. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04989244?term=NCT04989244&draw=2&rank=1, identifier: NCT04989244.
Collapse
Affiliation(s)
- D. Abdulkhalikova
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A. Sustarsic
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - N. Jancar
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M. Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - T. Burnik Papler
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: T. Burnik Papler,
| |
Collapse
|
6
|
Stenhouse C, Seo H, Wu G, Johnson GA, Bazer FW. Insights into the Regulation of Implantation and Placentation in Humans, Rodents, Sheep, and Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:25-48. [PMID: 34807435 DOI: 10.1007/978-3-030-85686-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Precise cell-specific spatio-temporal molecular signaling cascades regulate the establishment and maintenance of pregnancy. Importantly, the mechanisms regulating uterine receptivity, conceptus apposition and adhesion to the uterine luminal epithelia/superficial glandular epithelia and, in some species, invasion into the endometrial stroma and decidualization of stromal cells, are critical prerequisite events for placentation which is essential for the appropriate regulation of feto-placental growth for the remainder of pregnancy. Dysregulation of these signaling cascades during this critical stage of pregnancy can lead to pregnancy loss, impaired growth and development of the conceptus, and alterations in the transplacental exchange of gasses and nutrients. While many of these processes are conserved across species, significant variations in the molecular mechanisms governing maternal recognition of pregnancy, conceptus implantation, and placentation exist. This review addresses the complexity of key mechanisms that are critical for the establishment and maintenance of a successful pregnancy in humans, rodents, sheep, and pigs. Improving understanding of the molecular mechanisms governing these processes is critical to enhancing the fertility and reproductive health of humans and livestock species.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science and Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Hoskins EC, Halloran KM, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep: I. polyamines, nutrient transport, and progestamedins. J Anim Sci Biotechnol 2021; 12:39. [PMID: 33663606 PMCID: PMC7934464 DOI: 10.1186/s40104-021-00554-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Administration of exogenous progesterone (P4) to ewes during the pre-implantation period advances conceptus development and implantation. This study determined effects of exogenous P4 on transport of select nutrients and pathways that enhance conceptus development. Pregnant ewes (n = 38) were treated with either 25 mg P4 in 1 mL corn oil (P4, n = 18) or 1 mL corn oil alone (CO, n = 20) from day 1.5 through day 8 of pregnancy and hysterectomized on either day 9 or day 12 of pregnancy. Endometrial expression of genes encoding enzymes for synthesis of polyamines, transporters of glucose, arginine, and glycine, as well as progestamedins was determined by RT-qPCR. Results On day 12 of pregnancy, conceptuses from P4-treated ewes had elongated while those from CO-treated ewes were spherical. The mRNA expression of AZIN2, an arginine decarboxylase, was lower in endometria of P4-treated than CO-treated ewes on day 9 of pregnancy. Expression of FGF10, a progestamedin, was greater in endometria of CO and P4-treated ewes on day 12 of gestation in addition to P4-treated ewes necropsied on day 9 of gestation. Treatment with P4 down-regulated endometrial expression of amino acid transporter SLC1A4 on day 12 of pregnancy. Conclusions Results indicated that administration of exogenous P4 during the pre-implantation period advanced the expression of FGF10, which may accelerate proliferation of trophectoderm cells, but also was correlated with decreased expression of glycine and serine transporters and polyamine synthesis enzyme AZIN2. Further research with increased sample sizes may determine how differential expression affects endometrial functions and potentially embryonic loss. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00554-6.
Collapse
Affiliation(s)
- Emily C Hoskins
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Katherine M Halloran
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Michael C Satterfield
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
8
|
Ma Y, Yu X, Li YX, Wang YL. HGF/c-Met signaling regulates early differentiation of placental trophoblast cells. J Reprod Dev 2021; 67:89-97. [PMID: 33455972 PMCID: PMC8075731 DOI: 10.1262/jrd.2020-107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Depletion of hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor (c-Met) in mice leads to fetal lethality and placental maldevelopment.
However, the dynamic change pattern of HGF/c-Met signaling during placental development and its involvement in the early differentiation of trophoblasts remain
to be elucidated. In this study, using in situ hybridization assay, we elaborately demonstrated the spatial-temporal expression of
Hgf and c-Met in mouse placenta from E5.5, the very early stage after embryonic implantation, to E12.5, when the placental
structure is well developed. The concentration of the soluble form of c-Met (sMet) in maternal circulation peaked at E10.5. By utilizing the induced
differentiation model of mouse trophoblast stem cells (mTSCs), we found that HGF significantly promoted mTSC differentiation into syncytiotrophoblasts (STBs)
and invasive parietal trophoblast giant cells (PTGCs). Interestingly, sMet efficiently reversed the effect of HGF on mTSC differentiation. These findings
indicate that HGF/c-Met signaling participates in regulating placental trophoblast cell fate at the early differentiation stage and that sMet acts as an
endogenous antagonist in this aspect.
Collapse
Affiliation(s)
- Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
10
|
Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G. Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 2018; 99:225-241. [PMID: 29462279 PMCID: PMC6044348 DOI: 10.1093/biolre/ioy047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Research on the functions of interferon tau (IFNT) led to the theory of pregnancy recognition signaling in ruminant species. But IFNT does much more as it induces expression of interferon regulatory factor 2 (IRF2) in uterine luminal (LE), superficial glandular (sGE), but not glandular (GE) epithelia. First, IRF2 silences transcription of the estrogen receptor alpha gene and, indirectly, transcription of the oxytocin receptor gene to abrogate development of the luteolytic mechanism to prevent regression of the corpus luteum and its production of progesterone for establishing and maintaining pregnancy. Second, IRF2 silences expression of classical interferon-stimulated genes in uterine LE and sGE; however, uterine LE and sGE respond to progesterone (P4) and IFNT to increase expression of genes for transport of nutrients into the uterine lumen such as amino acids and glucose. Other genes expressed by uterine LE and sGE encode for adhesion molecules such as galectin 15, cathepsins, and cystatins for tissue remodeling, and hypoxia-inducible factor relevant to angiogenesis and survival of blastocysts in a hypoxic environment. IFNT is also key to a servomechanism that allows uterine epithelia, particularly GE, to proliferate and to express genes in response to placental lactogen and placental growth hormone in sheep. The roles of secreted phosphoprotein 1 are also discussed regarding its role in implantation in sheep and pigs, as well as its stimulation of expression of mechanistic target of rapamycin mRNA and protein which is central to proliferation, migration, and gene expression in the trophectoderm cells.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Thomas E Spencer
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Wang W, La Y, Zhou X, Zhang X, Li F, Liu B. The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Anim Reprod Sci 2018; 189:19-29. [DOI: 10.1016/j.anireprosci.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
|
12
|
Fermin LM, Pain SJ, Gedye KR, Morel PCH, Kenyon PR, Blair HT. Timing of exogenous progesterone administration is critical for embryo development and uterine gene expression in an ovine model of maternal constraint. Reprod Fertil Dev 2018; 30:1699-1712. [DOI: 10.1071/rd17514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Progesterone (P4) administration in early pregnancy enhances embryo growth in sheep but is associated with decreased embryo survival. This study examined the effects of exogenous P4 administered during specific time periods between pregnancy Day 0 and Day 6 to determine the critical time point for advancement of embryo growth without pregnancy loss and to examine Day 6 and Day 19 endometrial gene expression. Suffolk (S) embryos were transferred into Cheviot (C) ewes that received exogenous P4 (CP4) on Days 0–3 (CP40–3), Days 0–6 (CP40–6), Days 2–4 (CP42–4) or Days 3–6 (CP43–6). Additionally, S embryos were transferred to C and S ewes that did not receive P4 (CnP4 and SnP4). Day 19 embryos from CP4 ewes were longer (P < 0.05) than those from CnP4 ewes. CP42–4 ewes had embryos of similar size to those of CP40–3 and CP40–6 ewes but had higher pregnancy rates. There was altered expression of genes associated with embryo implantation and histotroph production: diacylglycerol-O-acyltransferase (DGAT2), hepatocyte growth factor (HGF) and prostaglandin endoperoxide synthase 2 (PTSG2) on Day 6 and endometrial galectin 15 (LGALS15) and mucin glycoprotein 1 (MUC1) on Day 19. This suggests that specific timing of P4 administration is critical to the enhanced embryo growth and survival observed. These findings provide a platform for further investigation aimed at advancing embryo development and survival.
Collapse
|
13
|
Wilson ML, McCoski SR, Geiger AJ, Akers RM, Johnson SE, Ealy AD. The influence of postnatal nutrition on reproductive tract and endometrial gland development in dairy calves. J Dairy Sci 2017; 100:3243-3256. [DOI: 10.3168/jds.2016-11880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
|
14
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
15
|
Implantation and Establishment of Pregnancy in the Pig. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:137-63. [DOI: 10.1007/978-3-319-15856-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Gómez E, Correia-Álvarez E, Caamaño JN, Díez C, Carrocera S, Peynot N, Martín D, Giraud-Delville C, Duranthon V, Sandra O, Muñoz M. Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction 2014; 148:353-65. [DOI: 10.1530/rep-14-0304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early in cow embryo development, hepatoma-derived growth factor (HDGF) is detectable in uterine fluid. The origin of HDGF in maternal tissues is unknown, as is the effect of the induction on developing embryos. Herein, we analyze HDGF expression in day 8 endometrium exposed to embryos, as well as the effects of recombinant HDGF (rHDGF) on embryo growth. Exposure to embryos did not alter endometrial levels of HDGF mRNA or protein. HDGF protein localized to cell nuclei in the luminal epithelium and superficial glands and to the apical cytoplasm in deep glands. After uterine passage, levels of embryonic HDGF mRNA decreased and HDGF protein was detected only in the trophectoderm. In fetal fibroblast cultures, addition of rHDGF promoted cell proliferation. In experiments with group cultures of morulae in protein-free medium containing polyvinyl alcohol, adding rHDGF inhibited blastocyst development and did not affect cell counts when the morulae were early (day 5), whereas it enhanced blastocyst development and increased cell counts when the morulae were compact (day 6). In cultures of individual day 6 morulae, adding rHDGF promoted blastocyst development and increased cell counts. Our experiments with rHDGF indicate that the growth factor stimulates embryonic development and cell proliferation. HDGF is synthesized similarly by the endometrium and embryo, and it may exert embryotropic effects by autocrine and/or paracrine mechanisms.
Collapse
|
17
|
Bazer FW, Song G, Thatcher WW. Roles of conceptus secretory proteins in establishment and maintenance of pregnancy in ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1-16. [PMID: 25049471 PMCID: PMC4092924 DOI: 10.5713/ajas.2011.r.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA ; WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - William W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0691, USA
| |
Collapse
|
18
|
Samborski A, Graf A, Krebs S, Kessler B, Reichenbach M, Reichenbach HD, Ulbrich SE, Bauersachs S. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol Reprod 2013; 89:134. [PMID: 24174570 DOI: 10.1095/biolreprod.113.112177] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The porcine conceptus undergoes rapid differentiation and expansion of its trophoblastic membranes between Days 11 and 12 of gestation. Concomitant with trophoblast elongation, production of conceptus estrogen, the porcine embryonic pregnancy recognition signal, increases. Conceptus attachment to the uterine surface epithelium starts after Day 13, initiating epitheliochorial placentation. To analyze the transcriptome changes in the endometrium in the course of maternal recognition of pregnancy, deep sequencing of endometrial RNA samples of Day 12 pregnant animals (n = 4) and corresponding nonpregnant controls (n = 4) was performed using RNA sequencing (RNA-Seq). Between 30 000 000 and 35 000 000 sequence reads per sample were produced and mapped to the porcine genome (Sscrofa10.2). Analysis of read counts revealed 2593 differentially expressed genes (DEGs). Expression of selected genes was validated by the use of quantitative real-time RT-PCR. Bioinformatics analysis identified several functional terms specifically overrepresented for up-regulated or down-regulated genes. Comparison of the RNA-Seq data from Days 12 and 14 of pregnancy was performed at the level of all expressed genes, the level of the DEG, and the level of functional categories. This revealed specific gene expression patterns reflecting the different functions of the endometrium during these stages (i.e., recognition of pregnancy and preparation for conceptus attachment). Genes related to mitosis, immune response, epithelial cell differentiation and development, proteolysis, and prostaglandin signaling and metabolism are discussed in detail. This study identified comprehensive transcriptome changes in porcine endometrium associated with establishment of pregnancy and could be a resource for targeted studies of genes and pathways potentially involved in regulation of this process.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Forde N, Mehta JP, McGettigan PA, Mamo S, Bazer FW, Spencer TE, Lonergan P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 2013; 14:321. [PMID: 23663413 PMCID: PMC3663781 DOI: 10.1186/1471-2164-14-321] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/03/2013] [Indexed: 01/06/2023] Open
Abstract
Background We hypothesized that genes that are up-regulated in the uterine endometrium at the initiation of conceptus elongation in cattle, and that encode for secreted proteins, contribute to the composition of the uterine luminal fluid (ULF) and ultimately, drive conceptus elongation. The aims of this study were to: 1) screen endometrial transcriptomic data for genes that encode secreted proteins on Day 13; 2) determine temporal changes in the expression of these genes during the estrous cycle/early pregnancy; 3) determine if expression of these genes is affected by altered concentrations of progesterone (P4) in vivo and 4) determine if the protein products of these genes are detectable in ULF. Results Of the fourteen candidate genes examined, quantitative real-time PCR analysis revealed the expression of APOA1, ARSA, DCN, LCAT, MUC13, NCDN, NMN, NPNT, NXPH3, PENK, PLIN2 and TINAGL1 was modulated in the endometrium (P<0.05) as the estrous cycle/early pregnancy progressed. APOA1, DCN and NPNT expression was higher in cyclic compared to pregnant heifers, and pregnancy increased (P<0.05) the expression of LCAT, NCDN, NMN, PLIN2 and TINAGL1. The magnitude of the increase in expression of APOA1, PENK and TINAGL1 on Day 13 was reduced (P<0.05) in heifers with low P4. Furthermore, low P4 decreased (P<0.05) the expression of LCAT and NPNT on Day 7, while an early increase (P<0.05) in the expression of NXPH3 and PLIN2 was observed in heifers with high P4. The protein products of 5 of the candidate genes (APOA1, ARSA, LCAT, NCDN and PLIN) were detected in the ULF on either Days 13, 16 or 19 of pregnancy. Conclusion Using a candidate gene approach, we determined that both P4 concentration and the presence of the conceptus alter endometrial expression of PLIN2, TINAGL1, NPNT, LCAT, NMN and APOA1. Comparison of the expression profiles of these genes to proteins detected in ULF during conceptus elongation (i.e., Days 13 through 19) revealed the presence of APOA1, ARSA, LCAT, NCDN as well as members of the PLIN family of proteins that may play roles in driving conceptus elongation in cattle.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bazer FW. Contributions of an animal scientist to understanding the biology of the uterus and pregnancy. Reprod Fertil Dev 2013; 25:129-47. [DOI: 10.1071/rd12266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
I developed a passion for reproductive biology when taking a course in Physiology of Reproduction at Louisiana State University while preparing to apply for Veterinary School at Texas A&M University. My career path changed. I entered graduate school, obtained a Ph.D. and have enjoyed an academic career conducting research in uterine biology and pregnancy in animal science departments at the University of Florida and at Texas A&M University. My contributions to science include: (1) identification of molecules secreted by or transported by uterine epithelia into the uterine lumen that are critical to successful establishment and maintenance of pregnancy, (2) discovery of steroids and proteins required for pregnancy-recognition signalling and their mechanisms of action in pigs and ruminants, (3) patterns of fetal–placental development and placental transport of nutrients, (4) identification of links between nutrients and components of histotroph that affect fetal–placental development, (5) characterising aspects of the endocrinology of pregnancy and (6) contributing to efforts to exploit the therapeutic value of interferon tau, particularly for treatment of autoimmune and inflammatory diseases. Current research focuses on select nutrients in the uterine lumen, specifically amino acids, glucose and fructose, that affect conceptus development, the therapeutic potential for interferon tau, stromal–epithelial cell signalling whereby progesterone and oestrogen act via steroid receptors in uterine stromal cells to stimulate secretion of growth factors (e.g. fibroblast growth factors and hepatocyte growth factor) that regulate uterine epithelial cells and conceptus trophectoderm, and roles of toll-like receptors expressed by uterine epithelia and conceptus trophectoderm in pregnancy.
Collapse
|
21
|
Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev 2012; 58:180-8. [PMID: 22738901 DOI: 10.1262/jrd.2011-019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon tau (IFNT) is the pregnancy recognition signal from ruminant conceptuses. IFNT also acts with P4 to induce expression of genes for transport of nutrients, such as glucose (Gluc) and arginine (Arg) into the uterine lumen to activate mechanistic mammalian target of rapamycin (MTOR) cell signaling that stimulates proliferation, migration, gene transcription and mRNA translation by conceptus trophectoderm (Tr). In ewes, Arg and Gluc increase significantly in the uterine lumen between Days 10 and 15 of pregnancy due to increased expression of transporters for Gluc (SLC2A1 and SLC5A1) and Arg (SLC7A2B) by uterine epithelia. Arg and Gluc stimulate proliferation, migration and mRNA translation by Tr. Arg increases expression of GTP cyclohydrolase 1 (GCH1) and IFNT mRNAs while Arg and Gluc increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1 mRNAs and proteins by Tr cells. GCH1 is required for synthesis of tetrahydrobiopterin, an essential cofactor for all NOS isoforms. Arg is metabolized to nitric oxide and polyamines that increase proliferation and migration of Tr cells. In pigs, Gluc, Arg, leucine (Leu) and glutamine (Gln) increase in the uterine lumen between Days 12 and 15 of pregnancy due to enhanced expression of transporters for Gluc and amino acids. Transporters for Gluc in porcine uterine LE (SLC2A1) and conceptus trophectoderm (SLC2A2) are abundant. Transporters for glutamate and neutral (SLC1A1, SLC1A4) and cationic (SLC7A1, SLC7A2, SLC7A7, SLC7A9) amino acids are expressed in uterine LE and SLC7A3 mRNA is expressed in conceptus Tr. Arg and Leu increase MTOR cell signaling and proliferation of pig Tr, as do Gluc and fructose. Azaserine, an inhibitor of hexosamine biosynthesis, inhibits effects of Gluc and fructose. Thus, select nutrients in the uterine lumen affect gene transcription and mRNA translation to affect conceptus development.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology, Texas A&M University, Texas 77843-2471, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 2012; 1271:88-96. [PMID: 23050969 PMCID: PMC3485747 DOI: 10.1111/j.1749-6632.2012.06741.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
There is a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling, implantation, regulation of gene expression by uterine epithelial and stromal cells, placentation and exchange of nutrients and gases. The uterus provide a microenvironment in which molecules secreted by uterine epithelia or transported into the uterine lumen represent histotroph required for growth and development of the conceptus and receptivity of the uterus to implantation. Pregnancy recognition signaling mechanisms sustain the functional lifespan of the corpora lutea (CL) which produce progesterone, the hormone of pregnancy essential for uterine functions that support implantation and placentation required for a successful outcome of pregnancy. It is within the peri-implantation period that most embryonic deaths occur due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. With proper placentation, the fetal fluids and fetal membranes each have unique functions to ensure hematotrophic and histotrophic nutrition in support of growth and development of the fetus. The endocrine status of the pregnant female and her nutritional status are critical for successful establishment and maintenance of pregnancy. This review addresses the complexity of key mechanisms that are characteristic of successful reproduction in sheep and pigs and gaps in knowledge that must be the subject of research in order to enhance fertility and reproductive health of livestock species.
Collapse
|
24
|
Rajaram RD, Brisken C. Paracrine signaling by progesterone. Mol Cell Endocrinol 2012; 357:80-90. [PMID: 21945477 DOI: 10.1016/j.mce.2011.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 09/11/2011] [Indexed: 12/23/2022]
Abstract
Steroid hormones coordinate and control the development and function of many organs and are implicated in many pathological processes. Progesterone signaling, in particular, is essential for several important female reproductive functions. Physiological effects of progesterone are mediated by its cognate receptor, expressed in a subset of cells in target tissues. Experimental evidence has accumulated that progesterone acts through both cell intrinsic as well as paracrine signaling mechanisms. By relegating the hormonal stimulus to paracrine signaling cascades the systemic signal gets amplified locally and signaling reaches different cell types that are devoid of hormone receptors. Interestingly, distinct biological responses to progesterone in different target tissues rely on several tissue-specific and some common paracrine factors that coordinate biological responses in different cell types. Evidence is forthcoming that the intercellular signaling pathways that control development and physiological functions are important in tumorigenesis.
Collapse
Affiliation(s)
- Renuga Devi Rajaram
- Ecole Polytechnique Fédérale de Lausanne, ISREC - Swiss Institute for Experimental Cancer Research, NCCR Molecular Oncology, SV2832 Station 19, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
25
|
Bazer FW, Song G, Kim J, Erikson DW, Johnson GA, Burghardt RC, Gao H, Carey Satterfield M, Spencer TE, Wu G. Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 2012; 354:22-33. [PMID: 21907263 DOI: 10.1016/j.mce.2011.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/30/2023]
Abstract
Morphological differentiation of uterine glands in mammals is a postnatal event vulnerable to adverse effects of endocrine disruptors. Exposure of ewe lambs to a progestin from birth to postnatal day 56 prevents development of uterine glands and, as adults, the ewes are unable to exhibit estrous cycles or maintain pregnancy. Uterine epithelia secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling and implantation, including arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate MTOR cell signaling to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds αvβ3 and α5β1 integrins and induces focal adhesion assembly, adhesion and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wilsher S, Gower S, Allen W. Immunohistochemical localisation of progesterone and oestrogen receptors at the placental interface in mares during early pregnancy. Anim Reprod Sci 2011; 129:200-8. [DOI: 10.1016/j.anireprosci.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/06/2011] [Accepted: 11/14/2011] [Indexed: 01/07/2023]
|
27
|
Bazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 2011; 85:1094-107. [PMID: 21865556 DOI: 10.1095/biolreprod.111.094722] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Forde N, Carter F, Spencer T, Bazer F, Sandra O, Mansouri-Attia N, Okumu L, McGettigan P, Mehta J, McBride R, O'Gaora P, Roche J, Lonergan P. Conceptus-Induced Changes in the Endometrial Transcriptome: How Soon Does the Cow Know She Is Pregnant?1. Biol Reprod 2011; 85:144-56. [DOI: 10.1095/biolreprod.110.090019] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Zhang X. Hepatocyte growth factor system in the mouse uterus: variation across the estrous cycle and regulation by 17-beta-estradiol and progesterone. Biol Reprod 2010; 82:1037-48. [PMID: 20147731 DOI: 10.1095/biolreprod.109.079772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor MET have been implicated in uterine development, pregnancy, and endometrial disorders, such as endometriosis and carcinoma. In vitro studies have shown that HGF acts as a mitogen, motogen, and morphogen on endometrial epithelial cells. However, the expression and regulation of HGF and MET in the uteri of different species remain obscure. The present study aimed to investigate the changes of HGF, MET, and HGF activator (HGFA) expression in the uterine endometrium during the estrous cycle in mice and to explore estrogen and progesterone regulation of their expression. MKI67 immunostaining was conducted to examine the association between HGF/MET expression and endometrial cell proliferation. Endometrial epithelial and stromal cells both expressed HGF, HGFA, and MET, but the cell type-specific patterns changed during the cycle. Estrogen and progesterone differentially regulated HGF, MET, and HGFA expression. Progesterone up-regulated their expression in the stroma and down-regulated their expression in the luminal epithelium, whereas 17-beta-estradiol down-regulated their expression in the glandular epithelium. The pattern of HGF/MET overall correlated with that of MKI67. In conclusion, HGF, HGFA, and MET expression in mouse uterus changes during the estrous cycle in a stage-, cell type-, and compartment-specific manner under the influence of estrogen and progesterone. HGF likely plays a role in cyclic endometrial remodeling, such as cell proliferation via autocrine/paracrine mechanisms in mouse uterus.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Satterfield MC, Gao H, Li X, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients and Their Associated Transporters Are Increased in the Ovine Uterus Following Early Progesterone Administration1. Biol Reprod 2010; 82:224-31. [DOI: 10.1095/biolreprod.109.076729] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Simon L, Spiewak KA, Ekman GC, Kim J, Lydon JP, Bagchi MK, Bagchi IC, DeMayo FJ, Cooke PS. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma. Endocrinology 2009; 150:3871-6. [PMID: 19372202 PMCID: PMC2717869 DOI: 10.1210/en.2008-1691] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P < 0.05; n = 6) in both types of tissue recombinants despite the absence of epithelial PR in wt-S + ko-E grafts. Conversely, Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma.
Collapse
Affiliation(s)
- Liz Simon
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod Biol 2008; 8:179-211. [DOI: 10.1016/s1642-431x(12)60012-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Satterfield MC, Hayashi K, Song G, Black SG, Bazer FW, Spencer TE. Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol Reprod 2008; 79:1226-36. [PMID: 18753603 DOI: 10.1095/biolreprod.108.071787] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Progesterone (P4) is unequivocally required to maintain a uterine environment conducive to pregnancy. This study investigated the effects of P4 treatment on expression of selected growth factors (fibroblast growth factor 7 [FGF7], FGF10, hepatocyte growth factor [HGF], and insulin-like growth factors [IGF1 and IGF2]), their receptors (MET, FGFR2(IIIB), and IGF1R), and IGF binding proteins (IGFBPs) in the ovine uterus. Ewes received daily injections of corn oil vehicle (CO) or 25 mg of P4 in vehicle from 36 h after mating (Day 0) to hysterectomy on Day 9 or Day 12. Another group received P4 to Day 8 and 75 mg of mifepristone (RU486, a P4 receptor antagonist) from Day 8 through Day 12. Endometrial FGF10 mRNA levels increased between Day 9 and Day 12 and in response to P4 on Day 9 in CO-treated ewes, which had larger blastocysts, and were substantially reduced in P4+RU486-treated ewes, which had no blastocysts on Day 12. Endometrial FGF7 or HGF mRNA levels were not affected by day or reduced by RU486 treatment, but MET mRNA levels were higher in P4-treated ewes on Day 9 and Day 12. Levels of IGF1, IGF2, and IGF1R mRNA in the endometria were not affected by early P4 treatment. Although stromal IGFBPs were unaffected by P4, levels of IGFBP1 and IGFBP3 mRNA in uterine luminal epithelia were increased substantially between Day 9 and Day 12 of pregnancy in CO-treated ewes and on Day 9 in early P4-treated ewes. Therefore, FGF10, MET, IGFBP1, and IGFBP3 are P4-regulated factors within the endometrium of the ovine uterus that have potential effects on endometrial function and peri-implantation blastocyst growth and development.
Collapse
Affiliation(s)
- M Carey Satterfield
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ochiel DO, Fahey JV, Ghosh M, Haddad SN, Wira CR. Innate Immunity in the Female Reproductive Tract: Role of Sex Hormones in Regulating Uterine Epithelial Cell Protection Against Pathogens. CURRENT WOMEN'S HEALTH REVIEWS 2008; 4:102-117. [PMID: 19644567 PMCID: PMC2717724 DOI: 10.2174/157340408784246395] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mucosal immune system in the upper female reproductive tract is uniquely prepared to maintain a balance between the presence of commensal bacteria, sexually transmitted bacterial and viral pathogens, allogeneic spermatozoa, and an immunologically distinct fetus. At the center of this dynamic system are the epithelial cells that line the Fallopian tubes, uterus, cervix and vagina. Epithelial cells provide a first line of defense that confers continuous protection, by providing a physical barrier as well as secretions containing bactericidal and virucidal agents. In addition to maintaining a state of ongoing protection, these cells have evolved to respond to pathogens, in part through Toll-like receptors (TLRs), to enhance innate immune protection and, when necessary, to contribute to the initiation of an adaptive immune response. Against this backdrop, epithelial cell innate and adaptive immune function is modulated to meet the constraints of procreation. The overall goal of this review is to focus on the dynamic role of epithelial cells in the upper reproductive tract, with special emphasis on the uterus, to define the unique properties of these cells as they maintain homeostasis in preparation for successful fertilization and pregnancy while at the same time confer protection against sexually transmitted infections, which threaten to compromise women's reproductive health and survival. By understanding the nature of this protection and the ways in which innate and adaptive immunity are regulated by sex hormones, these studies provide the opportunity to contribute to the foundation of information essential for ensuring reproductive health.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756 USA
| | | | | | | | | |
Collapse
|
36
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone. Biol Reprod 2008; 79:376-86. [PMID: 18448839 DOI: 10.1095/biolreprod.108.068403] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
37
|
Song G, Kim J, Bazer FW, Spencer TE. Progesterone and interferon tau regulate hypoxia-inducible factors in the endometrium of the ovine uterus. Endocrinology 2008; 149:1926-34. [PMID: 18174278 PMCID: PMC2276712 DOI: 10.1210/en.2007-1530] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In ruminants, progesterone (P4) from the ovary and interferon tau (IFNT) from the elongating blastocyst regulate expression of genes in the endometrium that are hypothesized to be important for uterine receptivity and blastocyst development. These studies determined effects of the estrous cycle, pregnancy, P4, and IFNT on hypoxia-inducible factor (HIF) expression in the ovine uterus. HIF1A mRNA, HIF2A mRNA, and HIF2A protein were most abundant in the endometrial luminal and superficial glandular epithelia (LE and sGE, respectively) of the uterus and conceptus trophectoderm. During the estrous cycle, HIF1A and HIF2A mRNA levels were low to undetectable on d 10 in the endometrial LE/sGE, increased between d 10 and 14, and then declined on d 16. Both HIF1A and HIF2A mRNA were more abundant in the endometrial LE/sGE of pregnant ewes. However, HIF3A, HIF1B, HIF2B, and HIF3B mRNA abundance was low in most cell types of the endometria and conceptus. Treatment of ovariectomized ewes with P4 induced HIF1A and HIF2A in the endometrial LE/sGE, and intrauterine infusion of ovine IFNT further increased HIF2A in P4-treated ewes, but not in ewes treated with P4 and the antiprogestin ZK 136,317. HIF3A, HIF1B, HIF2B, and HIF3B mRNA abundance was not regulated by either P4 or IFNT. Two HIF-responsive genes, carboxy-terminal domain 2 and vascular endothelial growth factor A, were detected in both the endometrium and conceptus. These studies identified new P4-induced (HIF1A and HIF2A) and IFNT-stimulated (HIF2A) genes in the uterine LE/sGE, and implicate the HIF pathway in regulation of endometrial epithelial functions and angiogenesis, as well as peri-implantation blastocyst development.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | |
Collapse
|
38
|
Spencer TE, Sandra O, Wolf E. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135:165-79. [DOI: 10.1530/rep-07-0327] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus–endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus–endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-τ (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus–endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Collapse
|
39
|
Bauersachs S, Ulbrich SE, Gross K, Schmidt SEM, Meyer HHD, Wenigerkind H, Vermehren M, Sinowatz F, Blum H, Wolf E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 2006; 132:319-31. [PMID: 16885540 DOI: 10.1530/rep.1.00996] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cystatin C (CST3) is a secreted inhibitor of lysosomal cysteine proteases cathepsins B (CTSB) and CTSL, which are abundant in the ovine endometrium and conceptus. In mice, cathepsins and cystatins play important roles in implantation and placentation. This study determined effects of the estrous cycle, pregnancy, progesterone (P4), and interferon-tau (IFNT) on CST3 in the ovine uterus. In cyclic ewes, CST3 mRNA was low on d 10, increased about 12-fold by d 12, and declined thereafter. In early pregnant ewes, CST3 mRNA was low on d 10 and increased about 130-fold from d 10 to d 20. CST3 mRNA and protein were abundant in the endometrial luminal epithelium (LE) and glandular epithelium and also in conceptus trophectoderm. In uterine flushes from pregnant ewes, CST3 protein was not detected on d 10 but was abundant on d 12, 14, and 16. In another study, treatment of ovariectomized, cyclic ewes with P4 induced a 14-fold increase in endometrial CST3 mRNA, and IFNT stimulated an additional 2-fold increase in CST3 mRNA in P4-treated ewes but not in ewes treated with P4 and the antiprogestin ZK 136,317. CST3 mRNA and protein were abundant in the endometrial luminal epithelium and superficial glandular epithelium of P4-treated ewes but were very low or not detectable in endometria of P4- and ZK-treated ewes. These results indicate that CST3 is a novel P4-induced and IFNT-stimulated gene expressed only in the epithelial cells of the ovine endometrium and implicate CST3 in regulation of uterine cathepsin activity during conceptus implantation.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, 442 Kleberg Center, 2471 TAMU, Texas A&M University, College Station, 77843-2471, USA
| | | | | |
Collapse
|
41
|
Wang H, Wen Y, Polan ML, Boostanfar R, Feinman M, Behr B. Regulation of cyclooxygenase activity in cultured endometrial stromal cells by granulocyte-macrophage colony-stimulating factor. Fertil Steril 2006; 85 Suppl 1:1118-24. [PMID: 16616083 DOI: 10.1016/j.fertnstert.2005.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to regulate cyclooxygenase (COX) enzyme activity and prostaglandins (PGs) synthesis, specifically PGE2 production in stromal cells, neither of which have been addressed in the literature. DESIGN Prospective study. SETTING Department of obstetrics and gynecology at a university hospital. PATIENT(S) Human luteal phase endometrium was obtained from surgical specimens (n = 6) for clinical indications. INTERVENTION(S) Confluent stromal cells were stimulated with GM-CSF. MAIN OUTCOME MEASURE(S) Expression of COX mRNA, COX enzyme activity, and PGE2 level in cultured stromal cells. RESULT(S) Confluent stromal cell cultures treated with P and E2 for 9 days were stimulated with GM-CSF. After treatment of 12 hours, low-dose GM-CSF (0.001-0.1 ng/mL) increased COX-2 mRNA levels in stromal cell, whereas high dose GM-CSF (1-100 ng/mL) decreased COX-1 and COX-2 mRNA levels. After treatment of 48 hours, low concentrations of GM-CSF (0.001-0.1 ng/mL) increased total COX and COX-2 enzyme activity, whereas high concentrations of GM-CSF (1-100 ng/mL) inhibited COX and COX-2 activity; The PGE2 levels decreased by 31% to 393.3 pg/mL (P < .05) with concentrations of GM-CSF increasing from 1 ng/mL to 100 ng/mL. CONCLUSION(S) There appeared to be a biphasic pattern of COX-2 enzyme response to GM-CSF with low concentrations increasing activity and high concentrations inhibiting activity. It is possible that GM-CSF may provide critical regulation of PG production in the preimplantation period.
Collapse
Affiliation(s)
- Hongbo Wang
- Huntington Reproductive Center, Westlake Village, California 91361, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Grant-Tschudy KS, Wira CR. Paracrine mediators of mouse uterine epithelial cell transepithelial resistance in culture. J Reprod Immunol 2006; 67:1-12. [PMID: 16213914 DOI: 10.1016/j.jri.2005.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epithelial cell integrity at mucosal surfaces provides an effective physical barrier against potential pathogens that threaten reproductive health. We have used polarized epithelial cells from adult mouse uteri to investigate the roles of TNFalpha and TGFbeta, which are produced by uterine epithelial and stromal cells, and hepatocyte growth factor (HGF), produced by uterine stromal cells, in regulating epithelial cell integrity measured as transepithelial electrical resistance (TER). Exposure of epithelial cells to TNFalpha, TGFbeta, and HGF have profound effects on TER that are different from their known actions on TER at other mucosal surfaces. When incubated with TNFalpha, TER increased in a dose-dependent manner. In contrast, when cells were incubated with TGFbeta, TER was markedly but reversibly suppressed. Interestingly, HGF, when placed in the basolateral compartment, increased TER. Based on these findings, we conclude that TNFalpha, TGFbeta and HGF may play regulatory roles in modulating epithelial cell tight junctions. These studies suggest that factors, such as hormone balance, pathogen exposure as well as pregnancy, which affect cytokine and growth factor secretion, influence epithelial cell barrier protection within the female reproductive tract.
Collapse
Affiliation(s)
- Katherine S Grant-Tschudy
- Department of Physiology, Dartmouth Medical School, Borwell Building, 1 Medical Center Drive, Lebanon, NH 03756-0001 USA
| | | |
Collapse
|
43
|
Yamaji D, Kimura K, Watanabe A, Kon Y, Iwanaga T, Soliman MM, Ahmed MM, Saito M. Bovine hepatocyte growth factor and its receptor c-Met: cDNA cloning and expression analysis in the mammary gland. Domest Anim Endocrinol 2006; 30:239-46. [PMID: 16207523 DOI: 10.1016/j.domaniend.2005.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic cytokine that plays a crucial role in the embryonic and postnatal development of various organs including the mammary gland. We cloned bovine HGF and its c-Met receptor cDNAs, and examined their expression during mammary gland development in dairy cows. The 2.5-kbp HGF cDNA clone contained a 2190 bp open reading frame coding a 730 amino acid protein, while the 4.8-kbp c-Met cDNA clone contained a 4152 bp open reading frame coding a 1384 amino acid protein. The bovine HGF and c-Met sequences exhibited more than 87% identity with those of other mammals. RT-PCR analysis revealed ubiquitous expression of both HGF and c-Met mRNAs in various bovine tissues tested. HGF mRNA was detected only in the inactive stage of bovine mammary gland development and not in the developing, lactating, and involuting stages, while c-Met mRNA was detected in the inactive and involuting stages. Immunohistochemical analysis demonstrated that the c-Met protein was found on mammary epithelial cells in the inactive, developing, and involuting stages, and on myoepithelial cells in all stages. These results suggest pivotal roles of HGF and c-Met in the development of bovine mammary gland.
Collapse
Affiliation(s)
- Daisuke Yamaji
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Armstrong SR, Campbell GR, Campbell JH, Little MH. Establishment of Metanephros Transplantation in Mice Highlights Contributions by Both Nephrectomy and Pregnancy to Developmental Progression. ACTA ACUST UNITED AC 2005; 101:e155-64. [PMID: 16131810 DOI: 10.1159/000087939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 06/08/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been demonstrated that embryonic kidneys (metanephroi) xenotransplanted into the omentum of adult recipients continue to develop and display immune protection due to their more naïve immune presentation. To date, this has been achieved using rat, pig and human metanephroi, with unilateral nephrectomy (UNX) of recipient rats a requisite of renal development. The aim of this study was to adapt this approach for use in mice and examine the parameters affecting successful onward development in this species. METHODS Metanephroi at embryonic age (E) 13.5 were transplanted either onto the body wall, abdominal fat pads or omentum of recipient isogenic C57/Bl6 mice using either sutures or polyglycolic acid mesh. Having established greatest success with polyglycolic acid mesh on the body wall, E12.5 and 15.5 days metanephroi from C57/Bl6 mice were then transplanted onto the body wall of control (non-pregnant non-UNX), UNX or 12.5 days post-coitum pregnant isogenic recipients. After 7 days, implanted tissue was harvested and examined using histology and immunohistochemistry for markers of renal maturation. The mean number of S-shaped bodies and glomeruli per section were recorded and statistically analysed for significant differences between all recipient groups and untransplanted metanephroi. The degree of development was scored qualitatively. RESULTS Transplanted E12.5 metanephroi developed S-shaped bodies and glomeruli in all recipient groups, although there were statistically higher numbers of S-shaped bodies in UNX (n = 2) and pregnant recipients (n = 9) than in control recipients (n = 4). Continued development, as indicated by mature vascularized glomeruli, was only observed in those E15.5 metanephroi transplanted into pregnant recipients (n = 11) with a 15.5-fold increase in S-shaped bodies and 4-fold increase in glomeruli compared with control transplants (n = 12). CONCLUSIONS We have successfully established metanephros transplantation in mice and demonstrated enhancement of onward development of E12.5 metanephroi in response to both pregnancy and UNX. Using E15.5 metanephroi, continued development only occurred in pregnant recipients, implying pregnancy provides an environment conducive to continued organogenesis. This murine assay, when coupled with transgenically-tagged strains of mice, will allow the investigation of the relative contribution of donor and recipient cells to this process.
Collapse
Affiliation(s)
- Shannon R Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
45
|
Grant-Tschudy KS, Wira CR. Hepatocyte growth factor regulation of uterine epithelial cell transepithelial resistance and tumor necrosis factor alpha release in culture. Biol Reprod 2004; 72:814-21. [PMID: 15576826 DOI: 10.1095/biolreprod.104.035618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Underlying stromal cells are essential for the normal development of epithelial cells (ECs) at mucosal surfaces. Recent studies from our laboratory have shown that uterine stromal cells regulate EC integrity, measured as transepithelial resistance (TER) as well as tumor necrosis factor (TNF) alpha alpha secretion by ECs in culture. Using stromal cells in coculture with polarized ECs grown on inserts, we found that stromal cells produce soluble mediators that increase TER and decrease TNFalpha secretion. The purpose of the present study was to identify the mechanisms whereby stromal cells exert their effects on uterine epithelium. We report that hepatocyte growth factor (HGF), a known mesenchymal growth factor that mediates EC proliferation, increases TER but, at the same time, decreases apical TNFalpha release. When ECs and/or stromal cells were incubated with anti-HGF or anti-HGF receptor (HGFR) antibody before HGF, the effects of HGF were blocked. These findings indicate that ECs express the HGFR at their basolateral surfaces and that HGFR mediates the effects of HGF on TER and TNFalpha. Neutralization of stromal cell secretions with antibodies for HGF and HGFR demonstrate that stromal-derived HGF is the mediator of EC TER. In contrast, neither anti-HGF antibody nor HGFR antibody had any effect on stromal cell-induced decreases in TNFalpha secretion. From these results, we conclude that stromal cell regulation of EC TER is mediated through the secretion of stromal HGF. Furthermore, because neutralization of stromal media failed to affect TNFalpha secretion, these findings suggest that other growth factors, in addition to HGF, affect EC cytokine production.
Collapse
|
46
|
Spencer TE, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol 2004; 2:49. [PMID: 15236653 PMCID: PMC471568 DOI: 10.1186/1477-7827-2-49] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 07/05/2004] [Indexed: 11/10/2022] Open
Abstract
Establishment and maintenance of pregnancy results from signaling by the conceptus (embryo/fetus and associated extraembryonic membranes) and requires progesterone produced by the corpus luteum (CL). In most mammals, hormones produced by the trophoblast maintain progesterone production by acting directly or indirectly to maintain the CL. In domestic animals (ruminants and pigs), hormones from the trophoblast are antiluteolytic in that they act on the endometrium to prevent uterine release of luteolytic prostaglandin F2 alpha (PGF). In cyclic and pregnant sheep, progesterone negatively autoregulates expression of the progesterone receptor (PR) gene in the endometrial luminal (LE) and superficial glandular epithelium (GE). Available evidence in cyclic sheep indicates that loss of the PR is closely followed by increases in epithelial estrogen receptors (ER) and then oxytocin receptors (OTR), allowing oxytocin to induce uterine release of luteolytic PGF pulses. In pregnant sheep, the conceptus trophoblast produces interferon tau (IFN tau) that acts on the endometrium to inhibit transcription of the ER alpha gene directly and the OTR gene indirectly to abrogate development of the endometrial luteolytic mechanism. Subsequently, sequential, overlapping actions of progesterone, IFN tau, placental lactogen (PL) and growth hormone (GH) comprise a hormonal servomechanism that regulates endometrial gland morphogenesis and terminal differentiated function to maintain pregnancy in sheep. In pigs, the conceptus trophoblast produces estrogen that alters the direction of PGF secretion from an endocrine to exocrine direction, thereby sequestering luteolytic PGF within the uterine lumen. Conceptus estrogen also increases expression of fibroblast growth factor 7 (FGF-7) in the endometrial LE that, in turn, stimulates proliferation and differentiated functions of the trophectoderm, which expresses the FGF-7 receptor. Strategic manipulation of these physiological mechanisms can offer therapeutic schemes to improve uterine capacity, conceptus survival and reproductive health.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471 USA
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471 USA
| |
Collapse
|
47
|
Spencer TE, Johnson GA, Burghardt RC, Bazer FW. Progesterone and Placental Hormone Actions on the Uterus: Insights from Domestic Animals1. Biol Reprod 2004; 71:2-10. [PMID: 14973264 DOI: 10.1095/biolreprod.103.024133] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Progesterone is unequivocally required for maternal support of conceptus (embryo/fetus and associated extraembryonic membranes) survival and development. In cyclic sheep, progesterone is paradoxically involved in suppressing and then initiating development of the endometrial luteolytic mechanism. In cyclic and pregnant sheep, progesterone negatively autoregulates progesterone receptor (PR) gene expression in the endometrial luminal (LE) and superficial glandular epithelium (GE). In cyclic sheep, PR loss is closely followed by increases in epithelial estrogen receptor (ERalpha) and then oxytocin receptor (OTR), allowing oxytocin to induce uterine release of luteolytic prostaglandin F2alpha pulses. In pregnant sheep, the conceptus produces interferon tau (IFNtau) that acts on the endometrium to inhibit transcription of the ERalpha gene and thus development of the endometrial luteolytic mechanism. After Day 13 of pregnancy, the endometrial epithelia do not express the PR, whereas the stroma and myometrium remain PR positive. The absence of PR in the endometrial GE is required for onset of differentiated function of the glands during pregnancy. The sequential, overlapping actions of progesterone, IFNtau, placental lactogen (PL), and growth hormone (GH) comprise a hormonal servomechanism that regulates endometrial gland morphogenesis and terminal differentiated function during gestation. In pigs, estrogen, the pregnancy-recognition signal, increases fibroblast growth factor 7 (FGF-7) expression in the endometrial LE that, in turn, stimulates proliferation and differentiated functions of the trophectoderm, which expresses the receptor for FGF-7. Strategic manipulation of these physiological mechanisms may offer therapeutic schemes to improve uterine capacity, conceptus survival, and reproductive health of domestic animals and humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Texas A and M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
48
|
Murakami S, Miyamoto Y, Fujiwara C, Takeuchi S, Takahashi S, Okuda K. Expression and action of hepatocyte growth factor in bovine endometrial stromal and epithelial cells in vitro. Mol Reprod Dev 2001; 60:472-80. [PMID: 11746958 DOI: 10.1002/mrd.1112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic growth factor that acts on various epithelial cells. The objectives of this study were to determine whether HGF altered the proliferation and prostaglandin (PG) secretion of bovine endometrial stromal and epithelial cells in vitro. We also observed HGF and HGF receptor (c-met) mRNA expression in cultured bovine endometrial stromal and epithelial cells by RT-PCR. Stromal and epithelial cells obtained from cows in early stage of the estrous cycle (days 2-5) were cultured in DMEM/Ham's F-12 supplemented with 10% calf serum. The cells were exposed to HGF (0-10 ng/ml) for 2, 4, or 6 days. HGF significantly increased the total DNA in epithelial (P < 0.05), but not stromal cells. In another experiment, when the cells reached confluence, the culture medium was replaced with fresh medium with 0.1% BSA containing HGF 0-100 ng/ml and the cells were cultured for 24 hr. The HGF stimulated PGF2alpha secretion in epithelial, but not stromal cells. RT-PCR revealed that mRNA of HGF is expressed only in stromal cells, and that c-met mRNA is expressed in both stromal and epithelial cells. These results suggest that HGF plays roles in the proliferation and the regulation of secretory function of bovine endometrial epithelial cells in a paracrine fashion.
Collapse
Affiliation(s)
- S Murakami
- Laboratory of Reproductive Endocrinology, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res 2001; 73:291-302. [PMID: 11520104 DOI: 10.1006/exer.2001.1040] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corneal wound repair was investigated in rabbits following excimer laser ablation of a 6 mm diameter and 90 microm deep disc. In the healing process particular attention was focused on the epithelium where gap junction expression and the rearrangement of desmosomes and hemidesmosomes were correlated with cell proliferation and epidermal growth factor receptor expression. Immunofluorescence-based confocal laser scanning microscopy, semithin resin section morphology and electron microscopy were utilized. In resting cornea two isotypes of gap junctions, confined to different regions in the same basal epithelial cells, were detected. Particulate connexin43 (alpha1) immunostaining was concentrated on the apical while the connexin26 type (beta2) in the baso-lateral cell membranes. This is the first report of connexin26 in the cornea. Connexin43 was found also in corneal keratocytes and endothelial cell. Since the two connexins do not form functioning heteromeric channels and have selective permeabilities they may serve alternative pathways for direct cell-cell communication in the basal cell layer. During regeneration both connexins were expressed throughout the corneal epithelium including the migrating cells. They also showed transient up-regulation 24 hr after wounding in the form of overlapping relocation to the upper cell layers. At this time, basal epithelial cells at the limbal region, adjacent to the wound and those migrating over the wounded area all expressed membrane bound epidermal growth factor receptor and they were highly proliferating. In conclusion, like in other stratified epithelia connexin26 is also expressed in the cornea. Transient up-regulation and relocation of connexins within the regenerating epithelium may reflect the involvement of direct cell-cell communication in corneal wound healing. Mitotic activity in the migrating corneal epithelial cells is also a novel finding which is probably the sign of the excessive demand for new epithelial cells in larger wounds not met alone by the proliferating limbal stock.
Collapse
|
50
|
Taylor KM, Chen C, Gray CA, Bazer FW, Spencer TE. Expression of messenger ribonucleic acids for fibroblast growth factors 7 and 10, hepatocyte growth factor, and insulin-like growth factors and their receptors in the neonatal ovine uterus. Biol Reprod 2001; 64:1236-46. [PMID: 11259272 DOI: 10.1095/biolreprod64.4.1236] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In sheep, uterine development begins during fetal life but is only completed postnatally with proliferation and branching morphogenetic differentiation of the endometrial glandular epithelium (G) from the luminal epithelium (L) between birth or Postnatal Day (PND) 0 and PND 56. In other epithelial-mesenchymal organs, fibroblast growth factor (FGF)-7 and FGF-10, hepatocyte growth factor (HGF), and insulin-like growth factor (IGF)-I and IGF-II play essential roles in ductal branching morphogenesis. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization analyses were used to study temporal and spatial alterations in expression of mRNAs for growth factors (FGF-7, FGF-10, HGF, IGF-I, IGF-II) and their respective receptors (FGF receptor or FGFR2IIIb, c-met, and IGF-IR) in the developing neonatal ovine uterus. The RT-PCR analyses indicated that expression of FGF-10, HGF, IGF-I, and IGF-II mRNAs increased in the neonatal uterus between PND 1 and 56. In situ hybridization analyses indicated that FGFR2IIIb and c-met mRNAs were expressed solely in uterine L and developing G, whereas IGF-IR was expressed in all uterine cell types, with highest levels in L and developing G. Both IGF-I and IGF-II mRNAs were expressed in the endometrial stroma and myometrium, with IGF-I predominantly in the intercaruncular endometrial stroma. The highest levels of IGF-I and IGF-II mRNA expression were detected in the intercaruncular endometrial stroma surrounding the nascent and proliferating glands. Immunohistochemistry revealed that phosphorylated extracellular regulated kinases-1 and -2 were most abundantly expressed in the nascent and proliferating glands of the developing neonatal uterine wall. These results implicate FGF-7, FGF-10, HGF, IGF-I, IGF-II, and their epithelial receptors in epithelial-mesenchymal interactions regulating endometrial gland morphogenesis in the neonatal sheep uterus.
Collapse
Affiliation(s)
- K M Taylor
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|