1
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
2
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
3
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
4
|
Poledne R, Jurčíková-Novotná L. Experimental models of hyperlipoproteinemia and atherosclerosis. Physiol Res 2017; 66:S69-S75. [PMID: 28379031 DOI: 10.33549/physiolres.933585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The first experimental model of atherosclerosis (in rabbits) is more than hundred years old. Several animal species have been used to produce hyperlipoproteinemia and possible atherosclerosis. The gene manipulation produced the most used models recently. This review acknowledges the extensive study of atherosclerotic changes in experimental models of hyperlipoproteinemia and atherosclerosis to come to light thus far and the purpose here is not only to summarize the published data but also to try to add some details of our experience in using these models. In addition to rabbit (the old but also improved model by reno-vascular hypertension) dog, birds, pig, hamster, mice, rat and non-human primate's animal models are described. The gene manipulation produced the most used models two decades ago. Germline genetically engineered (without apoE or LDL receptor genes) animals have become the most used models producing atherosclerotic changes in the aorta. Recent new models also producing atherosclerotic changes but without germline genetic manipulation are also described.
Collapse
Affiliation(s)
- R Poledne
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Suarez MF, Piqueras MC, Correa L, Esposito E, Barros MF, Bhattacharya SK, Urrets-Zavalia JA, Serra HM. Phospholipidomic Studies in Human Cornea From Climatic Droplet Keratopathy. J Cell Biochem 2017; 118:3920-3931. [PMID: 28401586 DOI: 10.1002/jcb.26045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Abstract
Climatic droplet keratopathy (CDK) is an acquired degenerative disease predominantly affecting males over 40 years old. It results in progressive corneal opacities usually affecting both eyes. CDK is multifactorial and its etiology remains unknown. Our recent findings are consistent with CDK pathology being driven by environmental factors with oxidative stress playing an important role (e.g.,, contributing to lipid peroxidation) rather than climate factors. The changes in corneal lipid composition affected by environmental factors remain understudied. The purpose of this study was to systematically investigate phospholipids profile (phosphatidylcholine [PC] and phosphatidylserine [PS]) in corneas from CDK patients using tandem mass spectrometry. Samples from CDK areas and from non-affected areas were obtained from patients diagnosed with CDK who underwent cataract surgery, were subjected to lipid extraction using a modified Bligh and Dyer method; protein concentrations were determined using the Bradford's method. Lipids were identified and subjected to ratiometric quantification using TSQ Quantum Access Max triple quadrupole mass spectrometer, using appropriate class specific lipid standards. All phospholipid classes showed lower total amounts in affected areas compared to control areas from CDK's corneas. Comparative profiles of two phospholipid classes (PC, PS) between CDK areas and control areas showed several common species between them. We also found a few unique lipids that were absent in CDK areas compared to controls and vice versa. Lower amount of phospholipids in CDK areas compared to control areas could be attributed to the lipid peroxidation in the affected corneal regions as a consequence of increased oxidative stress. J. Cell. Biochem. 118: 3920-3931, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Fernanda Suarez
- CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Maria Carmen Piqueras
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Leandro Correa
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Evangelina Esposito
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Maria Fernanda Barros
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio A Urrets-Zavalia
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Horacio M Serra
- CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de Cordoba, Cordoba, Argentina
| |
Collapse
|
6
|
Rahmani M, Golian A, Kermanshahi H, Reza Bassami M. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1284077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marzieh Rahmani
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abolghasem Golian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Kermanshahi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Bassami
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Duong TTH, Chami B, McMahon AC, Fong GM, Dennis JM, Freedman SB, Witting PK. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 2014; 130:733-47. [PMID: 24766199 DOI: 10.1111/jnc.12747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di-tert-butyl-bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical-scavenging activity than vitamin E, crosses the blood-brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre-treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down-regulation of hypoxia inducible factor-1α and glucose transporter-1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro-apoptotic factors that together enhanced cerebral tissue viability after injury. That pre-treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection. We demonstrate that pre-treatment with ditert-butyl bisphenol(Di-t-Bu-BP) inhibits lipid, protein, and total thiol oxidation and decreases caspase activation and infarct size in rats subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. These data suggest that inhibition of oxidative stress contributes significantly to neuroprotection.
Collapse
Affiliation(s)
- Thi Thuy Hong Duong
- Vascular Biology Group, ANZAC Research Institute, Concord Hospital, Concord, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
McMahon AC, Parry SN, Benson VL, Witting PK, Le Couteur DG. Beneficial effects of the synthetic antioxidant tert-butyl bisphenol on the hepatic microcirculation in a rat model of diabetes mellitus. Acta Diabetol 2013; 50:645-9. [PMID: 22183926 DOI: 10.1007/s00592-011-0358-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/29/2011] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is associated with oxidative injury to the vasculature. Here, the link between oxidative stress and ultrastructural changes in the hepatic microcirculation was investigated as well as the effects of a synthetic antioxidant, tert-butyl bisphenol (tBP). The study focused on the impact of experimental diabetes on liver sinusoidal endothelial cell (LSEC) fenestrations, which are pores in the liver endothelium that facilitate substrate transfer between blood and hepatocytes. Adult male rats were rendered diabetic using streptozotocin (60 mg/kg) and administered 1-2 IU insulin daily. After 8 weeks, animals received either 100 mg/kg tBP or vehicle alone, on 2 consecutive days. Livers were harvested 24 h later under isofluorane anaesthesia (5% v/v in O2(g) by inhalation) and fixed for scanning electron microscopy to evaluate fenestrations or for immuno-histochemical assessment of nitrotyrosine, a marker of nitrosative stress. Median fenestration diameter increased significantly following 8 weeks of diabetes (80 nm vs. 70 nm controls; P < 0.001). LSEC porosity increased by ~50% (P < 0.001). Treatment with tBP reversed these changes completely. Periportal nitrotyrosine staining was increased in diabetic livers, and this was abrogated by tBP, indicating that tBP reduced nitrosative stress in the liver. Early diabetes caused an increase in fenestration diameter and porosity. This was reversed by acute treatment with tBP, suggesting a link between nitrosative stress and regulation of liver endothelial fenestrations, and indicates that antioxidant therapy may protect the liver microvasculature against the effects of diabetes mellitus.
Collapse
Affiliation(s)
- Aisling C McMahon
- Centre for Education and Research on Ageing, ANZAC Medical Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia,
| | | | | | | | | |
Collapse
|
9
|
Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A, Witting PK. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res 2011; 45:1000-12. [PMID: 21726176 DOI: 10.3109/10715762.2011.590137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhabdomyolysis (RM) caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney. Extracellular Mb is a pro-oxidant. This study tested whether supplementation with tert-butyl-bisphenol (BP) or vitamin E (Vit E, as α-tocopherol) at 0.12% w/w in the diet inhibits acute renal failure (ARF) in an animal model of RM. After RM-induction in rats, creatinine clearance decreased (p < 0.01), proteinuria increased (p < 0.001) and renal-tubule damage was detected. Accompanying ARF, biomarkers of oxidative stress (lipid oxidation and hemeoxygenase-1 (HO-1) gene and protein activity) increased in the kidney (p < 0.05). Supplemented BP or Vit E decreased lipid oxidation (p < 0.05) and HO-1 gene/activity and restored aortic cyclic guanylyl monophosphate in control animals (p < 0.001), yet ARF was unaffected. Antioxidant supplementation inhibited oxidative stress, yet was unable to ameliorate ARF in this animal model indicating that oxidative stress in kidney and vascular cells may not be causally related to renal dysfunction elicited by RM.
Collapse
Affiliation(s)
- Hyun Bo Kim
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Shanu A, Parry SN, Wood S, Rodas E, Witting PK. The synthetic polyphenol tert-butyl-bisphenol inhibits myoglobin-induced dysfunction in cultured kidney epithelial cells. Free Radic Res 2011; 44:843-53. [PMID: 20528578 DOI: 10.3109/10715762.2010.485993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract Rhabdomyolysis caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney and urine (maximum [Mb] approximately 50 microM) (termed myoglobinuria). Extracellular Mb can be a pro-oxidant. This study cultured Madin-Darby-canine-kidney-Type-II (MDCK II) cells in the presence of Mb and tested whether supplementation with a synthetic tert-butyl-polyphenol (tert-butyl-bisphenol; t-BP) protects these renal cells from dysfunction. In the absence of t-BP, cells exposed to 0-100 microM Mb for 24 h showed a dose-dependent decrease in ATP and the total thiol (TSH) redox status without loss of viability. Gene expression of superoxide dismutases-1/2, haemoxygenase-1 and tumour necrosis factor increased and receptor-mediated endocytosis of transferrin and monolayer permeability decreased significantly. Supplementation with t-BP before Mb-insult maintained ATP and the TSH redox status, diminished antioxidant/pro-inflammatory gene responses, enhanced monolayer permissiveness and restored transferrin uptake. Overall, bolstering the total antioxidant capacity of the kidney may protect against oxidative stress induced by experimental myoglobinuria.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
11
|
Yamamoto Y, Yamashita T, Kitagawa F, Sakamoto K, Giddings J, Yamamoto J. The effect of the long term aspirin administration on the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Thromb Res 2010; 125:246-52. [DOI: 10.1016/j.thromres.2009.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 10/14/2009] [Accepted: 11/09/2009] [Indexed: 12/22/2022]
|
12
|
de Lima Portella R, Barcelos RP, de Bem AF, Carratu VS, Bresolin L, da Rocha JBT, Soares FAA. Oximes as inhibitors of low density lipoprotein oxidation. Life Sci 2008; 83:878-85. [DOI: 10.1016/j.lfs.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/24/2008] [Accepted: 10/03/2008] [Indexed: 01/13/2023]
|
13
|
Veinbergs I, Mallory M, Sagara Y, Masliah E. Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoproteinE-deficient mice. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01308.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Duong TTH, Antao S, Ellis NA, Myers SJ, Witting PK. Supplementation with a synthetic polyphenol limits oxidative stress and enhances neuronal cell viability in response to hypoxia-re-oxygenation injury. Brain Res 2008; 1219:8-18. [PMID: 18538307 DOI: 10.1016/j.brainres.2008.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/28/2008] [Accepted: 04/09/2008] [Indexed: 12/31/2022]
Abstract
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. Cultured human neuronal cells exposed to experimental hypoxia-re-oxygenation (H/R) injury responded with an increased production of reactive oxygen species (ROS) and a significant decrease in intracellular ATP. Expression of genes encoding for hypoxia-inducible factor 1-alpha (HIF1-alpha), inducible haemoxygenase-1 (HO-1), glucose transporter-1 (Glut-1), the oxygen-sensor neuroglobin (Nb) and Cu,Zn-superoxide dismutase (SOD1), catalase (CAT) and glutathione peroxidase-1 (Gpx-1) increased significantly in response to the insult. Enhanced expression of HO-1, SOD1 and CAT correlated with an increase in the corresponding protein activity. Despite the cellular response to bolster antioxidant capacity, apoptosis and necrosis increased following H/R injury. In contrast, ROS accumulation, the endogenous gene response and cell death was limited in neuronal cells pre-incubated with 50 or 100, but not 10 microM of the phenolic antioxidant 3,3',5,5'-tetra-t-butyl-biphenyl-4,4'-diol (BP) prior to H/R injury. These data indicate that the early endogenous gene response to H/R injury is unable to inhibit neuronal dysfunction and that increasing cellular antioxidant capacity with a synthetic polyphenol (>10 microM) is potentially neuro-protective.
Collapse
Affiliation(s)
- T T Hong Duong
- Vascular Biology Group, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia
| | | | | | | | | |
Collapse
|
15
|
Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. Life Sci 2008; 82:708-17. [PMID: 18289605 DOI: 10.1016/j.lfs.2008.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/20/2007] [Accepted: 01/11/2008] [Indexed: 11/22/2022]
Abstract
Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins in animal models of atherosclerosis are not very consistent. Thus we wanted to evaluate whether atorvastatin possesses hypolipidemic and anti-inflammatory effects in mice lacking apolipoprotein E/low-density lipoprotein receptor (apoE/LDLR-deficient mice). Two-month-old female apoE/LDLR-deficient mice (n=24) were randomly subdivided into 3 groups. The control group of animals (n=8) was fed with the western type diet (atherogenic diet) and in other two groups atorvastatin was added to the atherogenic diet at the dosage of either 10 mg/kg or 100 mg/kg per day for a period of 2 months. Biochemical analysis of lipids, ELISA analysis of monocyte chemotactic protein-1 (MCP-1) in blood, quantification of lesion size and expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) in the atherosclerotic lesion by means of immunohistochemistry and Western blot analysis were performed. The biochemical analysis showed that administration of atorvastatin (100 mg/kg/day) significantly decreased level of total cholesterol, lipoproteins (VLDL and LDL), triacylglycerol, and moreover significantly increased level of HDL. ELISA analysis showed that atorvastatin significantly decreased levels of MCP-1 in blood and immunohistochemical and Western blot analysis showed significant reduction of VCAM-1 and ICAM-1 expression in the vessel wall after atorvastatin treatment (100 mg/kg/day). In conclusion, we demonstrated here for the first time strong hypolipidemic and anti-inflammatory effects of atorvastatin in apoE/LDLR-deficient mice. Thus, we propose that apoE/LDLR-deficient mice might be a good animal model for the study of statin effects on potential novel markers involved in atherogenesis and for the testing of potential combination treatment of new hypolipidemic substances with statins.
Collapse
|
16
|
Jawien J, Csanyi G, Gajda M, Mateuszuk L, Lomnicka M, Korbut R, Chlopicki S. Ticlopidine attenuates progression of atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Eur J Pharmacol 2007; 556:129-35. [PMID: 17174298 DOI: 10.1016/j.ejphar.2006.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/28/2006] [Accepted: 11/01/2006] [Indexed: 11/22/2022]
Abstract
Platelets are involved in the development of atherothrombosis. However, the anti-atherosclerotic effects of thienopiridines have not been, as yet, proven. We analyzed the effects of ticlopidine on atherogenesis in apolipoprotein E/low density lipoprotein receptor double knockout (apoE/LDLR(-/-)) mice. 2-month-old apoE/LDLR(-/-) mice fed a Western diet (21% fat, 0.15% cholesterol) were treated with ticlopidine (90 mg/kg/day) for a period of 4 months. In 6-month-old apoE/LDLR(-/-) mice treated with ticlopidine and in their non-treated counterparts we analyzed: cholesterol and triglyceride levels, the size of atherosclerotic plaques in aortic roots (oil red-O staining, cross-section method), and in the whole aorta (Sudan IV staining, en face method), the number of macrophages in atherosclerotic plaque (CD68 staining), as well as the endothelial function in the isolated thoracic aorta. Concentrations of total cholesterol and triglycerides in plasma were not altered by treatment with ticlopidine. However, the size of atherosclerotic plaques measured in aortic roots by the cross-section method and the number of macrophages estimated by anti-CD68 staining were significantly reduced by ticlopidine treatment. In contrast, the effect of ticlopidine on the area covered by plaques in the whole aorta (en face analysis) was not statistically significant. Importantly, acetylcholine-induced vasodilation in isolated aorta was improved in ticlopidine-treated apoE/LDLR(-/-) mice as compared to their non-treated counterparts. In conclusion, ticlopidine attenuates the progression of atherosclerosis and improves the endothelial function in apoE/LDLR(-/-) mice.
Collapse
Affiliation(s)
- Jacek Jawien
- Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee JY, Jung GY, Heo HJ, Yun MR, Park JY, Bae SS, Hong KW, Lee WS, Kim CD. 4-Hydroxynonenal induces vascular smooth muscle cell apoptosis through mitochondrial generation of reactive oxygen species. Toxicol Lett 2006; 166:212-21. [PMID: 16919899 DOI: 10.1016/j.toxlet.2006.07.305] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/10/2006] [Accepted: 07/10/2006] [Indexed: 11/22/2022]
Abstract
4-Hydroxynonenal (HNE), an end-product of membrane lipid peroxidation, has been suggested to mediate a number of oxidative stress-linked pathological events such as cellular apoptosis. However, little is known about the signals by which HNE induces vascular smooth muscle cell (VSMC) apoptosis. To elucidate the mechanism(s) involved in HNE-induced VSMC apoptosis, we investigated the importance of mitochondria as a potential source for reactive oxygen species (ROS). Exposure of VSMC to HNE (1-30 microM) showed an augmented apoptotic changes in a concentration-dependent manner in association with an increased production of ROS, both of which were significantly attenuated by mitochondrial inhibitors such as rotenone (0.1 microM) and stigmatellin (0.1 microM), but not affected by other oxidase inhibitors involving NADPH oxidase, xanthine oxidase and cyclooxygenase. In connection with these results, HNE-induced ROS generation was not observed in mitochondrial function-deficient (rho 0) VSMC. Taken together, these results suggest that mitochondrial dysfunction plays a key role in mediating HNE-induced VSMC apoptosis through an increased mitochondrial production of ROS.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Pharmacology, College of Medicine, Pusan National University, 10 Ami-Dong 1-Ga, Seo-Gu, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Estey T, Piatigorsky J, Lassen N, Vasiliou V. ALDH3A1: a corneal crystallin with diverse functions. Exp Eye Res 2006; 84:3-12. [PMID: 16797007 DOI: 10.1016/j.exer.2006.04.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/19/2006] [Indexed: 02/04/2023]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) comprises a surprisingly high proportion (5-50% depending on species) of the water-soluble protein of the mammalian cornea, but is present little if at all in the cornea of other species. Mounting experimental evidence demonstrates that this abundant corneal protein plays an important role in the protection of ocular structures against oxidative damage. Corneal ALDH3A1 appears to protect against UV-induced oxidative stress through a variety of biological functions such as the metabolism of toxic aldehydes produced during the peroxidation of cellular lipids, the generation of the antioxidant NADPH, the direct absorption of UV-light, the scavenging of reactive oxygen species (ROS), and the possession of chaperone-like activity. With analogies to the abundant, multifunctional, and taxon-specific lens crystallins, mammalian ALDH3A1 has been considered a corneal crystallin, suggesting that it may contribute to the optical properties of the cornea as well. Recent studies have also revealed a novel role for ALDH3A1 in the regulation of the cell cycle. ALDH3A1-transfected HCE cells have increased population-doubling time, decreased plating efficiency, and reduced DNA synthesis, most likely due to a profound inhibition of cyclins and cyclin-dependent kinases. We have proposed that the ALDH3A1-induced reduction in cell growth may contribute to protection against oxidative stress by extending time for DNA and cell repair. Taken together, the multiple roles of ALDH3A1 against oxidative stress in addition to its contributions to the optical properties of the cornea are consistent with the idea that this specialized protein performs diverse biological functions as do the lens crystallins.
Collapse
Affiliation(s)
- Tia Estey
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
19
|
Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, Croft KD, Mori TA, Tanous D, Adams MR, Lau AK, Stocker R. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. ACTA ACUST UNITED AC 2006; 203:1117-27. [PMID: 16606673 PMCID: PMC2118288 DOI: 10.1084/jem.20052321] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oxidative stress is implicated in atherogenesis, yet most clinical trials with antioxidants, particularly vitamin E, have failed to protect against atherosclerotic diseases. A striking exception is probucol, which retards atherosclerosis in carotid arteries and restenosis of coronary arteries after angioplasty. Because probucol has in vitro cellular-protective effects independent of inhibiting lipid oxidation, we investigated the mode of action of probucol in vivo. We used three models of vascular disease: apolipoprotein E–deficient mice, a model of atherosclerosis; rabbit aortic balloon injury, a model of restenosis; and carotid injury in obese Zucker rats, a model of type 2 diabetes. Unexpectedly, we observed that the phenol moieties of probucol were insufficient, whereas its sulphur atoms were required for protection. Probucol and its sulphur-containing metabolite, but not a sulphur-free phenolic analogue, protected via cell-specific effects on inhibiting macrophage accumulation, stimulating reendothelialization, and inhibiting vascular smooth muscle cell proliferation. These processes were mediated via induction of heme oxygenase-1 (HO-1), an activity not shared by vitamin E. Our findings identify HO-1 as the molecular target of probucol. They indicate 2-electron rather than radical (1-electron) oxidants as important contributors to atherogenesis, and point to novel lead compounds for therapeutic intervention against atherosclerotic diseases.
Collapse
Affiliation(s)
- Ben J Wu
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, and Department of Haematology, Prince of Wales Hospital, Sydney NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rayner BS, Duong TTH, Myers SJ, Witting PK. Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury. J Neurochem 2006; 97:211-21. [PMID: 16524376 DOI: 10.1111/j.1471-4159.2006.03726.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. Cultured neuronal cells exposed to hypoxia-reoxygenation (H/R) injury, as a model for stroke, yield a burst of reactive oxygen species (ROS) as measured with electron paramagnetic resonance (EPR) spectroscopy in combination with spin trapping. Added superoxide dismutase inhibited spin-adduct formation verifying that superoxide radical anion was formed in neuronal cells following H/R injury. The intracellular ADP/ATP ratio increased rapidly over the first 5 h following injury and this was due primarily to the decreased cellular pools of ATP, consistent with the notion that H/R promotes mitochondrial dysfunction leading to decreased ATP reserve and increased ROS formation. As an early response to the enhanced oxidative stress, genes encoding for hypoxia-inducible factor 1-alpha (HIF1-alpha), inducible haemoxygenase-1 (HO-1), and the oxygen-sensor neuroglobin increased significantly. Up-regulation of the HO-1 gene was paralleled by increased HO protein expression and activity. Despite this cellular response, apoptosis increased significantly following H/R injury indicating that the endogenous anti-oxidant defenses were unable to protect the cells. In contrast, addition of a phenolic anti-oxidant, bisphenol (BP), prior to H/R injury, inhibited ROS production and gene regulation and significantly decreased neuronal cell apoptosis. Added BP was converted stoichiometrically to the corresponding diphenoquinone indicating the synthetic anti-oxidant effectively decreased oxidative stress through a radical scavenging mechanism. Together, these data indicate that BP has the potential to act as a neuro-protective drug.
Collapse
Affiliation(s)
- Ben S Rayner
- Vascular Biology Group, ANZAC Research Institute, Hospital Road, Concord Repatriation General Hopsital, Concord, NSW 2139, Australia
| | | | | | | |
Collapse
|
21
|
Miquel J, Ramírez-Boscá A, Ramírez-Bosca JV, Alperi JD. Menopause: a review on the role of oxygen stress and favorable effects of dietary antioxidants. Arch Gerontol Geriatr 2006; 42:289-306. [PMID: 16442644 DOI: 10.1016/j.archger.2005.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/11/2005] [Accepted: 08/15/2005] [Indexed: 12/26/2022]
Abstract
Menopause is often accompanied by hot flashes and degenerative processes such as arteriosclerosis and atrophic changes of the skin that suggest an acceleration of aging triggered by estrogen lack. Therefore, hormone replacement therapy (HRT) has been considered the most suitable treatment for the above symptoms and processes. However, because of the possible serious side effects of HRT (especially the increased risk of thrombo-embolic accidents and breast cancer) there is a growing demand for alternative treatments of the symptoms and pathological processes associated with menopause. In agreement with the above, we review research that supports the concept that oxygen stress contributes to menopause and that some of its physiopathological effects may be prevented and/or treated improving the antioxidant defense of menopausic and postmenopausic women. Accordingly, a selection of micronutrients may be useful as a dietary supplement for protection against the decline of physiological functions caused by age-related oxygen stress. Since aging is accompanied by a progressive oxidation of the physiological sulfur pool, we emphasize the role of the vitamins B that help to maintain the GSH/GSSG ratio in its normal reduced state. Nutritional supplements should also include the key antioxidant vitamins C and E, as well as beta-carotene and the mineral micronutrients found in the oxygen radical-detoxifying enzymes glutathione peroxidase and superoxide dismutase. Moreover, the reviewed data suport the concept that other antioxidants such as lipoic acid and the precursors of glutathione thioproline (TP) and l-2-oxothiazolidine-4-carboxylic acid (OTC), as well as the soy isoflavones and the "coantioxidants" of an hydroalcoholic extract of Curcuma longa may help to prevent antioxidant deficiency with resulting protection of mitochondria against premature oxidative damage with loss of ATP synthesis and especialized cellular functions. Therefore, the administration under medical advice of synergistic combinations of some of the above mentioned antioxidants in the diet as well as topically (for skin protection) may have favorable effects on the health and quality of life of women, especially of those who cannot be treated with HR, suffer high levels of oxygen stress, and do not consume a healthy diet that includes five daily rations of fresh fruit and vegetables.
Collapse
Affiliation(s)
- Jaime Miquel
- Department of Biotechnology, University of Alicante, San Vicente, Ap. 99, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|
22
|
Persson L, Borén J, Nicoletti A, Hansson GK, Pekna M. Immunoglobulin treatment reduces atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice via the complement system. Clin Exp Immunol 2006; 142:441-5. [PMID: 16297155 PMCID: PMC1809548 DOI: 10.1111/j.1365-2249.2005.02954.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is associated with activation of the immune system. Intravenously applied normal polyclonal immunoglobulins (IVIg) have broad therapeutic applications in the treatment of autoimmune and systemic inflammatory diseases. Recently, IVIg have been shown to inhibit atherogenesis in experimental animal models. To investigate the role of the complement system in this process, we used third complement component-deficient (C3(-/-)) and control atherosclerosis-prone apolipoprotein E (ApoE) and low-density lipoprotein receptor (LDLR) double knock-out mice fed a normal diet. IVIg treatment reduced lesion fraction area in the aortic root of complement-sufficient mice whereas the lesion fraction area of C3(-/-) mice was not affected. Thus, complement activation plays a role in the anti-atherosclerotic effects of IVIg, possibly by C3-derived fragments generated through Fc-dependent complement activation.
Collapse
Affiliation(s)
- L Persson
- Department of Medical Biochemistry, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
23
|
Witting PK, Wu BJ, Raftery M, Southwell-Keely P, Stocker R. Probucol Protects against Hypochlorite-induced Endothelial Dysfunction. J Biol Chem 2005; 280:15612-8. [PMID: 15722355 DOI: 10.1074/jbc.m414256200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is associated with endothelial dysfunction and a heightened state of inflammation characterized, in part, by an increase in vascular myeloperoxidase and proteins modified by its principal oxidant, hypochlorous acid (HOCl). Here we examined whether probucol could protect against endothelial dysfunction induced by the two-electron oxidant HOCl. Hypochlorous acid eliminated endothelium-dependent relaxation of rabbit aorta, whereas endothelial function and tissue cGMP was preserved and elevated, respectively, in animals pretreated with probucol. Exogenously added probucol also protected against HOCl-induced endothelial dysfunction. In vitro, HOCl oxidized probucol in a two-phase process with rate constants k(1) = 2.7 +/- 0.3 x 10(2) and k(2) = 0.7 +/- 0.2 x 10(2) m(-1) s(-1) that resulted in a dose- and time-dependent accumulation of probucol-derived disulfoxide, 4,4'-dithiobis(2,6-di-tert-butyl-phenol) (DTBP), DTBP-derived thiosulfonate, disulfone, and sulfonic acid, together with 3,3',5,5'-tetra-tert-butyl-4,4'-diphenoquinone (DPQ) as determined by high performance liquid chromatography and mass spectrometry. Like HOCl, selected one-electron oxidants converted probucol into DTBP and DPQ. Also, dietary and in vitro added DTBP protected aortic rings from HOCl-induced endothelial dysfunction and in vitro oxidation by HOCl gave rise to the thiosulfonate, disulfone, and sulfonic acid intermediates and DPQ. However, the product profiles of the in vitro oxidation systems were different from those in aortas of rabbits receiving dietary probucol or DTBP +/- HOCl treatment. Together, the results show that both probucol and DTBP react with HOCl and protect against HOCl-induced endothelial dysfunction, although direct scavenging of HOCl is unlikely to be responsible for the vascular protection by the two compounds.
Collapse
Affiliation(s)
- Paul K Witting
- Centre for Vascular Research, Bioanalytical Mass Spectrometry Facility, and School of Chemistry, University of New South Wales, UNSW Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
24
|
Andreasson AC, Abt M, Jönsson-Rylander AC. Confocal scanning laser microscopy measurements of atherosclerotic lesions in mice aorta. A fast evaluation method for volume determinations. Atherosclerosis 2005; 179:35-42. [PMID: 15721007 DOI: 10.1016/j.atherosclerosis.2004.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 09/02/2004] [Accepted: 10/13/2004] [Indexed: 11/28/2022]
Abstract
Atherosclerotic lesion size in mice is routinely evaluated by morphometrical measurements on serial sections in order to obtain volume measurements. The technique of confocal scanning laser microscopy (CSLM) makes it possible to optically scan and thereby evaluate a tissue sample. We here describe a method for measuring lesion volume in ApoE/LDLr deficient mice at 20 and 30 weeks of age using the non-destructive procedure of CSLM. Whole mount preparations of opened aorta with the lumen side facing the cover slip were analysed under 10x magnification in a CSLM (Leica). The autofluorescence of the elastic fibres of the lamina interna as opposed to the non-fluorescing lesion was used to define the bottom and top of the lesion during scanning. Ten to forty images were collected 2.4 microm apart, depending on the size of the lesion, and the stack of images was then analysed using Imaris (Bitplane). After the CSLM evaluation, the aortas were de-mounted, embedded in paraffin, sectioned, stained in hematoxylin and eosin and the volume re-evaluated with conventional morphometry. Statistical evaluation showed that the results obtained with CSLM and the results of morphometry were positively correlated. Area measurements of the plaques using en face preparations of aorta showed that the plaque area was generally larger at the left side and a significant increase of plaque area along the length of the thoracic aorta. Our results showed that atherosclerotic lesions in mice can be quantitatively evaluated by CSLM.
Collapse
|
25
|
Abstract
According to the oxidative modification hypothesis, antioxidants that inhibit the oxidation of low-density lipoprotein (LDL) are expected to attenuate atherosclerosis, yet not all antioxidants that inhibit LDL oxidation in vitro inhibit disease in animal models of atherosclerosis. As with animal studies, a benefit with dietary supplements of antioxidants in general and vitamin E in particular was anticipated in humans, yet the overall outcome of large, randomized controlled studies has been disappointing. However, in recent years it has become clear that the role of vitamin E in LDL oxidation and the relationship between in vitro and in vivo inhibition of LDL oxidation are more complex than previously appreciated, and that oxidative events in addition to LDL oxidation in the extracellular space need to be considered in the context of an antioxidant as a therapeutic drug against atherosclerosis. This review focuses on some of these complexities, proposes a novel method to assess in vitro 'oxidizability' of lipoprotein lipids, and summarizes the present situation of development of antioxidant compounds as drugs against atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- O Cynshi
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co Ltd, Shizuoka, Japan
| | | |
Collapse
|
26
|
Yamashita T, Oda E, Sano T, Yamashita T, Ijiru Y, Giddings JC, Yamamoto J. Varying the ratio of dietary n−6/n−3 polyunsaturated fatty acid alters the tendency to thrombosis and progress of atherosclerosis in apoE−/− LDLR−/− double knockout mouse. Thromb Res 2005; 116:393-401. [PMID: 16122552 DOI: 10.1016/j.thromres.2005.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/20/2004] [Accepted: 01/24/2005] [Indexed: 02/02/2023]
Abstract
We have investigated the influence of dietary n-6/n-3 (ù-6/ù-3) polyunsaturated fatty acid-balance on the tendency to arterial thrombosis and the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse. Homozygous apoE-/- LDLR-/- double knockout mouse (DKO mice, 129XC57BL/6J background) and male C57BL/6 mice aged 6 weeks were divided into four groups. Each group was fed a diet containing a different n-6/n-3 ratio (Group l: 0.29; Group 2: 1.43; Group 3: 5.00; Group 4: 8), prepared with high linolenic (LNA) flaxseed oil (n-3 rich) and high linoleic (LA) safflower oil (n-6 rich). There were no statistical differences in the gain in body weight between the four groups. After 16 weeks, plasma triglyceride and LDL levels in Group 1 were significantly lower than in the other groups. Conversely, HDL was the highest. After 8 and 16 weeks, the tendency to arterial thrombosis was assessed using a He-Ne laser-induced thrombosis model. The degree of atherosclerosis was measured using the entire aorta method employing image analysis software. The n-6/n-3 ratio had a dose-dependent antithrombotic effect (thrombus volume decreased 23%, Group 1 vs. Group 4), In addition, the extent of atherosclerosis was less in the animals fed a low n-6/n-3 ratio compared with the high n-6/n-3 ratio group (atherosclerotic area decreased 40%, Group 1 vs. Group 4). The lowest n-6/n-3 ratio tested (0.29) was the most effective in suppressing the thrombotic and atherosclerotic parameters in these DKO mice.
Collapse
Affiliation(s)
- T Yamashita
- Laboratory of Physiology, Faculty of Nutrition, and High Technology Research Center, Kobe Gakuin University, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Yamauchi R, Southwell-Keely P, Suarna C, Ray S, Raftery M, Cynshi O, Stocker R. Characterization of the oxidation products of BO-653 formed during peroxyl radical-mediated oxidation of human plasma. Free Radic Biol Med 2005; 38:32-40. [PMID: 15589369 DOI: 10.1016/j.freeradbiomed.2004.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/27/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
4,6-Di-tert-butyl-2,3-dihydro-2,2-dipentyl-5-benzofuranol (BO-653) is a novel antioxidant synthesized by theoretical findings and considerations. Here we report on the aqueous peroxyl radical-induced oxidation of human plasma in the presence of BO-653. When BO-653 was given to healthy human subjects at 400 mg twice daily for 28 days, lipids in the resulting plasma were protected from oxidation compared with lipids present in plasma from subjects receiving placebo. Similarly, BO-653 added in vitro at 50 muM inhibited the peroxyl radical-induced accumulation of cholesteryl ester hydroperoxides that occurred in the presence of alpha-tocopherol, although BO-653 did not decrease the rate of consumption of ascorbate, albumin-bound bilirubin, and uric acid. The antioxidant action of in vivo and in vitro added BO-653 was associated with the formation of two major reaction products of BO-653, the structures of which were elucidated by mass spectrometry and nuclear magnetic resonance analyses. The products were identified as stereoisomers of dioxybis(4,6-di-tert.-butyl-2,3,5,7a-tetrahydro-2,2-dipentylbenzofuran-5-one). These dialkylperoxides of BO-653 might be useful markers to assess the antioxidant function of BO-653 in biological systems in vivo.
Collapse
Affiliation(s)
- Ryo Yamauchi
- Centre for Vascular Research, University of New South Wales, and Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
29
|
Volle DH, Repa JJ, Mazur A, Cummins CL, Val P, Henry-Berger J, Caira F, Veyssiere G, Mangelsdorf DJ, Lobaccaro JMA. Regulation of the Aldo-Keto Reductase Gene akr1b7 by the Nuclear Oxysterol Receptor LXRα (Liver X Receptor-α) in the Mouse Intestine: Putative Role of LXRs in Lipid Detoxification Processes. Mol Endocrinol 2004; 18:888-98. [PMID: 14739254 DOI: 10.1210/me.2003-0338] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractLiver X receptors (LXRs) regulate the expression of a number of genes involved in cholesterol and lipid metabolism after activation by their cognate oxysterol ligands. AKR1-B7 (aldo-keto reductase 1-B7) is expressed in LXR target tissues such as intestine, and because of its known role in detoxifying lipid peroxides, we investigated whether the AKR1-B7 detoxification pathway was regulated by LXRs. Here we show that synthetic LXR agonists increase the accumulation of AKR1-B7 mRNA and protein levels in mouse intestine in wild-type but not lxr−/− mice. Regulation of akr1b7 by retinoic X receptor/LXR heterodimers is dependent on three response elements in the proximal murine akr1b7 promoter. Two of these cis-acting elements are specific for regulation by the LXRα isoform. In addition, in duodenum of wild-type mice fed a synthetic LXR agonist, we observed an LXR-dependent decrease in lipid peroxidation. Our results demonstrate that akr1b7 is a direct target of LXRs throughout the small intestine, and that LXR activation plays a protective role by decreasing the deleterious effects of lipid peroxides in duodenum. Taken together, these data suggest a new role for LXRs in lipid detoxification.
Collapse
Affiliation(s)
- David H Volle
- Physiologie Comparée et Endocrinologie Moléculaire, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6547-Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Persson L, Borén J, Robertson AKL, Wallenius V, Hansson GK, Pekna M. Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2004; 24:1062-7. [PMID: 15059809 DOI: 10.1161/01.atv.0000127302.24266.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effect of complement deficiency on atherogenesis and lipidemia, we used mice deficient in the third complement component (C3-/-) or factor B (FB-/-). METHODS AND RESULTS Complement-deficient mice were crossed with mice deficient in both apolipoprotein E and the low-density lipoprotein receptor (Apoe-/- LDLR-/-). The percent lesion area in the aorta at 16 weeks, determined by en face analysis, was 84% higher in C3-/- mice than in controls (11.8%+/-0.4% versus 6.4%+/-0.8%, mean+/-SEM, P<0.00005). The C3-/- mice also had 58% higher serum triglyceride levels (P<0.05) and a more proatherogenic lipoprotein profile, with significantly more low-density lipoprotein cholesterol and very-low-density lipoprotein triglycerides than control mice. The C3-/- mice weighed 13% less (P<0.01) and had a lower body fat content (3.5%+/-1.0% versus 13.1%+/-3.0%, P<0.01). There were no differences between FB-/- mice and controls. CONCLUSIONS Complement activation by the classical or lectin pathway exerts atheroprotective effects, possibly through the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Linda Persson
- Department of Medical Biochemistry,The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Miquel J, Bernd A, Sempere JM, Díaz-Alperi J, Ramírez A. The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 2004; 34:37-46. [PMID: 14764309 DOI: 10.1016/s0167-4943(01)00194-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 07/09/2001] [Accepted: 07/12/2001] [Indexed: 12/17/2022]
Abstract
In agreement with the predictions of the oxygen-stress theory of aging and age-related degenerative diseases, diet supplementation with a number of phenolic or thiolic antioxidants has been able to increase the life span of laboratory animals, protect against senescent immune decline and preserve the respiratory function of aged mitochondria. In addition to the above, more recent data reviewed here suggest that the polyphenolic compound curcumin and related non-toxic antioxidants from the rhizome of the spice plant Curcuma longa have a favorable effect on experimental mouse tumorigenesis as well as on inflammatory processes such as psoriasis and ethanol-caused hepatic injury. Our own research has focused on the effects of diet supplementation with an antioxidant-rich hydroalcoholic extract of the curcuma rhizome on key risk factors of atherogenesis and related cardiovascular disease. Our reviewed data show that, in human healthy subjects, the daily intake of 200 mg of the above extract results in a decrease in total blood lipid peroxides as well as in HDL and LDL-lipid peroxidation. This anti-atherogenic effect was accompanied by a curcuma antioxidant-induced normalization of the plasma levels of fibrinogen and of the apo B/apo A ratio, that may also decrease the cardiovascular risk. The reviewed literature indicates that curcumin and related plant co-antioxidants are powerful anti-inflammatory agents. Further, since they potentiate the anti-atherogenic effect of alpha-tocopherol, more extensive clinical testing of their probable usefulness in cardiovascular risk reduction seems justified.
Collapse
Affiliation(s)
- J Miquel
- Department of Biotechnology, University of Alicante, San Vicente, E-03080, Alicante, Spain.
| | | | | | | | | |
Collapse
|
32
|
Stocker R, O'Halloran RA. Dealcoholized red wine decreases atherosclerosis in apolipoprotein E gene-deficient mice independently of inhibition of lipid peroxidation in the artery wall. Am J Clin Nutr 2004; 79:123-30. [PMID: 14684408 DOI: 10.1093/ajcn/79.1.123] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oxidation of LDL is thought to be important in the development of atherosclerosis. Effective protection against lipoprotein oxidation is achieved by the use of alpha-tocopherol plus coantioxidants, ie. compounds that prevent the prooxidant activity of the vitamin. Wines contain a large number of polyphenols, micronutrients that may act as coantioxidants and may enhance the in vivo antioxidant activity of vitamin E. OBJECTIVE We examined whether wines and wine-derived fractions are able to act synergistically with vitamin E in vitro and whether dealcoholized red wine (DRW) retards the development of atherosclerosis. DESIGN Synergy with vitamin E was assessed in vitro by the ability of red and white wines to both attenuate alpha-tocopheroxyl radicals and inhibit in vitro oxidation of LDL in the presence of vitamin E. Female, 6-8-wk-old apolipoprotein E gene-deficient mice were fed a normal nonpurified stock diet for 24 wk to assess the effect on atherosclerosis of DRW at a dose equivalent to 200 mL x 80 kg body wt(-1) x d(-1). RESULTS DRW synergized with vitamin E as effectively as did red and white wine, and phenolic acids accounted for most of this activity. Administration of DRW increased plasma and aortic antioxidants concentrations and the resistance of plasma lipoproteins to ex vivo oxidation. Whereas lipoprotein oxidation in the artery wall was not affected, DRW significantly decreased atherosclerosis in the aortic arch, but not in the root, as assessed by morphometry. CONCLUSIONS DRW contains polyphenolic compounds capable of synergizing with vitamin E, and long-term moderate consumption of DRW can decrease atherosclerosis in apolipoprotein E gene-deficient mice.
Collapse
|
33
|
Pettersson K, Bergstrand H. The antiatherogenic effect of DiNAC: experimental findings supporting immunomodulation as a new treatment for atherosclerosis related diseases. CARDIOVASCULAR DRUG REVIEWS 2003; 21:119-32. [PMID: 12847563 DOI: 10.1111/j.1527-3466.2003.tb00110.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammatory processes in the arterial wall are important in atherogenesis. The present review discusses the development of DiNAC as a potential new treatment modality for atherosclerosis related diseases. DiNAC, N,N'-diacetyl-L-cystine, is the disulphide dimer of N-acetyl cysteine, NAC. It was selected as an immunomodulating drug candidate due to its ability to modify contact sensitivity/delayed type hypersensitivity (CS/DTH) reactions in vivo. Initial structure-activity relationship (SAR) studies indicated that an intact disulfide bridge was essential for this effect. Antioxidants, like probucol and some close analogs with two sulphurs in close proximity (but not disulphides), were also found to have similar effects on CS/DTH reactions. These antioxidants have antiatherosclerotic effects, while structurally related compounds without sulphurs do not. Therefore, it was hypothesized that DiNAC might also possess antiatherosclerotic effects. This was investigated in WHHL rabbits and mice. In both species, DiNAC had antiatherosclerotic activity similar to that of probucol. The effect of DiNAC was not due to an alteration of lipid metabolism. Impaired endothelium mediated relaxation is known to be associated with atherosclerosis. DiNAC was shown to reverse this process in WHHL rabbits with advanced atherosclerosis, probably due to an action on the vessel wall itself that is not related to the extent of atherosclerosis or to plasma lipid levels. Preliminary data from a clinical investigation in hypercholesterolemic subjects suggest that DiNAC is likely to have similar effects also in patients. Taken together, these findings suggest immunomodulation to be a potential new therapy for atherosclerosis related diseases. DiNAC may represent a new treatment modality for such diseases.
Collapse
Affiliation(s)
- Knut Pettersson
- AstraZeneca Research and Development Mölndal, Kungsladugårdsgatan 110, SE-414 76 Göteborg, Sweden.
| | | |
Collapse
|
34
|
Abstract
Epidemiological and biochemical studies infer that oxidative processes, including the oxidation of low-density lipoprotein (LDL), are involved in atherosclerosis. Vitamin E has been the focus of several large supplemental studies of cardiovascular disease, yet its potential to attenuate or even prevent atherosclerosis has not been realised. The scientific rationale for vitamin E supplements protecting against atherosclerosis is based primarily on the oxidation theory of atherosclerosis, the assumption that vitamin E becomes depleted as disease progresses, and the expectation that vitamin E prevents the oxidation of LDL in vivo and atherogenic events linked to such oxidation. However, it is increasingly clear that the balance between vitamin E and other antioxidants may be crucial for in vivo antioxidant protection, that vitamin E is only minimally oxidised and not deficient in atherosclerotic lesions, and that vitamin E is not effective against two-electron oxidants that are increasingly implicated in both early and later stages of the disease. It also remains unclear as to whether oxidation plays a bystander or a casual role in atherosclerosis. This lack of knowledge may explain the ambivalence of vitamin E and other antioxidant supplementation in atherosclerosis.
Collapse
Affiliation(s)
- Joanne M Upston
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
35
|
Choy KJ, Deng YM, Hou JY, Wu B, Lau A, Witting PK, Stocker R. Coenzyme Q(10) supplementation inhibits aortic lipid oxidation but fails to attenuate intimal thickening in balloon-injured New Zealand white rabbits. Free Radic Biol Med 2003; 35:300-9. [PMID: 12885592 DOI: 10.1016/s0891-5849(03)00304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidized lipoproteins are implicated in atherosclerosis, and some antioxidants attenuate the disease in animals. Coenzyme Q(10) (CoQ(10)) in its reduced form, ubiquinol-10, effectively inhibits lipoprotein oxidation in vitro and in vivo; CoQ(10) supplements also inhibit atherosclerosis in apolipoprotein E gene knockout (apoE-/-) mice. Here we tested the effect of dietary CoQ(10) supplements on intimal proliferation and lipoprotein lipid oxidation in balloon-injured, hypercholesterolemic rabbits. Compared to nonsupplemented chow, CoQ(10) supplementation (0.5% and 1.0%, w/w) significantly increased the plasma concentration of CoQ(10) and the resistance of plasma lipids to ex vivo oxidation. CoQ(10) supplements also increased the content of CoQ(10) in the aorta and liver, but not in the brain, skeletal muscle, kidney, and heart. Surprisingly, CoQ(10) supplementation at 1% increased the aortic concentrations of all lipids, particularly triacylglycerols, although it significantly inhibited the proportion of triacylglycerols present as hydroperoxides by > 80%. The observed increase in vessel wall lipid content was reflected in elevated plasma concentrations of cholesterol, cholesteryl esters and triacylglycerols, and hepatic levels of mRNA for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. CoQ(10) supplements did not attenuate lesion formation, assessed by the intima-to-media ratio of injured aortic vessels. Thus, like in apoE-/- mice, a high dose of supplemented CoQ(10) inhibits lipid oxidation in the artery wall of balloon-injured, hypercholesterolemic rabbits. However, unlike its antiatherosclerosis activity in the mice, CoQ(10) does not inhibit intimal hyperplasia in rabbits, thereby dissociating this disease process from lipid oxidation in the vessel wall.
Collapse
Affiliation(s)
- Katherine J Choy
- Biochemistry Group, The Heart Research Institute, Camperdown, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Uddin M, Yang H, Shi M, Polley-Mandal M, Guo Z. Elevation of oxidative stress in the aorta of genetically hypertensive mice. Mech Ageing Dev 2003; 124:811-7. [PMID: 12875744 DOI: 10.1016/s0047-6374(03)00135-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is an age-dependent disorder. Oxidative stress has been suggested to play a role in aging and age-dependent disorders. The objective of this study is to examine the oxidant and antioxidant status in the aorta of a mouse model with high blood pressure (BPH). Our results showed that the level of malondialdehyde (MDA) in the aorta of BPH mice was approximately 2.6-fold higher than that of the normal blood pressure (BPN) mice, suggesting an increased in vivo oxidative stress in the arterial wall of BPH mice. In addition, the release of hydrogen peroxide (H2O2) from the aorta of BPH mice was significantly faster than that of BPN mice. To determine if the increased H2O2 release is related to a down-regulation of antioxidant enzymes in the arterial wall, we measured the activities of the major antioxidant enzymes in mouse aortas. We observed that the activities of Cu/Zn-superoxide dismutase (SOD) and glutathione peroxidase-1 in BPH mice were similar to BPN mice. On the other hand, the catalase activity in the aorta of BPH mice was significantly reduced while the activities of Mn-SOD and extracellular (EC)-SOD in the aorta of BPH mice were significantly elevated as compared with BPN mice. These results suggest that increase in SOD activity and decrease in catalase activity might be responsible for the increased release of H2O2 in the arterial wall of BPH mice.
Collapse
Affiliation(s)
- Mukarram Uddin
- Department of Anatomy and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
37
|
Terentis a J, "Stocker a,b" R, "Kritharides b,c" L, Upston a A. Is There a Role for Vitamin E in the Prevention of Atherosclerosis? Antioxidants (Basel) 2003. [DOI: 10.1201/9781439822173.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Upston JM, Terentis AC, Morris K, Keaney Jr JF, Stocker R. Oxidized lipid accumulates in the presence of alpha-tocopherol in atherosclerosis. Biochem J 2002; 363:753-60. [PMID: 11964176 PMCID: PMC1222528 DOI: 10.1042/0264-6021:3630753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidative modification of low-density lipoproteins in the arterial wall is a key feature of atherogenesis and widely believed to cause and/or accelerate lesion development. Linked to this is the expectation that vascular antioxidants are depleted during oxidation in vivo. However, whether alpha-tocopherol (vitamin E), an important lipid-soluble antioxidant, is depleted early in atherogenesis and can prevent lipid peroxidation in vivo is unresolved. To address this we examined the content of specific configurational isomers (cis/trans) of lipid hydro(pero)xides in lesions, which represent the major non-enzymic oxidation products, as formation and accumulation of cis/trans isomers is influenced by alpha-tocopherol in studies in vitro. Concordant with our previous findings that large amounts of oxidized lipid co-exist with relatively normal alpha-tocopherol levels in human lesions, we now show that cis/trans isomers predominate over other products in human carotid and aortic lesions and in lesion lipoproteins. Further, dietary vitamin E supplementation of rabbits after arterial injury significantly increases both the aortic levels of alpha-tocopherol and the overall content of cis/trans isomers. These data are fully consistent with alpha-tocopherol acting as a hydrogen donor during lipid oxidation in vivo and suggest that alpha-tocopherol does not prevent lipoprotein lipid oxidation in the diseased vessel wall.
Collapse
Affiliation(s)
- Joanne M Upston
- Biochemistry Group, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW, 2050, Australia
| | | | | | | | | |
Collapse
|
39
|
Guo Z, Mitchell-Raymundo F, Yang H, Ikeno Y, Nelson J, Diaz V, Richardson A, Reddick R. Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoprotein E-deficient mice. Mech Ageing Dev 2002; 123:1121-31. [PMID: 12044962 DOI: 10.1016/s0047-6374(02)00008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary restriction (DR) has been shown to inhibit almost all the age-related diseases, e.g. cardiomyopathy and cancers, in rodents. However, there is little information for the effect of DR on atherosclerosis. In the present study, we examined the effect of DR on the development of atherosclerosis in mice homozygous knockout for apolipoprotein E gene (ApoE(-/-)). The ApoE(-/-) mice were fed either ad libitum (AL) or 60% of the diet consumed by the mice fed AL. Atherosclerotic lesions in the proximal aorta of these mice were measured. Our results showed that ApoE(-/-) mice fed the calorie-restricted diet had smaller and relatively early stages of atherosclerotic lesions (e.g. foam cells and free lipids) when compared to ApoE(-/-) mice fed AL, who developed more advanced lesions (e.g. fibrous caps and acellular areas). In addition, ApoE(-/-) mice fed the calorie-restricted diet showed a significant decrease in the level of lipid hydroperoxides and the production of superoxide and hydrogen peroxide in the aorta as compared to ApoE(-/-) mice fed AL. These observations suggest that reduction of oxidative stress in the arterial wall may contribute to the anti-atherogenic effect of DR in ApoE(-/-) mice.
Collapse
Affiliation(s)
- ZhongMao Guo
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Harman's free radical theory of aging and our electron-microscopic finding of an age-related mitochondrial degeneration in the somatic tissues of the insect Drosophila melanogaster as well as in the fixed postmitotic Leydig and Sertoli cells of the mouse testis led us to propose a mitochondrial theory of aging, according to which metazoan senescence may be linked to oxygen stress-injury to the genome and membranes of the mitochondria of somatic differentiated cells. These concepts attract a great deal of attention, since, according to recent work, the mitochondrial damage caused by reactive oxygen species (ROS) and concomitant decline in ATP synthesis seem to play a key role not only in aging, but also in the fundamental cellular process of apoptosis. Although diet supplementation with antioxidants has not been able to increase consistently the species-characteristic maximum life span, it results in significant extension of the mean life span of laboratory animals. Moreover, diets containing high levels of antioxidants such as vitamins C and E seem able to reduce the risk of suffering age-related immune dysfunctions and arteriosclerosis. Presently, the focus of age-related antioxidant research is on compounds, such as deprenyl, coenzyme Q10, alpha-lipoic acid, and the glutathione-precursors thioproline and N-acetylcysteine, which may be able to neutralize the ROS at their sites of production in the mitochondria. Diet supplementation with these antioxidants may protect the mitochondria against respiration-linked oxygen stress, with preservation of the genomic and structural integrity of these energy-producing organelles and concomitant increase in functional life span.
Collapse
Affiliation(s)
- Jaime Miquel
- Department of Biotechnology, University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
41
|
Abstract
Oxidation of low-density lipoproteins (LDL) is a key process in atherogenesis, and vitamin E (alpha-tocopherol, TOH) has received attention for its potential to attenuate the disease. Despite this, the type and extent of TOH oxidation and its relationship to lipid oxidation in the vessel wall where lesions develop remain unknown. Therefore, we measured oxidized lipids, TOH, and its oxidation products, alpha-tocopherylquinone (TQ), 2,3- and 5,6-epoxy-alpha-tocopherylquinones by gas chromatography-mass spectrometry analysis in human lesions representing different stages of atherosclerosis. We also oxidized LDL in vitro to establish "footprints" of TOH oxidation product for different oxidants. The in vitro studies demonstrated that tocopherylquinone epoxides are the major products when LDL is exposed to the one-electron (ie, radical) oxidants, peroxyl radicals, and copper ions, whereas TQ preferentially accumulates with the two-electron (nonradical) oxidants, hypochlorite, and peroxynitrite. In human lesions, the relative extent of TOH oxidation was maximal early in the disease where it exceeded lipid oxidation. Independent of the disease stage, TQ was always the major oxidation product with all products together representing <20% of the total TOH present, and the oxidation product profile mirroring that formed during LDL oxidation by activated monocytes in the presence of nitrite. In contrast, oxidized lipid increased with increasing disease severity. These results suggest that two-electron oxidants are primarily responsible for TOH oxidation in the artery wall, and that the extent of TOH oxidation is limited yet substantial lipid oxidation takes place. This study may have important implications regarding antioxidant supplements aimed at preventing LDL oxidation and hence atherogenesis.
Collapse
Affiliation(s)
- Andrew C Terentis
- Biochemistry Group, The Heart Research Institute, Camperdown, New South Wales, Australia
| | | | | | | | | |
Collapse
|
42
|
Upston JM, Witting PK, Brown AJ, Stocker R, Keaney JF. Effect of vitamin E on aortic lipid oxidation and intimal proliferation after arterial injury in cholesterol-fed rabbits. Free Radic Biol Med 2001; 31:1245-53. [PMID: 11705703 DOI: 10.1016/s0891-5849(01)00721-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidized low-density lipoproteins (LDL) are implicated in atherosclerosis. However, large-scale intervention studies designed to test whether antioxidants, such as vitamin E, can ameliorate cardiovascular disease have generated ambivalent results. This may relate to the fact that the mechanism whereby lipid oxidation is initiated in vivo is unknown and the lack of direct evidence for a deficiency of antioxidants in atherosclerotic lesions. Further, there is little evidence to suggest that vitamin E acts as an antioxidant for lipid peroxidation in vivo. Here we tested the antioxidant effect of dietary vitamin E (alpha-tocopherol) supplementation on intimal proliferation and lipid oxidation in balloon-injured, hypercholesterolemic rabbits. alpha-Tocopherol supplementation increased vascular content of alpha-tocopherol over 30-fold compared to nonsupplemented and alpha-tocopherol-deficient chows. Balloon injury resulted in oxidized lipid deposition in the aorta. Maximum levels of primary lipid oxidation products, measured as hydroperoxides of esterified lipid (LOOH) and oxidized linoleate (HODE), were 0.22 and 1.10 nmol/mg, representing 0.21 and 0.39% of the precursor molecule, respectively. Secondary lipid oxidation products, measured as oxysterols, were maximal at 5.60 nmol/mg or 1.48% of the precursor compound. Vascular HODE and oxysterols were significantly reduced by vitamin E supplementation. However, the intima/media ratio of aortic vessels increased with vitamin E supplementation, suggesting that the antioxidant promoted intimal proliferation. Thus, the study demonstrates a dissociation of aortic lipid oxidation and lesion development, and suggests that vitamin E does not prevent lesion development in this animal model.
Collapse
Affiliation(s)
- J M Upston
- Biochemistry Group, The Heart Research Institute, Sydney, N.S.W., Australia
| | | | | | | | | |
Collapse
|
43
|
Chiwata T, Aragane K, Fujinami K, Kojima K, Ishibashi S, Yamada N, Kusunoki J. Direct effect of an acyl-CoA:cholesterol acyltransferase inhibitor, F-1394, on atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Br J Pharmacol 2001; 133:1005-12. [PMID: 11487509 PMCID: PMC1572866 DOI: 10.1038/sj.bjp.0704160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The acyl-CoA:cholesterol acyltransferase (ACAT) enzyme is thought to be responsible for foam cell formation and the subsequent progression of atherosclerosis. The apolipoprotein E and low density lipoprotein receptor double knockout (apoE/LDLr-DKO) mouse is an animal model that develops severe hyperlipidaemia and atherosclerosis. Here we have examined the effect of oral administration of an ACAT inhibitor, F-1394, on atherosclerosis in apoE/LDLr-DKO mice fed a regular chow diet. In en face analysis, a dose of 10, 30, or 100 mg kg(-1) day(-1) F-1394 for 10 weeks reduced the extent of lesions visible in the aorta by 24, 28 and 38%, respectively, as detected by staining with oil red O, without affecting serum cholesterol level in these mice. At the highest dose 100 mg kg(-1) day(-1) of F-1394, the reduction was statistically significant. For quantitative analysis of the cellular and non-cellular components comprising the lesions at the aortic sinus, the effects of an oral dose of 100 mg kg(-1) day(-1) F-1394 for 15 weeks were studied. There was a significant reduction (31.9%) in the oil-red O-stained area in cross-sections of the aortic sinus. In addition, the neointimal area, as well as levels of ACAT-1 protein tended to be decreased (15.2 and 25.8%, respectively, not significant). However, the areas containing macrophages, smooth muscle cells, and collagen were not affected by F-1394. In vitro, F-1394 attenuated foam cell formation in mouse peritoneal macrophages. These results indicate that ACAT may be primarily responsible for lipid accumulation in atherosclerotic lesions, and that its inhibition diminishes the lipid deposition via a direct effect on macrophages in the arterial wall.
Collapse
Affiliation(s)
- Tsuyoshi Chiwata
- Central Research Laboratories, Fujirebio Incorporation, 51 Komiya-cho, Hachioji 192-0031, Tokyo, Japan
| | - Katsumi Aragane
- Central Research Laboratories, Fujirebio Incorporation, 51 Komiya-cho, Hachioji 192-0031, Tokyo, Japan
| | - Koji Fujinami
- Central Research Laboratories, Fujirebio Incorporation, 51 Komiya-cho, Hachioji 192-0031, Tokyo, Japan
- Author for correspondence:
| | - Kazuhiro Kojima
- Central Research Laboratories, Fujirebio Incorporation, 51 Komiya-cho, Hachioji 192-0031, Tokyo, Japan
| | - Shun Ishibashi
- Department of Metabolic Disease, Faculty of Medicine, University of Tokyo, Hongo, Tokyo 113-8655, Japan
| | - Nobuhiro Yamada
- Metabolism, Endocrinology and Atherosclerosis, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jun Kusunoki
- Central Research Laboratories, Fujirebio Incorporation, 51 Komiya-cho, Hachioji 192-0031, Tokyo, Japan
| |
Collapse
|
44
|
Abstract
The oxidative theory suggests that LDL oxidation contributes to atherogenesis, implying that attenuation of this process by antioxidants should decrease atherosclerosis. However, a causative link between LDL oxidation and atherogenesis is not firmly established. It requires the identification of the oxidants that are responsible for the initiation of LDL oxidation, and an understanding of the modified moieties that are responsible for the proatherogenic activities of oxidized LDL. The present review summarizes recent data on potential biological oxidants for LDL in the vessel wall, and discusses the antiatherogenic role(s) of selected antioxidants.
Collapse
Affiliation(s)
- R Mashima
- Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|
45
|
Dean RT. Beyond Schuh: early studies on the oxidation of LDL and other lipoproteins and its role in atherosclerosis. Redox Rep 2001; 5:251-5. [PMID: 11145099 DOI: 10.1179/135100000101535780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- R T Dean
- Cell Biology Group, Heart Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
46
|
Lau AK, Witting PK, Chaufour X, Celermajer DS, Pettersson K, Stocker R. Protective effects of probucol in two animal models of atherosclerosis. Redox Rep 2001; 5:116-8. [PMID: 10939287 DOI: 10.1179/135100000101535393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- A K Lau
- Biochemistry Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In-vitro studies and animal model studies provide an ever-growing body of evidence, direct and indirect, that oxidation of low-density lipoprotein and/or related oxidative mechanisms play a role in atherogenesis. However, two recent, very large, carefully conducted clinical intervention trials using adequate doses of vitamin E demonstrated no effect on a composite end-point of non-fatal infarction, stroke or death from cardiovascular causes. Why the unexpected negative results? Possibly because the animal intervention evidence on which these trials were based deals primarily with very early lesions (fatty streaks). That evidence does not necessarily provide a basis for predicting what antioxidant intervention will do in patients with advanced lesions, particularly when the end-points used relate to unstable plaques and fatal thrombosis, events for which we have no adequate animal models. Nor does it necessarily follow that the same antioxidants used successfully in animals will be effective in humans. The strength of the evidence for the oxidative modification hypothesis is such that negative clinical trials with one particular antioxidant, in patients with very advanced coronary heart disease and lasting only 3-5 years, should not be taken as refutation of the hypothesis. Perhaps different kinds of human trials are needed, trials in which the development of new lesions is measured, in order to test whether antioxidants can decrease the rate of initiation and early progression of atherosclerosis as they do in animals. The answer to the title query is 'Probably, but it is too soon to say'.
Collapse
Affiliation(s)
- D Steinberg
- University of California, San Diego, La Jolla, California 92093-0682, USA.
| |
Collapse
|
48
|
Veinbergs I, Mallory M, Sagara Y, Masliah E. Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoproteinE-deficient mice. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01308.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Abstract
Remarkable progress has been achieved in the past 100 years in the field of free radical chemistry, biology and medicine since the discovery of free radicals in 1900. Free radical-mediated processes play a major role in the present industrial chemistry, but they also cause deleterious effects on rubber, plastics, oil products and foods. The importance of free radicals in vivo has been recognized increasingly from both positive and negative sides. Free radicals play an important role in phagocytosis, the production of some biologically essential compounds and possibly cell signaling. At the same time, they may cause oxidative modification of biological molecules, which leads to oxidative damage and eventually to various diseases, cancer and aging. The role and beneficial effects of antioxidants against such oxidative stress support this view. Furthermore, novel issues have been continuously found in this fascinating and yet controversial field of free radicals in biology. In this short article, the past work, present problems and future perspectives of free radicals in life science will be briefly discussed.
Collapse
Affiliation(s)
- E Niki
- Utsunomiya University, Department of Applied Chemistry, Japan.
| |
Collapse
|
50
|
Ramírez-Boscá A, Soler A, Carrión MA, Díaz-Alperi J, Bernd A, Quintanilla C, Quintanilla Almagro E, Miquel J. An hydroalcoholic extract of curcuma longa lowers the apo B/apo A ratio. Implications for atherogenesis prevention. Mech Ageing Dev 2000; 119:41-7. [PMID: 11040400 DOI: 10.1016/s0047-6374(00)00169-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is generally accepted that free-radical induced blood lipid peroxidation and especially peroxidized LDL play a central role in the pathogenesis of atherosclerosis and related cardiovascular disease. Moreover, recent research highlights the key contribution of apolipoprotein B (apo B) to atherogenesis as the main inductor of one of its earlier steps, i.e. macrophage proliferation. This has led us to investigate the apo B response to a very effective phenolic lipid-antioxidant, namely an hydroalcoholic extract of Curcuma longa, which according to our previous work does not show any toxic effects and decreases the levels of blood lipid peroxides, oxidized lipoproteins and fibrinogen. The present study shows that a daily oral administration of the extract decreases significantly the LDL and apo B and increases the HDL and apo A of healthy subjects. This and recent data on the increased anti-atherogenic action of the physiological antioxidant tocopherol in the presence of phenolic co-antioxidants (which eliminate the tocopheroxyl radical), justifies planned clinical research to test the usefulness of the curcuma extract as a co-antioxidant complement to standard treatments to prevent or retard atherosclerosis.
Collapse
Affiliation(s)
- A Ramírez-Boscá
- A.S.A.C. Pharmaceutical International A.I.E., C/ Sagitario 14, 03006, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|