1
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M. Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization-activated cation current (I h ) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 2020; 31:156-169. [PMID: 33107111 DOI: 10.1002/hipo.23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Hajisoltani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Moldovan M. Threshold tracking as a tool to study activity-dependent axonal plasticity. Clin Neurophysiol 2020; 131:1381-1382. [PMID: 32224021 DOI: 10.1016/j.clinph.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Mihai Moldovan
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Klein CS, Rymer WZ, Fisher MA. Altered nerve excitability properties after stroke are potentially associated with reduced neuromuscular activation. Clin Neurophysiol 2020; 131:1407-1418. [PMID: 32184063 DOI: 10.1016/j.clinph.2020.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine limb differences in motor axon excitability properties in stroke survivors and their relation to maximal electromyographic (EMG) activity. METHODS The median nerve was stimulated to record compound muscle action potentials (CMAP) from the abductor pollicis brevis (APB) in 28 stroke subjects (57.3 ± 7.5 y) and 24 controls (56.7 ± 9.3 y). RESULTS Paretic limb axons differed significantly from non-paretic limb axons including (1) smaller superexcitability and subexcitability, (2) higher threshold during subthreshold depolarizing currents, (3) greater accommodation (S3) to hyperpolarization, and (4) a larger stimulus-response slope. There were smaller differences between the paretic and control limbs. Responses in the paretic limb were reproduced in a model by a 5.6 mV hyperpolarizing shift in the activation voltage of Ih (the current activated by hyperpolarization), together with an 11.8% decrease in nodal Na+ conductance or a 0.9 mV depolarizing shift in the Na+ activation voltage. Subjects with larger deficits in APB maximal voluntary EMG had larger limb differences in excitability properties. CONCLUSIONS Stroke leads to altered modulation of Ih and altered Na+ channel properties that may be partially attributed to a reduction in neuromuscular activation. SIGNIFICANCE Plastic changes occur in the axon node and internode that likely influence axon excitability.
Collapse
Affiliation(s)
- C S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, China; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | - W Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M A Fisher
- Department of Neurology, Hines VAH, Hines, IL 60141, USA; Loyola University Chicago Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA
| |
Collapse
|
5
|
Jaffe DB, Brenner R. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 2018; 119:1506-1520. [PMID: 29357445 DOI: 10.1152/jn.00385.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
6
|
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife 2017; 6:e26517. [PMID: 29165247 PMCID: PMC5737656 DOI: 10.7554/elife.26517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Collapse
Affiliation(s)
- Marcel Beining
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
- Faculty of BiosciencesGoethe UniversityFrankfurtGermany
| | - Lucas Alberto Mongiat
- Instituto de Investigación en Biodiversidad y MedioambienteUniversidad Nacional del Comahue-CONICETSan Carlos de BarilocheArgentina
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
| |
Collapse
|
7
|
Vadakkan KI. Rapid chain generation of interpostsynaptic functional LINKs can trigger seizure generation: Evidence for potential interconnections from pathology to behavior. Epilepsy Behav 2016; 59:28-41. [PMID: 27085478 DOI: 10.1016/j.yebeh.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
The experimental finding that a paroxysmal depolarizing shift (PDS), an electrophysiological correlate of seizure activity, is a giant excitatory postsynaptic potential (EPSP) necessitates a mechanism for spatially summating several EPSPs at the level of the postsynaptic terminals (dendritic spines). In this context, we will examine reversible interpostsynaptic functional LINKs (IPLs), a proposed mechanism for inducing first-person virtual internal sensations of higher brain functions concurrent with triggering behavioral motor activity for possible pathological changes that may contribute to seizures. Pathological conditions can trigger a rapid chain generation and propagation of different forms of IPLs leading to seizure generation. A large number of observations made at different levels during both ictal and interictal periods are explained by this mechanism, including the tonic and clonic motor activity, different types of hallucinations, loss of consciousness, gradual worsening of cognitive abilities, a relationship with kindling (which uses an augmented stimulation protocol than that used for inducing long-term potentiation (LTP), which is an electrophysiological correlate of behavioral makers of internal sensation of memory), effect of a ketogenic diet on seizure prevention, dendritic spine loss in seizure disorders, neurodegenerative changes, and associated behavioral changes. The interconnectable nature of these findings is explained as loss of function states of a proposed normal functioning of the nervous system.
Collapse
|
8
|
Kodirov SA, Wehrmeister M, Colom L. Nicotine-Mediated ADP to Spike Transition: Double Spiking in Septal Neurons. J Membr Biol 2015; 249:107-18. [PMID: 26463358 DOI: 10.1007/s00232-015-9853-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022]
Abstract
The majority of neurons in lateral septum (LS) are electrically silent at resting membrane potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting bursting activity upon longer applications. We have observed simultaneous changes in frequencies and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, termed as double spiking. A transition from a single AP to double spikes increased the amplitude of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller compared to the first one, and this correlation persisted in regard to their duration (half-width). A similar bursting activity in the presence of nicotine, to our knowledge, has not been reported previously in the septal structure in general and in LS in particular.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Biological Sciences, Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX, 78520, USA.
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Michael Wehrmeister
- Johannes Gutenberg University, 55099, Mainz, Germany
- Heidelberg University, Heidelberg, Germany
| | - Luis Colom
- Department of Biological Sciences, Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX, 78520, USA
| |
Collapse
|
9
|
Kupferman JV, Basu J, Russo MJ, Guevarra J, Cheung SK, Siegelbaum SA. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 2014; 158:1335-1347. [PMID: 25201528 DOI: 10.1016/j.cell.2014.07.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.
Collapse
Affiliation(s)
- Justine V Kupferman
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jayeeta Basu
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Marco J Russo
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jenieve Guevarra
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Stephanie K Cheung
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Pharmacology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
10
|
De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 2014; 46:640-5. [PMID: 24747641 DOI: 10.1038/ng.2952] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.
Collapse
|
11
|
Vlachos A, Becker D, Jedlicka P, Winkels R, Roeper J, Deller T. Entorhinal denervation induces homeostatic synaptic scaling of excitatory postsynapses of dentate granule cells in mouse organotypic slice cultures. PLoS One 2012; 7:e32883. [PMID: 22403720 PMCID: PMC3293910 DOI: 10.1371/journal.pone.0032883] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/05/2012] [Indexed: 01/11/2023] Open
Abstract
Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥ 3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr(2+))-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3-4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro.
Collapse
Affiliation(s)
- Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Stegen M, Kirchheim F, Hanuschkin A, Staszewski O, Veh RW, Wolfart J. Adaptive Intrinsic Plasticity in Human Dentate Gyrus Granule Cells during Temporal Lobe Epilepsy. Cereb Cortex 2011; 22:2087-101. [DOI: 10.1093/cercor/bhr294] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Deng P, Xu ZC. Contribution of Ih to Neuronal Damage in the Hippocampus after Traumatic Brain Injury in Rats. J Neurotrauma 2011; 28:1173-83. [DOI: 10.1089/neu.2010.1683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ping Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zao C. Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
Halabisky B, Parada I, Buckmaster PS, Prince DA. Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. J Neurophysiol 2010; 104:2214-23. [PMID: 20631216 PMCID: PMC3774571 DOI: 10.1152/jn.00147.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/12/2010] [Indexed: 11/22/2022] Open
Abstract
The density of somatostatin (SOM)-containing GABAergic interneurons in the hilus of the dentate gyrus is significantly decreased in both human and experimental temporal lobe epilepsy. We used the pilocarpine model of status epilepticus and temporal lobe epilepsy in mice to study anatomical and electrophysiological properties of surviving somatostatin interneurons and determine whether compensatory functional changes occur that might offset loss of other inhibitory neurons. Using standard patch-clamp techniques and pipettes containing biocytin, whole cell recordings were obtained in hippocampal slices maintained in vitro. Hilar SOM cells containing enhanced green fluorescent protein (EGFP) were identified with fluorescent and infrared differential interference contrast video microscopy in epileptic and control GIN (EGFP-expressing Inhibitory Neurons) mice. Results showed that SOM cells from epileptic mice had 1) significant increases in somatic area and dendritic length; 2) changes in membrane properties, including a small but significant decrease in resting membrane potential, and increases in time constant and whole cell capacitance; 3) increased frequency of slowly rising spontaneous excitatory postsynaptic currents (sEPSCs) due primarily to increased mEPSC frequency, without changes in the probability of release; 4) increased evoked EPSC amplitude; and 5) increased spontaneous action potential generation in cell-attached recordings. Results suggest an increase in excitatory innervation, perhaps on distal dendrites, considering the slower rising EPSCs and increased output of hilar SOM cells in this model of epilepsy. In sum, these changes would be expected to increase the inhibitory output of surviving SOM interneurons and in part compensate for interneuronal loss in the epileptogenic hippocampus.
Collapse
Affiliation(s)
- Brian Halabisky
- Stanford University School of Medicine, Department of Neurology, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
15
|
Wierschke S, Lehmann TN, Dehnicke C, Horn P, Nitsch R, Deisz RA. Hyperpolarization-activated cation currents in human epileptogenic neocortex. Epilepsia 2009; 51:404-14. [PMID: 19694789 DOI: 10.1111/j.1528-1167.2009.02275.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Hyperpolarization-activated cation currents (I(H)) play a pivotal role in the control of neuronal excitability. In animal models of epilepsy both increases and decreases of I(H) have been reported. We, therefore, characterized properties of I(H) in human epileptogenic neocortex. METHODS Layer II/III neurons in slices from epilepsy surgery tissues and rat cortex were investigated with whole-cell patch-clamp recordings. RESULTS A total of 484 neurons from 96 temporal lobe epilepsy (TLE) tissues and 32 neurons from 8 frontal lobe epilepsy (FLE) tissues were recorded. Voltage-clamp recordings revealed on hyperpolarizing command steps two time- and voltage-dependent inward currents, namely a fast, Ba(2+)-sensitive current (K(IR)) and a slowly activating current, namely consisting of two kinetically distinct components sensitive to the established I(H) blocker ZD7288. Only, the fast component (I(H)(fast)) of TLE neurons was on average smaller and activated more slowly (density 2.7 +/- 1.6 pA/pF; tau 38.4 +/- 34.0 ms) than in FLE neurons (4.7 +/- 2.3 pA/pF; 16.6 +/- 7.9 ms; p < 0.001 for both). Within the TLE tissues the I(H)(fast) density (averaged per patient) was smaller in cases with numerous annual grand mal seizures (GM; 2.2 +/- 0.6 pA/pF) compared to those with few GM (2.8 +/- 1.0 pA/pF; p = 0.0184). A similar difference was obtained in the case of complex partial seizures (CPS; many CPS 2.2 +/- 0.6 pA/pF; few CPS 2.9 +/- 1.0 pA/pF, p = 0.0037). DISCUSSION The biophysical properties of I(H) in cortices from TLE, FLE, and rat tissue suggest a deficit of HCN1 subunits in the human epileptogenic neocortex, which in turn may increase excitability and probability of seizure activity.
Collapse
Affiliation(s)
- Stephan Wierschke
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J. Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 2009; 587:4213-33. [PMID: 19564397 DOI: 10.1113/jphysiol.2009.170746] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70-80% of this difference were sensitive to K(+) replacement. Of the increased K(+) leak, about 50% were sensitive to 1 mm Ba(2+). Approximately 20-30% of the pathological leak was mediated by a bicuculline-sensitive GABA(A) conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba(2+) IC(50), reminiscent of classic inward rectifier K(+) channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K(+) channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K(+) channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.
Collapse
Affiliation(s)
- Christina C Young
- Cellular Neurophysiology, Dept. of Neurosurgery, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Excitotoxic-mediated transcriptional decreases in HCN2 channel function increase network excitability in CA1. Exp Neurol 2009; 219:249-57. [PMID: 19500574 DOI: 10.1016/j.expneurol.2009.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 12/21/2022]
Abstract
Changes in the conductance of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel that mediates Ih are proposed to contribute to increased network excitability. Synchronous neuronal burst activity is a good reflection of network excitability and can be generated in isolated hippocampal slice cultures by removing Mg2+ from the extracellular fluid. We demonstrate that Ih contributes to this activity by increasing both the frequency and duration of bursting events. Changes in HCN channel function are also implicated in altered seizure susceptibility. Short-term application of kainic acid (KA) is known to initiate long lasting changes in neuronal networks that result in seizures, and in slice cultures was found to alter HCN mRNA levels in an isoform and hippocampal sub-region specific manner. These changes correlate with the ability of each sub-region to develop synchronous burst activity following KA that we have previously reported. Specifically, a loss of synchronous activity in the CA3 correlated with an increase in HCN2 mRNA levels that normalized concomitantly with the restoration of CA3 burst activity 7 days post insult. In contrast, in CA1 an increase in synchronous burst duration correlated with a reduction in HCN2 mRNA levels and both changes were still evident for 7 days post insult. Lamotrigine, known to increase Ih, reversed the impact of KA on burst duration in CA1 at both time-points linking a transcriptional reduction in HCN2 function to increased burst duration.
Collapse
|
18
|
Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol 2008; 86:129-40. [PMID: 18834920 PMCID: PMC2606691 DOI: 10.1016/j.pneurobio.2008.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 07/24/2008] [Accepted: 09/04/2008] [Indexed: 12/23/2022]
Abstract
Developing neuronal networks evolve continuously, requiring that neurons modulate both their intrinsic properties and their responses to incoming synaptic signals. Emerging evidence supports roles for the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in this neuronal plasticity. HCN channels seem particularly suited for fine-tuning neuronal properties and responses because of their remarkably large and variable repertoire of functions, enabling integration of a wide range of cellular signals. Here, we discuss the involvement of HCN channels in cortical and hippocampal network maturation, and consider potential roles of developmental HCN channel dysregulation in brain disorders such as epilepsy.
Collapse
Affiliation(s)
- Roland A. Bender
- Institute of Anatomy I, University of Hamburg, D-20246 Hamburg, Germany, Phone: +49-40-428034333, Fax: +49-40-428034966, E-mail:
| | - Tallie Z. Baram
- Departments Anatomy/Neurobiology, Pediatrics & Neurology, University of California, Irvine, CA 92697-4475, USA, Phone: +1-949-824-3307, Fax: +1-949-824-1106, E-mail:
| |
Collapse
|
19
|
Zha Q, Brewster AL, Richichi C, Bender RA, Baram TZ. Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation. J Neurochem 2008; 105:68-77. [PMID: 17988239 PMCID: PMC2747799 DOI: 10.1111/j.1471-4159.2007.05110.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Formation of heteromeric complexes of ion channels via co-assembly of different subunit isoforms provides an important mechanism for enhanced channel diversity. We have previously demonstrated co-association of the hyperpolarization activated cyclic-nucleotide gated (HCN1/HCN2) channel isoforms that was regulated by network (seizure) activity in developing hippocampus. However, the mechanisms that underlie this augmented expression of heteromeric complexes have remained unknown. Glycosylation of the HCN channels has been implicated in the stabilization and membrane expression of heteromeric HCN1/HCN2 constructs in heterologous systems. Therefore, we used in vivo and in vitro systems to test the hypothesis that activity modifies HCN1/HCN2 heteromerization in neurons by modulating the glycosylation state of the channel molecules. Seizure-like activity (SA) increased HCN1/HCN2 heteromerization in hippocampus in vivo as well as in hippocampal organotypic slice cultures. This activity increased the abundance of glycosylated HCN1 but not HCN2-channel molecules. In addition, glycosylated HCN1 channels were preferentially co-immunoprecipitated with the HCN2 isoforms. Provoking SA in vitro in the presence of the N-linked glycosylation blocker tunicamycin abrogated the activity-dependent increase of HCN1/HCN2 heteromerization. Thus, hippocampal HCN1 molecules have a significantly higher probability of being glycosylated after SA, and this might promote a stable heteromerization with HCN2.
Collapse
Affiliation(s)
- Qinqin Zha
- Department of Pediatrics, University of California, Irvine, Irvine, California 92697-4475, USA
| | | | | | | | | |
Collapse
|
20
|
Bolívar JJ, Tapia D, Arenas G, Castañón-Arreola M, Torres H, Galarraga E. A hyperpolarization-activated, cyclic nucleotide-gated, (Ih-like) cationic current and HCN gene expression in renal inner medullary collecting duct cells. Am J Physiol Cell Physiol 2008; 294:C893-906. [PMID: 18199706 DOI: 10.1152/ajpcell.00616.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cation conductancein primary cultures of rat renal inner medullary collecting duct was studied using perforated-patch and conventional whole cell clamp techniques. Hyperpolarizations beyond -60 mV induced a time-dependent inward nonselective cationic current (I(vti)) that resembles the well-known hyperpolarization-activated, cyclic nucleotide-gated I(h) and I(f) currents. I(vti) showed a half-maximal activation around -102 mV with a slope factor of 25 mV. It had a higher conductance (but, at its reversal potential, not a higher permeability) for K(+) than for Na(+) (gK(+)/gNa(+) = 1.5), was modulated by cAMP and blocked by external Cd(2+) (but not Cs(+) or ZD-7288), and potentiated by a high extracellular K(+) concentration. We explored the expression of the I(h) channel genes (HCN1 to -4) by RT-PCR. The presence of transcripts corresponding to the HCN1, -2, and -4 genes was observed in both the cultured cells and kidney inner medulla. Western blot analysis with HCN2 antibody showed labeling of approximately 90- and approximately 120-kDa proteins in samples from inner medulla and cultured cells. Immunocytochemical analysis of cell cultures and inner medulla showed the presence of HCN immunoreactivity partially colocalized with the Na(+)-K(+)-ATPase at the basolateral membrane of collecting duct cells. This is the first evidence of an I(h)-like cationic current and HCN immunoreactivity in either kidney or any other nonexcitable mammalian cells.
Collapse
Affiliation(s)
- Juan J Bolívar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City DF, 04510, México.
| | | | | | | | | | | |
Collapse
|
21
|
Shin M, Chetkovich DM. Activity-dependent regulation of h channel distribution in hippocampal CA1 pyramidal neurons. J Biol Chem 2007; 282:33168-80. [PMID: 17848552 PMCID: PMC2685032 DOI: 10.1074/jbc.m703736200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperpolarization-activated cation current, I(h), plays an important role in regulating intrinsic neuronal excitability in the brain. In hippocampal pyramidal neurons, I(h) is mediated by h channels comprised primarily of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits, HCN1 and HCN2. Pyramidal neuron h channels within hippocampal area CA1 are remarkably enriched in distal apical dendrites, and this unique distribution pattern is critical for regulating dendritic excitability. We utilized biochemical and immunohistochemical approaches in organotypic slice cultures to explore factors that control h channel localization in dendrites. We found that distal dendritic enrichment of HCN1 is first detectable at postnatal day 13, reaching maximal enrichment by the 3rd postnatal week. Interestingly we found that an intact entorhinal cortex, which projects to distal dendrites of CA1 but not area CA3, is critical for the establishment and maintenance of distal dendritic enrichment of HCN1. Moreover blockade of excitatory neurotransmission using tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, or 2-aminophosphonovalerate redistributed HCN1 evenly throughout the dendrite without significant changes in protein expression levels. Inhibition of calcium/calmodulin-dependent protein kinase II activity, but not p38 MAPK, also redistributed HCN1 in CA1 pyramidal neurons. We conclude that activation of ionotropic glutamate receptors by excitatory temporoammonic pathway projections from the entorhinal cortex establishes and maintains the distribution pattern of HCN1 in CA1 pyramidal neuron dendrites by activating calcium/calmodulin-dependent protein kinase II-mediated downstream signals.
Collapse
Affiliation(s)
- Minyoung Shin
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Dane M. Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
- Department of Physiology, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
22
|
Bender RA, Kirschstein T, Kretz O, Brewster AL, Richichi C, Rüschenschmidt C, Shigemoto R, Beck H, Frotscher M, Baram TZ. Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation. J Neurosci 2007; 27:4697-706. [PMID: 17460082 PMCID: PMC3086816 DOI: 10.1523/jneurosci.4699-06.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence supports roles for the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, I(h), in hippocampal maturation and specifically in the evolving changes of intrinsic properties as well as network responses of hippocampal neurons. Here, we describe a novel developmental plasticity of HCN channel expression in axonal and presynaptic compartments: HCN1 channels were localized to axon terminals of the perforant path (the major hippocampal afferent pathway) of immature rats, where they modulated synaptic efficacy. However, presynaptic expression and functions of the channels disappeared with maturation. This was a result of altered channel transport to the axons, because HCN1 mRNA and protein levels in entorhinal cortex neurons, where the perforant path axons originate, were stable through adulthood. Blocking action potential firing in vitro increased presynaptic expression of HCN1 channels in the perforant path, suggesting that network activity contributed to regulating this expression. These findings support a novel developmentally regulated axonal transport of functional ion channels and suggest a role for HCN1 channel-mediated presynaptic I(h) in hippocampal maturation.
Collapse
Affiliation(s)
- Roland A Bender
- Department of Anatomy, University of California, Irvine, Irvine, California 92697-4475, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schridde U, Strauss U, Bräuer AU, van Luijtelaar G. Environmental manipulations early in development alter seizure activity, Ih and HCN1 protein expression later in life. Eur J Neurosci 2007; 23:3346-58. [PMID: 16820024 DOI: 10.1111/j.1460-9568.2006.04865.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although absence epilepsy has a genetic origin, evidence from an animal model (Wistar Albino Glaxo/Rijswijk; WAG/Rij) suggests that seizures are sensitive to environmental manipulations. Here, we show that manipulations of the early rearing environment (neonatal handling, maternal deprivation) of WAG/Rij rats leads to a pronounced decrease in seizure activity later in life. Recent observations link seizure activity in WAG/Rij rats to the hyperpolarization-activated cation current (Ih) in the somatosensory cortex, the site of seizure generation. Therefore, we investigated whether the alterations in seizure activity between rats reared differently might be correlated with changes in Ih and its channel subunits hyperpolarization-activated cation channel HCN1, 2 and 4. Whole-cell recordings from layer 5 pyramidal neurons, in situ hybridization and Western blot of the somatosensory cortex revealed an increase in Ih and HCN1 in neonatal handled and maternal deprived, compared to control rats. The increase was specific to HCN1 protein expression and did not involve HCN2/4 protein expression, or mRNA expression of any of the subunits (HCN1, 2, 4). Our findings provide the first evidence that relatively mild changes in the neonatal environment have a long-term impact of absence seizures, Ih and HCN1, and suggest that an increase of Ih and HCN1 is associated with absence seizure reduction. Our findings shed new light on the role of Ih and HCN in brain functioning and development and demonstrate that genetically determined absence seizures are quite sensitive for early interventions.
Collapse
Affiliation(s)
- Ulrich Schridde
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA.
| | | | | | | |
Collapse
|
24
|
Kole MHP, Bräuer AU, Stuart GJ. Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J Physiol 2006; 578:507-25. [PMID: 17095562 PMCID: PMC2075144 DOI: 10.1113/jphysiol.2006.122028] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While idiopathic generalized epilepsies are thought to evolve from temporal highly synchronized oscillations between thalamic and cortical networks, their cellular basis remains poorly understood. Here we show in a genetic rat model of absence epilepsy (WAG/Rij) that a rapid decline in expression of hyperpolarization-activated cyclic-nucleotide gated (HCN1) channels (I(h)) precedes the onset of seizures, suggesting that the loss of HCN1 channel expression is inherited rather than acquired. Loss of HCN1 occurs primarily in the apical dendrites of layer 5 pyramidal neurons in the cortex, leading to a spatially uniform 2-fold reduction in dendritic HCN current throughout the entire somato-dendritic axis. Dual whole-cell recordings from the soma and apical dendrites demonstrate that loss of HCN1 increases somato-dendritic coupling and significantly reduces the frequency threshold for generation of dendritic Ca2+ spikes by backpropagating action potentials. As a result of increased dendritic Ca2+ electrogenesis a large population of WAG/Rij layer 5 neurons showed intrinsic high-frequency burst firing. Using morphologically realistic models of layer 5 pyramidal neurons from control Wistar and WAG/Rij animals we show that the experimentally observed loss of dendritic I(h) recruits dendritic Ca2+ channels to amplify action potential-triggered dendritic Ca2+ spikes and increase burst firing. Thus, loss of function of dendritic HCN1 channels in layer 5 pyramidal neurons provides a somato-dendritic mechanism for increasing the synchronization of cortical output, and is therefore likely to play an important role in the generation of absence seizures.
Collapse
Affiliation(s)
- Maarten H P Kole
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, ACT, 0200, Canberra, Australia.
| | | | | |
Collapse
|
25
|
Liersch J, Räder C, Görcs T, Scholten A, Kremmer E, Plüm J, Pöggel S, Zilles K. WITHDRAWN: Immunohistochemical localization of Ih channel HCN3 in the rat brain. ANATOMY AND EMBRYOLOGY 2006. [PMID: 16897011 DOI: 10.1007/s00429-006-0108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2006] [Indexed: 05/11/2023]
Abstract
Ahead of Print article withdrawn by publisher
Collapse
Affiliation(s)
- J Liersch
- Institute of Brain Research C. and O. Vogt, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ying SW, Abbas SY, Harrison NL, Goldstein PA. Propofol block of I(h) contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons. Eur J Neurosci 2006; 23:465-80. [PMID: 16420453 DOI: 10.1111/j.1460-9568.2005.04587.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the depressant effects of the general anesthetic propofol on thalamocortical relay neurons clearly involve gamma-aminobutyric acid (GABA)(A) receptors, other mechanisms may be involved. The hyperpolarization-activated cation current (I(h)) regulates excitability and rhythmic firing in thalamocortical relay neurons in the ventrobasal (VB) complex of the thalamus. Here we investigated the effects of propofol on I(h)-related function in vitro and in vivo. In whole-cell current-clamp recordings from VB neurons in mouse (P23-35) brain slices, propofol markedly reduced the voltage sag and low-threshold rebound excitation that are characteristic of the activation of I(h). In whole-cell voltage-clamp recordings, propofol suppressed the I(h) conductance and slowed the kinetics of activation. The block of I(h) by propofol was associated with decreased regularity and frequency of delta-oscillations in VB neurons. The principal source of the I(h) current in these neurons is the hyperpolarization-activated cyclic nucleotide-gated (HCN) type 2 channel. In human embryonic kidney (HEK)293 cells expressing recombinant mouse HCN2 channels, propofol decreased I(h) and slowed the rate of channel activation. We also investigated whether propofol might have persistent effects on thalamic excitability in the mouse. Three hours following an injection of propofol sufficient to produce loss-of-righting reflex in mice (P35), I(h) was decreased, and this was accompanied by a corresponding decrease in HCN2 and HCN4 immunoreactivity in thalamocortical neurons in vivo. These results suggest that suppression of I(h) may contribute to the inhibition of thalamocortical activity during propofol anesthesia. Longer-term effects represent a novel form of propofol-mediated regulation of I(h).
Collapse
Affiliation(s)
- Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
27
|
Bajorat R, Bräuer AU, Wasner U, Rolfs A, Strauss U. Functional significance of HCN2/3-mediated I(h) in striatal cells at early developmental stages. J Neurosci Res 2006; 82:206-13. [PMID: 16175581 DOI: 10.1002/jnr.20643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperpolarization-activated cAMP-gated cation currents (I(h)) were recently linked to pre- and postnatal developmental processes in several brain regions, including the ventral telencephalon. To evaluate the role of I(h) in striatal development, we used short-term cultured cells from the lateral ganglionic eminence at embryonic day 14 (E14) and postnatal days 1-3 (P1-3) as well as the embryonic striatal progenitor cell line ST14A. Western blot analysis of the I(h) underlying subunit proteins HCN1-4 revealed strong HCN2 expression in proliferating ST14A cells and weak expression in postmitotic ST14A cells and in cells from the developing brain. We also found HCN3 expression only in ST14A cells at both proliferative and nonproliferative stages but not in short-term cultured striatal cells. In all cases, HCN1 and HCN4 transcripts were below the detection level. Despite the selective protein expression, RT-PCR analysis showed stable expression of HCN2-4 but not HCN1 mRNA in all short-term-cultured striatal cells and in the ST14A cell line. Consistent with the strong protein expression, an I(h) was recorded with features of an HCN2-mediated current in ST14A cells at the proliferative stage and in short-term-cultured E14 cells. Of particular importance is that we detected no currents upon hyperpolarization in the ST14A cells at the nonproliferative stage when only HCN3 protein was present. These results suggest the potential importance of ST14A cells in defining the molecular mechanisms regulating I(h) expression and function.
Collapse
Affiliation(s)
- Rika Bajorat
- Neurobiological Laboratory, Clinic for Neurology, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
28
|
Brewster AL, Bernard JA, Gall CM, Baram TZ. Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiol Dis 2005; 19:200-7. [PMID: 15837575 PMCID: PMC2930785 DOI: 10.1016/j.nbd.2004.12.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/07/2004] [Accepted: 12/22/2004] [Indexed: 02/05/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate hyperpolarization-activated currents (I(h)). In hippocampus, these currents contribute greatly to intrinsic cellular properties and synchronized neuronal activity. The kinetic and gating properties of HCN-mediated currents are largely determined by the type of subunits--for example, HCN1 and HCN2--that assemble to form homomeric channels. Recently, functional heteromeric HCN channels have been described in vitro, further enlarging the potential I(h) repertoire of individual neurons. Because these heteromeric HCN channels may promote hippocampal hyperexcitability and the development of epilepsy, understanding the mechanisms governing their formation is of major clinical relevance. Here, we find that developmental seizures promote co-assembly of hippocampal HCN1/HCN2 heteromeric channels, in a duration-dependent manner. Long-lasting heteromerization was found selectively after seizures that provoked persistent hippocampal hyperexcitability. The mechanism for this enhanced heteromerization may involve increased relative abundance of HCN2-type subunits relative to the HCN1 isoform at both mRNA and protein levels. These data suggest that heteromeric HCN channels may provide molecular targets for intervention in the epileptogenic process.
Collapse
Affiliation(s)
- Amy L. Brewster
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | - Joie A. Bernard
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4475, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4475, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4475, USA
- Department of Pediatrics, University of California, Irvine, CA 92697-4475, USA
- Corresponding author. Departments of Pediatrics and Anatomy/Neurobiology, University of California at Irvine, ZOT 4475, Irvine, CA, 92697-4475, USA. Fax: +1 949 824 1106. (T.Z. Baram)
| |
Collapse
|
29
|
Roberts L, Greene JRT. Hyperpolarization-activated current (Ih): A characterization of subicular neurons in brain slices from socially and individually housed rats. Brain Res 2005; 1040:1-13. [PMID: 15804421 DOI: 10.1016/j.brainres.2004.11.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/22/2004] [Accepted: 11/26/2004] [Indexed: 10/25/2022]
Abstract
The hyperpolarization and cyclic nucleotide activated current Ih is thought to have a role in rhythmic brain activity that is important in complex behaviors and might be perturbed in some neuropsychiatric diseases. We have used whole-cell voltage and current clamp techniques to characterize Ih in neurons from the subiculum-the major output region of the hippocampal formation. Subicular projection neurons are themselves classifiable as intrinsically bursting (IB) or regular spiking (RS) and Ih is present in both. Given the possible involvement of Ih in neuropsychiatric diseases, we have also characterized Ih in subicular neurons from rats that have been housed in individual cages (though still able to see, smell, and hear other rats) as these rats can display behavioral changes similar to those seen in schizophrenia. Individual housing is associated with a 4.4-mV depolarization of the Ih activation curve (P=0.0027) and an increase in mean firing rate measured in response to current injection (P=0.037) specifically in RS neurons and a change in the relative amplitude of Ih between IB and RS neurons. Thus, we have shown significant changes in a current thought to be relevant to psychiatric disease in a partial model of schizophrenia. Its further investigation might reveal chemical targets for novel antipsychotic drugs.
Collapse
Affiliation(s)
- L Roberts
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| | | |
Collapse
|
30
|
Frère SGA, Kuisle M, Lüthi A. Regulation of recombinant and native hyperpolarization-activated cation channels. Mol Neurobiol 2005; 30:279-305. [PMID: 15655253 DOI: 10.1385/mn:30:3:279] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/22/2004] [Indexed: 11/11/2022]
Abstract
Ionic currents generated by hyperpolarization-activated cation-nonselective (HCN) channels have been principally known as pacemaker h-currents (Ih), because they allow cardiac and neuronal cells to be rhythmically active over precise intervals of time. Presently, these currents are implicated in numerous additional cellular functions, including neuronal integration, synaptic transmission, and sensory reception. These roles are accomplished by virtue of the regulation of Ih by both voltage and ligands. The article summarizes recent developments on the properties and allosteric interactions of these two regulatory pathways in cloned and native channels. Additionally, it discusses how the expression and properties of native channels may be controlled via regulation of the transcription of the HCN channel gene family and the assembly of channel subunits. Recently, several cardiac and neurological diseases were found to be intimately associated with a dysregulation of HCN gene transcription, suggesting that HCN-mediated currents may be involved in the pathophysiology of excitable systems. As a starting point, we briefly review the general characteristics of Ih and the regulatory mechanisms identified in heterologously expressed HCN channels.
Collapse
Affiliation(s)
- Samuel G A Frère
- Section of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
31
|
Santoro B, Wainger BJ, Siegelbaum SA. Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci 2004; 24:10750-62. [PMID: 15564593 PMCID: PMC6730122 DOI: 10.1523/jneurosci.3300-04.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 10/13/2004] [Accepted: 10/18/2004] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization-activated cation currents (I(h)) are carried by channels encoded by a family of four genes (HCN1-4) that are differentially expressed within the brain in specific cellular and subcellular compartments. HCN1 shows a high level of expression in apical dendrites of cortical pyramidal neurons and in presynaptic terminals of cerebellar basket cells, structures with a high density of I(h). Expression of I(h) is also regulated by neuronal activity. To isolate proteins that may control HCN channel expression or function, we performed yeast two-hybrid screens using the C-terminal cytoplasmic tails of the HCN proteins as bait. We identified a brain-specific protein, which has been previously termed TRIP8b (for TPR-containing Rab8b interacting protein) and PEX5Rp (for Pex5p-related protein), that specifically interacts with all four HCN channels through a conserved sequence in their C-terminal tails. In situ hybridization and immunohistochemistry show that TRIP8b and HCN1 are colocalized, particularly within dendritic arbors of hippocampal CA1 and neocortical layer V pyramidal neurons. The dendritic expression of TRIP8b in layer V pyramidal neurons is disrupted after deletion of HCN1 through homologous recombination, demonstrating a key in vivo interaction between HCN1 and TRIP8b. TRIP8b dramatically alters the trafficking of HCN channels heterologously expressed in Xenopus oocytes and human embryonic kidney 293 cells, causing a specific decrease in surface expression of HCN protein and I(h) density, with a pronounced intracellular accumulation of HCN protein that is colocalized in discrete cytoplasmic clusters with TRIP8b. Finally, TRIP8b expression in cultured pyramidal neurons markedly decreases native I(h) density. These data suggest a possible role for TRIP8b in regulating HCN channel density in the plasma membrane.
Collapse
Affiliation(s)
- Bina Santoro
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
32
|
Scharfman HE. Keeping Pace with Pacemaker Channels. Epilepsy Curr 2004. [PMID: 15309126 DOI: 10.1046/j.1535-7597.2002.00058.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Strauss U, Kole MHP, Bräuer AU, Pahnke J, Bajorat R, Rolfs A, Nitsch R, Deisz RA. An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur J Neurosci 2004; 19:3048-58. [PMID: 15182313 DOI: 10.1111/j.0953-816x.2004.03392.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal subthreshold excitability and firing behaviour are markedly influenced by the activation and deactivation of the somato-dendritic hyperpolarization-activated cation current (Ih). Here, we evaluated possible contributions of Ih to hyperexcitability in an animal model of absence seizures (WAG/Rij rats). We investigated pyramidal neurons of the somatosensory neocortex, the site of generation of spike-wave discharges. Ih-mediated functions in neurons from WAG/Rij rats, Wistar rats (sharing the same genetic background with WAG/Rij, but less epilepsy-prone) and ACI rats (an inbred strain, virtually free of seizures) were compared. We complemented whole-cell recordings from layer 2-3 pyramidal neurons with immunohistochemistry, Western blot and RT-PCR analysis of the h-channel subunits HCN1-4. The fast component of Ih activation in WAG/Rij neurons was significantly reduced (50% reduction in the h-current density) and four times slower than in neurons from nonepileptic Wistar or ACI rats. The results showing decreases in currents corresponded to a 34% reduction in HCN1 protein in the WAG/Rij compared to the Wistar neocortex, but HCN1 mRNA showed stable expression. The other three Ih subunit mRNAs and proteins (HCN2-4) were not affected. The alterations in Ih magnitude and kinetics of gating in WAG/Rij neurons may contribute to augmented excitatory postsynaptic potentials, the increase in their temporal summation and the facilitation of burst firing of these neurons because each of these effects could be mimicked by the selective Ih antagonist ZD 7288. We suggest that the deficit in Ih-mediated functions may contribute to the development and onset of spontaneously occurring hyperexcitability in a rat model of absence seizures.
Collapse
Affiliation(s)
- Ulf Strauss
- Department of Neurology, University Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Savaskan NE, Bräuer AU, Nitsch R. Molecular cloning and expression regulation of PRG-3, a new member of the plasticity-related gene family. Eur J Neurosci 2004; 19:212-20. [PMID: 14750979 DOI: 10.1046/j.1460-9568.2003.03078.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipid-mediated signalling on neurons provokes diverse responses such as neurogenesis, pattern formation and neurite remodelling. We have recently uncovered a novel set of molecules in the mammalian brain, named plasticity-related genes (PRGs), which mediate lipid phosphate phosphatase activity and provide evidence for their involvement in mechanisms of neuronal plasticity. Here, we report on a new member of the vertebrate-specific PRG family, which we have named plasticity-related gene-3 (PRG-3). PRG-3 is heavily expressed in the brain and shows a specific expression pattern during brain development where PRG-3 expression is found predominantly in neuronal cell layers and is already expressed at embryonic day 16. In the mature brain, strongest PRG-3 expression occurs in the hippocampus and cerebellum. Overexcitation of neurons induced by kainic acid leads to a transient down-regulation of PRG-3. Furthermore, PRG-3 is expressed on neurite extensions and promotes neurite growth and a spreading-like cell body in neuronal cells and COS-7 cells. In contrast to previously described members of the PRG family, PRG-3 does not perform its function through enzymatic phospholipid degradation. In summary, our findings feature a new member of the PRG family which shows dynamic expression regulation during brain development and neuronal excitation.
Collapse
Affiliation(s)
- Nicolai E Savaskan
- PRGs Research Group, Institute of Cell Biology and Neurobiology, Center for Anatomy, Philippstrasse 12, Charité-University Medical School Berlin, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
35
|
Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 2004; 471:241-76. [PMID: 14991560 DOI: 10.1002/cne.11039] [Citation(s) in RCA: 487] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperpolarization-activated cation currents (I(h)) contribute to various physiological properties and functions in the brain, including neuronal pacemaker activity, setting of resting membrane potential, and dendritic integration of synaptic input. Four subunits of the Hyperpolarization-activated and Cyclic-Nucleotide-gated nonselective cation channels (HCN1-4), which generate I(h), have been cloned recently. To better understand the functional diversity of I(h) in the brain, we examined precise immunohistochemical localization of four HCNs in the rat brain. Immunoreactivity for HCN1 showed predominantly cortical distribution, being intense in the neocortex, hippocampus, superior colliculus, and cerebellum, whereas those for HCN3 and HCN4 exhibited subcortical distribution mainly concentrated in the hypothalamus and thalamus, respectively. Immunoreactivity for HCN2 had a widespread distribution throughout the brain. Double immunofluorescence revealed colocalization of immunoreactivity for HCN1 and HCN2 in distal dendrites of pyramidal cells in the hippocampus and neocortex. At the electron microscopic level, immunogold particles for HCN1 and HCN2 had similar distribution patterns along plasma membrane of dendritic shafts in layer I of the neocortex and stratum lacunosum moleculare of the hippocampal CA1 area, suggesting that these subunits could form heteromeric channels. Our results further indicate that HCNs are localized not only in somato-dendritic compartments but also in axonal compartments of neurons. Immunoreactivity for HCNs often occurred in preterminal rather than terminal portions of axons and in specific populations of myelinated axons. We also found HCN2-immunopositive oligodendrocytes including perineuronal oligodendrocytes throughout the brain. These results support previous electrophysiological findings and further suggest unexpected roles of I(h) channels in the brain.
Collapse
Affiliation(s)
- Takuya Notomi
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
36
|
Abstract
Voltage-gated ion channels clearly are involved in the pathogenesis of epilepsy, with evidence implicating derangement of Na(+), K(+), and Ca(2+) voltage-gated channels, in both inherited and acquired forms of epilepsy ((1)). A newcomer to this list of ion channels involved in epilepsy is the hyperpolarization-activated cation channel or h-channel (otherwise known as I(h) or the pacemaker channel). This voltage-gated channel now is known to play a significant role in regulating neuronal excitability and recently has been shown to be modulated by seizures. Unlike other channels implicated in epilepsy whose function in normal neurons can clearly be labeled "excitatory" (Na(+) and Ca(2+)) or "inhibitory" (K(+)), the unique physiologic behavior of the h-channel allows it to both augment and decrease the excitability of neurons. Thus the role of I(h) in epilepsy, at present, is controversial and is a growing area of intense investigation ((2)(3)).
Collapse
|
37
|
Bräuer AU, Savaskan NE, Plaschke M, Ninnemann O, Nitsch R. Cholecystokinin expression after hippocampal deafferentiation: molecular evidence revealed by differential display-reverse transcription-polymerase chain reaction. Neuroscience 2003; 121:111-21. [PMID: 12946704 DOI: 10.1016/s0306-4522(03)00336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cortical information flow via the perforant path represents a major excitatory projection to the hippocampus. Lesioning this projection leads to massive degeneration and subsequently to reorganization in its termination zones as well as in primary non-affected subfields of the hippocampus. The molecular mechanisms and factors which are involved in the postlesional events are poorly defined. Using a differential display reverse transcription-polymerase chain reaction (DDRT-PCR) strategy, we located one band which occurred only in control hippocampus lanes and almost disappeared in the lanes of lesioned hippocampi. By sequencing, we identified the corresponding gene as cholecystokinin (CCK). Northern blot analysis confirmed a decreased transcription of CCK after lesion. In situ hybridization analysis was performed for localization and quantification of altered CCK transcription. We noted a significant downregulation of CCK transcription in the hippocampus (20%) and in the contralateral cortex (12%) 1-day after lesion (dal) and an increased signal in the ipsilateral cortex (10.5%). This pattern was altered, showing upregulation of CCK mRNA expression, reaching its highest level of 70% above control levels at 5 dal. In the hippocampus, the control level was reached again at 21 dal, whereas the cortex reached the control level at 10 dal. In comparison, the mRNA transcripts of the receptors CCK(A) and CCK(B) remained unchanged. Since CCK-containing neurons are involved in the modulation of pyramidal and granule cell excitability, our data indicate a time course correlation between CCK mRNA expression and postlesional axonal sprouting response in the hippocampus.
Collapse
Affiliation(s)
- A U Bräuer
- Department of Cell and Neurobiology, Oskar-Hertwig House, Humboldt University Medical School Charité, Philippstrasse 12, Philippstrasse 12, D-10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Concepts regarding the function of the hyperpolarization-activated current (Ih) in shaping the excitability of single cells and neuronal ensembles have been evolving rapidly following the recent cloning of genes that encode the underlying 'h-channels' - the HCN genes. This article reviews new information about the transcriptional regulation of these channels, highlighting novel studies that demonstrate short- and long-term modulation of HCN expression, and linking this modulation to mechanisms of neurological diseases.
Collapse
Affiliation(s)
- Bina Santoro
- Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Tallie Z. Baram
- Anatomy, Neurobiology and Pediatrics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Stieber J, Thomer A, Much B, Schneider A, Biel M, Hofmann F. Molecular basis for the different activation kinetics of the pacemaker channels HCN2 and HCN4. J Biol Chem 2003; 278:33672-80. [PMID: 12813043 DOI: 10.1074/jbc.m305318200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pacemaker channels HCN2 and HCN4 have been identified in cardiac sino-atrial node cells. These channels differ considerably in several kinetic properties including the activation time constant (tau act), which is fast for HCN2 (144 ms at -140 mV) and slow for HCN4 (461 ms at -140 mV). Here, by analyzing HCN2/4 chimeras and mutants we identified single amino acid residues in transmembrane segments 1 and 2 and the connecting loop between S1 and S2 that are major determinants of this difference. Replacement of leucine 272 in S1 of HCN4 by the corresponding phenylalanine present in HCN2 decreased tau act of HCN4 to 149 ms. Conversely, activation of the fast channel HCN2 was decreased 3-fold upon the corresponding mutation of F221L in the S1 segment. Mutation of N291T and T293A in the linker between S1 and S2 of HCN4 shifted tau act to 275 ms. While residues 272, 291, and 293 of HCN4 affected the activation speed at basal conditions they had no obvious influence on the cAMP-dependent acceleration of activation kinetics. In contrast, mutation of I308M in S2 of HCN4 abolished the cAMP-dependent decrease in tau act. Surprisingly, this mutation also prevented the acceleration of channel activation observed after deletion of the C-terminal cAMP binding site. Taken together our results indicate that the speed of activation of the HCN4 channel is determined by structural elements present in the S1, S1-S2 linker, and the S2 segment.
Collapse
Affiliation(s)
- Juliane Stieber
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus. J Neurosci 2003. [PMID: 12890777 DOI: 10.1523/jneurosci.23-17-06826.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Changes in the expression of ion channels, contributing to altered neuronal excitability, are emerging as possible mechanisms in the development of certain human epilepsies. In previous immature rodent studies of experimental prolonged febrile seizures, isoform-specific changes in the expression of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs) correlated with long-lasting hippocampal hyperexcitability and enhanced seizure susceptibility. Prolonged early-life seizures commonly precede human temporal lobe epilepsy (TLE), suggesting that transcriptional dysregulation of HCNs might contribute to the epileptogenic process. Therefore, we determined whether HCN isoform expression was modified in hippocampi of individuals with TLE. HCN1 and HCN2 expression were measured using in situ hybridization and immunocytochemistry in hippocampi from three groups: TLE with hippocampal sclerosis (HS; n = 17), epileptic hippocampi without HS, or non-HS (NHS; n = 10), and autopsy material (n = 10). The results obtained in chronic human epilepsy were validated by examining hippocampi from the pilocarpine model of chronic TLE. In autopsy and most NHS hippocampi, HCN1 mRNA expression was substantial in pyramidal cell layers and lower in dentate gyrus granule cells (GCs). In contrast, HCN1 mRNA expression over the GC layer and in individual GCs from epileptic hippocampus was markedly increased once GC neuronal density was reduced by >50%. HCN1 mRNA changes were accompanied by enhanced immunoreactivity in the GC dendritic fields and more modest changes in HCN2 mRNA expression. Furthermore, similar robust and isoform-selective augmentation of HCN1 mRNA expression was evident also in the pilocarpine animal model of TLE. These findings indicate that the expression of HCN isoforms is dynamically regulated in human as well as in experimental hippocampal epilepsy. After experimental febrile seizures (i.e., early in the epileptogenic process), the preserved and augmented inhibition onto principal cells may lead to reduced HCN1 expression. In contrast, in chronic epileptic HS hippocampus studied here, the profound loss of interneuronal and principal cell populations and consequent reduced inhibition, coupled with increased dendritic excitation of surviving GCs, might provoke a "compensatory" enhancement of HCN1 mRNA and protein expression.
Collapse
|
41
|
Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65:453-80. [PMID: 12471170 DOI: 10.1146/annurev.physiol.65.092101.142734] [Citation(s) in RCA: 901] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperpolarization-activated cation currents, termed If, Ih, or Iq, were initially discovered in heart and nerve cells over 20 years ago. These currents contribute to a wide range of physiological functions, including cardiac and neuronal pacemaker activity, the setting of resting potentials, input conductance and length constants, and dendritic integration. The hyperpolarization-activated, cation nonselective (HCN) gene family encodes the channels that underlie Ih. Here we review the relation between the biophysical properties of recombinant HCN channels and the pattern of HCN mRNA expression with the properties of native Ih in neurons and cardiac muscle. Moreover, we consider selected examples of the expanding physiological functions of Ih with a view toward understanding how the properties of HCN channels contribute to these diverse functional roles.
Collapse
Affiliation(s)
- Richard B Robinson
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
42
|
Bräuer AU, Savaskan NE, Kühn H, Prehn S, Ninnemann O, Nitsch R. A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci 2003; 6:572-8. [PMID: 12730698 DOI: 10.1038/nn1052] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2003] [Accepted: 02/28/2003] [Indexed: 11/09/2022]
Abstract
Outgrowth of axons in the central nervous system is governed by specific molecular cues. Molecules detected so far act as ligands that bind to specific receptors. Here, we report a new membrane-associated lipid phosphate phosphatase that we have named plasticity-related gene 1 (PRG-1), which facilitates axonal outgrowth during development and regenerative sprouting. PRG-1 is specifically expressed in neurons and is located in the membranes of outgrowing axons. There, it acts as an ecto-enzyme and attenuates phospholipid-induced axon collapse in neurons and facilitates outgrowth in the hippocampus. Thus, we propose a novel mechanism by which axons are able to control phospholipid-mediated signaling and overcome the growth-inhibiting, phospholipid-rich environment of the extracellular space.
Collapse
Affiliation(s)
- Anja U Bräuer
- Institute of Anatomy, Department of Cell Biology and Neurobiology, Philippstr. 12, Humboldt University Medical School Charité, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Surges R, Freiman TM, Feuerstein TJ. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 2003; 44:150-6. [PMID: 12558567 DOI: 10.1046/j.1528-1157.2003.36802.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Gabapentin (GBP) is a commonly used drug in the treatment of partial seizures, but its mode of action is still unclear. The genesis of seizures in temporal lobe epilepsy is thought to be crucially influenced by intrinsic membrane properties. Because the Ih substantially contributes to the intrinsic membrane properties of neurons, the effects of GBP on the Ih were investigated in CA1 pyramidal cells of rat hippocampus. METHODS CA1 pyramidal cells in hippocampal slices were examined by using the whole-cell patch-clamp technique. RESULTS GBP increased the Ih amplitude in a concentration-dependent manner mainly by increasing the conductance, without significant changes in the activation properties or in the time course of Ih. The effects ranged from approximately 20% at 50 microM, approximately 25% at 75 microM, to approximately 35% at 100 microM GBP (at -110 mV). In the presence of intracellular cyclic adenosine monophosphate (cAMP), the effects of GBP on Ih were similar to those obtained in the absence of cAMP. CONCLUSIONS These results suggest that GBP increases the Ih through a cAMP-independent mechanism. Because the applied GBP concentrations were in a clinically relevant range, the observed effect may contribute to the anticonvulsant action of GBP in partial seizures and may represent a new concept of how this anticonvulsant drug works.
Collapse
Affiliation(s)
- Rainer Surges
- Department of Neurology, Section of Clinical Neuropharmacology, Neurozentrum, University of Freiburg, Germany.
| | | | | |
Collapse
|
44
|
Chen K, Aradi I, Santhakumar V, Soltesz I. H-channels in epilepsy: new targets for seizure control? Trends Pharmacol Sci 2002; 23:552-7. [PMID: 12457772 DOI: 10.1016/s0165-6147(02)02110-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperpolarization-activated cation channels (h-channels) are key regulators of neuronal excitation and inhibition, and have a rich diversity of subunit composition, distribution, modulation and function. Recent results indicate that the behavior of h-channels can be altered significantly by seizures. The activity-dependent, short-term and long-term plasticity of h-channels can, in turn, modulate neuronal excitability. The reciprocal interactions between neuronal activity and h-channels indicate that these ion channels could be promising novel targets for anti-epileptic therapies.
Collapse
Affiliation(s)
- Kang Chen
- Dept of Anatomy & Neurobiology, University of California Irvine, 92697-1280, USA
| | | | | | | |
Collapse
|
45
|
Scharfman HE. Keeping Pace with Pacemaker Channels. Epilepsy Curr 2002; 2:155-156. [PMID: 15309126 PMCID: PMC321048 DOI: 10.1111/j.1535-7597.2002.00058.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-activated Channels in an Isoform and Cell-specific Manner Brewter A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, and Baram TZ J Neurosci 2002;22:4591–4599 Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability in the long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization activated depolarizing current (Ih). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide–gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.
Collapse
|
46
|
Chevaleyre V, Castillo PE. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc Natl Acad Sci U S A 2002; 99:9538-43. [PMID: 12093909 PMCID: PMC123176 DOI: 10.1073/pnas.142213199] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarization-activated nonselective cation channels (Ih channels) play an important role in the control of membrane excitability and rhythmic neuronal activity. The functional relevance of presynaptic Ih channels in regulating synaptic function, however, is not well established. Recently, it has been proposed [Mellor, J., Nicoll, R. A. & Schmitz, D. (2002) Science 295, 143-147] that presynaptic Ih channels are necessary for hippocampal mossy fiber long-term potentiation (LTP). This observation challenges an alternative model that suggests presynaptic forms of LTP are caused by a direct modification of the transmitter release machinery. Here, we assess the role of Ih in hippocampal mossy fiber LTP as well as cerebellar parallel fiber LTP, forms of potentiation that share common mechanisms. Our results show that after Ih blockade neither mossy fiber LTP nor parallel fiber LTP are affected. Furthermore, Ih does not significantly modify basal excitatory synaptic transmission in the hippocampus, whereas the organic Ih blockers ZD7288 and DK-AH 269 induce a large Ih-independent depression of synaptic transmission. In summary, our results indicate that Ih-mediated persistent changes in presynaptic excitability do not underlie presynaptic forms of LTP.
Collapse
Affiliation(s)
- Vivien Chevaleyre
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
47
|
Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 2002. [PMID: 12040066 DOI: 10.1523/jneurosci.22-11-04591.2002] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.
Collapse
|