1
|
Stea DM, D’Alessio A. Caveolae: Metabolic Platforms at the Crossroads of Health and Disease. Int J Mol Sci 2025; 26:2918. [PMID: 40243482 PMCID: PMC11988808 DOI: 10.3390/ijms26072918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Caveolae are small flask-shaped invaginations of the plasma membrane enriched in cholesterol and sphingolipids. They play a critical role in various cellular processes, including signal transduction, endocytosis, and mechanotransduction. Caveolin proteins, specifically Cav-1, Cav-2, and Cav-3, in addition to their role as structural components of caveolae, have been found to regulate the activity of signaling molecules. A growing body of research has highlighted the pivotal role of caveolae and caveolins in maintaining cellular metabolic homeostasis. Indeed, studies have demonstrated that caveolins interact with the key components of insulin signaling, glucose uptake, and lipid metabolism, thereby influencing energy production and storage. The dysfunction of caveolae or the altered expression of caveolins has been associated with metabolic disorders, including obesity, type 2 diabetes, and ocular diseases. Remarkably, mutations in caveolin genes can disrupt cellular energy balance, promote oxidative stress, and exacerbate metabolic dysregulation. This review examines current research on the molecular mechanisms through which caveolae and caveolins regulate cellular metabolism, explores their involvement in the pathogenesis of metabolic disorders, and discusses potential therapeutic strategies targeting caveolin function and the stabilization of caveolae to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dante Maria Stea
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Shi J, Wei L. ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity. FASEB Bioadv 2024; 6:85-102. [PMID: 38463696 PMCID: PMC10918988 DOI: 10.1096/fba.2024-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
4
|
Cheng YW, Anzell AR, Morosky SA, Schwartze TA, Hinck CS, Hinck AP, Roman BL, Davidson LA. Shear Stress and Sub-Femtomolar Levels of Ligand Synergize to Activate ALK1 Signaling in Endothelial Cells. Cells 2024; 13:285. [PMID: 38334677 PMCID: PMC10854672 DOI: 10.3390/cells13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Anthony R. Anzell
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefanie A. Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tristin A. Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lance A. Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Spratt J, Dias JM, Kolonelou C, Kiriako G, Engström E, Petrova E, Karampelias C, Cervenka I, Papanicolaou N, Lentini A, Reinius B, Andersson O, Ambrosetti E, Ruas JL, Teixeira AI. Multivalent insulin receptor activation using insulin-DNA origami nanostructures. NATURE NANOTECHNOLOGY 2024; 19:237-245. [PMID: 37813939 PMCID: PMC10873203 DOI: 10.1038/s41565-023-01507-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/15/2023] [Indexed: 10/11/2023]
Abstract
Insulin binds the insulin receptor (IR) and regulates anabolic processes in target tissues. Impaired IR signalling is associated with multiple diseases, including diabetes, cancer and neurodegenerative disorders. IRs have been reported to form nanoclusters at the cell membrane in several cell types, even in the absence of insulin binding. Here we exploit the nanoscale spatial organization of the IR to achieve controlled multivalent receptor activation. To control insulin nanoscale spatial organization and valency, we developed rod-like insulin-DNA origami nanostructures carrying different numbers of insulin molecules with defined spacings. Increasing the insulin valency per nanostructure markedly extended the residence time of insulin-DNA origami nanostructures at the receptors. Both insulin valency and spacing affected the levels of IR activation in adipocytes. Moreover, the multivalent insulin design associated with the highest levels of IR activation also induced insulin-mediated transcriptional responses more effectively than the corresponding monovalent insulin nanostructures. In an in vivo zebrafish model of diabetes, treatment with multivalent-but not monovalent-insulin nanostructures elicited a reduction in glucose levels. Our results show that the control of insulin multivalency and spatial organization with nanoscale precision modulates the IR responses, independent of the insulin concentration. Therefore, we propose insulin nanoscale organization as a design parameter in developing new insulin therapies.
Collapse
Affiliation(s)
- Joel Spratt
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Dias
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Kolonelou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georges Kiriako
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enya Engström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Petrova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natali Papanicolaou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Amiri Khosroshahi R, Mirzababaei A, Setayesh L, Bagheri R, Heidari Seyedmahalleh M, Wong A, Suzuki K, Mirzaei K. Dietary Insulin Index (DII) and Dietary Insulin load (DIL) and Caveolin gene variant interaction on cardiometabolic risk factors among overweight and obese women: a cross-sectional study. Eur J Med Res 2024; 29:74. [PMID: 38268038 PMCID: PMC10807169 DOI: 10.1186/s40001-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Studies have shown that Caveolin gene polymorphisms (CAV-1) are involved in chronic diseases, such as metabolic syndrome. Moreover, the dietary insulin index (DII) and dietary insulin load (DIL) have been shown to potentially elicit favorable effects on cardiovascular disease (CVD) risk. Therefore, this study sought to investigate the effect of DII DIL and CAV-1 interaction on CVD risk factors. METHODS This cross-sectional study consisted of 333 overweight and obese women aged 18-48 years. Dietary intakes, DII, and DIL were evaluated using the 147-item food frequency questionnaire (FFQ). Serum profiles were measured by standard protocols. The CAV-1 rs 3,807,992 and anthropometric data were measured by the PCR-RFLP method and bioelectrical impedance analysis (BIA), respectively. Participants were also divided into three groups based on DII, DIL score, and rs3807992 genotype. RESULTS This comparative cross-sectional study was conducted on 333 women classified as overweight or obese. Participants with A allele for the caveolin genotype and higher DII score showed significant interactions with high-density lipoprotein (HDL) (P for AA = 0.006 and P for AG = 0.019) and CRI-I (P for AA < 0.001 and P for AG = 0.024). In participants with AA genotype and greater DII score, interactions were observed in weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol, CRI-II, fat-free mass (FFM), and skeletal muscle mass (SMM) (P < 0.079). Those with higher DIL scores and AA genotype had higher weight (P = 0.033), FFM (P = 0.022), and SMM (P = 0.024). In addition, DIL interactions for waist/hip ratio (WHR), waist circumference (WC), triglyceride (TG), CRI-I, and body fat mass (BFM) among individuals with AA genotype, while an HDL interaction was observed in individuals with AG and AA (P < 0.066). CONCLUSION The findings of the present study indicate that people who carry the caveolin rs3807992 (A) allele and have greater DII and DIL scores are at higher risk for several cardiovascular disease and metabolic syndrome biomarkers. These results highlight that diet, gene variants, and their interaction, should be considered in the risk evaluation of developing CVD.
Collapse
Affiliation(s)
- Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Leila Setayesh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Mohammad Heidari Seyedmahalleh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, USA
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Japan.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
7
|
Neuhaus M, Fryklund C, Taylor H, Borreguero-Muñoz A, Kopietz F, Ardalani H, Rogova O, Stirrat L, Bremner SK, Spégel P, Bryant NJ, Gould GW, Stenkula KG. EHD2 regulates plasma membrane integrity and downstream insulin receptor signaling events. Mol Biol Cell 2023; 34:ar124. [PMID: 37703099 PMCID: PMC10846623 DOI: 10.1091/mbc.e23-03-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose-tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics, and lipid metabolism. Here, we investigated the role of EHD2 in adipocyte insulin signaling and glucose transport. Using C57BL6/N EHD2 knockout mice under short-term high-fat diet conditions and 3T3-L1 adipocytes we demonstrate that EHD2 deficiency is associated with deterioration of insulin signal transduction and impaired insulin-stimulated GLUT4 translocation. Furthermore, we show that lack of EHD2 is linked with altered plasma membrane lipid and protein composition, reduced insulin receptor expression, and diminished insulin-dependent SNARE protein complex formation. In conclusion, these data highlight the importance of EHD2 for the integrity of the plasma membrane milieu, insulin receptor stability, and downstream insulin receptor signaling events, involved in glucose uptake and ultimately underscore its role in insulin resistance and obesity.
Collapse
Affiliation(s)
- Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Holly Taylor
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | - Franziska Kopietz
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Hamidreza Ardalani
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Oksana Rogova
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Laura Stirrat
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Shaun K. Bremner
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Peter Spégel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, 22241 Lund, Sweden
| | - Nia J. Bryant
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Gwyn W. Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
8
|
Shetti AU, Ramakrishnan A, Romanova L, Li W, Vo K, Volety I, Ratnayake I, Stephen T, Minshall RD, Cologna SM, Lazarov O. Reduced endothelial caveolin-1 underlies deficits in brain insulin signalling in type 2 diabetes. Brain 2023; 146:3014-3028. [PMID: 36731883 PMCID: PMC10316766 DOI: 10.1093/brain/awad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes exhibit severe impairments in insulin signalling in the brain and are five times more likely to develop Alzheimer's disease. However, what leads to these impairments is not fully understood. Here, we show reduced expression of endothelial cell caveolin-1 (Cav-1) in the db/db (Leprdb) mouse model of type 2 diabetes. This reduction correlated with alterations in insulin receptor expression and signalling in brain microvessels as well as brain parenchyma. These findings were recapitulated in the brains of endothelial cell-specific Cav-1 knock-out (Tie2Cre; Cav-1fl/fl) mice. Lack of Cav-1 in endothelial cells led to reduced response to insulin as well as reduced insulin uptake. Furthermore, we observed that Cav-1 was necessary for the stabilization of insulin receptors in lipid rafts. Interactome analysis revealed that insulin receptor interacts with Cav-1 and caveolae-associated proteins, insulin-degrading enzyme and the tight junction protein Zonula Occludence-1 in brain endothelial cells. Restoration of Cav-1 in Cav-1 knock-out brain endothelial cells rescued insulin receptor expression and localization. Overall, these results suggest that Cav-1 regulates insulin signalling and uptake by brain endothelial cells by modulating IR-α and IR-β localization and function in lipid rafts. Furthermore, depletion of endothelial cell-specific Cav-1 and the resulting impairment in insulin transport leads to alteration in insulin signalling in the brain parenchyma of type 2 diabetics.
Collapse
Affiliation(s)
- Aashutosh U Shetti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abhirami Ramakrishnan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Liudmila Romanova
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Wenping Li
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Khanh Vo
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ishara Ratnayake
- Electron Microscopy Core, Research Resource Center, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Terilyn Stephen
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Department of Pharmacology and Regenerative Medicine, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
10
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
11
|
Aji G, Jiang S, Obulkasim H, Lu Z, Wang W, Xia P. Sphingosine kinase 2 regulates insulin receptor trafficking in hepatocytes. Exp Biol Med (Maywood) 2023; 248:44-51. [PMID: 36408724 PMCID: PMC9989153 DOI: 10.1177/15353702221131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disturbed insulin receptor (InsR) trafficking is associated with impaired insulin signaling and the development of diabetes. Sphingosine kinase (SphK), including SphK1 and SphK2, is a key enzyme of sphingolipid metabolism, which has been implicated in the regulation of membrane trafficking. More recently, we have reported that SphK2 is a key regulator of hepatic insulin signaling and glucose homeostasis. However, the role of SphK in InsR trafficking is still undefined. Huh7 cells were treated with specific SphK1 and SphK2 inhibitors or SphK1- and SphK2-specific small interfering RNA (siRNA) in the presence or absence of insulin. Flow cytometry and immunofluorescence assays were carried out to investigate the role of SphK in InsR trafficking. InsR endocytosis, recycling, and insulin signaling were analyzed. Inhibition of SphK2, but not SphK1, by either specific pharmaceutic inhibitors or siRNA, significantly suppressed InsR endocytosis and recycling following insulin stimulation. Consequently, the insulin-stimulated Akt activation was significantly attenuated by SphK2 inhibition in hepatocytes. Moreover, the effect of SphK2 on InsR trafficking was mediated via the clathrin-dependent mechanism. Thus, our results show that SphK2 is able to regulate InsR trafficking. These findings suggest that SphK2 may impinge on hepatic insulin signaling by regulating InsR trafficking, providing further mechanistic evidence that SphK2 could serve as a potential intervention target against insulin resistance and T2D (type 2 diabetes).
Collapse
Affiliation(s)
- Gulibositan Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Halmurat Obulkasim
- Department of General Surgery, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Dall'Agnese A, Platt JM, Zheng MM, Friesen M, Dall'Agnese G, Blaise AM, Spinelli JB, Henninger JE, Tevonian EN, Hannett NM, Lazaris C, Drescher HK, Bartsch LM, Kilgore HR, Jaenisch R, Griffith LG, Cisse II, Jeppesen JF, Lee TI, Young RA. The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Nat Commun 2022; 13:7522. [PMID: 36473871 PMCID: PMC9727033 DOI: 10.1038/s41467-022-35176-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.
Collapse
Affiliation(s)
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Giuseppe Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Alyssa M Blaise
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | | | - Erin N Tevonian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hannah K Drescher
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
15
|
Morrison KA, Wood L, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Membrane extraction with styrene-maleic acid copolymer results in insulin receptor autophosphorylation in the absence of ligand. Sci Rep 2022; 12:3532. [PMID: 35241773 PMCID: PMC8894449 DOI: 10.1038/s41598-022-07606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(styrene-co-maleic acid). We found that the copolymer efficiently extracted the insulin receptor from 3T3L1 fibroblast membranes. Surprisingly, activation of the insulin receptor and proximal downstream signalling was detected upon copolymer extraction even in the absence of insulin stimulation. Insulin receptor and IRS1 phosphorylations were above levels measured in the control extracts made with detergents. However, more distal signalling events in the insulin signalling cascade, such as the phosphorylation of Akt were not observed. Following copolymer extraction, in vitro addition of insulin had no further effect on insulin receptor or IRS1 phosphorylation. Therefore, under our experimental conditions, the insulin receptor is not functionally responsive to insulin. This study is the first to investigate receptor tyrosine kinases extracted from mammalian cells using a styrene-maleic acid copolymer and highlights the importance of thorough functional characterisation when using this method of protein extraction.
Collapse
Affiliation(s)
- Kerrie A Morrison
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Department of Chemistry, University of Bath, Bath, UK.,Centre for Sustainable Circular Technologies, University of Bath, Bath, UK
| | - Laura Wood
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Department for Health, Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Bath, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Gareth J Price
- Department of Chemistry, University of Bath, Bath, UK.,Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
| | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
16
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
17
|
Fryklund C, Morén B, Shah S, Grossi M, Degerman E, Matthaeus C, Stenkula KG. EH Domain-Containing 2 Deficiency Restricts Adipose Tissue Expansion and Impairs Lipolysis in Primary Inguinal Adipocytes. Front Physiol 2021; 12:740666. [PMID: 34630160 PMCID: PMC8497890 DOI: 10.3389/fphys.2021.740666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Lipid uptake can be facilitated via caveolae, specific plasma membrane invaginations abundantly expressed in adipocytes. The dynamin-related protein EH domain-containing 2 (EHD2) stabilizes caveolae at the cell surface. Here, we have examined the importance of EHD2 for lipid handling using primary adipocytes isolated from EHD2 knockout (Ehd2−/−) C57BL6/N mice. Following high-fat diet (HFD) feeding, we found a clear impairment of epididymal, but not inguinal, adipose tissue expansion in Ehd2−/− compared with Ehd2+/+ (WT) mice. Cell size distribution analysis revealed that Ehd2−/− mice had a lower proportion of small adipocytes, and an accumulation of medium-sized adipocytes in both epididymal and inguinal adipose tissue. Further, PPARγ activity, FABP4 and caveolin-1 expression were decreased in adipocytes isolated from Ehd2−/− mice. Inguinal adipocytes isolated from Ehd2−/− mice displayed reduced lipolysis in response to beta adrenergic receptor agonist, which was associated with reduced phosphorylation of perilipin-1 and hormone sensitive lipase (HSL). This impairment could not be rescued using a cAMP analog, indicating that impaired lipolysis in Ehd2−/− primary adipocytes likely occurs at the level of, or downstream of, protein kinase A (PKA). Altogether, these findings pinpoint the importance of EHD2 for maintained intracellular lipid metabolism, and emphasize differences in mechanisms regulating lipid handling in various adipose-tissue depots.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Shrenika Shah
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Eva Degerman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claudia Matthaeus
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Suresh P, Miller WT, London E. Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. J Biol Chem 2021; 297:101010. [PMID: 34324831 PMCID: PMC8379460 DOI: 10.1016/j.jbc.2021.101010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.
Collapse
Affiliation(s)
- Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
19
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
20
|
Abaj F, Saeedy SAG, Mirzaei K. Are caveolin-1 minor alleles more likely to be risk alleles in insulin resistance mechanisms in metabolic diseases? BMC Res Notes 2021; 14:185. [PMID: 34001235 PMCID: PMC8130340 DOI: 10.1186/s13104-021-05597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Obesity and insulin resistance (IR) are interrelated in a range of ways. The IR-obesity relationship is not a cause-and-effect association. Molecular biology research has made tremendous strides in discovering contributors to find this association. Genes that control adipocyte function such as caveolin-1 (CAV1); probably interact in the pathogenesis of human IR in this context. The involvement of CAV1 in glucose/lipid homeostasis is revealed and could modify the signaling of the insulin receptor. We examined the association between CAV1 and insulin signaling in modifying dyslipidemia and fat composition in overweight and obese women with a prevalent variant in the CAV1 gene. RESULTS Minor allele carriers were slightly older and had higher BMI (p = 0.02), FMI (p = 0.006), and VLF (p = 0.01) values; and tended to have lower total cholesterol TC (p = 0.04), low-density lipoprotein cholesterol (LDL-C) (p = 0.001) and high-density lipoprotein cholesterol (HDL-C) (p = 0.003). HOMA-IR levels predicted fat mass index (FMI) 0.47 (0.08, 0.87), visceral fat level (VFL) 0.65 (0.23, 1.07), TC 6.82 (1.76, 11.88) and HDL-C - 1.663 (- 3.11, - 0.214) only between minor allele carriers in adjusted models. (β, CI). Our results cast a new light on the IR mechanism and future studies will elucidate the clinical relevance of CAV1-IR in patients with dyslipidemia and high fat composition.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran
| | | | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran.
| |
Collapse
|
21
|
González-Hódar L, McDonald JG, Vale G, Thompson BM, Figueroa AM, Tapia PJ, Robledo F, Agarwal AK, Garg A, Horton JD, Cortés V. Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166167. [PMID: 33989739 DOI: 10.1016/j.bbadis.2021.166167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipocytes from lipodystrophic Agpat2-/- mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2-/- adipocytes to identify lipids with potential adipogenic roles. METHODS Agpat2-/- and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS Differentiated Agpat2-/- adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2-/- and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2-/- adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2-/- adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION In Agpat2-/- adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.
Collapse
Affiliation(s)
- Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
22
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
23
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
24
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
25
|
Haqshenas G, Terradas G, Paradkar PN, Duchemin JB, McGraw EA, Doerig C. A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells. Cell Rep 2020; 26:529-535.e3. [PMID: 30650347 DOI: 10.1016/j.celrep.2018.12.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
Wolbachia-infected mosquitoes are refractory to super-infection with arthropod-borne pathogens, but the role of host cell signaling proteins in pathogen-blocking mechanisms remains to be elucidated. Here, we use an antibody microarray approach to provide a comprehensive picture of the signaling response of Aedes aegypti-derived cells to Wolbachia. This approach identifies the host cell insulin receptor as being downregulated by the bacterium. Furthermore, siRNA-mediated knockdown and treatment with a small-molecule inhibitor of the insulin receptor kinase concur to assign a crucial role for this enzyme in the replication of dengue and Zika viruses in cultured mosquito cells. Finally, we show that the production of Zika virus in Wolbachia-free live mosquitoes is impaired by treatment with the selective inhibitor mimicking Wolbachia infection. This study identifies Wolbachia-mediated downregulation of insulin receptor kinase activity as a mechanism contributing to the blocking of super-infection by arboviruses.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
27
|
Sántha P, Dobos I, Kis G, Jancsó G. Role of Gangliosides in Peripheral Pain Mechanisms. Int J Mol Sci 2020; 21:E1005. [PMID: 32028715 PMCID: PMC7036959 DOI: 10.3390/ijms21031005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are abundantly occurring sialylated glycosphingolipids serving diverse functions in the nervous system. Membrane-localized gangliosides are important components of lipid microdomains (rafts) which determine the distribution of and the interaction among specific membrane proteins. Different classes of gangliosides are expressed in nociceptive primary sensory neurons involved in the transmission of nerve impulses evoked by noxious mechanical, thermal, and chemical stimuli. Gangliosides, in particular GM1, have been shown to participate in the regulation of the function of ion channels, such as transient receptor potential vanilloid type 1 (TRPV1), a molecular integrator of noxious stimuli of distinct nature. Gangliosides may influence nociceptive functions through their association with lipid rafts participating in the organization of functional assemblies of specific nociceptive ion channels with neurotrophins, membrane receptors, and intracellular signaling pathways. Genetic and experimentally induced alterations in the expression and/or metabolism of distinct ganglioside species are involved in pathologies associated with nerve injuries, neuropathic, and inflammatory pain in both men and animals. Genetic and/or pharmacological manipulation of neuronal ganglioside expression, metabolism, and action may offer a novel approach to understanding and management of pain.
Collapse
Affiliation(s)
| | | | | | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (P.S.); (I.D.); (G.K.)
| |
Collapse
|
28
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
29
|
Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2019; 9:e013531. [PMID: 31888429 PMCID: PMC6988162 DOI: 10.1161/jaha.119.013531] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikash Manandhar
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Blake J Cochran
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Kerry-Anne Rye
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
30
|
Gunasekar SK, Xie L, Sah R. SWELL signalling in adipocytes: can fat 'feel' fat? Adipocyte 2019; 8:223-228. [PMID: 31112068 PMCID: PMC6768237 DOI: 10.1080/21623945.2019.1612223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023] Open
Abstract
Obesity is becoming a global epidemic, predisposing to Type 2 diabetes, cardiovascular disease, fatty liver disease, pulmonary disease, osteoarthritis and cancer. Therefore, understanding the biology of adipocyte expansion in response to overnutrition is critical to devising strategies to treat obesity, and the associated burden of morbidity and mortality. Through exploratory patch-clamp experiments in freshly isolated primary murine and human adipocytes, we recently determined that SWELL1/LRRC8a, a leucine-rich repeat containing transmembrane protein, functionally encoded an ion channel signalling complex (the volume-regulated anion channel, or VRAC) on the adipocyte plasma membrane. The SWELL1-/LRRC8 channel complex activates in response to increases in adipocyte volume and in the context of obesity. SWELL1 is also required for insulin-PI3K-AKT2 signalling to regulate adipocyte growth and systemic glycaemia. This commentary delves further into our working models for the molecular mechanisms of adipocyte SWELL1-mediated VRAC activation, proposed signal transduction mechanisms, and putative impact on adipocyte hypertrophy during caloric excess.
Collapse
Affiliation(s)
- Susheel K. Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
32
|
Chen Y, Huang L, Qi X, Chen C. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 2019; 20:ijms20205007. [PMID: 31658625 PMCID: PMC6834171 DOI: 10.3390/ijms20205007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (INSR) has been extensively studied in the area of cell proliferation and energy metabolism. Impaired INSR activities lead to insulin resistance, the key factor in the pathology of metabolic disorders including type 2 diabetes mellitus (T2DM). The mainstream opinion is that insulin resistance begins at a post-receptor level. The role of INSR activities and trafficking in insulin resistance pathogenesis has been largely ignored. Ligand-activated INSR is internalized and trafficked to early endosome (EE), where INSR is dephosphorylated and sorted. INSR can be subsequently conducted to lysosome for degradation or recycled back to the plasma membrane. The metabolic fate of INSR in cellular events implies the profound influence of INSR on insulin signaling pathways. Disruption of INSR-coupled activities has been identified in a wide range of insulin resistance-related diseases such as T2DM. Accumulating evidence suggests that alterations in INSR trafficking may lead to severe insulin resistance. However, there is very little understanding of how altered INSR activities undermine complex signaling pathways to the development of insulin resistance and T2DM. Here, we focus this review on summarizing previous findings on the molecular pathways of INSR trafficking in normal and diseased states. Through this review, we provide insights into the mechanistic role of INSR intracellular processes and activities in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yang Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lili Huang
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Xinzhou Qi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
33
|
Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 2019; 20:552-570. [PMID: 31177593 PMCID: PMC6771607 DOI: 10.1111/tra.12670] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease. By taking insights from in vitro studies of endocytosis and exploring their effects on metabolism, we can begin to connect the fields of endosomal transport and metabolic homeostasis. In this review, we explore current understanding of how the endosomal system influences the systemic regulation of glucose and lipid metabolism in mice and humans. We highlight exciting new insights that help translate findings from single cells to a wider physiological level and open up new directions for endosomal research.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Mediterranean Center of Molecular Medicine (C3M)NiceFrance
| | - Jantje M. Gerdes
- Institute for Diabetes and RegenerationHelmholtz Center MunichNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes and CancerHelmholtz Center MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
34
|
Song G, Zong C, Shao M, Yu Y, Liu Q, Wang H, Qiu T, Jiao P, Guo Z, Lee P, Luo Y, Jiang XC, Qin S. Phospholipid transfer protein (PLTP) deficiency attenuates high fat diet induced obesity and insulin resistance. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1305-1313. [PMID: 31220615 DOI: 10.1016/j.bbalip.2019.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Increased phospholipid transfer protein (PLTP) activity has been found to be associated with obesity, and metabolic syndrome in humans. However, whether or not PLTP has a direct effect on insulin sensitivity and obesity is largely unknown. Here we analyzed the effect by using PLTP knockout (PLTP-/-) mouse model. Although, PLTP-/- mice have normal body-weight-gain under chow diet, these mice were protected from high-fat-diet-induced obesity and insulin resistance, compared with wild type mice. In order to understand the mechanism, we evaluated insulin receptor and Akt activation and found that PLTP deficiency significantly enhanced phosphorylated insulin receptor and Akt levels in high-fat-diet fed mouse livers, adipose tissues, and muscles after insulin stimulation, while total Akt and insulin receptor levels were unchanged. Moreover, we found that the PLTP deficiency induced significantly more GLUT4 protein in the plasma membranes of adipocytes and muscle cells after insulin stimulation. Finally, we found that PLTP-deficient hepatocytes had less sphingomyelins and free cholesterols in the lipid rafts and plasma membranes than that of controls and this may provide a molecular basis for PLTP deficiency-mediated increase in insulin sensitivity. We have concluded that PLTP deficiency leads to an improvement in tissue and whole-body insulin sensitivity through modulating lipid levels in the plasma membrane, especially in the lipid rafts.
Collapse
Affiliation(s)
- Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Chuanlong Zong
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Mingzhu Shao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Qian Liu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Hui Wang
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Tingting Qiu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Zheng Guo
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Phoebe Lee
- Downstate Medical Center State University of New York, NY, USA
| | - Yi Luo
- Downstate Medical Center State University of New York, NY, USA
| | | | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| |
Collapse
|
35
|
Morén B, Hansson B, Negoita F, Fryklund C, Lundmark R, Göransson O, Stenkula KG. EHD2 regulates adipocyte function and is enriched at cell surface-associated lipid droplets in primary human adipocytes. Mol Biol Cell 2019; 30:1147-1159. [PMID: 30811273 PMCID: PMC6724522 DOI: 10.1091/mbc.e18-10-0680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipocytes play a central role in energy balance, and dysfunctional adipose tissue severely affects systemic energy homeostasis. The ATPase EH domain–containing 2 (EHD2) has previously been shown to regulate caveolae, plasma membrane-specific domains that are involved in lipid uptake and signal transduction. Here, we investigated the role of EHD2 in adipocyte function. We demonstrate that EHD2 protein expression is highly up-regulated at the onset of triglyceride accumulation during adipocyte differentiation. Small interfering RNA–mediated EHD2 silencing affected the differentiation process and impaired insulin sensitivity, lipid storage capacity, and lipolysis. Fluorescence imaging revealed localization of EHD2 to caveolae, close to cell surface–associated lipid droplets in primary human adipocytes. These lipid droplets stained positive for glycerol transporter aquaporin 7 and phosphorylated perilipin-1 following adrenergic stimulation. Further, EHD2 overexpression in human adipocytes increased the lipolytic signaling and suppressed the activity of transcription factor PPARγ. Overall, these data suggest that EHD2 plays a key role for adipocyte function.
Collapse
Affiliation(s)
- Björn Morén
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Björn Hansson
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Florentina Negoita
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Claes Fryklund
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Richard Lundmark
- Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, 223 84 Lund, Sweden
| |
Collapse
|
36
|
Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:819-826. [PMID: 30682326 DOI: 10.1016/j.bbamem.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023]
Abstract
The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells.
Collapse
Affiliation(s)
- Richard J Delle Bovi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America
| | - JiHyun Kim
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America.
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America; Department of Veterans Affairs Medical Center, Northport, NY 11768, United States of America.
| |
Collapse
|
37
|
The Role of Caveolin-1 in Retinal Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:169-173. [PMID: 31884607 DOI: 10.1007/978-3-030-27378-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss. Treatments for chronic retinal inflammation involve corticosteroid administration, which has been associated with glaucoma and cataract formation. Therefore, we must consider novel, alternative treatments. Here, we provide a brief review of our current understanding of chronic innate inflammatory processes in retinal degeneration and the complex role of a putative inflammatory regulator, Caveolin-1 (Cav1). Furthermore, we suggest that the complex role of Cav1 in retinal inflammatory modulation is likely dictated by cell type-specific subcellular localization.
Collapse
|
38
|
Mariniello K, Min Y, Ghebremeskel K. Phosphorylation of protein kinase B, the key enzyme in insulin-signaling cascade, is enhanced in linoleic and arachidonic acid–treated HT29 and HepG2 cells. Nutrition 2019; 57:52-58. [DOI: 10.1016/j.nut.2018.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022]
|
39
|
Gupta VK, Sharma NS, Kesh K, Dauer P, Nomura A, Giri B, Dudeja V, Banerjee S, Bhattacharya S, Saluja A, Banerjee S. Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity. Cancer Lett 2018; 439:101-112. [PMID: 30290209 DOI: 10.1016/j.canlet.2018.09.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/25/2018] [Accepted: 09/21/2018] [Indexed: 02/01/2023]
Abstract
Metabolic rewiring is an integral part of tumor growth. Among metabolic pathways, the Mevalonic-Acid-Pathway (MVAP) plays a key role in maintaining membrane architecture through cholesterol synthesis, thereby affecting invasiveness. In the current study, we show for the first time that CD133Hi pancreatic tumor initiating cells (TIC) have increased expression of MVAP enzymes, cholesterol-content and Caveolin expression. Further, we show that CD133 in these cells is localized in the lipid-rafts (characterized by Cav-1-cholesterol association). Disruption of lipid-rafts by either depleting Cav-1 or by inhibiting MVAP by lovastatin decreased metastatic-potential and chemoresistance in CD133Hi cells while not affecting the CD133lo cells. Additionally, disruption of lipid-raft results in deregulation of FAK-signaling, decreasing invasiveness in pancreatic-TICs. Furthermore, this also inhibits ABC-transporter activity resulting in sensitizing TICs to standard chemotherapeutic agents. Repurposing existing drugs for new clinical applications is one of the safest and least resource intensive approaches to improve therapeutic options. In this context, our study is extremely timely as it shows that targeting lipid-rafts with statins can sensitize the normally resistant pancreatic TICHi-cells to standard chemotherapy and decrease metastasis, thereby defining a novel strategy for targeting the TICHi-PDAC.
Collapse
Affiliation(s)
| | - Nikita S Sharma
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Patricia Dauer
- Department of Surgery, University of Miami, Miami, FL, 33136, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alice Nomura
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Bhuwan Giri
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Vikas Dudeja
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | | | - Ashok Saluja
- Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Sulagna Banerjee
- Department of Surgery, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Varela-Guruceaga M, Milagro FI, Martínez JA, de Miguel C. Effect of hypoxia on caveolae-related protein expression and insulin signaling in adipocytes. Mol Cell Endocrinol 2018; 473:257-267. [PMID: 29407195 DOI: 10.1016/j.mce.2018.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Obesity is characterized by hypertrophy and hyperplasia of adipose tissue, which have been related to the development of hypoxia and insulin resistance. On the other hand, caveolin-1 (Cav-1), one of the main proteins of caveolae, promotes insulin receptor (IR) phosphorylation and the subsequent activation of insulin signaling. In this work we investigated the effect of hypoxia on Cav-1 regulation and the status of insulin signaling in 3T3-L1 adipocytes. Our results showed that hypoxia inhibited adipogenesis and insulin signaling in adipocytes. Furthermore, 48 h of hypoxia reduced insulin-induced glucose uptake while increased basal glucose uptake. This result was consistent with the upregulation of glucose transporter GLUT1 and the downregulation of GLUT4, which also showed defective translocation to plasma membrane when adipocytes were stimulated with insulin. In addition, the expression of caveolae-related proteins was reduced by hypoxia and chromatin immunoprecipitation assay demonstrated that Cav-1 transcription was directly regulated by HIF-1. These results strengthen the role of caveolae in insulin signaling and help to explain adipocyte response to hypoxia.
Collapse
Affiliation(s)
- M Varela-Guruceaga
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - F I Milagro
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Research Institute, Madrid, Spain
| | - J A Martínez
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Research Institute, Madrid, Spain
| | - C de Miguel
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Research Institute, Madrid, Spain.
| |
Collapse
|
41
|
Trávez A, Rabanal-Ruiz Y, López-Alcalá J, Molero-Murillo L, Díaz-Ruiz A, Guzmán-Ruiz R, Catalán V, Rodríguez A, Frühbeck G, Tinahones FJ, Gasman S, Vitale N, Jiménez-Gómez Y, Malagón MM. The caveolae-associated coiled-coil protein, NECC2, regulates insulin signalling in Adipocytes. J Cell Mol Med 2018; 22:5648-5661. [PMID: 30160359 PMCID: PMC6201366 DOI: 10.1111/jcmm.13840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Adipocyte dysfunction in obesity is commonly associated with impaired insulin signalling in adipocytes and insulin resistance. Insulin signalling has been associated with caveolae, which are coated by large complexes of caveolin and cavin proteins, along with proteins with membrane-binding and remodelling properties. Here, we analysed the regulation and function of a component of caveolae involved in growth factor signalling in neuroendocrine cells, neuroendocrine long coiled-coil protein-2 (NECC2), in adipocytes. Studies in 3T3-L1 cells showed that NECC2 expression increased during adipogenesis. Furthermore, NECC2 co-immunoprecipitated with caveolin-1 (CAV1) and exhibited a distribution pattern similar to that of the components of adipocyte caveolae, CAV1, Cavin1, the insulin receptor and cortical actin. Interestingly, NECC2 overexpression enhanced insulin-activated Akt phosphorylation, whereas NECC2 downregulation impaired insulin-induced phosphorylation of Akt and ERK2. Finally, an up-regulation of NECC2 in subcutaneous and omental adipose tissue was found in association with human obesity and insulin resistance. This effect was also observed in 3T3-L1 adipocytes exposed to hyperglycaemia/hyperinsulinemia. Overall, the present study identifies NECC2 as a component of adipocyte caveolae that is regulated in response to obesity and associated metabolic complications, and supports the contribution of this protein as a molecular scaffold modulating insulin signal transduction at these membrane microdomains.
Collapse
Affiliation(s)
- Andrés Trávez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Yoana Rabanal-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaime López-Alcalá
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Laura Molero-Murillo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Guzmán-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Yolanda Jiménez-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - María M Malagón
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol 2018; 234:348-368. [PMID: 30069931 DOI: 10.1002/jcp.26917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism-mediated transduction factors in CRC, which include acid-sensing ion channels, triosephosphate isomerase and key glycolysis-related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor's acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient-personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Podkalicka J, Biernatowska A, Olszewska P, Tabaczar S, Sikorski AF. The microdomain-organizing protein MPP1 is required for insulin-stimulated activation of H-Ras. Oncotarget 2018; 9:18410-18421. [PMID: 29719614 PMCID: PMC5915081 DOI: 10.18632/oncotarget.24847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Signaling complexes are localized to distinct plasma-membrane domains which undergo precise spatiotemporal regulation. A crucial link between membrane dynamics and the small GTPase, H-Ras, has been suggested, connecting membrane localization, clustering and scaffolding with its activity and signal transduction. Results of this study suggest a relationship between MPP1 and/or MPP1-dependent plasma-membrane organization and H-Ras activation. Namely, we show here that in HEL cells, MPP1 knock-down lead to the disruption of signaling cascade(s) from the activated insulin receptor. The signal inhibition occurred at the level of H-Ras, as it showed impaired GDP-to-GTP exchange and further interaction with its effector molecule, Raf. Moreover, in these cells H-Ras detergent-resistant membrane localization was not sensitive to insulin treatment which may imply molecular mechanism via which MPP1 affects functions of other proteins which may be connected with functional domain formation. Understanding the link between MPP1 and activation of H-Ras, may provide an important insight into the complexity of Ras related signaling pathways which may become a potential target for associated cancer therapies.
Collapse
Affiliation(s)
- Joanna Podkalicka
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Agnieszka Biernatowska
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Paulina Olszewska
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sabina Tabaczar
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
44
|
Meakin PJ, Mezzapesa A, Benabou E, Haas ME, Bonardo B, Grino M, Brunel JM, Desbois-Mouthon C, Biddinger SB, Govers R, Ashford MLJ, Peiretti F. The beta secretase BACE1 regulates the expression of insulin receptor in the liver. Nat Commun 2018; 9:1306. [PMID: 29610518 PMCID: PMC5880807 DOI: 10.1038/s41467-018-03755-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/08/2018] [Indexed: 01/04/2023] Open
Abstract
Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the β-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.
Collapse
Affiliation(s)
- Paul J Meakin
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, Dundee, DD19SY, UK
| | - Anna Mezzapesa
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Eva Benabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Mary E Haas
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | | | - Michel Grino
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Jean-Michel Brunel
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli Calmettes, Marseille, 13385, France
| | - Christèle Desbois-Mouthon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, F-75012, Paris, France
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Roland Govers
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France
| | - Michael L J Ashford
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, Dundee, DD19SY, UK
| | - Franck Peiretti
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385, Marseille, France.
| |
Collapse
|
45
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
46
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
47
|
Zhang Y, Xie L, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang C, Fidler T, Marthaler B, Klingelhutz A, Abel ED, Samuel I, Smith JK, Cao L, Sah R. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 2017; 19:504-517. [PMID: 28436964 PMCID: PMC5415409 DOI: 10.1038/ncb3514] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Adipocytes undergo considerable volumetric expansion in the setting of obesity. It has been proposed that such marked increases in adipocyte size may be sensed via adipocyte-autonomous mechanisms to mediate size-dependent intracellular signalling. Here, we show that SWELL1 (LRRC8a), a member of the Leucine-Rich Repeat Containing protein family, is an essential component of a volume-sensitive ion channel (VRAC) in adipocytes. We find that SWELL1-mediated VRAC is augmented in hypertrophic murine and human adipocytes in the setting of obesity. SWELL1 regulates adipocyte insulin-PI3K-AKT2-GLUT4 signalling, glucose uptake and lipid content via SWELL1 C-terminal leucine-rich repeat domain interactions with GRB2/Cav1. Silencing GRB2 in SWELL1 KO adipocytes rescues insulin-pAKT2 signalling. In vivo, shRNA-mediated SWELL1 knockdown and adipose-targeted SWELL1 knockout reduce adiposity and adipocyte size in obese mice while impairing systemic glycaemia and insulin sensitivity. These studies identify SWELL1 as a cell-autonomous sensor of adipocyte size that regulates adipocyte growth, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Litao Xie
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Susheel K. Gunasekar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Dan Tong
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Anil Mishra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | | | - Chuansong Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Trevor Fidler
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Brodie Marthaler
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Aloysius Klingelhutz
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - E. Dale Abel
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Isaac Samuel
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Jessica K. Smith
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Rajan Sah
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| |
Collapse
|
48
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
49
|
Otis JP, Shen MC, Quinlivan V, Anderson JL, Farber SA. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 2017; 10:283-295. [PMID: 28130355 PMCID: PMC5374320 DOI: 10.1242/dmm.027300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Caveolae and their structural protein caveolin 1 (CAV1) have roles in cellular lipid processing and systemic lipid metabolism. Global deletion of CAV1 in mice results in insulin resistance and increases in atherogenic plasma lipids and cholesterol, but protects from diet-induced obesity and atherosclerosis. Despite the fundamental role of the intestinal epithelia in the regulation of dietary lipid processing and metabolism, the contributions of CAV1 to lipid metabolism in this tissue have never been directly investigated. In this study the cellular dynamics of intestinal Cav1 were visualized in zebrafish and the metabolic contributions of CAV1 were determined with mice lacking CAV1 in intestinal epithelial cells (CAV1IEC-KO). Live imaging of Cav1-GFP and fluorescently labeled caveolae cargos shows localization to the basolateral and lateral enterocyte plasma membrane (PM), suggesting Cav1 mediates transport between enterocytes and the submucosa. CAV1IEC-KO mice are protected from the elevation in circulating fasted low-density lipoprotein (LDL) cholesterol associated with a high-fat diet (HFD), but have increased postprandial LDL cholesterol, total free fatty acids (FFAs), palmitoleic acid, and palmitic acid. The increase in circulating FAs in HFD CAV1IEC-KO mice is mirrored by decreased hepatic FAs, suggesting a non-cell-autonomous role for intestinal epithelial cell CAV1 in promoting hepatic FA storage. In conclusion, CAV1 regulates circulating LDL cholesterol and several FA species via the basolateral PM of enterocytes. These results point to intestinal epithelial cell CAV1 as a potential therapeutic target to lower circulating FFAs and LDL cholesterol, as high levels are associated with development of type II diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Meng-Chieh Shen
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Vanessa Quinlivan
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
50
|
Deshmukh AB, Bai S, T. A, Kazi RS, Banarjee R, Rathore R, MV V, HV T, Kumar Bhat M, MJ K. Methylglyoxal attenuates insulin signaling and downregulates the enzymes involved in cholesterol biosynthesis. MOLECULAR BIOSYSTEMS 2017; 13:2338-2349. [DOI: 10.1039/c7mb00305f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylglyoxal (MG) is a highly reactive dicarbonyl known to be elevated under the hyperglycemic conditions of diabetes and is implicated in the development of diabetic complications.
Collapse
Affiliation(s)
| | | | - Aarthy T.
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | | | | | | | | | | | | | - Kulkarni MJ
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|