1
|
Aljuhani M. Cerebrospinal fluid levels of tumour necrosis factor- α and its receptors are not associated with disease progression in Alzheimer's disease. Front Aging Neurosci 2025; 17:1547185. [PMID: 40297494 PMCID: PMC12034661 DOI: 10.3389/fnagi.2025.1547185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Tumour necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in the regulation of innate and adaptive immunity. Two receptors exist for TNF-α: TNF receptors 1 (TNFR-1) and 2 (TNFR-2). TNFR-1 and TNFR-2 have been reported to be involved in pleiotropic functions. Multiple lines of evidence implicate TNF-α and its receptors as potential risk factors for Alzheimer's disease (AD). Studies are warranted to assess the association of TNF-α, TNFR-1, and TNFR-2 with AD pathogenesis and whether they can serve as prognostic biomarkers indicative of AD. Methods In the present study, baseline levels of cerebrospinal fluid (CSF) TNF-α, TNFR-1, and TNFR-2 were explored, and their potential as biomarkers to differentiate between individuals who remain stable and those who experience disease progression over 10 years in the Alzheimer's Disease Neuroimaging Initiative (ADNI) was assessed. The study also examined the correlation between baseline CSF proteins with established AD biomarkers, neuroimaging measures, and cognition. Results Whilst the present study shows associations between baseline CSF levels of TNFs with AD biomarkers, the nature of the relationship is ambiguous. Discussion The present study concludes that CSF TNFs do not serve as reliable or robust disease biomarkers of AD.
Collapse
Affiliation(s)
- Manal Aljuhani
- Radiological Science and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Nakamichi A, Kimura N, Hanaoka T, Masuda T, Ataka T, Matsubara E. Association between plasma cytokine levels and multiple neuroimaging modalities in mild cognitive impairment. J Alzheimers Dis 2025; 104:129-137. [PMID: 39956962 DOI: 10.1177/13872877251315181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BackgroundThe relationship between peripheral cytokines and neuroimaging biomarkers for Alzheimer's disease (AD) is not yet well established.ObjectiveTo determine the association of cytokine plasma levels with brain amyloid deposition, cortical glucose metabolism, hippocampal volume, and white matter lesions (WMLs) in older adults with mild cognitive impairment (MCI).MethodsWe recruited 50 older individuals with amnestic MCI (25 men and 25 women; median age, 75 years) and performed plasma analysis, 11C-Pittsburgh compound-B positron-emission tomography (PiB-PET), 18F-fluorodeoxyglucose positron-emission tomography, and magnetic resonance imaging. Global PiB and fluorodeoxyglucose (FDG) uptake were assessed by the ratio of the voxel number-weighted average of the mean uptake in the frontal, temporoparietal, and posterior cingulate, in reference to the cerebellum. The Fazekas scale was used to evaluate WMLs. Plasma levels of 48 cytokines were simultaneously measured with bead-based multiplex assays.ResultsThe plasma levels of IL-2Ra, IL-3, IL-5, IL-7, IL-9, IL-16, IL-18, fibroblast growth factor (FGF-basic), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage inflammatory protein-1α (MIP-1α), regulated on activation, normal T-cell expressed and secreted (RANTES), tumor necrosis factor-α (TNF-α), cutaneous T-cell attracting chemokine (CTACK), growth-regulated oncogene α (GROα), hepatocyte growth factor (HGF), interferon-α2 (IFN-α2), leukemia inhibitory factor (LIF), monocyte chemoattractant protein-3 (MCP-3), β-nerve growth factor (β-NGF), stem cell factor (SCF), stem cell growth factor-β (SCGF-β), and TNF-related apoptosis-inducing ligand (TRAIL) were significantly associated with global PiB uptake, whereas those of IL-7 and GROα were significantly associated with hippocampal volume after covariate adjustment and false discovery rate correction.ConclusionsPlasma cytokines are associated with brain amyloid deposition rather than brain dysfunction or hippocampal atrophy. Moreover, cytokines may play important roles in early-stage AD pathophysiology.
Collapse
Affiliation(s)
- Atsuhito Nakamichi
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takuya Hanaoka
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takuya Ataka
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
3
|
Bian R, Xiang L, Su Z. Harnessing the benefits of physical exercise-induced melatonin: a potential promising approach to combat Alzheimer's disease by targeting beta-amyloid (Aβ). Hormones (Athens) 2025; 24:3-13. [PMID: 39312178 DOI: 10.1007/s42000-024-00602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurogenerative disease that impairs cognition, learning, behavior, and memory. The aberrant accumulation of extracellular amyloid-β (Aβ) plaques is a characteristic of AD. It has been demonstrated that melatonin exerts a significant role in AD prevention and treatment via its antioxidant effects, reducing neuroinflammation, and Aβ. Moreover, studies have shown that physical exercise (PE) is not only a promising non-pharmacological strategy for AD prevention and treatment but can also lead to an increase in melatonin levels. Hence, we hypothesized that PE can contribute to AD prevention and treatment by increasing melatonin levels and reducing Aβ accumulation, enhancing Aβ clearance, and modulating inflammation in these patients. However, the mechanisms by which PE increases melatonin synthesis and the cellular and molecular mechanisms of actions of melatonin in AD prevention and treatment have not to date been completely understood. Therefore, in the future, further investigations are required to elucidate the underlying mechanisms, optimize intervention strategies, identify biomarkers, and validate findings through clinical trials. Understanding the potential of exercise-induced melatonin in AD holds promise for innovative therapeutic interventions and future directions in AD research.
Collapse
Affiliation(s)
- Rui Bian
- Henan Police College, Zhengzhou, Henan, 450046, China.
| | - Lijuan Xiang
- Faculty of Physical Education, Beijing Normal University, Beijing, China
| | - Zhang Su
- Faculty of Physical Education, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Bernier RA, Sundermann EE, Edland SD, Deters KD, Shepherd AL, Clark AL, Shiroma EJ, Banks SJ. Exercise: Just What the Doctor Ordered, But Why? Elucidating Mechanisms for Women's Increased High-Density Lipoprotein Benefit From Exercise and for the Health ABC Study. J Appl Gerontol 2024; 43:1939-1949. [PMID: 38835249 DOI: 10.1177/07334648241257995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
High-density lipoprotein (HDL) is protective against cardiovascular disease. Exercise can increase HDL concentration, and some evidence suggests that this effect occurs more strongly in women than in men. Both HDL and exercise are associated with inflammation. We hypothesized a sex-by-exercise interaction on HDL level, whereby women would benefit from exercise more strongly than men, and tumor necrosis factor alpha and serum soluble tumor necrosis factor receptor-2 would mediate this relationship. This study included 2,957 older adult participants (1,520 women; 41% Black, 59% White; 73.6-years-old) from the Health, Aging, and Body Composition study. Regression models revealed a positive exercise-HDL relationship in women only (sex-by-exercise interaction: β = 0.09, p = .013; exercise on HDL in women: β = 0.07, p = .015), mediated by TNFα (axb = 0.15; CI: 0.01, 0.30), suggesting that exercise may increase HDL levels in women through reduced inflammation. Given that vascular risk contributes to Alzheimer's disease risk, findings have implications for sex differences in AD risk factors.
Collapse
Affiliation(s)
- Rachel A Bernier
- University of California, San Diego, San Diego, CA, USA
- Wentworth-Douglass Hospital Mass General Brigham, Dover, NH, USA
| | | | | | - Kacie D Deters
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Alexandra L Clark
- VA San Diego Healthcare System, La Jolla, CA, USA
- University of Texas at Austin, Austin, TX, USA
| | - Eric J Shiroma
- National Institute on Aging, National Institutes of Health, Washington, DC, USA
| | - Sarah J Banks
- University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Tavares J, Oliveira AV, de Souza Nascimento T, Gomes JMP, Parente ACB, Bezerra JR, da Costa MDR, de Aguiar MSS, Sampaio TL, Lima FAV, de Barros Viana GS, de Andrade GM. Aqueous extract of Spirulina exerts neuroprotection in an experimental model of Alzheimer sporadic disease in mice induced by Streptozotocin. Metab Brain Dis 2024; 40:26. [PMID: 39565401 DOI: 10.1007/s11011-024-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes gradual memory loss and cognitive impairment. Intracerebroventricular injections of streptozotocin (ICV-STZ) have been used as an experimental model of sporadic Alzheimer's disease (SAD) because they produce deficits in brain insulin signaling, oxidative stress, neuroinflammation, and neurodegeneration, resulting in cognitive decline and memory impairment. Spirulina platensis (SPI) is a nutraceutical with anti-inflammatory, antioxidant, and neuroprotective properties. The objective of this work was to study the effects of SPI on cognitive deficits and neuronal damage in mice submitted to the experimental model of SAD induced by ICV-STZ. Male Swiss mice (25-35 g) received ICV-STZ (3 mg/Kg) bilaterally on days 1 and 3, SPI (50 and 100 mg/Kg, o.p.) or vehicle (saline) was administered 2 h after the second surgery, and once a day for 16 days. SPI treatment prevented working, episodic, spatial, and aversive memory deficits. Locomotor activity was not altered. ICV-STZ caused an increase in MDA, nitrite, and superoxide anion, while decreasing GSH. SPI treatment protected against GSH increase in the prefrontal cortex and hippocampus, and inhibited AChE activity in the prefrontal cortex. SPI prevented astrogliosis and microgliosis induced by ICV-STZ. These findings highlight the therapeutic potential of SPI for the treatment of SAD, indicating that its neuroprotective action is linked to antioxidant, anti-inflammatory, and AChE inhibitory activity.
Collapse
Affiliation(s)
- Juliete Tavares
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Alfaete Vieira Oliveira
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Tyciane de Souza Nascimento
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Jessica Maria Pessoa Gomes
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Ana Caroline Barros Parente
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Jessica Rabelo Bezerra
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Mac Dionys Rodrigues da Costa
- Postgraduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil.
| | - Tiago Lima Sampaio
- Postgraduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Francisco Arnaldo Viana Lima
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Glauce Socorro de Barros Viana
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil.
- Department of Physiology and Pharmacology, School of Medicine Federal, University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| |
Collapse
|
6
|
Lin YY, Chang WH, Hsieh SL, Cheng IHJ. The deficient CLEC5A ameliorates the behavioral and pathological deficits via the microglial Aβ clearance in Alzheimer's disease mouse model. J Neuroinflammation 2024; 21:273. [PMID: 39443966 PMCID: PMC11515658 DOI: 10.1186/s12974-024-03253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that causes cognitive dysfunction in older adults. One of the AD pathological factors, β-Amyloid (Aβ), triggers inflammatory responses and phagocytosis of microglia. C-type lectin domain family 5 member A (CLEC5A) induces over-reactive inflammatory responses in several virus infections. Yet, the role of CLEC5A in AD progression remains unknown. This study aimed to elucidate the contribution of CLEC5A to Aβ-induced microglial activation and behavioral deficits. METHODS The AD mouse model was crossed with Clec5a knockout mice for subsequent behavioral and pathological tests. The memory deficit was revealed by the Morris water maze, while the nociception abnormalities were examined by the von Frey filament and hotplate test. The Aβ deposition and microglia recruitment were identified by ELISA and immunohistochemistry. The inflammatory signals were identified by ELISA and western blotting. In the Clec5a knockdown microglial cell model and Clec5a knockout primary microglia, the microglial phagocytosis was revealed using the fluorescent-labeled Aβ. RESULTS The AD mice with Clec5a knockout improved Aβ-induced memory deficit and abnormal nociception. These mice have reduced Aβ deposition and increased microglia coverage surrounding the amyloid plaque, suggesting the involvement of CLEC5A in AD progression and Aβ clearance. Moreover, the phagocytosis was also increased in the Aβ-stressed Clec5a knockdown microglial cell lines and Clec5a knockout primary microglia. CONCLUSION The Clec5a knockout ameliorates AD-like deficits by modulating microglial Aβ clearance. This study implies that targeting microglial Clec5a could offer a promising approach to mitigate AD progression.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/metabolism
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Microglia/metabolism
- Microglia/pathology
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/genetics
- Mice
- Amyloid beta-Peptides/metabolism
- Disease Models, Animal
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Mice, Transgenic
- Maze Learning/physiology
- Phagocytosis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- Yu-Yi Lin
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.
- Institute of Clinical Medicine, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniweski TM, de Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. Immun Ageing 2024; 21:32. [PMID: 38760856 PMCID: PMC11100119 DOI: 10.1186/s12979-024-00435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ + (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Sean R Jacobson
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeffrey S Berger
- Divisions of Cardiology and Hematology, Department of Medicine, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Alok Vedvyas
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Karyn Marsh
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Tianshe He
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | | | - Nathanael R Fillmore
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Gonzalez
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Luisa Figueredo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Naomi L Gaggi
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Chelsea Reichert Plaska
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
| | - Nunzio Pomara
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Esther Blessing
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
| | - Rebecca Betensky
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Radiology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Lidia Glodzik
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Wisniweski
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA
- Department of Neurology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Retired director of Center for Brain Health, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- Nathan Kline Institute, 140 Old Orangeburg Rd, Orangeburg, NY, 10962, USA.
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, Division of Brain Aging, 145 East 32Nd Street, New York, NY, 10016, USA.
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
8
|
Hickey JP, Collins AE, Nelson ML, Chen H, Kalisch BE. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4379-4402. [PMID: 38785534 PMCID: PMC11120237 DOI: 10.3390/cimb46050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.
Collapse
Affiliation(s)
| | | | | | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.H.); (A.E.C.); (M.L.N.); (H.C.)
| |
Collapse
|
9
|
Jacobs T, Jacobson SR, Fortea J, Berger JS, Vedvyas A, Marsh K, He T, Gutierrez-Jimenez E, Fillmore NR, Bubu OM, Gonzalez M, Figueredo L, Gaggi NL, Plaska CR, Pomara N, Blessing E, Betensky R, Rusinek H, Zetterberg H, Blennow K, Glodzik L, Wisniewski TM, Leon MJ, Osorio RS, Ramos-Cejudo J. The neutrophil to lymphocyte ratio associates with markers of Alzheimer's disease pathology in cognitively unimpaired elderly people. RESEARCH SQUARE 2024:rs.3.rs-4076789. [PMID: 38559231 PMCID: PMC10980096 DOI: 10.21203/rs.3.rs-4076789/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-β42 (Aβ42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aβ-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aβ42 (β=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (β = 26.812, p = 0.019) and p-tau (β = 3.441, p = 0.015), but not Aβ42. In the NYU cohort alone, subjects classified as Aβ+ (n = 38) displayed a stronger association between the NLR and t-tau (β = 100.476, p = 0.037) compared to Aβ- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions We report associations between the NLR and Aβ42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.
Collapse
Affiliation(s)
- Tovia Jacobs
- New York University (NYU) Grossman School of Medicine
| | | | - Juan Fortea
- Hospital de la Santa Creu y Sant Pau, Universitat Autònoma de Barcelona
| | | | - Alok Vedvyas
- New York University (NYU) Grossman School of Medicine
| | - Karyn Marsh
- New York University (NYU) Grossman School of Medicine
| | - Tianshe He
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | | | - Naomi L Gaggi
- New York University (NYU) Grossman School of Medicine
| | | | - Nunzio Pomara
- New York University (NYU) Grossman School of Medicine
| | | | | | - Henry Rusinek
- New York University (NYU) Grossman School of Medicine
| | | | | | | | | | - Mony J Leon
- New York University (NYU) Grossman School of Medicine
| | | | | |
Collapse
|
10
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2024; 39:55-62. [PMID: 38161072 DOI: 10.1016/j.nrleng.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
11
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
12
|
Abd Elmonem HA, Morsi RM, Mansour DS, El-Sayed ESR. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer's disease via acetylcholinesterase inhibition and oxidative stress reduction. Biometals 2023; 36:1391-1404. [PMID: 37556014 PMCID: PMC10684416 DOI: 10.1007/s10534-023-00525-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is one of the primary health problems linked to the decrease of acetylcholine in cholinergic neurons and elevation in oxidative stress. Myco-fabrication of ZnO-NPs revealed excellent biological activities, including anti-inflammatory and acetylcholinesterase inhibitory potentials. This study aims to determine if two distinct doses of myco-fabricated ZnO-NPs have a positive impact on behavioral impairment and several biochemical markers associated with inflammation and oxidative stress in mice that have been treated by aluminum chloride (AlCl3) to induce AD. Sixty male mice were haphazardly separated into equally six groups. Group 1 was injected i.p. with 0.5 ml of deionized water daily during the experiment. Mice in group 2 received AlCl3 (50 mg/kg/day i.p.). Groups 3 and 4 were treated i.p. with 5 and 10 mg/kg/day of ZnO-NPs only, respectively. Groups 5 and 6 were given i.p. 5 and 10 mg/kg/day ZnO-NPs, respectively, add to 50 mg/kg/day AlCl3. Results showed that the AlCl3 caused an increase in the escape latency time and a reduction in the time spent in the target quadrant, indicating a decreased improvement in learning and memory. Moreover, acetylcholinesterase enzyme (AChE) activity and malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) levels were significantly increased, and the content of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of serotonin and dopamine, were decreased in brain tissues only in AlCl3 treated mice. However, treatment of mice with myco-fabrication of ZnO-NPs at doses of 5 or 10 mg/kg improves learning and memory function through ameliorate all the previous parameters in the AD mice group. The low dose of 5 mg/kg is more effective than a high dose of 10 mg/kg. In accordance with these findings, myco-fabricated ZnO-NPs could enhance memory and exhibit a protective influence against memory loss caused by AlCl3.
Collapse
Affiliation(s)
- Hanan A Abd Elmonem
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Reham M Morsi
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Doaa S Mansour
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
13
|
Cazzaro S, Woo JAA, Wang X, Liu T, Rego S, Kee TR, Koh Y, Vázquez-Rosa E, Pieper AA, Kang DE. Slingshot homolog-1-mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2217128120. [PMID: 37463212 PMCID: PMC10374160 DOI: 10.1073/pnas.2217128120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-β accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Jung-A A. Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Shanon Rego
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Teresa R. Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
- Brain Health Medicines, Center Harrington Discovery Institute, Cleveland, OH44106
| | - David E. Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
| |
Collapse
|
14
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
15
|
Huang Z. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. J Alzheimers Dis 2023; 92:29-57. [PMID: 36710681 PMCID: PMC10023438 DOI: 10.3233/jad-221042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyloid-β protein precursor (AβPP) gives rise to amyloid-β (Aβ), a peptide at the center of Alzheimer's disease (AD). AβPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aβ/AβPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aβ/AβPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aβ to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aβ oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aβ and AβPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Padovani A, Canale A, Schiavon L, Masciocchi S, Imarisio A, Risi B, Bonzi G, De Giuli V, Di Luca M, Ashton NJ, Blennow K, Zetterberg H, Pilotto A. Is amyloid involved in acute neuroinflammation? A CSF analysis in encephalitis. Alzheimers Dement 2022; 18:2167-2175. [PMID: 35084105 PMCID: PMC9787884 DOI: 10.1002/alz.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Several investigations have argued for a strong relationship between neuroinflammation and amyloid metabolism but it is still unclear whether inflammation exerts a pro-amyloidogenic effect, amplifies the neurotoxic effect of amyloid, or is protective. METHODS Forty-two patients with acute encephalitis (ENC) and 18 controls underwent an extended cerebrospinal fluid (CSF) panel of inflammatory, amyloid (Aβ40, 42, and 38, sAPP-α, sAPP-β), glial, and neuronal biomarkers. Linear and non-linear correlations between CSF biomarkers were evaluated studying conditional independence relationships. RESULTS CSF levels of inflammatory cytokines and neuronal/glial markers were higher in ENC compared to controls, whereas the levels of amyloid-related markers did not differ. Inflammatory markers were not associated with amyloid markers but exhibited a correlation with glial and neuronal markers in conditional independence analysis. DISCUSSION By an extensive CSF biomarkers analysis, this study showed that an acute neuroinflammation state, which is associated with glial activation and neuronal damage, does not influence amyloid homeostasis.
Collapse
Affiliation(s)
- Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Antonio Canale
- Department of Statistical SciencesUniversity of PadovaPadovaItaly
| | - Lorenzo Schiavon
- Department of Statistical SciencesUniversity of PadovaPadovaItaly
| | - Stefano Masciocchi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Barbara Risi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Giulio Bonzi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Monica Di Luca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden,Institute of PsychiatryPsychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteKing's College LondonLondonUK,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseasesUCL Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK
| | - Andrea Pilotto
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
18
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
19
|
APOE4 drives inflammation in human astrocytes via TAGLN3 repression and NF-κB activation. Cell Rep 2022; 40:111200. [PMID: 35977506 DOI: 10.1016/j.celrep.2022.111200] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 01/04/2023] Open
Abstract
Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated. Leveraging induced pluripotent stem cell (iPSC)-based strategies, we demonstrate that APOE controls inflammation in human astrocytes by regulating Transgelin 3 (TAGLN3) expression and, ultimately, nuclear factor κB (NF-κB) activation. We uncover that APOE4 specifically downregulates TAGLN3, involving histone deacetylases activity, which results in low-grade chronic inflammation and hyperactivated inflammatory responses. We show that APOE4 exerts a dominant negative effect to prime astrocytes toward a pro-inflammatory state that is pharmacologically reversible by TAGLN3 supplementation. We further confirm that TAGLN3 is downregulated in the brain of patients with sAD. Our findings highlight the APOE-TAGLN3-NF-κB axis regulating neuroinflammation in human astrocytes and reveal TAGLN3 as a molecular target to modulate neuroinflammation, as well as a potential biomarker for AD.
Collapse
|
20
|
Azmi NH, Ismail N, Imam MU, Ooi DJ, Oslan SNH. Modulation of High-Fat Diet-Induced Brain Oxidative Stress by Ferulate-Rich Germinated Brown Rice Ethyl Acetate Extract. Molecules 2022; 27:molecules27154907. [PMID: 35956857 PMCID: PMC9369880 DOI: 10.3390/molecules27154907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress resulting from the production of reactive oxygen species plays a vital role in inflammatory processes and is associated with neurodegenerative changes. In view of the ability of germinated brown rice (GBR) to improve learning and memory, this present study aimed to investigate the mechanistic basis of GBR’s neuroprotection in a high-fat diet (HFD)-induced oxidative changes in adult Sprague–Dawley rats. Ferulate-rich GBR ethyl acetate extract (GBR-EA; 100 mg/kg and 200 mg/kg body weight) was supplemented orally for the last 3 months of 6 months HFD feeding during the study. GBR-EA supplementation was found to improve lipid profile and serum antioxidant status, when compared to the HFD group. Elevated mRNA expressions of SOD1, SOD2, SOD3, Catalase, and GPX were demonstrated in the frontal cortex and hippocampus of GBR-EA treated animals. The pro-inflammatory changes induced by HFD in the hippocampus were attenuated by GBR-EA through the downregulation of CRP and TNF- α and upregulation of PPAR-γ. GBR also reduced the hippocampal mRNA expression and enzyme level of acetylcholinesterase. In conclusion, this study proposed the possible transcriptomic regulation of antioxidant and inflammation in neurodegenerative processes resulting from high cholesterol consumption, with an emphasis on GBR’s potential to ameliorate such changes.
Collapse
Affiliation(s)
- Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (N.H.A.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: (N.H.A.); (N.I.)
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria;
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
21
|
Mao S, Huang CP, Lan H, Lau HG, Chiang CP, Chen YW. Association of periodontitis and oral microbiomes with Alzheimer’s disease: A narrative systematic review. J Dent Sci 2022; 17:1762-1779. [PMID: 36299333 PMCID: PMC9588805 DOI: 10.1016/j.jds.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. The etiology for AD includes age, genetic susceptibility, neuropathology, and infection. Periodontitis is an infectious and inflammatory disease which mainly causes alveolar bone destruction and tooth loss. The evidence of a link between AD and periodontitis remains controversial. Thus far, studies reviewing the association between AD and periodontal disease have been insufficient from the viewpoint of the oral microbiome. The aim of this review was to focus on studies that have explored the relationship between the oral microbiome and AD development by using the next-generation sequencing technique. Materials and methods A comprehensive electronic search of MEDLINE via PubMed, EMBASE, Scopus, and Google Scholar was conducted. The keywords included dementia, Alzheimer’s disease, cognitive impairment, periodontitis, periodontal disease, and oral microbiome. Results This review included 26 articles based on the eligibility criteria. Epidemiologic researches and post-mortem studies showed that the presence of periodontitis is associated with cognitive decline, suggesting a possible role of periodontal pathogens in the pathogenesis of AD. The reported microbiome was inconsistent with those in gene sequencing studies. Nevertheless, Gram-negative species may be possible candidates. Conclusion This review suggests that periodontal infection is associated with AD. The contributing microbiome remains unconfirmed, possibly because of different microbiome sampling sites or methods. Additional large-scale studies with periodontal intervention and longitudinal follow-up are warranted to clarify the relationship between periodontal disease and AD.
Collapse
|
22
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sanjay, Kim JY. Anti-inflammatory effects of 9-cis-retinoic acid on β-amyloid treated human microglial cells. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221143651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective: Alzheimer’s disease (AD) is a neurodegenerative disease that abolishes cognitive and analytical abilities to perform basic day-to-day tasks. Microglia are involved in AD-associated neuroinflammation in response to amyloid β‐peptide (Aβ). This study focused on observing the immunomodulatory effects of 9-cis-retinoic acid (9-Cis-RA) the active metabolite of vitamin A, on Aβ-treated human microglial HMO6 cells. Methods: HMO6 cells were treated with Aβ42 in the absence or presence of 9-cis-RA, and the expression of M1-and M2-associated molecules, Toll like receptors (TLRs), and triggering receptor expressed on myeloid cells 2 (TREM2) were examined. Results: The levels of M1-markers [cluster of differentiation (CD86) and inducible nitric oxide synthase (iNOS)] and -cytokines [tumor necrosis factor (TNF-α), interleukin (IL)-6, and IL-1β], inflammatory receptors (TLR2 and TLR4), and reactive oxygen species increased significantly in Aβ-treated HMO6 cells. In contrast, the levels of M2-markers (CD206 and arginase-1) and -cytokines (IL-10, IL-4, and C-C motif chemokine ligand 17) the anti-inflammatory receptor TLR10 was significantly suppressed. However, 9-cis-RA treatment reversed the Aβ-induced upregulation of expression of M1-associated molecules and upregulated the expression of M2-associated molecules. Moreover, 9-cis-RA treatment augmented Aβ uptake by HMO6 cells, possibly by increasing the cell surface protein levels of TREM2, which is a receptor of Aβ that promotes Aβ phagocytosis by microglia. Conclusion: Our results suggest that 9-cis-RA is a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Sanjay
- Department of Life Science, Gachon University, Seongnam, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
24
|
Patel A, Kimura R, Fu W, Soudy R, MacTavish D, Westaway D, Yang J, Davey RA, Zajac JD, Jhamandas JH. Genetic Depletion of Amylin/Calcitonin Receptors Improves Memory and Learning in Transgenic Alzheimer's Disease Mouse Models. Mol Neurobiol 2021; 58:5369-5382. [PMID: 34312771 PMCID: PMC8497456 DOI: 10.1007/s12035-021-02490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Based upon its interactions with amyloid β peptide (Aβ), the amylin receptor, a class B G protein-coupled receptor (GPCR), is a potential modulator of Alzheimer's disease (AD) pathogenesis. However, past pharmacological approaches have failed to resolve whether activation or blockade of this receptor would have greater therapeutic benefit. To address this issue, we generated compound mice expressing a human amyloid precursor protein gene with familial AD mutations in combination with deficiency of amylin receptors produced by hemizygosity for the critical calcitonin receptor subunit of this heterodimeric GPCR. These compound transgenic AD mice demonstrated attenuated responses to human amylin- and Aβ-induced depression of hippocampal long-term potentiation (LTP) in keeping with the genetic depletion of amylin receptors. Both the LTP responses and spatial memory (as measured with Morris water maze) in these mice were improved compared to AD mouse controls and, importantly, a reduction in both the amyloid plaque burden and markers of neuroinflammation was observed. Our data support the notion of further development of antagonists of the amylin receptor as AD-modifying therapies.
Collapse
Affiliation(s)
- Aarti Patel
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ryoichi Kimura
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University, Yamaguchi , 756-0884, Japan
| | - Wen Fu
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Rania Soudy
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - David MacTavish
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - David Westaway
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Jing Yang
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Rachel A Davey
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jeffrey D Zajac
- Department of Medicine, University of Melbourne, Austin HealthHeidelberg, VIC, 3074, Australia
| | - Jack H Jhamandas
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
25
|
Werber T, Bata Z, Vaszine ES, Berente DB, Kamondi A, Horvath AA. The Association of Periodontitis and Alzheimer's Disease: How to Hit Two Birds with One Stone. J Alzheimers Dis 2021; 84:1-21. [PMID: 34511500 DOI: 10.3233/jad-210491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment in the elderly. Recent evidence suggests that preventive interventional trials could significantly reduce the risk for development of dementia. Periodontitis is the most common dental disease characterized by chronic inflammation and loss of alveolar bone and perialveolar attachment of teeth. Growing number of studies propose a potential link between periodontitis and neurodegeneration. In the first part of the paper, we overview case-control studies analyzing the prevalence of periodontitis among AD patients and healthy controls. Second, we survey observational libraries and cross-sectional studies investigating the risk of cognitive decline in patients with periodontitis. Next, we describe the current view on the mechanism of periodontitis linked neural damage, highlighting bacterial invasion of neural tissue from dental plaques, and periodontitis induced systemic inflammation resulting in a neuroinflammatory process. Later, we summarize reports connecting the four most common periodontal pathogens to AD pathology. Finally, we provide a practical guide for further prevalence and interventional studies on the management of cognitively high-risk patients with and without periodontitis. In this section, we highlight strategies for risk control, patient information, dental evaluation, reporting protocol and dental procedures in the clinical management of patients with a risk for periodontitis and with diagnosed periodontitis. In conclusion, our review summarizes the current view on the association between AD and periodontitis and provides a research and intervention strategy for harmonized interventional trials and for further case-control or cross-sectional studies.
Collapse
Affiliation(s)
- Tom Werber
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Bata
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Eniko Szabo Vaszine
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
27
|
Daroi PA, Dhage SN, Juvekar AR. p-Coumaric acid mitigates lipopolysaccharide induced brain damage via alleviating oxidative stress, inflammation and apoptosis. J Pharm Pharmacol 2021; 74:556-564. [DOI: 10.1093/jpp/rgab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Systemic administration of lipopolysaccharide induces neuroinflammation leading to cognitive deficit and memory impairment. Herein, we investigated the effects of p-Coumaric acid (PCA) in LPS induced neuroinflammation in mice. PCA is reported to possess free radicle scavenging and neuroprotective action.
Methods
Mice received treatment with PCA (80 mg/kg, and 100 mg/kg, p.o.) for 28 days. LPS (0.25 mg/kg) was administered intraperitoneally from Day 15 to 21, to all groups. Memory impairment and cognitive deficit were assessed by MWM and Y maze test, followed by estimation of ROS, TNF-α, IL-6, caspase-3 and c-Jun in the brain homogenate by ELISA. Histopathological changes were investigated using Nissl and H&E staining.
Key findings
PCA attenuated increased oxidative stress, significantly increasing SOD, GSH levels and decreasing MDA level and AChE activity in mice brain, lowered the levels of TNF-α and IL-6 indicating protection against neuroinflammatory reaction. PCA also suppressed neuronal apoptosis, as indicated by decreased levels of caspase-3 and c-Jun. Further, histopathological findings revealed that PCA attenuated neuronal loss and pathological abnormalities in the hippocampus.
Conclusions
Our findings give compulsive evidence suggesting a protective effect of PCA in neuroinflammation, cognitive impairment and neuronal apoptosis induced by LPS, through its antioxidant, AChE inhibitory, anti-inflammatory and antiapoptotic activity determined by behavioural, biochemical and histopathological measures.
Collapse
Affiliation(s)
- Pratibha Atul Daroi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Shrikant Ninaji Dhage
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Archana Ramesh Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
28
|
Fu P, Zhu B, Huang Y, On behalf of Alzheimer’s Disease Neuroimaging Initiative. CSF TNF-α Levels Were Associated with Longitudinal Change in Brain Glucose Metabolism Among Non-Demented Older People. Neuropsychiatr Dis Treat 2021; 17:1659-1666. [PMID: 34079263 PMCID: PMC8165210 DOI: 10.2147/ndt.s291020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Emerging studies have suggested that tumor necrosis factor-alpha (TNF-α) is implicated in the pathogenesis of Alzheimer's disease (AD), and that cerebral glucose hypometabolism is a key feature of AD. However, the association of CSF TNF-α levels with changes in cerebral glucose metabolism has not been studied among non-demented older people. PATIENTS AND METHODS At baseline, there were a total of 214 non-demented older people from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We examined the cross-sectional and longitudinal associations of CSF TNF-α with global cognition (as assessed by mini-mental state examination), verbal memory (as assessed by Rey Auditory Verbal Learning Test-total learning score), and cerebral glucose metabolism (as measured by FDF-PET). Linear mixed-effects models were used to examine the longitudinal association of CSF TNF- α with change in each outcome over time with adjustment of age, educational level, gender, and APOE4 status. RESULTS In the cross-sectional study, CSF TNF-α was negatively associated with MMSE scores, but not verbal memory or FDG-PET. In the longitudinal study, higher CSF TNF- α at baseline was associated with a faster decline in cerebral glucose metabolism, but not MMSE scores or RAVLT total learning scores. CONCLUSION Higher CSF TNF-α levels were associated with a steeper decline in cerebral glucose metabolism among non-demented older people.
Collapse
Affiliation(s)
- Pan Fu
- Department of Neurology, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Bihong Zhu
- Department of Neurology, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Yangping Huang
- Department of Neurology, Taizhou First People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | | |
Collapse
|
29
|
Network-based analysis on genetic variants reveals the immunological mechanism underlying Alzheimer's disease. J Neural Transm (Vienna) 2021; 128:803-816. [PMID: 33909139 DOI: 10.1007/s00702-021-02337-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive function and loss of memory. Previous studies indicate an essential role of immune response in AD, but the detailed mechanisms remain unclear. In this study, we obtained 1664 credible risk variants (CRVs) based on the most significant SNP detected by International Genomics of Alzheimer's Project, from which 99 genes (CRVs-related genes) were identified. Function analysis revealed that these genes were mainly involved in immune response and amyloid-β and its precursor metabolisms, indicating a potential role of immune response in regulating neurobiological processes in the etiology of neurodegenerative disease. Pathway crosstalk analysis revealed the complicated connections between immune-related pathways. Further, we found that the CRVs-related genes showed temporal-specific expression in the thalamus in adolescence developmental period. Cell type-specific expression analysis found that CRVs-related genes might be specifically expressed in brain cells such as astrocytes and oligodendrocytes. Protein-protein interaction network analysis identified the highly interconnected 'hub' genes, all of which were susceptible loci of AD. These results indicated that the CRVs may exert a potential influence in AD by regulating immune response, thalamus development, astrocytes activities, and amyloid-β binding. Our results provided hints for further experimental verification of AD pathophysiology.
Collapse
|
30
|
Leblhuber F, Steiner K, Geisler S, Fuchs D, Gostner JM. On the Possible Relevance of Bottom-up Pathways in the Pathogenesis of Alzheimer's Disease. Curr Top Med Chem 2021; 20:1415-1421. [PMID: 32407280 DOI: 10.2174/1568026620666200514090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer's disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Jiang Y, Li K, Li X, Xu L, Yang Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem Biol Interact 2021; 341:109452. [PMID: 33785315 DOI: 10.1016/j.cbi.2021.109452] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Current strategies for the treatment of Alzheimer's disease (AD) focus on the pathology in the later stages of disease progression. Early microglia abnormality and β-amyloid (Aβ) deposition trigger disease development before identical symptoms emerge, which leads to poor clinical treatment effects in the later stages. In the early stage of disease progression, microglia in brains of 5XFAD mice have been activated by Aβ plaques to secrete more pro-inflammatory cytokines. In the meantime, these cytokines up-regulate Aβ via increasing the APP processing. Sodium butyrate (NaB), as one of the short chain fatty acid (SCFA) generated by gut microbiota, is the inhibitor of histone deacetylase (HDAC), which reduces the secretion of pro-inflammatory cytokines. In our experiment, 8-week-old 5XFAD mice and their litter WT mice were treated with NaB or normal saline for 2 weeks (WT + Vehicle group, WT + NaB group, AD + Vehicle group and AD + NaB group). After treatment, behavioral tests were carried out. The novel object recognition (NOR) and Morris water maze (MWM) tests demonstrated that there was no significant difference between four groups of mice. The results of long-term potentiation (LTP) and depotentiation (DEP) illustrated that the synaptic plasticity was promoted in 5XFAD mice after treatment with NaB. Compared to the AD + Vehicle group, the dendritic spines were more abundant in other groups of mice. Furthermore, the synapse-associated proteins (PSD-95, SYP, NR2B) were reduced and the pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) were increased in the AD + Vehicle group. These phenomena were reversed after treatment with NaB. Moreover, our results suggested that NaB suppressed the over-activation of microglia and the accumulation of Aβ in AD mice. Altogether, all results illustrated that HDAC inhibitor NaB could ameliorate the synaptic plasticity by reducing neuroinflammation in 5XFAD mice in the early stage of the disease.
Collapse
Affiliation(s)
- Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaolin Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lanju Xu
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2021; 39:S0213-4853(21)00027-X. [PMID: 33771384 DOI: 10.1016/j.nrl.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
33
|
Giuliani A, Gaetani S, Sorgentoni G, Agarbati S, Laggetta M, Matacchione G, Gobbi M, Rossi T, Galeazzi R, Piccinini G, Pelliccioni G, Bonfigli AR, Procopio AD, Albertini MC, Sabbatinelli J, Olivieri F, Fazioli F. Circulating Inflamma-miRs as Potential Biomarkers of Cognitive Impairment in Patients Affected by Alzheimer's Disease. Front Aging Neurosci 2021; 13:647015. [PMID: 33776746 PMCID: PMC7990771 DOI: 10.3389/fnagi.2021.647015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Maristella Laggetta
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Gina Piccinini
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | | | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
34
|
Santiago JA, Potashkin JA. The Impact of Disease Comorbidities in Alzheimer's Disease. Front Aging Neurosci 2021; 13:631770. [PMID: 33643025 PMCID: PMC7906983 DOI: 10.3389/fnagi.2021.631770] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
A wide range of comorbid diseases is associated with Alzheimer's disease (AD), the most common neurodegenerative disease worldwide. Evidence from clinical and molecular studies suggest that chronic diseases, including diabetes, cardiovascular disease, depression, and inflammatory bowel disease, may be associated with an increased risk of AD in different populations. Disruption in several shared biological pathways has been proposed as the underlying mechanism for the association between AD and these comorbidities. Notably, inflammation is a common dysregulated pathway shared by most of the comorbidities associated with AD. Some drugs commonly prescribed to patients with diabetes and cardiovascular disease have shown promising results in AD patients. Systems-based biology studies have identified common genetic factors and dysregulated pathways that may explain the relationship of comorbid disorders in AD. Nonetheless, the precise mechanisms for the occurrence of disease comorbidities in AD are not entirely understood. Here, we discuss the impact of the most common comorbidities in the clinical management of AD patients.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
35
|
Li Z, Moniruzzaman M, Dastgheyb RM, Yoo S, Wang M, Hao H, Liu J, Casaccia P, Nogueras‐Ortiz C, Kapogiannis D, Slusher BS, Haughey NJ. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. J Extracell Vesicles 2020; 10:e12035. [PMID: 33408815 PMCID: PMC7775567 DOI: 10.1002/jev2.12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aβ remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aβ, suggesting an indirect mechanism of action. Based on evidence astrocyte derived extracellular vesicles (astrocyte derived EVs) regulate neuronal functions, and data that inflammatory cytokines can modify the molecular cargo of astrocyte derived EVs, we sought to determine if IL-1β promotes the formation of Aβ indirectly through actions of astrocyte derived EVs on neurons. The production of Aβ was increased when neurons were exposed to astrocyte derived EVs shed in response to IL-1β (astrocyte derived EV-IL-1β). The mechanism for this effect involved an enrichment of Casein kinase 1 (CK1) in astrocyte derived EV-IL-1β. This astrocyte derived CK1 was delivered to neurons where it formed a complex with neuronal APC and GSK3 to inhibit the β-catenin degradation. Stabilized β-catenin translocated to the nucleus and bound to Hnrnpc gene at promoter regions. An increased cellular concentration of hnRNP C promoted the translation of APP by outcompeting the translational repressor fragile X mental retardation protein (FMRP) bound to APP mRNA. An increased amount of APP protein became co-localized with BACE1 in enlarged membrane microdomains concurrent with increased production of Aβ. These findings identify a mechanism whereby inflammation promotes the formation of Aβ through the actions of astrocyte derived EV-IL-1β on neurons.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mohammed Moniruzzaman
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Raha M. Dastgheyb
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Seung‐Wan Yoo
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Meina Wang
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hongbo Hao
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | | | | | - Barbara S. Slusher
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Norman J. Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
36
|
Lee HJ, Woo H, Lee HE, Jeon H, Ryu KY, Nam JH, Jeon SG, Park H, Lee JS, Han KM, Lee SM, Kim J, Kang RJ, Lee YH, Kim JI, Hoe HS. The novel DYRK1A inhibitor KVN93 regulates cognitive function, amyloid-beta pathology, and neuroinflammation. Free Radic Biol Med 2020; 160:575-595. [PMID: 32896600 DOI: 10.1016/j.freeradbiomed.2020.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Regulating amyloid beta (Aβ) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aβ plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aβ plaque levels in 5x FAD mice by regulating levels of the Aβ degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aβ-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aβ plaque load, and neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Hanwoong Woo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ha-Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyongjun Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ji-Soo Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Sang Min Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Ri Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea.
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Cheongju, Chungbuk, 28119, South Korea; Bio-Analytical Science, University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Neurovascular Research Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, South Korea.
| |
Collapse
|
37
|
González-Sanmiguel J, Schuh CMAP, Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells 2020; 9:E2476. [PMID: 33203002 PMCID: PMC7697492 DOI: 10.3390/cells9112476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Creutzfeldt-Jakob disease (CJD) are brain conditions affecting millions of people worldwide. These diseases are associated with the presence of amyloid-β (Aβ), alpha synuclein (α-Syn) and prion protein (PrP) depositions in the brain, respectively, which lead to synaptic disconnection and subsequent progressive neuronal death. Although considerable progress has been made in elucidating the pathogenesis of these diseases, the specific mechanisms of their origins remain largely unknown. A body of research suggests a potential association between host microbiota, neuroinflammation and dementia, either directly due to bacterial brain invasion because of barrier leakage and production of toxins and inflammation, or indirectly by modulating the immune response. In the present review, we focus on the emerging topics of neuroinflammation and the association between components of the human microbiota and the deposition of Aβ, α-Syn and PrP in the brain. Special focus is given to gut and oral bacteria and biofilms and to the potential mechanisms associating microbiome dysbiosis and toxin production with neurodegeneration. The roles of neuroinflammation, protein misfolding and cellular mediators in membrane damage and increased permeability are also discussed.
Collapse
Affiliation(s)
| | - Christina M. A. P. Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Carola Muñoz-Montesino
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
| | - Pamina Contreras-Kallens
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (C.M.A.P.S.); (P.C.-K.)
| | - Luis G. Aguayo
- Department of Physiology, Universidad de Concepción, Concepción 4070386, Chile; (J.G.-S.); (C.M.-M.)
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepción, Concepción 4070386, Chile
| | - Sebastian Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
38
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Lindbergh CA, Casaletto KB, Staffaroni AM, Elahi F, Walters SM, You M, Neuhaus J, Rivera Contreras W, Wang P, Karydas A, Brown J, Wolf A, Rosen H, Cobigo Y, Kramer JH. Systemic Tumor Necrosis Factor-Alpha Trajectories Relate to Brain Health in Typically Aging Older Adults. J Gerontol A Biol Sci Med Sci 2020; 75:1558-1565. [PMID: 31549145 PMCID: PMC7457183 DOI: 10.1093/gerona/glz209] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Central nervous system levels of tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine, regulate the neuroinflammatory response and may play a role in age-related neurodegenerative diseases. The longitudinal relation between peripheral levels of TNF-α and typical brain aging is understudied. We hypothesized that within-person increases in systemic TNF-α would track with poorer brain health outcomes in functionally normal adults. METHODS Plasma-based TNF-α concentrations (pg/mL; fasting morning draws) and magnetic resonance imaging were acquired in 424 functionally intact adults (mean age = 71) followed annually for up to 8.4 years (mean follow-up = 2.2 years). Brain outcomes included total gray matter volume and white matter hyperintensities. Cognitive outcomes included composites of memory, executive functioning, and processing speed, as well as Mini-Mental State Examination total scores. Longitudinal mixed-effects models were used, controlling for age, sex, education, and total intracranial volume, as appropriate. RESULTS TNF-α concentrations significantly increased over time (p < .001). Linear increases in within-person TNF-α were longitudinally associated with declines in gray matter volume (p < .001) and increases in white matter hyperintensities (p = .003). Exploratory analyses suggested that the relation between TNF-α and gray matter volume was curvilinear (TNF-α 2p = .002), such that initial increases in inflammation were associated with more precipitous atrophy. There was a negative linear relationship of within-person changes in TNF-α to Mini-Mental State Examination scores over time (p = .036) but not the cognitive composites (all ps >.05). CONCLUSION Systemic inflammation, as indexed by plasma TNF-α, holds potential as a biomarker for age-related declines in brain health.
Collapse
Affiliation(s)
| | | | | | - Fanny Elahi
- Department of Neurology, Memory and Aging Center and , California
| | | | - Michelle You
- Department of Neurology, Memory and Aging Center and , California
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California at San Francisco, California
| | | | - Paul Wang
- Department of Neurology, Memory and Aging Center and , California
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center and , California
| | - Jesse Brown
- Department of Neurology, Memory and Aging Center and , California
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center and , California
| | - Howie Rosen
- Department of Neurology, Memory and Aging Center and , California
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center and , California
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center and , California
| |
Collapse
|
40
|
He Z, Yang Y, Xing Z, Zuo Z, Wang R, Gu H, Qi F, Yao Z. Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 2020; 11:440. [PMID: 32514180 PMCID: PMC7280212 DOI: 10.1038/s41419-020-2644-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a major self-degradative process that maintains cellular homeostasis and function in mammalian cells. Autophagic dysfunction occurs in the early pathogenesis of Alzheimer’s disease (AD) and directly regulates amyloid-β (Aβ) metabolism. Although it has been proven that the cytokine IFN-γ enhances autophagy in macrophage cell lines, whether the signaling cascade is implicated in Aβ degradation in AD mouse models remains to be elucidated. Here, we found that 9 days of the intraperitoneal administration of IFN-γ significantly increased the LC3II/I ratio and decreased the level of p62 in APP/PS1 mice, an AD mouse model. In vitro, IFN-γ protected BV2 cells from Aβ toxicity by upregulating the expressions of Atg7 and Atg5 and the LC3II/I ratio, whereas these protective effects were ablated by interference with Atg5 expression. Moreover, IFN-γ enhanced autophagic flux, probably through suppressing the AKT/mTOR pathway both in vivo and in vitro. Importantly, using intravital two-photon microscopy and fluorescence staining, we found that microglia interacted with exogenous IFN-γ and Aβ, and surrounded Aβ in APP/PS1;CX3CR1-GFP+/− mice. In addition, IFN-γ treatment decreased the Aβ plaque load in the cortex and hippocampus and rescued cognitive deficits in APP/PS1 mice. Our data suggest a possible mechanism by which the peripheral injection of IFN-γ restores microglial autophagy to induce the phagocytosis of cerebral Aβ, which represents a potential therapeutic approach for the use of exogenous IFN-γ in AD.
Collapse
Affiliation(s)
- Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Rui Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Teaching and Research Bureau of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| |
Collapse
|
41
|
Park D, Choi EK, Cho TH, Joo SS, Kim YB. Human Neural Stem Cells Encoding ChAT Gene Restore Cognitive Function via Acetylcholine Synthesis, Aβ Elimination, and Neuroregeneration in APPswe/PS1dE9 Mice. Int J Mol Sci 2020; 21:3958. [PMID: 32486466 PMCID: PMC7313059 DOI: 10.3390/ijms21113958] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In Alzheimer disease (AD) patients, degeneration of the cholinergic system utilizing acetylcholine for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without slowing or reversing disease progress, there is a need for effective therapies, and stem cell-based therapeutic approaches targeting AD should fulfill this requirement. We established a human neural stem cell (NSC) line encoding choline acetyltransferase (ChAT) gene, an acetylcholine-synthesizing enzyme. APPswe/PS1dE9 AD model mice transplanted with the F3.ChAT NSCs exhibited improved cognitive function and physical activity. Transplanted F3.ChAT NSCs in the AD mice differentiated into neurons and astrocytes, produced ChAT protein, increased the ACh level, and improved the learning and memory function. F3.ChAT cell transplantation reduced Aβ deposits by recovering microglial function; i.e., the down-regulation of β-secretase and inflammatory cytokines and up-regulation of Aβ-degrading enzyme neprilysin. F3.ChAT cells restored growth factors (GFs) and neurotrophic factors (NFs), and they induced the proliferation of NSCs in the host brain. These findings indicate that NSCs overexpressing ChAT can ameliorate complex cognitive and physical deficits of AD animals by releasing ACh, reducing Aβ deposit, and promoting neuroregeneration by the production of GFs/NFs. It is suggested that NSCs overexpressing ChAT could be a candidate for cell therapy in advanced AD therapy.
Collapse
Affiliation(s)
- Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk 29173, Korea;
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Chungbuk 28576, Korea;
| | - Tai-Hyoung Cho
- Department of Neurosurgery, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Seong Soo Joo
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Yun-Bae Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Chungbuk 28576, Korea;
- College of Veterinary Medicine and Veterinary Medical Center, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| |
Collapse
|
42
|
Chen W, Li R, Zhu S, Ma J, Pang L, Ma B, Du L, Jin Y. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer's disease induced by lipopolysaccharides. Int J Pharm 2020; 578:119115. [PMID: 32045690 DOI: 10.1016/j.ijpharm.2020.119115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a common and severe brain disease with a high mortality among the elders, but no highly efficient medications are currently available. For example, timosaponin BII, an efficient anti-AD agent, has low oral bioavailability. Here, timosaponin BII was formulated in a temperature/ion-sensitive in situ hydrogel (ISG) that was well transformed into gels in the nasal environment. Timosaponin BII protected the PC12 cells injured by lipopolysaccharides (LPS) by decreasing TNF-α and IL-1β and stabilizing F-actin. Timosaponin BII ISGs were intranasally administered to the mice every day for 38 days. On Day 36, LPS was injected to the mice to establish an AD model. Morris water maze experiments showed that the number of the animals that were able to cross the platform returned to normal and the total distance over which the animals moved in the open field also increased, which demonstrated that the spatial memory and spontaneous behavior were improved after treatment compared to the model. Moreover, an AD improver, inducible nitric oxide synthase (iNOS) in the brain, was reduced after treatment. High brain targeting effect of timosaponin BII ISGs was confirmed by in vivo fluorescence imaging. The nasal timosaponin BII dually sensitive ISGs can serve as a promising medication for local prevention of AD.
Collapse
Affiliation(s)
- Wenyuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruiteng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Jinqiu Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lulu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Anhui Medical University, Hefei 230032, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
43
|
Guan PP, Liang YY, Cao LL, Yu X, Wang P. Cyclooxygenase-2 Induced the β-Amyloid Protein Deposition and Neuronal Apoptosis Via Upregulating the Synthesis of Prostaglandin E 2 and 15-Deoxy-Δ 12,14-prostaglandin J 2. Neurotherapeutics 2019; 16:1255-1268. [PMID: 31392591 PMCID: PMC6985346 DOI: 10.1007/s13311-019-00770-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) have been shown to be involved in the pathogenesis of Alzheimer's disease. Analysis of the underlying mechanisms elucidated a function of sequential PGE2 and PGD2 synthesis in regulating β-amyloid protein (Aβ) deposition by modulating tumor necrosis factor α (TNF-α)-dependent presenilin (PS)1/2 activity in COX-2 and APP/PS1 crossed mice. Specifically, COX-2 overexpression accelerates the expression of microsomal PGE synthase-1 (mPGES-1) and lipocalin-type prostaglandin D synthase (L-PGDS), leading to the synthesis of PGE2 and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in 6-month-old APP/PS1 mice. Consequently, PGE2 has the ability to increase Aβ production by enhancing the expression of PS1/2 in a TNF-α-dependent manner, which accelerates the cognitive decline of COX-2/APP/PS1 mice. More interestingly, low concentrations of 15d-PGJ2 treatment facilitate the effects of PGE2 on the deposition of Aβ via TNF-α-dependent PS1/2 mechanisms. In contrast, high concentrations of 15d-PGJ2 treatment inhibit the deposition of Aβ via suppressing the expression of TNF-α-dependent PS1/2. In this regard, a high concentration of 15d-PGJ2 appears to be a therapeutic agent against Alzheimer's disease. However, the high 15d-PGJ2 concentration treatment induces neuronal apoptosis via increasing the protein levels of Bax, cleaved caspase-3, and DFF45, which further impairs the learning ability of APP/PS1 mice.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China.
| |
Collapse
|
44
|
Xu Q, Xu W, Cheng H, Yuan H, Tan X. Efficacy and mechanism of cGAMP to suppress Alzheimer's disease by elevating TREM2. Brain Behav Immun 2019; 81:495-508. [PMID: 31283973 DOI: 10.1016/j.bbi.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Innate immune responses are considered to play crucial roles in the progression of Alzheimer's disease (AD). Recently, immunotherapy is emerging as an innovative and highly conceivable strategy for AD treatment. The cGAMP-STING-IRF3 signaling pathway plays a pivotal role in mediating innate immune responses. In this study, we provide pioneering investigation to find that the STING stimulator, cGAMP, significantly ameliorates cognitive deficits, improves pathological changes, decreases Aβ plaque load and reduces neuron apoptosis in APP/PS1 transgenetic mice. The stimulation of cGAMP-STING-IRF3 pathway induces expression of triggering receptor expressed on myeloid cells 2 (TREM2), and the overexpression of TREM2 further decreases Aβ deposition and neuron loss while improves AD pathomorphology and cognitive impairment. Additionally, TREM2 regulates microglia polarization from M1 towards M2 phenotype thereby achieves reduction of neuroinflammation in AD. These findings support that the enhancement of TREM2 exerts beneficial effects in ameliorating AD development. Taken together, our results demonstrate that cGAMP is a potential candidate for applications in Alzheimer's disease immunotherapy.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hao Cheng
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hong Yuan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangshi Tan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
45
|
Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model. Sci Rep 2019; 9:10942. [PMID: 31358858 PMCID: PMC6662706 DOI: 10.1038/s41598-019-47255-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence supports involvement of amylin and the amylin receptor in the pathogenesis of Alzheimer’s disease (AD). We have previously shown that amylin receptor antagonist, AC253, improves spatial memory in AD mouse models. Herein, we generated and screened a peptide library and identified two short sequence amylin peptides (12–14 aa) that are proteolytically stable, brain penetrant when administered intraperitoneally, neuroprotective against Aβ toxicity and restore diminished levels of hippocampal long term potentiation in AD mice. Systemic administration of the peptides for five weeks in aged 5XFAD mice improved spatial memory, reduced amyloid plaque burden, and neuroinflammation. The common residue SQELHRLQTY within the peptides is an essential sequence for preservation of the beneficial effects of the fragments that we report here and constitutes a new pharmacological target. These findings suggest that the amylin receptor antagonism may represent a novel therapy for AD.
Collapse
|
46
|
Steeland S, Gorlé N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, Van Imschoot G, Van Wonterghem E, De Rycke R, Kremer A, Lippens S, Stopa E, Johanson CE, Libert C, Vandenbroucke RE. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer's disease. EMBO Mol Med 2019; 10:emmm.201708300. [PMID: 29472246 PMCID: PMC5887909 DOI: 10.15252/emmm.201708300] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti‐TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood–cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AβO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood–CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Sophie Steeland
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nina Gorlé
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjana Brkic
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anneke Kremer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core, Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core, Ghent, Belgium
| | - Edward Stopa
- Department of Pathology, Rhode Island Hospital, Providence, Rhode Island, USA.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Conrad E Johanson
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Claude Libert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Kim SH, Sin DS, Lim JY. Newly Diagnosed Sarcopenia and Alzheimer's Disease in an Older Patient With Chronic Inflammation. Ann Geriatr Med Res 2019; 23:38-41. [PMID: 32743285 PMCID: PMC7387604 DOI: 10.4235/agmr.19.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/01/2022] Open
Abstract
A 78-year-old man presented with the aggravation of weakness in the lower extremities, gait disturbance, and cognitive impairment. He was diagnosed with sarcopenia, distal sensorimotor polyneuropathy, and Alzheimer's disease. Low-grade chronic elevation of inflammatory markers was also revealed. We assumed that chronic low-grade inflammation with aging, also called "inflammaging," contributed to the development of multiple comorbidities. After multidisciplinary treatment and comprehensive rehabilitation, he could ambulate again with minimal to moderate assistance. Various age-related disorders should be suspected when older patients present with chronic low-grade inflammation.
Collapse
Affiliation(s)
- Sun-Hyung Kim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Deok Su Sin
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
48
|
Ortí-Casañ N, Wu Y, Naudé PJW, De Deyn PP, Zuhorn IS, Eisel ULM. Targeting TNFR2 as a Novel Therapeutic Strategy for Alzheimer's Disease. Front Neurosci 2019; 13:49. [PMID: 30778285 PMCID: PMC6369349 DOI: 10.3389/fnins.2019.00049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Accumulating experimental evidence shows the important linkage between tumor necrosis factor-α (TNF) and AD, but the exact role of TNF in AD is still not completely understood. Although TNF-inhibitors are successfully used for treating several diseases, total inhibition of TNF can cause side effects, particularly in neurological diseases. This is attributed to the opposing roles of the two TNF receptors. TNF receptor 1 (TNFR1) predominantly mediates inflammatory and pro-apoptotic signaling pathways, whereas TNF receptor 2 (TNFR2) is neuroprotective and promotes tissue regeneration. Therefore, the specific activation of TNFR2 signaling, either by directly targeting TNFR2 via TNFR2 agonists or by blocking TNFR1 signaling with TNFR1-selective antagonists, seems a promising strategy for AD therapy. This mini-review discusses the involvement of TNFR2 and its signaling pathway in AD and outlines its potential application as therapeutic target. A better understanding of the function of TNFR2 may lead to the development of a treatment for AD.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Petrus J W Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.,Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
49
|
Fox M. 'Evolutionary medicine' perspectives on Alzheimer's Disease: Review and new directions. Ageing Res Rev 2018; 47:140-148. [PMID: 30059789 PMCID: PMC6195455 DOI: 10.1016/j.arr.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Evolution by natural selection eliminates maladaptive traits from a species, and yet Alzheimer's Disease (AD) persists with rapidly increasing prevalence globally. This apparent paradox begs an explanation within the framework of evolutionary sciences. Here, I summarize and critique previously proposed theories to explain human susceptibility to AD, grouped into 8 distinct hypotheses based on the concepts of novel extension of the lifespan; lack of selective pressure during the post-reproductive phase; antagonistic pleiotropy; rapid brain evolution; delayed neuropathy by selection for grandmothering; novel alleles selected to delay neuropathy; by-product of selection against cardiovascular disease; and thrifty genotype. Subsequently, I describe a new hypothesis inspired by the concept of mismatched environments. Many of the factors that enhance AD risk today may have been absent or functioned differently before the modern era, potentially making AD a less common affliction for age-matched individuals before industrialization and for the majority of human history. Future research is needed to further explore whether changes in environments and lifestyles across human history moderate risk factors and susceptibility to AD.
Collapse
Affiliation(s)
- Molly Fox
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Anthropology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
50
|
Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3087475. [PMID: 30498753 PMCID: PMC6222241 DOI: 10.1155/2018/3087475] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023]
Abstract
Neuroinflammation has been observed in association with neurodegenerative diseases including Alzheimer's disease (AD). In particular, a positive correlation has been documented between neuroinflammatory cytokine release and the progression of the AD, which suggests these cytokines are involved in AD pathophysiology. A histological hallmark of the AD is the presence of beta-amyloid (Aβ) plaques and tau neurofibrillary tangles. Beta-amyloid is generated by the sequential cleavage of beta (β) and gamma (γ) sites in the amyloid precursor protein (APP) by β- and γ-secretase enzymes and its accumulation can result from either a decreased Aβ clearance or increased metabolism of APP. Previous studies reported that neuroinflammatory cytokines reduce the efflux transport of Aβ, leading to elevated Aβ concentrations in the brain. However, less is known about the effects of neuroinflammatory mediators on APP expression and metabolism. In this article, we review the modulatory role of neuroinflammatory cytokines on APP expression and metabolism, including their effects on β- and γ-secretase enzymes.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|