1
|
Tian M, Gao W, Ma S, Cao H, Zhang Y, An F, Qi J, Yang Z. Role of HNF6 in liver homeostasis and pathophysiology. Mol Med 2025; 31:48. [PMID: 39910442 PMCID: PMC11800625 DOI: 10.1186/s10020-025-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Hepatocyte nuclear factor 6 (HNF6), a member of the HNF family, contains single cleft and homologous domains, which form a DNA-binding region that targets the promoter regions of genes that bind to liver-specific genes and regulate their expression. Furthermore, HNF6 is highly expressed as an HNF in the liver. MAIN BODY HNF6 regulates not only the formation of the liver but also the proliferation and differentiation of hepatocytes. Additionally, HNF6 controls the migration and adhesion of hepatocellular carcinoma cells and plays a significant role in liver metabolism. Its expression is affected by epigenetic modifications such as DNA methylation, post-translational modifications, and microRNAs. Recently, HNF6 was also found to be expressed in tissues, such as the pancreas, intestine, and lungs, where it controls their formation by regulating cell differentiation and influences their pathophysiological processes via various mechanisms. CONCLUSION In this review, we highlight advances in HNF6-related research concerning liver diseases and provide a summary of its potential mechanisms of action as a transcription factor in regulating downstream genes and epigenetic modifications. We also highlight gaps in liver disease research and provide future research directions for the application of HNF6 and its downstream molecules as attractive targets in the treatment of liver diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Weizhen Gao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Huiling Cao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Yu Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China.
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, 250021, Shandong, P. R. China.
| | - Zhen Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, P. R. China.
| |
Collapse
|
2
|
Toriyama K, Uehara T, Iwakoshi A, Kawashima H, Hosoda W. HNF6 and HNF4α expression in adenocarcinomas of the liver, pancreaticobiliary tract, and gastrointestinal tract: an immunohistochemical study of 480 adenocarcinomas of the digestive system. Pathology 2024; 56:804-813. [PMID: 38926048 DOI: 10.1016/j.pathol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 06/28/2024]
Abstract
Hepatocyte nuclear factors (HNF) 6 and 4α are master transcriptional regulators of development and maintenance of the liver and pancreaticobiliary tract in mice and humans. However, little is known about the prevalence of HNF6 and HNF4α expression in carcinomas of the hepatobiliary tract and pancreas. We aimed to reveal the diagnostic utility of HNF6 and HNF4α immunolabelling in adenocarcinomas of these organs. We investigated HNF6 and HNF4α expression by immunohistochemistry using a total of 480 adenocarcinomas of the digestive system, including 282 of the hepatobiliary tract and pancreas and 198 of the gastrointestinal tract. HNF6 expression was primarily restricted to intrahepatic cholangiocarcinomas (CCs) (63%, n=80) and gallbladder adenocarcinomas (43%, n=88), among others. Notably, small duct intrahepatic CCs almost invariably expressed HNF6 (90%, n=42), showing stark contrast to a low prevalence in large duct intrahepatic CCs (10%, n=21; p<0.0001). HNF6 expression was infrequent in extrahepatic CCs (9%, n=55) and pancreatic ductal adenocarcinomas (7%, n=58), and it was rare in adenocarcinomas of the gastrointestinal tract [oesophagus/oesophagogastric junction (EGJ) (2%, n=45), stomach (2%, n=86), duodenum (0%, n=25), and colorectum (0%, n=42)]. In contrast, HNF4α was widely expressed among adenocarcinomas of the digestive system, including intrahepatic CCs (88%), extrahepatic CCs (94%), adenocarcinomas of the gallbladder (98%), pancreas (98%), oesophagus/EGJ (96%), stomach (98%), duodenum (80%), and colorectum (100%). HNF6 was frequently expressed in and almost restricted to intrahepatic CCs of small duct type and gallbladder adenocarcinomas, while HNF4α was expressed throughout adenocarcinomas of the digestive system. HNF6 immunolabelling may be useful in distinguishing small duct intrahepatic CCs from other types of CC as well as metastatic gastrointestinal adenocarcinomas.
Collapse
Affiliation(s)
- Kazuhiro Toriyama
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan; Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akari Iwakoshi
- Department of Pathology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.
| |
Collapse
|
3
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Sunita Prajapati K, Gupta S, Chaudhri S, Kumar S. Role of ONECUT family transcription factors in cancer and other diseases. Exp Cell Res 2024; 438:114035. [PMID: 38593917 DOI: 10.1016/j.yexcr.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Members of ONECUT transcription factor play an essential role in several developmental processes, however, the atypical expression of ONECUT proteins lead to numerous diseases, including cancer. ONECUT family proteins promote cell proliferation, progression, invasion, metastasis, angiogenesis, and stemness. This family of proteins interacts with other proteins such as KLF4, TGF-β, VEGFA, PRC2, SMAD3 and alters their expression involved in the regulation of various signaling pathways including Jak/Stat3, Akt/Erk, TGF-β, Smad2/3, and HIF-1α. Furthermore, ONECUT proteins are proposed as predictive biomarkers for pancreatic and gastric cancers. The present review summarizes the involvement of ONECUT family proteins in the development and progression of various human cancers and other diseases.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India.
| |
Collapse
|
5
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Warren I, Moeller MM, Guiggey D, Chiang A, Maloy M, Ogoke O, Groth T, Mon T, Meamardoost S, Liu X, Thompson S, Szeglowski A, Thompson R, Chen P, Paulmurugan R, Yarmush ML, Kidambi S, Parashurama N. FOXA1/2 depletion drives global reprogramming of differentiation state and metabolism in a human liver cell line and inhibits differentiation of human stem cell-derived hepatic progenitor cells. FASEB J 2023; 37:e22652. [PMID: 36515690 DOI: 10.1096/fj.202101506rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022]
Abstract
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Collapse
Affiliation(s)
- Iyan Warren
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Michael M Moeller
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Alexander Chiang
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Xiaojun Liu
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Sarah Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Antoni Szeglowski
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ryan Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Peter Chen
- Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, California, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
7
|
Tew BY, Legendre C, Schroeder MA, Triche T, Gooden GC, Huang Y, Butry L, Ma DJ, Johnson K, Martinez RA, Pierobon M, Petricoin EF, O'shaughnessy J, Osborne C, Tapia C, Buckley DN, Glen J, Bernstein M, Sarkaria JN, Toms SA, Salhia B. Patient-derived xenografts of central nervous system metastasis reveal expansion of aggressive minor clones. Neuro Oncol 2021; 22:70-83. [PMID: 31433055 DOI: 10.1093/neuonc/noz137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dearth of relevant tumor models reflecting the heterogeneity of human central nervous system metastasis (CM) has hindered development of novel therapies. METHODS We established 39 CM patient-derived xenograft (PDX) models representing the histological spectrum, and performed phenotypic and multi-omic characterization of PDXs and their original patient tumors. PDX clonal evolution was also reconstructed using allele-specific copy number and somatic variants. RESULTS PDXs retained their metastatic potential, with flank-implanted PDXs forming spontaneous metastases in multiple organs, including brain, and CM subsequent to intracardiac injection. PDXs also retained the histological and molecular profiles of the original patient tumors, including retention of genomic aberrations and signaling pathways. Novel modes of clonal evolution involving rapid expansion by a minor clone were identified in 2 PDXs, including CM13, which was highly aggressive in vivo forming multiple spontaneous metastases, including to brain. These PDXs had little molecular resemblance to the patient donor tumor, including reversion to a copy number neutral genome, no shared nonsynonymous mutations, and no correlation by gene expression. CONCLUSIONS We generated a diverse and novel repertoire of PDXs that provides a new set of tools to enhance our knowledge of CM biology and improve preclinical testing. Furthermore, our study suggests that minor clone succession may confer tumor aggressiveness and potentiate brain metastasis.
Collapse
Affiliation(s)
- Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tim Triche
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yizhou Huang
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Loren Butry
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle Johnson
- Translational Genomics Institute (TGEN), Phoenix, Arizona, USA
| | | | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Joyce O'shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Cindy Osborne
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Coya Tapia
- Department of Molecular Pathology, The MD Anderson Cancer Center, Houston, Texas, USA
| | - David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven A Toms
- Geisinger Medical Center, Danville, Pennsylvania, USA.,Lifespan, Providence, RI
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Translational Genomics Institute (TGEN), Phoenix, Arizona, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Xu K, Zhang W, Wang C, Hu L, Wang R, Wang C, Tang L, Zhou G, Zou B, Xie H, Tang J, Guan X. Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer. Hum Mol Genet 2021; 30:370-380. [PMID: 33564857 DOI: 10.1093/hmg/ddab042] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
The potentially different genetics and epigenetics in the primary tumors and metastases affect the efficacy of treatment in breast cancer patients. Nevertheless, the cellular and molecular mechanisms of breast cancer lymph node metastasis still remain elusive. Here, we employed single-cell RNA sequencing to acquire the transcriptomic profiles of individual cells from primary tumors, negative lymph nodes (NLs) and positive lymph nodes (PLs). We also performed a single-cell assay for transposase-accessible chromatin (ATAC) sequencing (scATAC-seq) of the positive and NL samples to get the chromatin accessibility profile. We identified a novel cell subpopulation with an abnormally high expression level of CXCL14 in the PL of breast cancer patients. Cell trajectory analysis also revealed that CXCL14 was increased expressed in the late pseudo-time. Moreover, based on a tissue microarray of 55 patients and the Oncomine database, we validated that CXCL14 expression was significantly higher in breast cancer patients with lymph node metastasis. Furthermore, scATAC-seq identified several transcription factors that may be potential regulation factors for the lymph node metastasis of breast cancer. Thus, our findings will improve our current understanding of the mechanism for lymph node metastasis, and they are potentially valuable in providing novel prognosis markers for the lymphatic metastasis of breast cancer.
Collapse
Affiliation(s)
- Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cong Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Longfei Hu
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210061, Jiangsu, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
González-González M, Gutiérrez ML, Sayagués JM, Muñoz-Bellvís L, Orfao A. Genomic profiling of sporadic liver metastatic colorectal cancer. Semin Cancer Biol 2020; 71:98-108. [PMID: 32485312 DOI: 10.1016/j.semcancer.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Sporadic colorectal cancer (sCRC) is the third leading cause of cancer death in the Western world. Approximately, a quarter of sCRC patients present metastatic dissemination at the moment of diagnosis, the liver being the most frequently affected organ. Additionally, this group of CRC patients is characterized by a worse prognosis. In the last decades, significant technological developments for genome analysis have fostered the identification and characterization of genetic alterations involved in the pathogenesis of sCRC. However, genetic alterations involved in the metastatic process through which tumor cells are able to colonize other tissues with a different microenvironment, still remain to be fully identified. Here, we review current knowledge about the most relevant genomic alterations involved in the liver metastatic process of sCRC, including detailed information about the genetic profile of primary colorectal tumors vs. their paired liver metastases.
Collapse
Affiliation(s)
- María González-González
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain
| | - María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain
| | - José María Sayagués
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain; Department of Pathology, Universidad de Salamanca, Salamanca, Spain
| | - Luis Muñoz-Bellvís
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain; Department of General and Gastrointestinal Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain.
| |
Collapse
|
10
|
Reduced Immunohistochemical Expression of Hnf1β and FoxA2 in Liver Tissue Can Discriminate Between Biliary Atresia and Other Causes of Neonatal Cholestasis. Appl Immunohistochem Mol Morphol 2020; 27:e32-e38. [PMID: 29406331 DOI: 10.1097/pai.0000000000000638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biliary atresia (BA) is a necroinflammatory occlusive cholangiopathy that affects infants. Genetic and environmental factors has been proposed for its occurrence. The objectives of this study was to investigate the protein expression of 2 important genes regulating ductal plate remodeling, hepatocyte nuclear factor 1-beta (Hnf1β) and the fork head box protein A2 (FoxA2) in liver tissue from patients with BA and to compare their expression with other causes of neonatal cholestasis (NC). This retrospective study included 60 pediatric patients, 30 with BA and 30 with NC. Immunohistochemistry of Hnf1β and FoxA2 was performed on liver tissues from studied patients as well as 20 healthy subjects. Statistical analysis between immunohistochemistry results and other parameters was performed. Liver tissue from patients with BA revealed reduced Hnf1β and FoxA2 immunoexpression. A strong significant statistical difference between BA and NC group (P<0.0001) with regard to Hnf1β and FoxA2 immunoexpression was evident. Moreover, Hnf1β was significantly correlated with FoxA2 immunoexpression, stage of fibrosis, bile ductular proliferation, and bile plugs in bile ductules. Hnf1β immunoreaction in BA cases showed 76.7% sensitivity, 90% specificity, 88.5% positive predictive value, 79.4% negative predictive value, and 83.4% accuracy. FoxA2 expression in BA cases revealed 70.0% sensitivity, 80.0% specificity, 77.8% positive predictive value, 72.7% negative predictive value, 75.0% accuracy. Hnf1β and FoxA2 immunoexpression could differentiate between BA from other cause of NC.
Collapse
|
11
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
12
|
Jiang K, Jiao Y, Liu Y, Fu D, Geng H, Chen L, Chen H, Shen X, Sun L, Ding K. HNF6 promotes tumor growth in colorectal cancer and enhances liver metastasis in mouse model. J Cell Physiol 2018; 234:3675-3684. [PMID: 30256389 DOI: 10.1002/jcp.27140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Jiang
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yurong Jiao
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yue Liu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Dongliang Fu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haitao Geng
- Department of Oncology Binzhou Medical University Hospital Binzhou China
| | - Liubo Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haiyan Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Xiangfeng Shen
- Department of Mastopathy Zhejiang Provincial Hospital of TCM Hangzhou China
| | - Lifeng Sun
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Kefeng Ding
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
13
|
Fedorova MS, Snezhkina AV, Pudova EA, Abramov IS, Lipatova AV, Kharitonov SL, Sadritdinova AF, Nyushko KM, Klimina KM, Belyakov MM, Slavnova EN, Melnikova NV, Chernichenko MA, Sidorov DV, Kiseleva MV, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Upregulation of NETO2 gene in colorectal cancer. BMC Genet 2017; 18:117. [PMID: 29297384 PMCID: PMC5751543 DOI: 10.1186/s12863-017-0581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. RESULTS We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1, and FOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5, and SMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. CONCLUSIONS We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT.
Collapse
Affiliation(s)
- Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Belyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena N. Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Vorvis C, Hatziapostolou M, Mahurkar-Joshi S, Koutsioumpa M, Williams J, Donahue TR, Poultsides GA, Eibl G, Iliopoulos D. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1124-37. [PMID: 27151939 PMCID: PMC5005285 DOI: 10.1152/ajpgi.00035.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis.
Collapse
Affiliation(s)
- Christina Vorvis
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Maria Hatziapostolou
- 2Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom;
| | - Swapna Mahurkar-Joshi
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Jennifer Williams
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Timothy R. Donahue
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - George A. Poultsides
- 4Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Guido Eibl
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| |
Collapse
|
15
|
Zhu H, Mi Y, Jiang X, Zhou X, Li R, Wei Z, Jiang H, Lu J, Sun X. Hepatocyte nuclear factor 6 inhibits the growth and metastasis of cholangiocarcinoma cells by regulating miR-122. J Cancer Res Clin Oncol 2016; 142:969-980. [PMID: 26825606 DOI: 10.1007/s00432-016-2121-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/21/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Hepatocyte nuclear factor 6 (HNF6) is a liver-enriched transcription factor and highly expressed in mature bile duct epithelial cells. This study sought to investigate the role of HNF6, particularly the molecular mechanisms for how HNF6 is involved in the growth and metastasis of cholangiocarcinoma (CCA) cells. METHODS The expression of HNF6, miR-122 and key molecules was examined by Western blot analysis and real-time RT-PCR. Stable transfectants, HCCC-HNF(low) and RBE-HNF(high), were generated from human CCA HCCC-9810 and RBE cells, respectively. The regulatory effect of HNF6 on miR-122 was evaluated by luciferase reporter assay. Cell proliferation, cycle distribution, migration and invasion were analyzed. The xenograft model was used to assess the effects of HNF6 overexpression on tumorigenesis, growth, metastasis and therapeutic potentials. RESULTS Human CCA tissues and cells expressed lower levels of HNF6, which positively correlated with miR-122. HNF6 regulated the expression of miR-122 by stimulating its promoter. HNF6 overexpression inhibited cell proliferation by inducing cell cycle arrest at G1 phase through regulating miR-122, cyclin G1 and insulin-like growth factor-1 receptor. HNF6 inhibited the migration and invasion of CCA cells by regulating matrix metalloproteinase-2 and metalloproteinase-9, reversion-inducing-cysteine-rich protein with kazal motifs, E-cadherin and N-cadherin. Co-transfection of anti-miR-122 abrogated the effects of HNF6. HNF6 overexpression inhibited the ability of cells to form tumors and to metastasize to the lungs of mice, and the growth of established tumors. CONCLUSIONS The results indicate that HNF6 may serve as a tumor suppressor by regulating miR-122, and its overexpression may represent a mechanism-based therapy for CCA.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Yuetang Mi
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xian Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xu Zhou
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Rui Li
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Zheng Wei
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jun Lu
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xueying Sun
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1005, New Zealand.
| |
Collapse
|
16
|
Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse. Int J Mol Sci 2016; 17:ijms17050598. [PMID: 27136531 PMCID: PMC4881437 DOI: 10.3390/ijms17050598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT). Resultant genes were classified based on gene ontology (GO), which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings.
Collapse
|
17
|
Zhang Z, Yang C, Gao W, Chen T, Qian T, Hu J, Tan Y. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. Cancer Lett 2015; 361:240-50. [PMID: 25779673 DOI: 10.1016/j.canlet.2015.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/04/2023]
Abstract
The Forkhead Box A2 (FOXA2) transcription factor is required for embryonic development and for normal functions of multiple adult tissues, in which the maintained expression of FOXA2 is usually related to preventing the progression of malignant transformation. In this study, we found that FOXA2 prevented the epithelial to mesenchymal transition (EMT) in human breast cancer. We observed a strong correlation between the expression levels of FOXA2 and the epithelial phenotype. Knockdown of FOXA2 promoted the mesenchymal phenotype, whereas stable overexpression of FOXA2 attenuated EMT in breast cancer cells. FOXA2 was found to endogenously bind to and stimulate the promoter of E-cadherin that is crucial for epithelial phenotype of the tumor cells. Meanwhile, FOXA2 prevented EMT of breast cancer cells by repressing the expression of EMT-related transcription factor ZEB2 through recruiting a transcriptional corepressor TLE3 to the ZEB2 promoter. The stable overexpression of FOXA2 abolished metastasis of breast cancer cells in vivo. This study confirmed that FOXA2 inhibited EMT in breast cancer cells by regulating the transcription of EMT-related genes such as E-cadherin and ZEB2.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Chao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Wei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Tuanhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Tingting Qian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Jun Hu
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
18
|
Zhao H, Li Y, Wang S, Yang Y, Wang J, Ruan X, Yang Y, Cai K, Zhang B, Cui P, Yan J, Zhao Y, Wakeland EK, Li Q, Hu S, Fang X. Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene 2014; 548:234-43. [PMID: 25034661 DOI: 10.1016/j.gene.2014.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
Melanoma is the most malignant cutaneous cancer and causes over 9000 deaths annually. Because fatality rates from malignant melanoma (MM) increase dramatically upon metastasis, we investigated tumorigenesis and metastasis of MM in transcriptome analyses of three distinct cell lines that correspond with the stages of MM pathogenesis: the normal stage (HEMn-LP), the onset of MM (A375), and the metastasis stage (A2058). Using next-generation sequencing (NGS) technology, we detected asymmetrical expression of genes among the three cell lines, notably on chromosomes 9, 11, 12, and 14, suggesting their involvement in tumorigenesis and metastasis of MM. These genes were clustered into 41 categories based on their expression patterns, and their biological functions were analyzed using Ingenuity Pathway Analysis. In the top cancer-associated category, HIF1A, IL8, TERT, ONECUT1, and FOXA1 directly interacted with either transcription factors or cytokines that are known to be involved in the tumorigenesis or metastasis of other malignant tumors. The present data suggest that cytokine regulatory pathways in macrophages predominate over other pathways during the pathogenesis of MM. This study provides new targets for the downstream mechanistic studies of the tumorigenesis and metastasis of MM and demonstrates a new strategy for studies of the progression of other malignant cancers.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yongjun Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaobin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yadong Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyun Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaran Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kan Cai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Edward K Wakeland
- Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanzhen Li
- Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Abstract
The age-related epithelial cancers of the breast, colorectum and prostate are the most prevalent and are increasing in our aging populations. Epithelial cells turnover rapidly and mutations naturally accumulate throughout life. Most epithelial cancers arise from this normal mutation rate. All elderly individuals will harbour many cells with the requisite mutations and most will develop occult neoplastic lesions. Although essential for initiation, these mutations are not sufficient for the progression of cancer to a life-threatening disease. This progression appears to be dependent on context: the tissue ecosystem within individuals and lifestyle exposures across populations of individuals. Together, this implies that the seeds may be plentiful but they only germinate in the right soil. The incidence of these cancers is much lower in Eastern countries but is increasing with Westernisation and increases more acutely in migrants to the West. A Western lifestyle is strongly associated with perturbed metabolism, as evidenced by the epidemics of obesity and diabetes: this may also provide the setting enabling the progression of epithelial cancers. Epidemiology has indicated that metabolic biomarkers are prospectively associated with cancer incidence and prognosis. Furthermore, within cancer research, there has been a rediscovery that a switch in cell metabolism is critical for cancer progression but this is set within the metabolic status of the host. The seed may only germinate if the soil is fertile. This perspective brings together the different avenues of investigation implicating the role that metabolism may play within the context of post-genomic concepts of cancer.
Collapse
Affiliation(s)
- Jeff M P Holly
- School of Clinical Science, Faculty of Medicine, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK,
| | | | | |
Collapse
|
20
|
Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity. PLoS One 2013; 8:e79359. [PMID: 24244486 PMCID: PMC3820702 DOI: 10.1371/journal.pone.0079359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/29/2013] [Indexed: 02/07/2023] Open
Abstract
ICK/MRK (intestinal cell kinase/MAK-related kinase), MAK (male germ cell-associated kinase), and MOK (MAPK/MAK/MRK-overlapping kinase) are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.
Collapse
|
21
|
Yuan XW, Wang DM, Hu Y, Tang YN, Shi WW, Guo XJ, Song JG. Hepatocyte nuclear factor 6 suppresses the migration and invasive growth of lung cancer cells through p53 and the inhibition of epithelial-mesenchymal transition. J Biol Chem 2013; 288:31206-16. [PMID: 24022481 DOI: 10.1074/jbc.m113.480285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epithelial-mesenchymal transition plays an important role in many patho-physiological processes, including cancer invasion and metastatic progression. Hepatocyte nuclear factor 6 (HNF6) has been known to be an important factor for both physiological and pathological functions in liver and pancreas. However, its role in EMT and lung cancer progression remains unidentified. We observed that HNF6 level can be down-regulated by TGF-β1 in human lung cancer cells. Knockdown of HNF6 induced EMT and increased cell migration. In contrast, ectopically expression of HNF6 inhibited cell migration and attenuated TGF-β1-induced EMT. The data suggest that HNF6 plays a role in maintaining epithelial phenotype, which suppresses EMT. HNF6 also inhibits both colony formation and proliferation of lung cancer cells. It pronouncedly reduced the formation of tumor xenografts in nude mice. In addition, HNF6 can activate the promoter activity of p53 by directly binding to a specific region of its promoter and therefore increase the protein level of tumor suppressor p53. p53 knockdown induced EMT and increased cell migration, whereas the opposite effect was generated by p53 overexpression. p53 knockdown also inhibited the effect of HNF6 on EMT and cell migration, indicating that p53 is required for the functions of HNF6 herein. Moreover, there is a high positive correlation among the expression levels of HNF6, p53, and E-cadherin in human lung cancer cells and tissues. The data suggest that HNF6 inhibits EMT, cell migration, and invasive growth through a mechanism involving the transcriptional activation of p53.
Collapse
Affiliation(s)
- Xin-Wang Yuan
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park DY. Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer 2012; 12:521. [PMID: 23151184 PMCID: PMC3552976 DOI: 10.1186/1471-2407-12-521] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/12/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a significant role in tumor progression and invasion. Snail is a known regulator of EMT in various malignant tumors. This study investigated the role of Snail in gastric cancer. METHODS We examined the effects of silenced or overexpressed Snail using lenti-viral constructs in gastric cancer cells. Immunohistochemical analysis of tissue microarrays from 314 patients with gastric adenocarcinoma (GC) was used to determine Snail's clinicopathological and prognostic significance. Differential gene expression in 45 GC specimens with Snail overexpression was investigated using cDNA microarray analysis. RESULTS Silencing of Snail by shRNA decreased invasion and migration in GC cell lines. Conversely, Snail overexpression increased invasion and migration of gastric cancer cells, in line with increased VEGF and MMP11. Snail overexpression (≥75% positive nuclear staining) was also significantly associated with tumor progression (P < 0.001), lymph node metastases (P = 0.002), lymphovascular invasion (P = 0.002), and perineural invasion (P = 0.002) in the 314 GC patients, and with shorter survival (P = 0.023). cDNA microarray analysis revealed 213 differentially expressed genes in GC tissues with Snail overexpression, including genes related to metastasis and invasion. CONCLUSION Snail significantly affects invasiveness/migratory ability of GCs, and may also be used as a predictive biomarker for prognosis or aggressiveness of GCs.
Collapse
Affiliation(s)
- Na Ri Shin
- Department of Pathology, Pusan National University Hospital and Pusan National University School of Medicine, 1-10 Ami-Dong, Seo-Gu, Busan, 602-739, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Eun Hui Jeong
- Department of Pathology, Cheonam National University, Gwangju, South Korea
| | - Chang In Choi
- Department of Surgery, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hyun Jung Moon
- Department of Pathology, Pusan National University Hospital and Pusan National University School of Medicine, 1-10 Ami-Dong, Seo-Gu, Busan, 602-739, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Chae Hwa Kwon
- Department of Pathology, Pusan National University Hospital and Pusan National University School of Medicine, 1-10 Ami-Dong, Seo-Gu, Busan, 602-739, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - In Sun Chu
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Tae Yong Jeon
- Department of Surgery, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Dae Hwan Kim
- Department of Surgery, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Jae Hyuk Lee
- Department of Pathology, Cheonam National University, Gwangju, South Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University Hospital and Pusan National University School of Medicine, 1-10 Ami-Dong, Seo-Gu, Busan, 602-739, South Korea
- BioMedical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
23
|
Cho JW, Lee CY, Ko Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol 2012; 27:1362-70. [PMID: 22432472 PMCID: PMC3492917 DOI: 10.1111/j.1440-1746.2012.07137.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Although a liver transplantation is considered to be the only effective long-term treatment in many cases of liver diseases, it is limited by a lack of donor organs and immune rejection. As an autologous stem cell approach, this study was conducted to assess whether forkhead box A2 (Foxa2) gene overexpression in bone marrow-derived mesenchymal stem cells (MSC) could protect the liver from hepatic diseases by stimulating tissue regeneration after cell transplantation. METHODS Rat MSC (rMSC) were isolated, characterized, and induced to hepatocytes that expressed liver-specific markers. Four different treatments (control [phosphate-buffered saline], rMSC alone, rMSC/pIRES-enhanced green fluorescent protein (EGFP) vector, and rMSC/pIRES-EGFP/human Foxa2) were injected into the spleen of carbon tetrachloride-injured rats. Biochemical and histological analyses on days 30, 60, and 90 post-transplantation were performed to evaluate the therapeutic capacities of MSC overexpressing hFoxa2. RESULTS rMSC transfected with hFoxa2 were induced into hepatogenic linage and expressed several liver-specific genes, such as, Foxa2, α-fetoprotein, cytokeratin-18, hepatocyte nuclear factor-1α, and hepatocyte growth factor. A group of animals treated with MSC/hFoxa2 showed significant recovery of liver-specific enzyme expressions to normal levels at the end of the study (90 days). Furthermore, when compared to the fibrotic areas of the samples treated with MSC alone or MSC/vector, the fibrotic area of the samples treated with rMSC/hFoxa2 for 90 days significantly decreased, until they were completely gone. CONCLUSIONS Human Foxa2 efficiently promoted the incorporation of MSC into liver grafts, suggesting that hFoxa2 genes could be used for the structural or functional recovery of damaged liver cells.
Collapse
Affiliation(s)
- Jong-Woo Cho
- Department of Biotechnology, Korea UniversitySeoul, Korea
| | - Chul-Young Lee
- Department of Animal Material Engineering, College of Science and Natural Resource, Gyeongnam National University of Science and TechnologyJinju, Korea
| | - Yong Ko
- Department of Biotechnology, Korea UniversitySeoul, Korea
| |
Collapse
|
24
|
Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 2012; 45:171-84. [PMID: 22196886 PMCID: PMC3268914 DOI: 10.1016/j.molcel.2011.11.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/27/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022]
Abstract
Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Mo Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chia-Jui Yen
- National Cheng Kung University Hospital, Department of Internal Medicine, No. 138, Sheng-Li Road, Tainan City 701, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Hong-Jen Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Ju Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei-Chun Chiu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
| |
Collapse
|
25
|
Wang K, Holterman AX. Pathophysiologic role of hepatocyte nuclear factor 6. Cell Signal 2011; 24:9-16. [PMID: 21893194 DOI: 10.1016/j.cellsig.2011.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/20/2011] [Indexed: 01/03/2023]
Abstract
Hepatocyte nuclear factor 6 (HNF6) is one of liver-enriched transcription factors. HNF6 utilizes the bipartite onecut-homeodomain sequence to localize the HNF6 protein to the nuclear compartment and binds to specific DNA sequences of numerous target gene promoters. HNF6 regulates an intricate network and mediates complex biological processes that are best known in the liver and pancreas. The function of HNF6 is correlated to cell proliferation, cell cycle regulation, cell differentiation and organogenesis, cell migration and cell-matrix adhesion, glucose metabolism, bile homeostasis, inflammation and so on. HNF6 controls the transcription of its target genes in different ways. The details of the regulatory pathways and their mechanisms are still under investigation. Future study will explore HNF6 novel functions associated with apoptosis, oncogenesis, and modulation of the inflammatory response. This review highlights recent progression pertaining to the pathophysiologic role of HNF6 and summarizes the potential mechanisms in preclinical animal models. HNF6-mediated pathways represent attractive therapeutic targets for the treatment of the relative diseases such as cholestasis.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Pediatrics and Surgery/Section of Pediatric Surgery, Rush University Medical Center, Chicago, IL 60612, United States.
| | | |
Collapse
|
26
|
Tisserand J, Khetchoumian K, Thibault C, Dembélé D, Chambon P, Losson R. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J Biol Chem 2011; 286:33369-79. [PMID: 21768647 DOI: 10.1074/jbc.m111.225680] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent genetic studies in mice have established that the nuclear receptor coregulator Trim24/Tif1α suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor α (Rara)-dependent transcription and cell proliferation. However, Rara targets regulated by Trim24 remain unknown. We report that the loss of Trim24 resulted in interferon (IFN)/STAT pathway overactivation soon after birth (week 5). Despite a transient attenuation of this pathway by the induction of several IFN/STAT pathway repressors later in the disease, this phenomenon became more pronounced in tumors. Remarkably, Rara haplodeficiency, which suppresses tumorigenesis in Trim24(-/-) mice, prevented IFN/STAT overactivation. Moreover, together with Rara, Trim24 bound to the retinoic acid-responsive element of the Stat1 promoter and repressed its retinoic acid-induced transcription. Altogether, these results identify Trim24 as a novel negative regulator of the IFN/STAT pathway and suggest that this repression through Rara inhibition may prevent liver cancer.
Collapse
Affiliation(s)
- Johan Tisserand
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, BP 10142, 67404 Illkirch-Cedex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
27
|
Yu KS, Jo JY, Kim SJ, Lee Y, Bae JH, Chung YH, Koh SS. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells. Biochem Biophys Res Commun 2011; 408:160-6. [DOI: 10.1016/j.bbrc.2011.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/01/2011] [Indexed: 11/30/2022]
|
28
|
Sayagués JM, Fontanillo C, Abad MDM, González-González M, Sarasquete ME, Chillon MDC, Garcia E, Bengoechea O, Fonseca E, Gonzalez-Diaz M, De Las Rivas J, Muñoz-Bellvis L, Orfao A. Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One 2010; 5:e13752. [PMID: 21060790 PMCID: PMC2966422 DOI: 10.1371/journal.pone.0013752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023] Open
Abstract
Background For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Methodology/Principal Findings Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. Conclusions/Significance In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process.
Collapse
Affiliation(s)
- José María Sayagués
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Celia Fontanillo
- Grupo de Investigación en Bioinformática y Genómica Funcional, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - María del Mar Abad
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María González-González
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - María Eugenia Sarasquete
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Maria del Carmen Chillon
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Eva Garcia
- Unidad de Genómica y Proteómica, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Emilio Fonseca
- Servicio de Oncología Médica, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marcos Gonzalez-Diaz
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Grupo de Investigación en Bioinformática y Genómica Funcional, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Luís Muñoz-Bellvis
- Unidad de Cirugía Hepatobiliopancreática, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
29
|
Lehner F, Kulik U, Klempnauer J, Borlak J. Inhibition of the liver enriched protein FOXA2 recovers HNF6 activity in human colon carcinoma and liver hepatoma cells. PLoS One 2010; 5:e13344. [PMID: 20967225 PMCID: PMC2954183 DOI: 10.1371/journal.pone.0013344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/09/2010] [Indexed: 02/08/2023] Open
Abstract
Recently, we demonstrated that the transcription factors HNF6 and FOXA2 function as key regulators in human colorectal liver metastases. To better understand their proposed inhibitory crosstalk, the consequences of functional knockdown of FOXA2 on HNF6 and C/EBPα activity were investigated in the human colon Caco-2 and HepG2 carcinoma cell lines. Specifically, siRNA-mediated gene silencing of FOXA2 repressed transcript expression by >80%. This resulted in a statistically significant 6-, 3-, 4-, and 8-fold increase in mRNA expression of HNF6 and of genes targeted by this transcription factor, e.g., HSP105B, CYP51, and C/EBPα, as determined by qRT-PCR. Thus, functional knockdown of FOXA2 recovered HNF6 activity. Furthermore, with nuclear extracts of Caco-2 cells no HNF6 DNA binding was observed, but expression of HNF1α, FOXA2, FOXA3, and HNF4α protein was abundant. We therefore transfected a plasmid encoding HNF6 into Caco-2 cells but also employed a retroviral vector to transfect HNF6 into HepG2 cells. This resulted in HNF6 protein expression with DNA binding activity being recovered as determined by EMSA band shift assays. Furthermore, by flow cytometry the consequences of HNF6 expression on cell cycle regulation in transfected cells was studied. Essentially, HNF6 inhibited cell cycle progression in the G2/M and G1 phase in Caco-2 and HepG2 cell lines, respectively. Here, proliferation was reduced by 80% and 50% in Caco-2 and HepG2 cells, respectively, as determined by the BrdU labeling assay. Therefore functional knockdown of FOXA2 recovered HNF6 activity and inhibited growth of tumor-cells and may possibly represent a novel therapeutic target in primary and secondary liver malignancies.
Collapse
Affiliation(s)
- Frank Lehner
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ulf Kulik
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Juergen Klempnauer
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Juergen Borlak
- Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
30
|
Tang Y, Shu G, Yuan X, Jing N, Song J. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res 2010; 21:316-26. [PMID: 20820189 DOI: 10.1038/cr.2010.126] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box transcription factor A2 (FOXA2) is an important regulator in animal development and body homeostasis. However, whether FOXA2 is involved in transforming growth factor β1 (TGF-β1)-mediated epithelial-to-mesenchymal transition (EMT) and tumor metastasis remains unknown. The present study showed that in human lung cancer cell lines, the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells, and TGF-β1 treatment decreased FOXA2 protein level. Consistently, knockdown of FOXA2 promoted EMT and invasion of lung cancer cells, whereas overexpression of FOXA2 reduced the invasion and suppressed TGF-β1-induced EMT. In addition, knockdown of FOXA2 induced slug expression, and ectopic expression of FOXA2 inhibited slug transcription. Furthermore, we identified that FOXA2 can bind to slug promoter through a conserved binding site, and that the DNA-binding region and transactivation region II of FOXA2 are required for repression of the slug promoter. These data demonstrate that FOXA2 functions as a suppressor of tumor metastasis by inhibition of EMT.
Collapse
Affiliation(s)
- Yunneng Tang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
31
|
Lehner F, Kulik U, Klempnauer J, Borlak J. Mapping of liver-enriched transcription factors in the human intestine. World J Gastroenterol 2010; 16:3919-27. [PMID: 20712053 PMCID: PMC2923766 DOI: 10.3748/wjg.v16.i31.3919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the gene expression pattern of hepatocyte nuclear factor 6 (HNF6) and other liver-enriched transcription factors in various segments of the human intestine to better understand the differentiation of the gut epithelium.
METHODS: Samples of healthy duodenum and jejunum were obtained from patients with pancreatic cancer whereas ileum and colon was obtained from patients undergoing right or left hemicolectomy or (recto)sigmoid or rectal resection. All surgical specimens were subjected to histopathology. Excised tissue was shock-frozen and analyzed for gene expression of liver-enriched transcription factors by semiquantitative reverse transcription polymerase chain and compared to the human colon carcinoma cell line Caco-2. Protein expression of major liver-enriched transcription factors was determined by Western blotting while the DNA binding of HNF6 was investigated by electromobility shift assays.
RESULTS: The gene expression patterning of liver-enriched transcription factors differed in the various segments of the human intestine with HNF6 gene expression being most abundant in the duodenum (P < 0.05) whereas expression of the zinc finger protein GATA4 and of the HNF6 target gene ALDH3A1 was most abundant in the jejunum (P < 0.05). Likewise, expression of FOXA2 and the splice variants 2 and 4 of HNF4α were most abundantly expressed in the jejunum (P < 0.05). Essentially, expression of transcription factors declined from the duodenum towards the colon with the most abundant expression in the jejunum and less in the ileum. The expression of HNF6 and of genes targeted by this factor, i.e. neurogenin 3 (NGN3) was most abundant in the jejunum followed by the ileum and the colon while DNA binding activity of HNF4α and of NGN3 was confirmed by electromobility shift assays to an optimized probe. Furthermore, Western blotting provided evidence of the expression of several liver-enriched transcription factors in cultures of colon epithelial cells, albeit at different levels.
CONCLUSION: We describe significant local and segmental differences in the expression of liver-enriched transcription factors in the human intestine which impact epithelial cell biology of the gut.
Collapse
|