1
|
Koehn LM, Steele JR, Schittenhelm RB, Nicolazzo JA. Sex-Specific Markers of Neuroinflammation and Neurodegeneration in the Spinal Cord Proteome of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. J Proteome Res 2025; 24:1956-1970. [PMID: 40117341 DOI: 10.1021/acs.jproteome.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has no cure. The underlying mechanistic details of sex differences in the ALS spinal cord, the site of disease onset, are not understood to an extent that could guide novel drug development. To address this, the spinal cords of 120-day-old wild-type (WT) and SOD1G93A (familial mouse model of ALS with mutant superoxide dismutase 1) mice were subjected to untargeted, quantitative proteomics using tandem mass tag acquisition on high-resolution mass spectrometric instrumentation. Compared to WT, both male and female SOD1G93A spinal cords exhibited an upregulation of neuroinflammatory cascades of both peripheral and central origins, as well as a downregulation of proteins reflective of death and dysfunction of cells within the spinal cord. However, female and male SOD1G93A mouse spinal cords exhibited sex-specific differences in proteins compared to respective WT that related to immune response, as well as cellular structure, function, and homeostasis. The proteomic datasets presented provide entire cohort and sex-specific spinal cord drug targets and disease biomarkers in the SOD1G93A mouse model of ALS that may guide future drug development and sex selection in preclinical study designs utilizing the SOD1G93A model.
Collapse
Affiliation(s)
- Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Yuan R, Zheng B, Li Z, Ma X, Shu X, Qu Q, Ye X, Li S, Tang P, Chen X. The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator. Gigascience 2022; 12:giad090. [PMID: 37882605 PMCID: PMC10600911 DOI: 10.1093/gigascience/giad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The Chinese praying mantis, Tenodera sinensis (Saussure), is a carnivorous insect that preys on a variety of arthropods and small vertebrates, including pest species. Several studies have been conducted to understand its behavior and physiology. However, there is limited knowledge about the genetic information underlying its genome evolution, digestive demands, and predatory behaviors. FINDINGS Here we have assembled the chromosome-level genome of T. sinensis, representing the first sequenced genome of the family Mantidae, with a genome size of 2.54 Gb and scaffold N50 of 174.78 Mb. Our analyses revealed that 98.6% of BUSCO genes are present, resulting in a well-annotated assembly compared to other insect genomes, containing 25,022 genes. The reconstructed phylogenetic analysis showed the expected topology placing the praying mantis in an appropriate position. Analysis of transposon elements suggested the Gypsy/Dirs family, which belongs to long terminal repeat (LTR) transposons, may be a key factor resulting in the larger genome size. The genome shows expansions in several digestion and detoxification associated gene families, including trypsin and glycosyl hydrolase (GH) genes, ATP-binding cassette (ABC) transporter, and carboxylesterase (CarE), reflecting the possible genomic basis of digestive demands. Furthermore, we have found 1 ultraviolet-sensitive opsin and 2 long-wavelength-sensitive (LWS) opsins, emphasizing the core role of LWS opsins in regulating predatory behaviors. CONCLUSIONS The high-quality genome assembly of the praying mantis provides a valuable repository for studying the evolutionary patterns of the mantis genomes and the gene expression profiles of insect predators.
Collapse
Affiliation(s)
- Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Boying Zheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zekai Li
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xingzhou Ma
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qiuyu Qu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Pu Tang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
3
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
4
|
Abdelhamid M, Jung CG, Zhou C, Abdullah M, Nakano M, Wakabayashi H, Abe F, Michikawa M. Dietary Lactoferrin Supplementation Prevents Memory Impairment and Reduces Amyloid-β Generation in J20 Mice. J Alzheimers Dis 2020; 74:245-259. [DOI: 10.3233/jad-191181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Mohammad Abdullah
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Manabu Nakano
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Hiroyuki Wakabayashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co, Ltd. Zama, Kanagawa, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Kai-Han T, Abhari D, Narayanaswami V. Conformational analysis of apolipoprotein E3/E4 heteromerization. FEBS J 2019; 286:1986-1998. [PMID: 30802357 PMCID: PMC6733585 DOI: 10.1111/febs.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E (apoE) is a 299 residue, exchangeable apolipoprotein that has essential roles in cholesterol homeostasis and reverse cholesterol transport. It is a two-domain protein with the C-terminal (CT) domain mediating protein self-association via helix-helix interactions. In humans, the APOE gene is polymorphic with three common alleles, ε2, ε3, and ε4, occurring in frequencies of ~ 5%, 77%, and 18%, respectively. Heterozygotes expressing apoE3 and apoE4 isoforms, which differ in residue at position 112 in the N-terminal domain (C112 in apoE3 and R112 in apoE4), represent the highest population of ε4 carriers, an allele highly associated with Alzheimer's disease. The objective of this study was to determine if apoE3 and apoE4 have the ability to hybridize to form a heteromer in lipid-free state. Refolding an equimolar mixture of His-apoE3 and FLAG-apoE4 (or vice versa) followed by pull-down and immunoblotting indicated formation of apoE3/apoE4 heteromers. Förster resonance energy transfer between donor fluorophore on one isoform and acceptor on the other, both located in the respective CT domains, revealed a distance of separation of ~ 46 Å between the donor/acceptor pair. Similarly, a quencher placed on one was able to mediate significant quenching of fluorescence emission on the other, indicative of spatial proximity within collisional distance between the two. ApoE3/apoE4 heteromer association was also noted in lipid-associated state in reconstituted lipoprotein particles. The possibility of heteromerization of apoE3/apoE4 bears implications in the potential mitigating role of apoE3 on the folding and physiological behavior of apoE4 and its role in maintaining cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
7
|
Siddiqui R, Suzu S, Ueno M, Nasser H, Koba R, Bhuyan F, Noyori O, Hamidi S, Sheng G, Yasuda-Inoue M, Hishiki T, Sukegawa S, Miyagi E, Strebel K, Matsushita S, Shimotohno K, Ariumi Y. Apolipoprotein E is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages. PLoS Pathog 2018; 14:e1007372. [PMID: 30496280 PMCID: PMC6289579 DOI: 10.1371/journal.ppat.1007372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 12/11/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
Apolipoprotein E (ApoE) belongs to a class of cellular proteins involved in lipid metabolism. ApoE is a polymorphic protein produced primarily in macrophages and astrocytes. Different isoforms of ApoE have been associated with susceptibility to various diseases including Alzheimer's and cardiovascular diseases. ApoE expression has also been found to affect susceptibility to several viral diseases, including Hepatitis C and E, but its effect on the life cycle of HIV-1 remains obscure. In this study, we initially found that HIV-1 infection selectively up-regulated ApoE in human monocyte-derived macrophages (MDMs). Interestingly, ApoE knockdown in MDMs enhanced the production and infectivity of HIV-1, and was associated with increased localization of viral envelope (Env) proteins to the cell surface. Consistent with this, ApoE over-expression in 293T cells suppressed Env expression and viral infectivity, which was also observed with HIV-2 Env, but not with VSV-G Env. Mechanistic studies revealed that the C-terminal region of ApoE was required for its inhibitory effect on HIV-1 Env expression. Moreover, we found that ApoE and Env co-localized in the cells, and ApoE associated with gp160, the precursor form of Env, and that the suppression of Env expression by ApoE was cancelled by the treatment with lysosomal inhibitors. Overall, our study revealed that ApoE is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages that exerts its anti-HIV-1 activity through association with gp160 Env via the C-terminal region, which results in subsequent degradation of gp160 Env in the lysosomes.
Collapse
Affiliation(s)
- Rokeya Siddiqui
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- * E-mail: (SS); (YA)
| | - Mikinori Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ryota Koba
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Farzana Bhuyan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Osamu Noyori
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Sofiane Hamidi
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Mariko Yasuda-Inoue
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takayuki Hishiki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sayaka Sukegawa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eri Miyagi
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yasuo Ariumi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- * E-mail: (SS); (YA)
| |
Collapse
|
8
|
Storti F, Raphael G, Griesser V, Klee K, Drawnel F, Willburger C, Scholz R, Langmann T, von Eckardstein A, Fingerle J, Grimm C, Maugeais C. Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells. Exp Eye Res 2017; 165:65-77. [PMID: 28943268 DOI: 10.1016/j.exer.2017.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter A1 (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein AI (ApoA-I) of 3H-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCA1-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression.
Collapse
Affiliation(s)
- Federica Storti
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Gabriele Raphael
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Vera Griesser
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Faye Drawnel
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Carolin Willburger
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Jürgen Fingerle
- Natural and Medical Sciences Institute, University of Tübingen, Tübingen, Germany
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Cyrille Maugeais
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
9
|
Jablonski H, Rekasi H, Jäger M. The influence of calcitonin gene-related peptide on markers of bone metabolism in MG-63 osteoblast-like cells co-cultured with THP-1 macrophage-like cells under virtually osteolytic conditions. BMC Musculoskelet Disord 2016; 17:199. [PMID: 27141814 PMCID: PMC4855322 DOI: 10.1186/s12891-016-1044-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/20/2016] [Indexed: 12/03/2022] Open
Abstract
Background The neuropeptide calcitonin gene-related peptide (CGRP) has been described to have an inhibitory effect on endotoxin- and wear particle-induced inflammation in the early stages of periprosthetic osteolysis. In the present study, the crosstalk between immune cells and osteoblasts in osteolytic conditions treated with CGRP has been analyzed to evaluate whether the anti-inflammatory properties of the peptide also have a beneficial, i.e. an anti-resorptive and osteo-anabolic impact on bone metabolism. Methods MG-63 osteoblast-like cells were co-cultured with THP-1 macrophage-like cells stimulated with either ultra-high molecular weight polyethylene (UHMWPE) particles or different concentrations of bacterial lipopolysaccharides (LPS) and simultaneously treated with CGRP. Inflammation was monitored in terms of measuring the levels of tumor necrosis factor (TNF)-α secretion. Furthermore, the production of the osteoblast markers osteoprotegerin (OPG), receptor activator of nuclear factor κB ligand (RANKL), alkaline phosphatase (ALP) and osteopontin (OPN) was quantified. Also, ALP enzymatic activity was measured. Results Stimulation of co-cultured THP-1 macrophages with either high levels of LPS or UHMWPE induced the secretion of TNF-α which could be inhibited by CGRP to a great extent. However, no remarkable changes in the OPG/RANKL ratio or bone ALP activity were observed. Interestingly, OPN was exclusively produced by THP-1 cells, thus acting as a marker of inflammation. In addition, TNF-α production in THP-1 single cell cultures was found to be considerably higher than in co-cultured cells. Conclusions In the co-culture system used in the present study, no obvious relation between inflammation, its mitigation by CGRP, and the modulation of bone metabolism became evident. Nonetheless, the results suggest that during the onset of periprosthetic osteolysis the focus might lie on the modulation of inflammatory reactions. Possibly, implant-related inflammation might merely have an impact on osteoclast differentiation rather than on the regulation of osteoblast activity. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1044-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidrun Jablonski
- University Hospital Essen, Department of Orthopedic and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany.
| | - Heike Rekasi
- University Hospital Essen, Department of Orthopedic and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| | - Marcus Jäger
- University Hospital Essen, Department of Orthopedic and Trauma Surgery, University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| |
Collapse
|
10
|
Comparison of different statin therapy to change low-density lipoprotein cholesterol and high-density lipoprotein cholesterol level in Korean patients with and without diabetes. J Clin Lipidol 2015; 10:528-537.e3. [PMID: 27206940 DOI: 10.1016/j.jacl.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is difficult to apply the proper intensity of statin for new treatment guidelines in clinical settings because of few data about the statin efficacy in Asians. We conducted a retrospective, observational study to estimate the percentage changes in lipid parameters and glucose induced by different statins. METHODS We analyzed 3854 patients including those with nondiabetes and diabetes treated at the outpatient clinic between 2003 and 2013 who were statin-naïve and maintained fixed-dose of statin for at least 18 months. RESULTS Moderate- and low-intensity statin therapy was effective in reducing low-density lipoprotein cholesterol (LDL-C) to <100 mg/dL (70.3%, 83.0%, and 87.2% of diabetic patients in the low-, moderate-, and high-intensity therapy groups, respectively). The rapid decrease of LDL-C was observed in the first 8 months, and LDL-C-lowering effect was maintained throughout the observation period in even the low-intensity statin group. The effects of statins in elevating high-density lipoprotein cholesterol were similar in each statin groups, except the ezetimibe-simvastatin group (4.5 ± 2.1%) and high-dose atorvastatin groups (9.7 ± 3.3% and 8.7 ± 2.4% for 40 mg and 80 mg of atorvastatin/day, respectively). High-density lipoprotein cholesterol increased less and LDL-C decreased more in diabetes than in nondiabetes. There were no significant changes of fasting glucose after statin use in nondiabetic patients. CONCLUSIONS Moderate- or low-intensity statin was effective enough in reaching National Cholesterol Education Program Adult Treatment Panel III LDL-C target goals in Koreans. Low-intensity statin showed around 30% LDL-C reduction from the baseline level in Koreans, which is comparable to moderate-intensity statin in new guideline.
Collapse
|
11
|
Pamir N, Hutchins P, Ronsein G, Vaisar T, Reardon CA, Getz GS, Lusis AJ, Heinecke JW. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res 2015; 57:246-57. [PMID: 26673204 PMCID: PMC4727420 DOI: 10.1194/jlr.m063701] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/15/2022] Open
Abstract
Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| | - Aldons J Lusis
- Department of Genetics, University of California at Los Angeles, Los Angeles, CA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
12
|
A Comprehensive In Silico Analysis of the Functional and Structural Impact of Nonsynonymous SNPs in the ABCA1 Transporter Gene. CHOLESTEROL 2014; 2014:639751. [PMID: 25215231 PMCID: PMC4156994 DOI: 10.1155/2014/639751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Abstract
Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets, and predict clinical phenotypes. In this study using PolyPhen2 and MutPred in silico algorithms, we analyzed the genetic variations that can alter the expression and function of the ABCA1 gene that causes the allelic disorders familial hypoalphalipoproteinemia and Tangier disease. Predictions were validated with published results from in vitro, in vivo, and human studies. Out of a total of 233 nsSNPs, 80 (34.33%) were found deleterious by both methods. Among these 80 deleterious nsSNPs found, 29 (12.44%) rare variants resulted highly deleterious with a probability >0.8. We have observed that mostly variants with verified functional effect in experimental studies are correctly predicted as damage variants by MutPred and PolyPhen2 tools. Still, the controversial results of experimental approaches correspond to nsSNPs predicted as neutral by both methods, or contradictory predictions are obtained for them. A total of seventeen nsSNPs were predicted as deleterious by PolyPhen2, which resulted neutral by MutPred. Otherwise, forty two nsSNPs were predicted as deleterious by MutPred, which resulted neutral by PolyPhen2.
Collapse
|
13
|
Lee SH, So JH, Kim HT, Choi JH, Lee MS, Choi SY, Kim CH, Kim MJ. Angiopoietin-like 3 regulates hepatocyte proliferation and lipid metabolism in zebrafish. Biochem Biophys Res Commun 2014; 446:1237-42. [DOI: 10.1016/j.bbrc.2014.03.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
|
14
|
Lee HR, Jun HK, Choi BK. Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE(-/-) mice. Oral Dis 2013; 20:803-8. [PMID: 24372897 DOI: 10.1111/odi.12214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of Tannerella forsythia and its major surface virulence factor, BspA, on the progression of atherosclerosis in ApoE(-/-) mice and the expression of lipid metabolism-related genes. METHODS PMA-differentiated THP-1 cells were treated with BspA to detect foam cell formation. The proximal aortas of ApoE(-/-) mice injected with T. forsythia or BspA were stained with oil red O to examine lipid deposition. The serum levels of CRP, HDL, and LDL were detected by ELISA. The liver tissue of T. forsythia- or BspA-injected ApoE(-/-) mice was examined for mRNA expression of lipid metabolism-related genes, such as liver X receptors (LXRα and LXRβ) and ATP-binding cassette transporter A1 (ABCA1). RESULTS Tannerella forsythia and BspA induced foam cell formation in THP-1 cells and accelerated the progression of atherosclerotic lesions in ApoE(-/-) mice. Mouse serum levels of CRP and LDL were increased, and HDL was decreased by T. forsythia and BspA. The expression levels of LXRα and LXRβ, and ABCA1 in liver tissue were decreased by T. forsythia and BspA. CONCLUSIONS Tannerella forsythia and BspA augmented atherosclerotic lesion progression in ApoE(-/-) mice. This process may be associated with downregulation of lipid metabolism-related gene expression.
Collapse
Affiliation(s)
- H R Lee
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | | | | |
Collapse
|
15
|
Karunakaran D, Kockx M, Owen DM, Burnett JR, Jessup W, Kritharides L. Protein kinase C controls vesicular transport and secretion of apolipoprotein E from primary human macrophages. J Biol Chem 2013; 288:5186-97. [PMID: 23288845 DOI: 10.1074/jbc.m112.428961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ε, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Liu J, Zhang Z, Xu Y, Feng T, Jiang W, Li Z, Hong B, Xie Z, Si S. IMB2026791, a xanthone, stimulates cholesterol efflux by increasing the binding of apolipoprotein A-I to ATP-binding cassette transporter A1. Molecules 2012; 17:2833-54. [PMID: 22399138 PMCID: PMC6268880 DOI: 10.3390/molecules17032833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/16/2012] [Accepted: 02/24/2012] [Indexed: 11/24/2022] Open
Abstract
It is known that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I) will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS) method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO) cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein) expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791) was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The 3H cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell) further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.
Collapse
Affiliation(s)
- Jikai Liu
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zhongbing Zhang
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Yanni Xu
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Tingting Feng
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Wei Jiang
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zhuorong Li
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Bin Hong
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
| | - Zijian Xie
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
- Authors to whom correspondence should be addressed; (Z.X.); (S.S.); Tel.: +1-419-383-4182 (Z.X.); Fax: +1-419-383-2871 (Z.X.); Tel./Fax: +86-10-6318-0604 (S.S.)
| | - Shuyi Si
- China Institute of Medical Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantanxili #1, Beijing 100050, China; (J.L.); (Z.Z.); (Y.X.); (T.F.); (W.J.); (Z.L.); (B.H.)
- Authors to whom correspondence should be addressed; (Z.X.); (S.S.); Tel.: +1-419-383-4182 (Z.X.); Fax: +1-419-383-2871 (Z.X.); Tel./Fax: +86-10-6318-0604 (S.S.)
| |
Collapse
|
17
|
Chen X, Guo Z, Okoro EU, Zhang H, Zhou L, Lin X, Rollins AT, Yang H. Up-regulation of ATP binding cassette transporter A1 expression by very low density lipoprotein receptor and apolipoprotein E receptor 2. J Biol Chem 2011; 287:3751-9. [PMID: 22170052 DOI: 10.1074/jbc.m111.310888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.
Collapse
Affiliation(s)
- Xinping Chen
- Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cerda A, Genvigir FDV, Willrich MAV, Arazi SS, Bernik MMS, Dorea EL, Bertolami MC, Faludi AA, Hirata MH, Hirata RDC. Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin. Lipids Health Dis 2011; 10:206. [PMID: 22074026 PMCID: PMC3247903 DOI: 10.1186/1476-511x-10-206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.
Collapse
Affiliation(s)
- Alvaro Cerda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lammers B, Zhao Y, Hoekstra M, Hildebrand RB, Ye D, Meurs I, Van Berkel TJC, Van Eck M. Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE. PLoS One 2011; 6:e26095. [PMID: 22022523 PMCID: PMC3191178 DOI: 10.1371/journal.pone.0026095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
AIM ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored. METHODS AND RESULTS LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05). CONCLUSIONS Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.
Collapse
Affiliation(s)
- Bart Lammers
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1917-24. [PMID: 21782857 DOI: 10.1016/j.bbamcr.2011.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Phospholipid transfer protein (PLTP) plays an important role in regulation of inflammation. Previously published studies have shown that PLTP binds, transfers and neutralizes bacterial lipopolysaccharides. In the current study we tested the hypothesis that PLTP can also regulate anti-inflammatory pathways in macrophages. Incubation of macrophage-like differentiated THP1 cells and human monocyte-derived macrophages with wild-type PLTP in the presence or absence of tumor necrosis factor alpha (TNFα) or interferon gamma (IFNγ) significantly increased nuclear levels of active signal transducer and activator of transcription 3, pSTAT3(Tyr705) (p<0.01). Similar results were obtained in the presence of a PLTP mutant without lipid transfer activity (PLTP(M159E)), suggesting that PLTP-mediated lipid transfer is not required for activation of the STAT3 pathway. Inhibition of ABCA1 by chemical inhibitor, glyburide, as well as ABCA1 RNA inhibition, reversed the observed PLTP-mediated activation of STAT3. In addition, PLTP reduced nuclear levels of active nuclear factor kappa-B (NFκB) p65 and secretion of pro-inflammatory cytokines in conditioned media of differentiated THP1 cells and human monocyte-derived macrophages. Our data suggest that PLTP has anti-inflammatory capabilities in macrophages.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
The blood-brain barrier (BBB) is a dynamic physical and biological barrier between blood circulation and the central nervous system (CNS). This unique feature of the BBB lies in the structure of the neurovascular unit and its cerebral micro-vascular endothelial cells. The BBB restricts the passage of blood-borne drugs, neurotoxic substances and peripheral immune cells from entering the brain, while selectively facilitating the transport of nutrients across the BBB into the brain. Thus, the integrity and proper function of the BBB is crucial to homeostasis and physiological function of the CNS. A number of transport and carrier systems are expressed and polarized on the luminal or abluminal surface of the BBB to realize these discrete functions. Among these systems, ABC transporters play a critical role in keeping drugs and neurotoxic substances from entering the brain and in transporting toxic metabolites out of the brain. A number of studies have demonstrated that ABCB1 and ABCG2 are critical to drug efflux at the BBB and that ABCC1 is essential for the blood-cerebral spinal fluid (CSF) barrier. The presence of these efflux ABC transporters also creates a major obstacle for drug delivery into the brain. We have comprehensively reviewed the literature on ABC transporters and drug efflux at the BBB. Understanding the molecular mechanisms of these transporters is important in the development of new drugs and new strategies for drug delivery into the brain.
Collapse
Affiliation(s)
- Shanshan Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | |
Collapse
|
23
|
Greco TM, Seeholzer SH, Mak A, Spruce L, Ischiropoulos H. Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J Proteome Res 2010; 9:2764-74. [PMID: 20329800 PMCID: PMC2866110 DOI: 10.1021/pr100134n] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growing appreciation for astrocytes as active participants in nervous system development, neurovascular metabolic coupling, and neurological disease progression has stimulated recent investigation into specific astrocyte-secreted proteins that may mediate these functions. The current work utilized SILAC-generated isotope reference proteomes to quantify relative protein abundances between the astrocyte proteome and secretome. Multidimensional GeLC-MS/MS analysis of astrocyte conditioned media and cell lysates resulted in the relative quantification of 516 proteins, 92 of which were greater than 1.5-fold enriched in astrocyte-conditioned media (ACM). Eighty of the ACM-enriched proteins had N-terminal signal peptides, comprising well-known classically secreted proteins, such as apolipoprotein E and SPARC, and several cathepsins that localize to endosomal/lysosomal compartments. The remaining twelve ACM-enriched proteins, such as vimentin, ferritins, and histones, lacked N-terminal signal peptides. Also, 47 proteins contained predicted N-terminal signal peptides but were not enriched in ACM (<1.5-fold), 25 of which were localized to ER, Golgi, or mitochondria membrane-bound compartments. Overall, by combining quantitative proteomics with subcellular localization prediction, an informative description of protein distribution can be obtained, providing insights into protein secretion.
Collapse
Affiliation(s)
- Todd M. Greco
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Steven H. Seeholzer
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Adrian Mak
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Lynn Spruce
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
| | - Harry Ischiropoulos
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
- Department of Pharmacology, The Children’s Hospital of Philadelphia Research Institute and The University of Pennsylvania Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Zhou X, Yin Z, Guo X, Hajjar DP, Han J. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem 2009; 285:6316-26. [PMID: 20037141 DOI: 10.1074/jbc.m109.073601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRalpha/beta expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.
Collapse
Affiliation(s)
- Xiaoye Zhou
- Colleges of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
25
|
Kockx M, Guo DL, Traini M, Gaus K, Kay J, Wimmer-Kleikamp S, Rentero C, Burnett JR, Le Goff W, Van Eck M, Stow JL, Jessup W, Kritharides L. Cyclosporin A decreases apolipoprotein E secretion from human macrophages via a protein phosphatase 2B-dependent and ATP-binding cassette transporter A1 (ABCA1)-independent pathway. J Biol Chem 2009; 284:24144-54. [PMID: 19589783 DOI: 10.1074/jbc.m109.032615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclosporin A (CsA) is an immunosuppressant that inhibits protein phosphatase 2B (PP2B/calcineurin) and is associated with hyperlipidemia, decreased cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1), and increased risk of atherosclerosis. Apolipoprotein E (apoE) is an important regulator of lipid metabolism and atherosclerosis, the secretion of which from human macrophages is regulated by the serine/threonine protein kinase A (PKA) and intracellular calcium (Ca(2+)) (Kockx, M., Guo, D. L., Huby, T., Lesnik, P., Kay, J., Sabaretnam, T., Jary, E., Hill, M., Gaus, K., Chapman, J., Stow, J. L., Jessup, W., and Kritharides, L. (2007) Circ. Res. 101, 607-616). As PP2B is Ca(2+)-dependent and has been linked to PKA-dependent processes, we investigated whether CsA modulated apoE secretion. CsA dose- and time-dependently inhibited secretion of apoE from primary human macrophages and from Chinese hamster ovary cells stably transfected with human apoE and increased cellular apoE levels without affecting apoE mRNA. [(35)S]Met kinetic modeling studies showed that CsA inhibited both secretion and degradation of apoE, increasing the half-life of cellular apoE 2-fold. CsA also inhibited secretion from primary human Tangier disease macrophages and from mouse macrophages deficient in ABCA1, indicating that the effect is independent of the known inhibition of ABCA1 by CsA. The role of PP2B in mediating apoE secretion was confirmed using additional peptide and chemical inhibitors of PP2B. Importantly, kinetic modeling, live-cell imaging, and confocal microscopy all indicated that CsA inhibited apoE secretion by mechanisms quite distinct from those of PKA inhibition, most likely inducing accumulation of apoE in the endoplasmic reticulum compartment. Taken together, these results establish a novel mechanism for the pro-atherosclerotic effects of CsA, and establish for the first time a role for PP2B in regulating the intracellular transport and secretion of apoE.
Collapse
Affiliation(s)
- Maaike Kockx
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:563-72. [PMID: 19344785 DOI: 10.1016/j.bbalip.2009.03.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 01/28/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that exports cholesterol from cells and suppresses macrophage inflammation. ABCA1 exports cholesterol by a multistep pathway that involves forming cell-surface lipid domains, solubilizing these lipids by apolipoproteins, binding of apolipoproteins to ABCA1, and activating signaling processes. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. ABCA1 transcription is highly induced by sterols, and its expression and activity are regulated post-transcriptionally by diverse processes. ABCA1 mutations can reduce plasma HDL levels, accelerate cardiovascular disease, and increase the risk for type 2 diabetes. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels, inflammation, atherogenesis, and pancreatic beta cell function. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages, raising the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become a promising new therapeutic target for treating cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington 98195-8055, USA.
| | | |
Collapse
|
27
|
Lammers B, Out R, Hildebrand RB, Quinn CM, Williamson D, Hoekstra M, Meurs I, Van Berkel TJC, Jessup W, Van Eck M. Independent protective roles for macrophage Abcg1 and Apoe in the atherosclerotic lesion development. Atherosclerosis 2009; 205:420-6. [PMID: 19217108 DOI: 10.1016/j.atherosclerosis.2009.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE ATP-binding cassette transporter G1 (Abcg1) and apolipoprotein E (Apoe) play a role in macrophage cholesterol efflux and consequently the development of atherosclerosis. A possible interaction between Abcg1 and Apoe in cholesterol efflux was postulated, but the potential combined action of these proteins on atherosclerotic lesion formation is unclear. METHODS LDL receptor knockout (KO) mice were transplanted with bone marrow from Abcg1/Apoe double KO (dKO) mice, their respective single knockouts, and wild-type (WT) controls and challenged with a high-fat/high-cholesterol diet for 6 weeks to induce atherosclerosis. RESULTS No differences were found in serum lipid levels. The mean atherosclerotic lesion area in dKO transplanted animals (187+/-18x10(3)microm(2)) was 1.4-fold (p<0.01) increased compared to single knockouts (Abcg1 KO: 138+/-5x10(3)microm(2); Apoe KO: 131+/-7x10(3)microm(2)) and 1.9-fold (p<0.001) as compared to WT controls (97+/-15x10(3)microm(2)). In vitro cholesterol efflux experiments established that combined deletion of Abcg1 and Apoe leads to a larger attenuation of macrophage cholesterol efflux to HDL as compared to single knockouts. CONCLUSIONS Single deletion of macrophage Abcg1 or Apoe does lead to a moderate non-significant increase in atherosclerotic lesion development as tested by ANOVA, while combined deletion of Abcg1 and Apoe induces a more dramatic and significant increase in atherosclerosis. Our results indicate an additive, independent effect for both macrophage Abcg1 and Apoe in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Bart Lammers
- Gorlaeus Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cignarella A. Animal and cellular models for hypolipidemic drugs. Expert Opin Drug Discov 2009; 4:61-9. [PMID: 23480337 DOI: 10.1517/17460440802624987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of effective and safe lipid-lowering agents should set out from and rely on robust preclinical investigation. OBJECTIVE To accomplish this aim, the selection of proper cellular and animal models is crucial. RESULTS Because lipid-lowering agents are ultimately supposed to reduce the atherosclerotic burden in the arterial wall, they need to tackle directly or indirectly the multifactorial nature of atherosclerotic disease. Hence, these drugs may essentially prevent triglyceride-rich lipoprotein assembly or enhance low-density lipoprotein (LDL) clearance through the LDL or related receptors in the liver. Established animal models such as the apolipoprotein E- and the LDL-receptor knockout mice are widely used to test drug actions on these pathways. A different approach is testing the ability of candidate drugs to increase plasma high-density lipoprotein (HDL) levels. More recently, the focus has shifted to drugs enhancing HDL function rather than just plasma HDL levels. This in turn requires in vitro and particularly in vivo models of reverse cholesterol transport, which have become available by now. CONCLUSION A positive outcome of preclinical studies is necessary but not sufficient for an investigational new drug to be eventually approved for clinical use.
Collapse
Affiliation(s)
- Andrea Cignarella
- University of Padova, Department of Pharmacology and Anaesthesiology, Largo Meneghetti 2, 35131 Padova, Italy +39 049 8275091 ; +39 049 8275093 ;
| |
Collapse
|
29
|
McTaggart F, Jones P. Effects of statins on high-density lipoproteins: a potential contribution to cardiovascular benefit. Cardiovasc Drugs Ther 2008; 22:321-38. [PMID: 18553127 PMCID: PMC2493531 DOI: 10.1007/s10557-008-6113-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/04/2008] [Indexed: 12/12/2022]
Abstract
PURPOSE The objective was to systematically review clinical trial data on the effects of statins on high-density lipoproteins (HDL) and to examine the possibility that this provides cardiovascular benefits in addition to those derived from reductions in low-density lipoproteins (LDL). METHODS The PubMed database was searched for publications describing clinical trials of atorvastatin, pravastatin, rosuvastatin, and simvastatin. On the basis of predefined criteria, 103 were selected for review. RESULTS Compared with placebo, statins raise HDL, measured as HDL-cholesterol (HDL-C) and apolipoprotein A-I (apo A-I); these elevations are maintained in the long-term. In hypercholesterolemia, HDL-C is raised by approximately 4% to 10%. The percentage changes are greater in patients with low baseline levels, including those with the common combination of high triglycerides (TG) and low HDL-C. These effects do not appear to be dose-related although there is evidence that, with the exception of atorvastatin, the changes in HDL-C are proportional to reductions in apo B-containing lipoproteins. The most likely explanation is a reduced rate of cholesteryl ester transfer protein (CETP)-mediated flow of cholesterol from HDL. There is some evidence that the statin effects on HDL reduce progression of atherosclerosis and risk of cardiovascular disease independently of reductions in LDL. CONCLUSION Statins cause modest increases in HDL-C and apo A-I probably mediated by reductions in CETP activity. It is plausible that such changes independently contribute to the cardiovascular benefits of the statin class but more studies are needed to further explore this possibility.
Collapse
Affiliation(s)
- Fergus McTaggart
- Clinical Development, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | |
Collapse
|
30
|
|
31
|
Kockx M, Jessup W, Kritharides L. Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler Thromb Vasc Biol 2008; 28:1060-7. [PMID: 18388328 DOI: 10.1161/atvbaha.108.164350] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein E has critical roles in the protection against atherosclerosis and is understood to follow the classical constitutive secretion pathway. Recent studies have indicated that the secretion of apoE from macrophages is a regulated process of unexpected complexity. Cholesterol acceptors such as apolipoprotein A-I, high density lipoprotein, and phospholipid vesicles can stimulate apoE secretion. The ATP binding cassette transporter ABCA1 is involved in basal apoE secretion and in lipidating apoE-containing particles secreted by macrophages. However, the stimulation of apoE secretion by apoA-I is ABCA1-independent, indicating the existence of both ABCA1-dependent and -independent pathways of apoE secretion. The release of apoE under basal conditions is also regulated, requiring intact protein kinase A activity, intracellular calcium, and an intact microtubular network. Mathematical modeling of apoE turnover indicates that whereas some pools of apoE are committed to either secretion or degradation, other pools can be diverted from degradation toward secretion. Targeted inhibition or stimulation of specific apoE trafficking pathways will provide unique opportunities to regulate the biology of this important molecule.
Collapse
Affiliation(s)
- Maaike Kockx
- Macrophage Biology Group, Centre for Vascular Research, Room 405C Wallace Wurth Building, University of New South Wales, High Street, Kensington, Sydney, NSW 2050, Australia
| | | | | |
Collapse
|
32
|
Burgess BL, Parkinson PF, Racke MM, Hirsch-Reinshagen V, Fan J, Wong C, Stukas S, Theroux L, Chan JY, Donkin J, Wilkinson A, Balik D, Christie B, Poirier J, Lütjohann D, Demattos RB, Wellington CL. ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo. J Lipid Res 2008; 49:1254-67. [PMID: 18314463 DOI: 10.1194/jlr.m700481-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Braydon L Burgess
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2008; 117:3900-8. [PMID: 17992262 DOI: 10.1172/jci33372] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/19/2007] [Indexed: 01/26/2023] Open
Abstract
HDLs protect against the development of atherosclerosis, but the underlying mechanisms are poorly understood. HDL and its apolipoproteins can promote cholesterol efflux from macrophage foam cells via the ATP-binding cassette transporters ABCA1 and ABCG1. Experiments addressing the individual roles of ABCA1 and ABCG1 in the development of atherosclerosis have produced mixed results, perhaps because of compensatory upregulation in the individual KO models. To clarify the role of transporter-mediated sterol efflux in this disease process, we transplanted BM from Abca1(-/-)Abcg1(-/-) mice into LDL receptor-deficient mice and administered a high-cholesterol diet. Compared with control and single-KO BM recipients, Abca1(-/-)Abcg1(-/-) BM recipients showed accelerated atherosclerosis and extensive infiltration of the myocardium and spleen with macrophage foam cells. In experiments with isolated macrophages, combined ABCA1 and ABCG1 deficiency resulted in impaired cholesterol efflux to HDL or apoA-1, profoundly decreased apoE secretion, and increased secretion of inflammatory cytokines and chemokines. In addition, these cells showed increased apoptosis when challenged with free cholesterol or oxidized LDL loading. These results suggest that the combined effects of ABCA1 and ABCG1 in mediating macrophage sterol efflux are central to the antiatherogenic properties of HDL.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kockx M, Guo DL, Huby T, Lesnik P, Kay J, Sabaretnam T, Jary E, Hill M, Gaus K, Chapman J, Stow JL, Jessup W, Kritharides L. Secretion of apolipoprotein E from macrophages occurs via a protein kinase A and calcium-dependent pathway along the microtubule network. Circ Res 2007; 101:607-16. [PMID: 17660382 DOI: 10.1161/circresaha.107.157198] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage-specific expression of apolipoprotein (apo)E protects against atherosclerosis; however, the signaling and trafficking pathways regulating secretion of apoE are unknown. We investigated the roles of the actin skeleton, microtubules, protein kinase A (PKA) and calcium (Ca2+) in regulating apoE secretion from macrophages. Disrupting microtubules with vinblastine or colchicine inhibited basal secretion of apoE substantially, whereas disruption of the actin skeleton had no effect. Structurally distinct inhibitors of PKA (H89, KT5720, inhibitory peptide PKI(14-22)) all decreased basal secretion of apoE by between 50% to 80% (P<0.01). Pulse-chase experiments demonstrated that inhibition of PKA reduced the rate of apoE secretion without affecting its degradation. Confocal microscopy and live cell imaging of apoE-green fluorescent protein-transfected RAW macrophages identified apoE-green fluorescent protein in vesicles colocalized with the microtubular network, and inhibition of PKA markedly inhibited vesicular movement. Chelation of intracellular calcium ([Ca2+]i) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester (BAPTA-AM) inhibited apoE secretion by 77.2% (P<0.01). Injection of c57Bl6 apoE+/+ bone marrow-derived macrophages into the peritoneum of apoE-/- C57Bl6 mice resulted in time-dependent secretion of apoE into plasma, which was significantly inhibited by transient exposure of macrophages to BAPTA-AM and colchicine and less effectively inhibited by H89. We conclude that macrophage secretion of apoE occurs via a PKA- and calcium-dependent pathway along the microtubule network.
Collapse
Affiliation(s)
- Maaike Kockx
- Macrophage Biology Group, Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guizzetti M, Chen J, Oram JF, Tsuji R, Dao K, Möller T, Costa LG. Ethanol induces cholesterol efflux and up-regulates ATP-binding cassette cholesterol transporters in fetal astrocytes. J Biol Chem 2007; 282:18740-9. [PMID: 17478430 DOI: 10.1074/jbc.m702398200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol plays an important role during brain development, since it is involved in glial cell proliferation, neuronal survival and differentiation, and synaptogenesis. Astrocytes produce large amounts of brain cholesterol and produce and release lipoproteins containing apoE that can extract cholesterol from CNS cells for elimination. We hypothesized that some of the deleterious effects of ethanol in the developing brain may be due to the disruption of cholesterol homeostasis in astrocytes. This study investigates the effect of ethanol on cholesterol efflux mediated by ATP-binding cassette (ABC) cholesterol transporters. In fetal rat astrocytes in culture, ethanol caused a concentration-dependent increase in cholesterol efflux and increased the levels of ABCA1 starting at 25 mm. Similar effects of ethanol on cholesterol efflux and ABCA1 were also observed in fetal human astrocytes. In addition, ABCA1 levels were increased in the brains of 7-day-old pups treated for 3 days with 2, 4, or 6 g/kg ethanol. Ethanol also increased apoE release from fetal rat astrocytes, and conditioned medium prepared from ethanol-treated astrocytes extracted more cholesterol than conditioned medium from untreated cells. In addition, ethanol increased the levels of another cholesterol transporter, ABCG1. Ethanol did not affect cholesterol synthesis and reduced the levels of intracellular cholesterol in rat astrocytes. Retinoic acid, which induces teratogenic effects similarly to ethanol, also caused up-regulation of ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Vedhachalam C, Narayanaswami V, Neto N, Forte TM, Phillips MC, Lund-Katz S, Bielicki JK. The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry 2007; 46:2583-93. [PMID: 17305370 DOI: 10.1021/bi602407r] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was undertaken to identify the alpha-helical domains of human apoE that mediate cellular cholesterol efflux and HDL assembly via ATP-binding cassette transporter A1 (ABCA1). The C-terminal (CT) domain (residues 222-299) of apoE was found to stimulate ABCA1-dependent cholesterol efflux in a manner similar to that of intact apoE2, -E3, and -E4 in studies using J774 macrophages and HeLa cells. The N-terminal (NT) four-helix bundle domain (residues 1-191) was a relatively poor mediator of cholesterol efflux. On a per molecule basis, the CT domain stimulated cholesterol efflux with the same efficiency (Km approximately 0.2 microM) as intact apoA-I and apoE. Gel filtration chromatography of conditioned medium from ABCA1-expressing J774 cells revealed that, like the intact apoE isoforms, the CT domain promoted the assembly of HDL particles with diameters of 8 and 13 nm. Removal of the CT domain abolished the formation of HDL-sized particles, and only larger particles eluting in the void volume were formed. Studies with CT truncation mutants of apoE3 and peptides indicated that hydrophobic helical segments governed the efficiency of cellular cholesterol efflux and that conjoined class A and G amphipathic alpha-helices were required for optimal efflux activity. Collectively, the data suggest that the CT lipid-binding domain of apoE encompassing amino acids 222-299 is necessary and sufficient for mediating ABCA1 lipid efflux and HDL particle assembly.
Collapse
Affiliation(s)
- Charulatha Vedhachalam
- GI/Nutrition Division, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yancey PG, Yu H, Linton MF, Fazio S. A pathway-dependent on apoE, ApoAI, and ABCA1 determines formation of buoyant high-density lipoprotein by macrophage foam cells. Arterioscler Thromb Vasc Biol 2007; 27:1123-31. [PMID: 17303773 DOI: 10.1161/atvbaha.107.139592] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ABCA1-dependent and ABCA1-independent pathways may operate in high-density lipoprotein formation by macrophages secreting apolipoprotein (apo) E. We examined the impact of ABCA1 on apoE-mediated efflux from cholesterol-enriched macrophages. METHODS AND RESULTS Without acceptors, wild-type, ABCA1-/-, and apoE-/- macrophages released 5.7%+/-0.3%, 1.8%+/-0.1%, and 2.3%+/-0.2% of their cholesterol, and the LXR agonist, TO-901317, enhanced efflux by 137%, 10%, and 20%. Although similar amounts of apoE were secreted from ABCA1-/- and wild-type cells, apoE from ABCA1-/- cells was only partially phospholipidated and floated at density > 1.21 g/mL, whereas apoE from wild-type cells floated at density of 1.09 to 1.17 g/mL and paralleled the density of cholesterol. With apoAI, LXR stimulation increased efflux by 139% and 86% from wild-type and apoE-/- cells, resulting in a large difference in efflux (29.5%+/-0.2% versus 17.0%+/-0.5%). The density of apoE and cholesterol from wild-type cells did not change with apoAI, and most apoAI floated at density > or = 1.17 g/mL. In apoE-/- cells, apoAI and cholesterol floated at similar density, but the peak fraction only contained 4 microg cholesterol/mg protein versus 18 in WT cells. CONCLUSIONS Macrophage apoE requires ABCA1 for formation of high-density lipoprotein. ApoAI facilitates association of apoE with more buoyant high-density lipoprotein, suggesting that apoE, plasma apoAI, and ABCA1 operate together to optimize mobilization of macrophage cholesterol, a process critical to limiting plaque development.
Collapse
Affiliation(s)
- Patricia G Yancey
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn 37232-6300, USA.
| | | | | | | |
Collapse
|
38
|
Neumeier M, Sigruener A, Eggenhofer E, Weigert J, Weiss TS, Schaeffler A, Schlitt HJ, Aslanidis C, Piso P, Langmann T, Schmitz G, Schölmerich J, Buechler C. High molecular weight adiponectin reduces apolipoprotein B and E release in human hepatocytes. Biochem Biophys Res Commun 2006; 352:543-8. [PMID: 17129575 DOI: 10.1016/j.bbrc.2006.11.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/11/2006] [Indexed: 02/06/2023]
Abstract
Low circulating levels of high molecular weight adiponectin (HMW-Apm) have been linked to dyslipidaemia and systemic HMW-Apm negatively correlates with very low density lipoprotein (VLDL), apolipoprotein B (ApoB), and ApoE and is positively associated with ApoA-I. Therefore, it was investigated whether HMW-Apm alters the hepatic synthesis of ApoB, ApoE, and ApoA-I or the activity of the hepatic ATP-binding cassette transporter A1 (ABCA1), as the main determinant of plasma HDL. HMW-Apm reduces hepatic ApoB and ApoE release whereas ABCA1 protein, activity and ApoA-I were not altered. Global gene expression analysis revealed that hepatic nuclear factor 4-alpha (HNF4-alpha) and HNF4-alpha regulated genes like ApoB are downregulated by HMW-Apm and this was confirmed at the mRNA and protein level. Therefore it is concluded that HMW-adiponectin may ameliorate dyslipidaemia by reducing the hepatic release of ApoB and ApoE, whereas ABCA1 function and ApoA-I secretion are not influenced.
Collapse
Affiliation(s)
- Markus Neumeier
- Department of Internal Medicine I, Regensburg University Medical Center, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ranalletta M, Wang N, Han S, Yvan-Charvet L, Welch C, Tall AR. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1-/- bone marrow. Arterioscler Thromb Vasc Biol 2006; 26:2308-15. [PMID: 16917103 DOI: 10.1161/01.atv.0000242275.92915.43] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Recent studies indicate that the ATP-binding cassette transporter ABCG1 can promote cholesterol efflux from macrophages to high-density lipoprotein. This study was designed to assess the in vivo role of macrophage ABCG1 in atherosclerosis. METHODS AND RESULTS Bone marrow from Abcg1-/- mice was transplanted into irradiated Ldlr-/- recipients, and atherosclerosis was evaluated by aortic root assay after 7 or 11 weeks of feeding on a Western diet. After 7 weeks, there was no difference in lesion area in mice receiving either wild-type or Abcg1-/- bone marrow, whereas after 11 weeks, lesion area was moderately but significantly reduced in Abcg1-/- recipients. ABCG1-deficient peritoneal macrophages showed induction of several liver X receptor target genes, such as Abca1 and Srebp1c, and a dramatic increase in apolipoprotein E (apoE) protein both in cell media and lysates, without parallel change in apoE mRNA. Abca1 knockdown prevented the increase in apoE secretion but had minimal effects on apoE accumulation in cell lysates of Abcg1-/- macrophages. Plasma apoE levels were markedly increased in recipients of Abcg1-/- bone marrow. CONCLUSIONS These studies reveal an inverse relationship between Abcg1 expression and apoE accumulation and secretion in macrophages. The reduced atherosclerosis in recipients of Abcg1-deficient bone marrow may be explained by induction of Abca1 and an associated increase in macrophage apoE secretion.
Collapse
Affiliation(s)
- Mollie Ranalletta
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168th St, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal 2006; 2:637-49. [PMID: 18404467 PMCID: PMC2096658 DOI: 10.1007/s11302-006-9011-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 04/20/2006] [Indexed: 11/25/2022] Open
Abstract
The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.
Collapse
|
41
|
Cavelier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:655-66. [PMID: 16798073 DOI: 10.1016/j.bbalip.2006.04.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 11/23/2022]
Abstract
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?
Collapse
Affiliation(s)
- Clara Cavelier
- Institute of Clinical Chemistry, University Hospital Zurich, University Zurich, Rämistrasse 100, CH 8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
42
|
Reverse cholesterol transport. COR ET VASA 2006. [DOI: 10.33678/cor.2006.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006; 84:276-94. [PMID: 16501936 DOI: 10.1007/s00109-005-0030-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The concentration, composition, shape, and size of plasma high-density lipoprotein (HDL) are determined by numerous proteins that influence its biogenesis, remodeling, and catabolism. The discoveries of the HDL receptor (scavenger receptor class B type I, SR-BI) and the ABCA1 (ATP-binding cassette transporter A1) lipid transporter provided two missing links that were necessary to understand the biogenesis and some of the functions of HDL. Existing data indicate that functional interactions between apoA-I and ABCA1 are necessary for the initial lipidation of apoA-I. Through a series of intermediate steps, lipidated apoA-I proceeds to form discoidal HDL particles that can be converted to spherical particles by the action of lecithin:cholesterol acyltransferase (LCAT). Discoidal and spherical HDL can interact functionally with SR-BI and these interactions lead to selective lipid uptake and net efflux of cholesterol and thus remodel HDL. Defective apoA-I/ABCA1 interactions prevent lipidation of apoA-I that is necessary for the formation of HDL particles. In the same way, specific mutations in apoA-I or LCAT prevent the conversion of discoidal to spherical HDL particles. The interactions of lipid-bound apoA-I with SR-BI are affected in vitro by specific mutations in apoA-I or SR-BI. Furthermore, deficiency of SR-BI affects the lipid and apolipoprotein composition of HDL and is associated with increased susceptibility to atherosclerosis. Here we review the current status of the pathway of HDL biogenesis and mutations in apoA-I, ABCA1, and SR-BI that disrupt different steps of the pathway and may lead to dyslipidemia and atherosclerosis in mouse models. The phenotypes generated in experimental mouse models for apoA-I, ABCA1, LCAT, SR-BI, and other proteins of the HDL pathway may facilitate early diagnosis of similar phenotypes in the human population and provide guidance for proper treatment.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
44
|
Huang ZH, Fitzgerald ML, Mazzone T. Distinct Cellular Loci for the ABCA1-Dependent and ABCA1-Independent Lipid Efflux Mediated by Endogenous Apolipoprotein E Expression. Arterioscler Thromb Vasc Biol 2006; 26:157-62. [PMID: 16254198 DOI: 10.1161/01.atv.0000193627.12516.1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Macrophage expression of both apolipoprotein E (apoE) and ABCA1 have been shown to modulate lipid efflux from these cells and to play an important atheroprotective role in vivo. We evaluated the relationship between apoE and ABCA1 for regulating cellular sterol efflux. METHODS AND RESULTS ApoE-mediated, but ABCA1-independent, lipid efflux was demonstrated in 3 model systems. First, adenoviral-mediated expression of apoE in dermal fibroblasts isolated from ABCA1(-/-) mice significantly increased both sterol and phospholipid efflux. Second, expression of human apoE in a macrophage cell line increased sterol efflux, and this increment in efflux was not reduced by suppressing ABCA1 expression. Third, reduction of apoE expression using an apoE small interfering RNA significantly reduced sterol efflux from ABCA1(-/-) mouse peritoneal macrophages. ApoE-mediated, but ABCA1-independent, lipid efflux could be differentiated from lipid efflux that was dependent on the extracellular accumulation of secreted apoE, because exogenous cell-derived apoE stimulated efflux only from cells expressing ABCA1. Sterol efflux was usually highest in cells expressing both ABCA1 and apoE, likely representing a summation of the ABCA1-dependent and -independent pathways for apoE-mediated sterol efflux. CONCLUSIONS ABCA1 expression is required for apoE-mediated efflux when endogenously synthesized apoE accumulates extracellularly. Our results, however, establish the existence of an ABCA1-independent pathway for lipid efflux that requires the intracellular synthesis and/or transport of apoE.
Collapse
Affiliation(s)
- Zhi H Huang
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
45
|
Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85:1343-72. [PMID: 16183915 DOI: 10.1152/physrev.00005.2005] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood high-density lipoprotein (HDL) levels are inversely related to risk for cardiovascular disease, implying that factors associated with HDL metabolism are atheroprotective. One of these factors is ATP-binding cassette transporter A1 (ABCA1), a cell membrane protein that mediates the transport of cholesterol, phospholipids, and other metabolites from cells to lipid-depleted HDL apolipoproteins. ABCA1 transcription is highly induced by sterols, a major substrate for cellular export, and its expression and activity are regulated posttranscriptionally by diverse processes. Liver ABCA1 initiates formation of HDL particles, and macrophage ABCA1 protects arteries from developing atherosclerotic lesions. ABCA1 mutations can cause a severe HDL deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels and atherogenesis. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages. Moreover, oxidative modifications of HDL found in patients with cardiovascular disease reduce the ability of apolipoproteins to remove cellular cholesterol by the ABCA1 pathway. These observations raise the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become an important new therapeutic target for treating cardiovascular disease.
Collapse
Affiliation(s)
- John F Oram
- Department of Medicine, University of Washington, Seattle, WA 98195-6426, USA.
| | | |
Collapse
|
46
|
Greenow K, Pearce NJ, Ramji DP. The key role of apolipoprotein E in atherosclerosis. J Mol Med (Berl) 2005; 83:329-42. [PMID: 15827760 DOI: 10.1007/s00109-004-0631-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 11/08/2004] [Indexed: 01/17/2023]
Abstract
Apolipoprotein E is a multifunctional protein that is synthesized by the liver and several peripheral tissues and cell types, including macrophages. The protein is involved in the efficient hepatic uptake of lipoprotein particles, stimulation of cholesterol efflux from macrophage foam cells in the atherosclerotic lesion, and the regulation of immune and inflammatory responses. Apolipoprotein E deficiency in mice leads to the development of atherosclerosis and re-expression of the protein reduces the extent of the disease. This review presents evidence for the potent anti-atherogenic action of apolipoprotein E and describes our current understanding of its multiple functions and regulation by factors implicated in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Kirsty Greenow
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, P.O. Box 911, Cardiff CF10 3US, Wales, UK
| | | | | |
Collapse
|
47
|
Cignarella A, Engel T, von Eckardstein A, Kratz M, Lorkowski S, Lueken A, Assmann G, Cullen P. Pharmacological regulation of cholesterol efflux in human monocyte-derived macrophages in the absence of exogenous cholesterol acceptors. Atherosclerosis 2005; 179:229-36. [PMID: 15777536 DOI: 10.1016/j.atherosclerosis.2004.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 11/02/2004] [Accepted: 11/15/2004] [Indexed: 11/24/2022]
Abstract
Cholesterol efflux from human monocyte-derived macrophages in the absence of exogenous acceptors has been described, but is unclear in mechanism. We investigated this process in relation to the expression of relevant genes, intracellular cholesterol storage and apoE secretion using drugs affecting different aspects of cholesterol metabolism. Both natural (22R-hydroxycholesterol/9-cis-retinoic acid) and synthetic (T0901317 and RO264456) LXR/RXR ligands increased ABCA1 and ABCG1 mRNAs in native macrophages and in cells loaded with acetylated LDL (acLDL). The ACAT inhibitor avasimibe increased only ABCG1 mRNA, whereas no treatment affected apoE mRNA. Avasimibe, progesterone, and natural but not synthetic LXR/RXR ligands prevented cholesterol esterification after acLDL-loading. Cholesterol efflux into acceptor-free medium was increased only by synthetic LXR/RXR ligands and avasimibe in acLDL-loaded cells. ApoE secretion was reduced by drugs affecting cholesterol trafficking but enhanced by LXR/RXR ligands. Incubation with an anti-apoE antibody virtually removed immunodetectable apoE from the medium, significantly increasing cholesterol storage and decreasing efflux. These findings indicate that in human macrophages spontaneous cholesterol efflux: (i) is not necessarily promoted by increasing intracellular free cholesterol, (ii) is increased by compounds that activate ABCA1 and, to a greater extent, ABCG1 and (iii) is only partially correlated with secretion of endogenous apoE, which acted as a cholesterol acceptor.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Worldwide, more people die of the complications of atherosclerosis than of any other cause. It is not surprising, therefore, that enormous resources have been devoted to studying the pathogenesis of this condition. This article attempts to summarize present knowledge on the events that take place within the arterial wall during atherogenesis. Classical risk factors are not dealt with as they are the subjects of other parts of this book. First, we deal with the role of endothelial dysfunction and infection in initiating the atherosclerotic lesion. Then we describe the development of the lesion itself, with particular emphasis on the cell types involved and the interactions between them. The next section of the chapter deals with the events leading to thrombotic occlusion of the atherosclerotic vessel, the cause of heart attack and stroke. Finally, we describe the advantages--and limitations--of current animal models as they contribute to our understanding of atherosclerosis and its complications.
Collapse
Affiliation(s)
- P Cullen
- Institute of Arteriosclerosis Research, Münster, Germany.
| | | | | |
Collapse
|
49
|
Hersberger M, von Eckardstein A. Modulation of high-density lipoprotein cholesterol metabolism and reverse cholesterol transport. Handb Exp Pharmacol 2005:537-61. [PMID: 16596814 DOI: 10.1007/3-540-27661-0_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Low high-density lipoprotein (HDL)-cholesterol (C) is an important risk factor for coronary heart disease. In vitro, HDL exerts several potentially anti-atherogenic effects including reverse cholesterol transport (RCT) from peripheral cells to the liver. Hence, raising HDL-C has become an interesting target for anti-atherosclerotic drug therapy. Levels of HDL-C and the composition of HDL subclasses in plasma are regulated by apolipoproteins, lipolytic enzymes, lipid transfer proteins, receptors, and cellular transporters. The interplay of these factors leads to RCT and determines the composition and thereby the anti-atherogenic properties of HDL. Recent findings suggest that the mechanism of HDL modification rather than a sole increase in HDL-C determines the efficacy of anti-atherosclerotic drug therapy. In several controlled and prospective intervention studies, patients with low HDL-C and additional risk factors benefited from treatment with fibrates or statins. However, in only some of the fibrate trials was prevention of coronary events in patients with low HDL-C and hypertriglyceridaemia related to an increase in HDL-C. This may be because currently available drugs increase HDL-C levels only moderately and because HDL levels per se do not necessarily correlate with the functionality of HDL. However, several novel targets to modify RCT have emerged from the recent understanding of HDL synthesis, maturation and catabolism. The four major targets for an anti-atherogenic strategy in HDL metabolism include stimulation of apoA-I synthesis and secretion, the stimulation of ABCA1 expression, the inhibition of cholesterol ester transfer protein, and the up-regulation of scavenger receptor BI. These and other modulations of HDL metabolism are thought to result in improved RCT making them attractive targets for the development of new regimens of anti-atherogenic drug therapy.
Collapse
Affiliation(s)
- M Hersberger
- Institute of Clinical Chemistry, University and University Hospital Zurich, Switzerland
| | | |
Collapse
|
50
|
Affiliation(s)
- David Y Hui
- Department of Pathology and the Genome Research Institute, University of Cincinnati College of Medicine, 2120 E. Galbraith Road, Cincinnati, OH 45237, USA.
| |
Collapse
|