1
|
Zhang H, Wang S, Li N, Xu Y, Huang Z, Zhang Y, Li J, Zuo Y, Li M, Li R, Yang B. Druggability Studies of Benzene Sulfonamide Substituted Diarylamide (E3) as a Novel Diuretic. Biomedicines 2025; 13:992. [PMID: 40299675 PMCID: PMC12024912 DOI: 10.3390/biomedicines13040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Urea transporters (UTs) play an important role in the urine-concentrating mechanism and have been regarded as a novel drug target for developing salt-sparing diuretics. Our previous studies found that diarylamides 1H and 25a are specific UT inhibitors and have oral diuretic activity. However, these compounds necessitate further optimization and comprehensive druggability studies. Methods: The optimal compound was identified through structural optimization. Experiments were conducted to investigate its UT inhibitory activity and evaluate its diuretic effect. Furthermore, disease models were utilized to assess the compound's efficacy in treating hyponatremia. Pharmacokinetic studies were performed to examine its metabolic stability, and toxicity tests were conducted to evaluate its safety. Results: Based on the chemical structure of compound 25a, we synthesized a novel diarylamide compound, E3, by introducing a benzenesulfonamide group into its side chain. E3 exhibited dose-dependent inhibition of UT at the nanomolar level and demonstrated oral diuretic activity without causing electrolyte excretion disorders in both mice and rats. Experiments on UT-B-/- and UT-A1-/- mice indicated that E3 enhances the diuretic effect primarily by inhibiting UT-A1 more effectively than UT-B. Furthermore, E3 displayed good metabolic stability and favorable pharmacokinetic characteristics. E3 significantly ameliorated hyponatremia through diuresis in a rat model. Importantly, E3 did not induce acute oral toxicity, subacute oral toxicity, genotoxicity, or cardiotoxicity. Conclusions: Our study confirms that E3 exerts a diuretic effect by specifically inhibiting UTs and has good druggability, which offers potential for E3 to be developed into a new diuretic for the treatment of hyponatremia.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| | - Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| | - Nannan Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Zhizhen Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China;
| | - Jing Li
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China; (J.L.); (Y.Z.)
| | - Yinglin Zuo
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China; (J.L.); (Y.Z.)
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| | - Runtao Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.); (S.W.); (N.L.); (Z.H.); (M.L.)
| |
Collapse
|
2
|
Chen G, Li X, Pan X, Guo L, Wei W, Sun X, Wei H, Qin X, Zhang K, Zhang W, Wei L, Sun P, Yang X. Identification and Validation of Urea Transporter B Inhibitor from Apium graveolens L. Seeds In Vitro and In Silico. Molecules 2025; 30:1540. [PMID: 40286206 PMCID: PMC11990171 DOI: 10.3390/molecules30071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Celery (Apium graveolens L.) seeds are rich in carbohydrates and protein, and they are widely used in diuretic drugs among Uyghur doctors. However, the diuretic mechanism is still unclear. To explore the possible diuretic mechanism of celery seeds, urea transporters, a potential diuresis-related target, are used in this study. Urea transporters (UTs) play a key role of urine concentration. Selective knockout of UTs can concentrate urea without affecting water and electrolytes, resulting in selective diuresis, which is a promising new diuretic target. In the present study, we obtained different polar fractions by extracting and separating celery seed extract, characterized its polar fractions using UPLC-TOF-MS, and verified its action using an erythrocyte lysis model in vitro. Then, it was found that the isovaleric acid p-tolylester exhibited moderate activity (IC50 = 80.34 μM). Finally, its inhibitory effect on UT-B was investigated by using molecular docking, a pharmacophore model, and molecular dynamics simulations. This study provides a new approach to developing novel diuretics.
Collapse
Affiliation(s)
- Guanzhong Chen
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Xin Li
- Stake Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Xinhui Pan
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
- Stake Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Li Guo
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Wei Wei
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Xiaoying Sun
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Hongtao Wei
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Xue Qin
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China; (X.Q.); (L.W.)
| | - Ke Zhang
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Wei Zhang
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China; (X.Q.); (L.W.)
| | - Pinghua Sun
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoda Yang
- School of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education/Institute for Safflower Industry Research, Shihezi University, Shihezi 8320002, China; (G.C.); (L.G.); (W.W.); (X.S.); (H.W.) (K.Z.); (W.Z.); (P.S.)
- Stake Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| |
Collapse
|
3
|
Chi G, Dietz L, Tang H, Snee M, Scacioc A, Wang D, Mckinley G, Mukhopadhyay SM, Pike AC, Chalk R, Burgess-Brown NA, Timmermans JP, van Putte W, Robinson CV, Dürr KL. Structural characterization of human urea transporters UT-A and UT-B and their inhibition. SCIENCE ADVANCES 2023; 9:eadg8229. [PMID: 37774028 PMCID: PMC10541013 DOI: 10.1126/sciadv.adg8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
In this study, we present the structures of human urea transporters UT-A and UT-B to characterize them at molecular level and to detail the mechanism of UT-B inhibition by its selective inhibitor, UTBinh-14. High-resolution structures of both transporters establish the structural basis for the inhibitor's selectivity to UT-B, and the identification of multiple binding sites for the inhibitor will aid with the development of drug lead molecules targeting both transporters. Our study also discovers phospholipids associating with the urea transporters by combining structural observations, native MS, and lipidomics analysis. These insights improve our understanding of urea transporter function at a molecular level and provide a blueprint for a structure-guided design of therapeutics targeting these transporters.
Collapse
Affiliation(s)
- Gamma Chi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Larissa Dietz
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Matthew Snee
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andreea Scacioc
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Dong Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Gavin Mckinley
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Shubhashish M. M. Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Rod Chalk
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Nicola A. Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH) at Antwerp Centre for Advanced Microscopy (ACAM), Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wouter van Putte
- Laboratory of Cell Biology and Histology (CBH) at Antwerp Centre for Advanced Microscopy (ACAM), Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- PUXANO, Ottergemsesteenweg Zuid 713, 9000 Gent, Belgium
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Katharina L. Dürr
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| |
Collapse
|
4
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Brahm J, Dziegiel MH, Leifelt J. Urea and water are transported through different pathways in the red blood cell membrane. J Gen Physiol 2023; 155:e202213322. [PMID: 37389569 PMCID: PMC10316703 DOI: 10.1085/jgp.202213322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Several studies of the urea transporter UT-B expressed in Xenopus oocytes and in genetically modified red blood cells (RBC) have concluded that UT-B also transports water. In the present study, we use unmodified RBC to test that conclusion. We find that the permeability of urea, Pu (cm/s), has a 10-fold donor variation, while the diffusional water permeability, Pd (cm/s), remains unchanged. Additionally, we observe that phloretin inhibits Pu but not Pd, and that the time course of maximum p-chloromercuribenzosulfonate inhibition of Pu and Pd differs-Pu inhibition takes <2 min, whereas Pd inhibition requires ≥1 h of incubation. The findings in the present study are in line with a previous comparative study using unmodified RBC from four animals and a solvent drag study using human RBC, and they lead us to reject the conclusion that the UT-B transporter represents a common pathway for both solutes.
Collapse
Affiliation(s)
- Jesper Brahm
- Department of Cellular and Molecular Medicine, The Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Jonas Leifelt
- Department of Cellular and Molecular Medicine, The Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
7
|
Wang S, Xu Y, Zhao Y, Zhang S, Li M, Li X, He J, Zhou H, Ge Z, Li R, Yang B. N-(4-acetamidophenyl)-5-acetylfuran-2-carboxamide as a novel orally available diuretic that targets urea transporters with improved PD and PK properties. Eur J Med Chem 2021; 226:113859. [PMID: 34601246 DOI: 10.1016/j.ejmech.2021.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Urea transporters (UTs) have been identified as new targets for diuretics. Functional deletion of UTs led to urea-selective urinary concentrating defects with relative salt sparing. In our previous study, a UT inhibitor with a diarylamide scaffold, which is denoted as 11a, was demonstrated as the first orally available UT inhibitor. However, the oral bioavailability of 11a was only 4.38%, which obstructed its clinical application. In this work, by replacing the nitro group of 11a with an acetyl group, 25a was obtained. Compared with 11a, 25a showed a 10 times stronger inhibitory effect on UT-B (0.14 μM vs. 1.41 μM in rats, and 0.48 μM vs. 5.82 μM in mice) and a much higher inhibition rate on UT-A1. Moreover, the metabolic stability both in vitro and in vivo and the drug-like properties (permeability and solubility) of 25a were obviously improved compared with those of 11a. Moreover, the bioavailability of 25a was 15.18%, which was 3 times higher than that of 11a, thereby resulting in significant enhancement of the diuretic activities in rats and mice. 25a showed excellent potential for development as a promising clinical diuretic candidate for targeting UTs to treat diseases that require long-term usage of diuretics, such as hyponatremia.
Collapse
Affiliation(s)
- Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yue Xu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; College of Pharmacy, Inner Mongolia Medical University, 010110, China
| | - Shun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jinzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Nandi S, Sanyal S, Amin SA, Kashaw SK, Jha T, Gayen S. Urea transporter and its specific and nonspecific inhibitors: State of the art and pharmacological perspective. Eur J Pharmacol 2021; 911:174508. [PMID: 34536365 DOI: 10.1016/j.ejphar.2021.174508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
Hypertension is a major concern for a wide array of patients. The traditional drugs are commonly referred as 'water pills' and these molecules have been successful in alleviating hypertension. However, this comes at the high expense of precious electrolytes in our body. To dissipate this major adverse effect, the urea transporter inhibitors play especially important roles in maintaining the fluid balance by maintaining the concentration of urea in the inner medullary collecting duct. The purpose of this communication is to provide insights into the structural feature of these target proteins and inhibition of both urea transporter types A (UT-A) and B (UT-B) selectively and non-selectively with a special focus on the UT-A inhibitors as they are the primary target for diuresis. It was observed that a wide class of drugs such as thiourea analogues, 2,7-disubstituted fluorenones can inhibit both the protein non-selectively whereas 8-hydroxyquinoline, aminothiazolone, 1,3,5-triazine, triazolothienopyrimidine, thienoquinoline, arylthiazole, γ-sultambenzosulfonamide and 1,2,4-triazoloquinoxaline classes of compounds inhibit UT-A. The goal of this study is to highlight the important aspects that may be useful to understanding the perspectives of urea transporter inhibitors in rational drug discovery.
Collapse
Affiliation(s)
- Sudipta Nandi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Saptarshi Sanyal
- School of Pharmaceutical Technology, Adamas University, Kolkata, India; Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Shovanlal Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India; Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
9
|
Narasimhan B, Aravinthkumar R, Correa A, Aronow WS. Pharmacotherapeutic principles of fluid management in heart failure. Expert Opin Pharmacother 2021; 22:595-610. [PMID: 33560159 DOI: 10.1080/14656566.2020.1850694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Heart failure is a major public health concern that is expected to increase over the decades to come. Despite significant advances, fluid overload and congestion remain a major therapeutic challenge. Vascular congestion and neurohormonal activation are intricately linked and the goal of therapy fundamentally aims to reduce both.Areas covered: The authors briefly review a number of core concepts that elucidate the link between fluid overload and neuro-hormonal activation. This is followed by a review of heart-kidney interactions and the impact of diuresis in this setting. Following an in-depth review of currently available pharmacological agents, the rationale and evidence behind their use, the authors end with a brief note on novel agents/approaches to aid volume management in HF.Expert opinion: A number of non-pharmacological advances in the management of volume overload in heart failure, though promising - are associated with a number of shortcomings. Pharmacological therapy remains the cornerstone of volume management. A number of novel approaches, utilizing existing therapies as well as the emergence of new agents over the past decade bode well for the vulnerable HF population.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside, Mount Sinai West, New York, NY
| | | | - Ashish Correa
- Department of Cardiology, Mount Sinai Morningside, Mount Sinai West, Icahn School of Medicine at Mount Sinai
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical center/New York Medical College, Valhalla, NY
| |
Collapse
|
10
|
Zhang S, Zhao Y, Wang S, Li M, Xu Y, Ran J, Geng X, He J, Meng J, Shao G, Zhou H, Ge Z, Chen G, Li R, Yang B. Discovery of novel diarylamides as orally active diuretics targeting urea transporters. Acta Pharm Sin B 2021; 11:181-202. [PMID: 33532188 PMCID: PMC7838058 DOI: 10.1016/j.apsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
Collapse
Key Words
- AQP1, aquaporin 1
- BCRP, breast cancer resistance protein
- CCK-8, cell counting kit-8
- CMC-Na, carboxymethylcellulose sodium
- DMF, N,N-dimethylformamide
- Diuretic
- Fa, fraction absorbance
- GFR, glomerular filtration rate
- HDL-C and LDL-C, high- and low-density lipoprotein
- IC50, half maximal inhibitory concentration
- IMCD, inner medulla collecting duct
- Oral administration
- P-gp, P-glycoprotein
- PBS, phosphate buffered saline
- Papp, apparent permeability
- Structure optimization
- THF, tetrahydrofuran
- UT, urea transporter
- Urea transporter inhibitor
- r.t., room temperature
Collapse
|
11
|
Titko T, Perekhoda L, Drapak I, Tsapko Y. Modern trends in diuretics development. Eur J Med Chem 2020; 208:112855. [PMID: 33007663 DOI: 10.1016/j.ejmech.2020.112855] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Diuretics are the first-line therapy for widespread cardiovascular and non-cardiovascular diseases. Traditional diuretics are commonly prescribed for treatment in patients with hypertension, edema and heart failure, as well as with a number of kidney problems. They are diseases with high mortality, and the number of patients suffering from heart and kidney diseases is increasing year by year. The use of several classes of diuretics currently available for clinical use exhibits an overall favorable risk/benefit balance. However, they are not devoid of side effects. Hence, pharmaceutical researchers have been making efforts to develop new drugs with a better pharmacological profile. High-throughput screening, progress in protein structure analysis and modern methods of chemical modification have opened good possibilities for identification of new promising agents for preclinical and clinical testing. In this review, we provide an overview of the medicinal chemistry approaches toward the development of small molecule compounds showing diuretic activity that have been discovered over the past decade and are interesting drug candidates. We have discussed promising natriuretics/aquaretics/osmotic diuretics from such classes as: vasopressin receptor antagonists, SGLT2 inhibitors, urea transporters inhibitors, aquaporin antagonists, adenosine receptor antagonists, natriuretic peptide receptor agonists, ROMK inhibitors, WNK-SPAK inhibitors, and pendrin inhibitors.
Collapse
Affiliation(s)
- Tetiana Titko
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska Str., 79010, Lviv, Ukraine.
| | - Yevgen Tsapko
- Department of Inorganic Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| |
Collapse
|
12
|
Li M, Zhao Y, Zhang S, Xu Y, Wang SY, Li BW, Ran JH, Li RT, Yang BX. A thienopyridine, CB-20, exerts diuretic activity by inhibiting urea transporters. Acta Pharmacol Sin 2020; 41:65-72. [PMID: 31213671 PMCID: PMC7468274 DOI: 10.1038/s41401-019-0245-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023]
Abstract
Urea transporters (UTs) are transmembrane proteins selectively permeable to urea and play an important role in urine concentration. UT-knockout mice exhibit the urea-selective urine-concentrating defect, without affecting electrolyte balance, suggesting that UT-B inhibitors have the potential to be developed as novel diuretics. In this study, we characterized a novel compound 5-ethyl-2-methyl-3-amino-6-methylthieno[2,3-b]pyridine-2,5-dicarboxylate (CB-20) with UT inhibitory activity as novel diuretics with excellent pharmacological properties. This compound was discovered based on high-throughput virtual screening combined with the erythrocyte osmotic lysis assay. Selectivity of UT inhibitors was assayed using transwell chambers. Diuretic activity of the compound was examined in rats and mice using metabolic cages. Pharmacokinetic parameters were detected in rats using LC-MS/MS. Molecular docking was employed to predict the potential binding modes for the CB-20 with human UT-B. This compound dose-dependently inhibited UT-facilitated urea transport with IC50 values at low micromolar levels. It exhibited nearly equal inhibitory activity on both UT-A1 and UT-B. After subcutaneous administration of CB-20, the animals showed polyuria, without electrolyte imbalance and abnormal metabolism. CB-20 possessed a good absorption and rapid clearance in rat plasma. Administration of CB-20 for 5 days did not cause significant morphological abnormality in kidney or liver tissues of rats. Molecular docking showed that CB-20 was positioned near several residues in human UT-B, including Leu364, Val367, and so on. This study provides proof of evidence for the prominent diuretic activity of CB-20 by specifically inhibiting UTs. CB-20 or thienopyridine analogs may be developed as novel diuretics.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bo-Wen Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Chongqing Medical University, Chongqing, 400016, China
| | - Run-Tao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
13
|
Abstract
Aquaporins are integral membrane proteins that facilitate the diffusion of water and other small, uncharged solutes across the cellular membrane and are widely distributed in organisms from humans to bacteria. However, the characteristics of prokaryotic aquaporins remain largely unknown. We investigated the distribution and sequence characterization of aquaporins in prokaryotic organisms and summarized the transport characteristics, physiological functions, and regulatory mechanisms of prokaryotic aquaporins. Aquaporin homologues were identified in 3315 prokaryotic genomes retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, but the protein clustering pattern is not completely congruent with the phylogeny of the species that carry them. Moreover, prokaryotic aquaporins display diversified aromatic/arginine constriction region (ar/R) amino acid compositions, implying multiple functions. The typical water and glycerol transport characterization, physiological functions, and regulations have been extensively studied in Escherichia coli AqpZ and GlpF. A Streptococcus aquaporin has recently been verified to facilitate the efflux of endogenous H2O2, which not only contributes to detoxification but also to species competitiveness, improving our understanding of prokaryotic aquaporins. Furthermore, recent studies revealed novel regulatory mechanisms of prokaryotic aquaporins at post-translational level. Thus, we propose that intensive investigation on prokaryotic aquaporins would extend the functional categories and working mechanisms of these ubiquitous, intrinsic membrane proteins.
Collapse
|
14
|
Zhao Y, Li M, Li B, Zhang S, Su A, Xing Y, Ge Z, Li R, Yang B. Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors. Eur J Med Chem 2019; 172:131-142. [PMID: 30959323 DOI: 10.1016/j.ejmech.2019.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
Urea transporters (UTs) play an important role in the urine concentrating mechanism and are recognized as novel targets for developing small molecule inhibitors with salt-sparing diuretic activity. Thienoquinoline derivatives, a class of novel UT-B inhibitors identified by our group, play a significant diuresis in animal model. However, the poor solubility and low bioavailability limited its further development. To overcome these shortcomings, the structure modification of thienoquinoline was carried out in this study, which led to the discovery of novel thienopyridine derivatives as specific urea transporter inhibitors. Further optimization obtained the promising preclinical candidate 8n with not only excellent inhibition effect on urea transporters and diuretic activity on rat model, but also suitable water solubility and Log P value.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China; College of Pharmacy, Inner Mongolia Medical University, 010110, PR, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, PR, China
| | - Bowen Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China
| | - Shun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, PR, China
| | - Aoze Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China
| | - Yongning Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China
| | - Zemei Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, 100191, PR, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, PR, China.
| |
Collapse
|
15
|
Rogers RT, Sun MA, Yue Q, Bao HF, Sands JM, Blount MA, Eaton DC. Lack of urea transporters, UT-A1 and UT-A3, increases nitric oxide accumulation to dampen medullary sodium reabsorption through ENaC. Am J Physiol Renal Physiol 2019; 316:F539-F549. [PMID: 30539654 PMCID: PMC6459308 DOI: 10.1152/ajprenal.00166.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Although the role of urea in urine concentration is known, the effect of urea handling by the urea transporters (UTs), UT-A1 and UT-A3, on sodium balance remains elusive. Serum and urinary sodium concentration is similar between wild-type mice (WT) and UT-A3 null (UT-A3 KO) mice; however, mice lacking both UT-A1 and UT-A3 (UT-A1/A3 KO) have significantly lower serum sodium and higher urinary sodium. Protein expression of renal sodium transporters is unchanged among all three genotypes. WT, UT-A3 KO, and UT-A1/A3 KO acutely respond to hydrochlorothiazide and furosemide; however, UT-A1/A3 KO fail to show a diuretic or natriuretic response following amiloride administration, indicating that baseline epithelial Na+ channel (ENaC) activity is impaired. UT-A1/A3 KO have more ENaC at the apical membrane than WT mice, and single-channel analysis of ENaC in split-open inner medullary collecting duct (IMCD) isolated in saline shows that ENaC channel density and open probability is higher in UT-A1/A3 KO than WT. UT-A1/A3 KO excrete more urinary nitric oxide (NO), a paracrine inhibitor of ENaC, and inner medullary nitric oxide synthase 1 mRNA expression is ~40-fold higher than WT. Because endogenous NO is unstable, ENaC activity was reassessed in split-open IMCD with the NO donor PAPA NONOate [1-propanamine-3-(2-hydroxy-2-nitroso-1-propylhydrazine)], and ENaC activity was almost abolished in UT-A1/A3 KO. In summary, loss of both UT-A1 and UT-A3 (but not UT-A3 alone) causes elevated medullary NO production and salt wasting. NO inhibition of ENaC, despite elevated apical accumulation of ENaC in UT-A1/A3 KO IMCD, appears to be the main contributor to natriuresis in UT-A1/A3 KO mice.
Collapse
Affiliation(s)
- Richard T Rogers
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Michael A Sun
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
16
|
Pharmacokinetics, Tissue Distribution and Excretion of a Novel Diuretic (PU-48) in Rats. Pharmaceutics 2018; 10:pharmaceutics10030124. [PMID: 30096833 PMCID: PMC6160999 DOI: 10.3390/pharmaceutics10030124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
Methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) is a novel diuretic urea transporter inhibitor. The aim of this study is to investigate the profile of plasma pharmacokinetics, tissue distribution, and excretion by oral dosing of PU-48 in rats. Concentrations of PU-48 within biological samples are determined using a validated high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. After oral administration of PU-48 (3, 6, and 12 mg/kg, respectively) in self-nanomicroemulsifying drug delivery system (SNEDDS) formulation, the peak plasma concentrations (Cmax), and the area under the curve (AUC0⁻∞) were increased by the dose-dependent and linear manner, but the marked different of plasma half-life (t1/2) were not observed. This suggests that the pharmacokinetic profile of PU-48 prototype was first-order elimination kinetic characteristics within the oral three doses range in rat plasma. Moreover, the prototype of PU-48 was rapidly and extensively distributed into thirteen tissues, especially higher concentrations were detected in stomach, intestine, liver, kidney, and bladder. The total accumulative excretion of PU-48 in the urine, feces, and bile was less than 2%. This research is the first report on disposition via oral administration of PU-48 in rats, and it provides important information for further development of PU-48 as a diuretic drug candidate.
Collapse
|
17
|
Zhang ZY, Wang X, Liu D, Zhang H, Zhang Q, Lu YY, Li P, Lou YQ, Yang BX, Lu C, Lou YX, Zhang GL. Development and validation of an LC-MS/MS method for the determination of a novel thienoquinolin urea transporter inhibitor PU-48 in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32. [PMID: 29193233 DOI: 10.1002/bmc.4157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
A specific, sensitive and stable high-performance liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative determination of methyl 3-amino-6-methoxythieno [2,3-b]quinoline-2-carboxylate (PU-48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU-48 was achieved with a reversed-phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple-quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU-48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass-to-charge ratio (m/z) 289.1 → 229.2 for PU-48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU-48 was linear over the concentration range of 0.1-1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU-48 in rats.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China
| | - Hua Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying-Yuan Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pu Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ya-Qing Lou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Ya-Xin Lou
- Proteomics Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
19
|
Tradtrantip L, Jin BJ, Yao X, Anderson MO, Verkman AS. Aquaporin-Targeted Therapeutics: State-of-the-Field. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:239-250. [PMID: 28258578 DOI: 10.1007/978-94-024-1057-0_16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Drugs targeting aquaporins have broad potential clinical applications, including cancer, obesity, edema, glaucoma, skin diseases and others. The astrocyte water channel aquaporin-4 is a particularly compelling target because of its role of brain water movement, neuroexcitation and glia scarring, and because it is the target of pathogenic autoantibodies in the neuroinflammatory demyelinating disease neuromyelitis optica . There has been considerable interest in the identification of small molecule inhibitors of aquaporins, with various candidates emerging from testing of known ion transport inhibitors, as well as compound screening and computational chemistry. However, in general, the activity of reported aquaporin inhibitors has not been confirmed on retesting, which may be due to technical problems in water transport assays used in the original identification studies, and the challenges in modulating the activity of small, compact, pore-containing membrane proteins. We review here the state of the field of aquaporin-modulating small molecules and biologics, and the challenges and opportunities in moving forward.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143-0521, USA
| | - Bjung-Ju Jin
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143-0521, USA
| | - Xiaoming Yao
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143-0521, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, 94132-4136, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143-0521, USA.
| |
Collapse
|
20
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
21
|
Esteva-Font C, Jin BJ, Lee S, Phuan PW, Anderson MO, Verkman AS. Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1. Mol Pharmacol 2016; 89:686-93. [PMID: 26993802 PMCID: PMC4885500 DOI: 10.1124/mol.116.103929] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
The aquaporin-1 (AQP1) water channel is a potentially important drug target, as AQP1 inhibition is predicted to have therapeutic action in edema, tumor growth, glaucoma, and other conditions. Here, we measured the AQP1 inhibition efficacy of 12 putative small-molecule AQP1 inhibitors reported in six recent studies, and one AQP1 activator. Osmotic water permeability was measured by stopped-flow light scattering in human and rat erythrocytes that natively express AQP1, in hemoglobin-free membrane vesicles from rat and human erythrocytes, and in plasma membrane vesicles isolated from AQP1-transfected Chinese hamster ovary cell cultures. As a positive control, 0.3 mM HgCl2 inhibited AQP1 water permeability by >95%. We found that none of the tested compounds at 50 µM significantly inhibited or increased AQP1 water permeability in these assays. Identification of AQP1 inhibitors remains an important priority.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| | - Byung-Ju Jin
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| | - Marc O Anderson
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, California (C.E.-F., B.-J.J., S.L., P.-W.P., A.S.V.); Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California (M.O.A.)
| |
Collapse
|
22
|
Wu J, Li J, Zhang J, Hu X, Yao D, Ma L, Ouyang L, Pan X, Huang J, Lin R, Wang J. In silico identification and experimental validation of diuresis compounds from Euphorbia lathyris for potential UT-B inhibitors. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Madeira A, Moura TF, Soveral G. Detecting Aquaporin Function and Regulation. Front Chem 2016; 4:3. [PMID: 26870725 PMCID: PMC4734071 DOI: 10.3389/fchem.2016.00003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Water is the major component of cells and tissues throughout all forms of life. Fluxes of water and solutes through cell membranes and epithelia are essential for osmoregulation and energy homeostasis. Aquaporins are membrane channels expressed in almost every organism and involved in the bidirectional transfer of water and small solutes across cell membranes. Aquaporins have important biological roles and have been implicated in several pathophysiological conditions suggesting a great translational potential in aquaporin-based diagnostics and therapeutics. Detecting aquaporin function is critical for assessing regulation and screening for new activity modulators that can prompt the development of efficient medicines. Appropriate methods for functional analysis comprising suitable cell models and techniques to accurately evaluate water and solute membrane permeability are essential to validate aquaporin function and assess short-term regulation. The present review describes established assays commonly used to assess aquaporin function in cells and tissues, as well as the experimental biophysical strategies required to reveal functional regulation and identify modulators, the first step for aquaporin drug discovery.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisboa, Portugal
| | - Teresa F Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Departamento Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
24
|
Jin BJ, Esteva-Font C, Verkman AS. Droplet-based microfluidic platform for measurement of rapid erythrocyte water transport. LAB ON A CHIP 2015; 15:3380-3390. [PMID: 26159099 PMCID: PMC4706553 DOI: 10.1039/c5lc00688k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell membrane water permeability is an important determinant of epithelial fluid secretion, tissue swelling, angiogenesis, tumor spread and other biological processes. Cellular water channels, aquaporins, are important drug targets. Water permeability is generally measured from the kinetics of cell volume change in response to an osmotic gradient. Here, we developed a microfluidic platform in which cells expressing a cytoplasmic, volume-sensing fluorescent dye are rapidly subjected to an osmotic gradient by solution mixing inside a ~0.1 nL droplet surrounded by oil. The solution mixing time was <10 ms. Osmotic water permeability was deduced from a single, time-integrated fluorescence image of an observation area in which the time after mixing was determined through spatial position. Water permeability was accurately measured in aquaporin-expressing erythrocytes with half-times for osmotic equilibration down to <50 ms. Compared with conventional water permeability measurements using costly stopped-flow instrumentation, the microfluidic platform here utilizes sub-microliter blood sample volume, does not suffer from mixing artifacts, and replaces challenging kinetic measurements by single image capture using a standard laboratory fluorescence microscope.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | | | |
Collapse
|
25
|
Teoh CW, Robinson LA, Noone D. Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol 2015; 309:F575-82. [PMID: 26290369 DOI: 10.1152/ajprenal.00229.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
There have been two major theories surrounding the development of edema in nephrotic syndrome (NS), namely, the under- and overfill hypotheses. Edema is one of the cardinal features of NS and remains one of the principal reasons for admission of children to the hospital. Recently, the discovery that proteases in the glomerular filtrate of patients with NS are activating the epithelial sodium channel (ENaC), resulting in intrarenal salt retention and thereby contributing to edema, might suggest that targeting ENaC with amiloride might be a suitable strategy to manage the edema of NS. Other potential agents, particularly urearetics and aquaretics, might also prove useful in NS. Recent evidence also suggests that there may be other areas involved in salt storage, especially the skin, and it will be intriguing to study the implications of this in NS.
Collapse
Affiliation(s)
- Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Beitz E, Golldack A, Rothert M, von Bülow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015; 155:22-35. [PMID: 26277280 DOI: 10.1016/j.pharmthera.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aquaporin (AQP) water and solute channels have basic physiological functions throughout the human body. AQP-facilitated water permeability across cell membranes is required for rapid reabsorption of water from pre-urine in the kidneys and for sustained near isosmolar water fluxes e.g. in the brain, eyes, inner ear, and lungs. Cellular water permeability is further connected to cell motility. AQPs of the aquaglyceroporin subfamily are necessary for lipid degradation in adipocytes and glycerol uptake into the liver, as well as for skin moistening. Modulation of AQP function is desirable in several pathophysiological situations, such as nephrogenic diabetes insipidus, Sjögren's syndrome, Menière's disease, heart failure, or tumors to name a few. Attempts to design or to find effective small molecule AQP inhibitors have yielded only a few hits. Challenges reside in the high copy number of AQP proteins in the cell membranes, and spatial restrictions in the protein structure. This review gives an overview on selected physiological and pathophysiological conditions in which modulation of AQP functions appears beneficial and discusses first achievements in the search of drug-like AQP inhibitors.
Collapse
Affiliation(s)
- Eric Beitz
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany.
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Monja Rothert
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Julia von Bülow
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| |
Collapse
|
27
|
Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes? MEMBRANES 2015; 5:352-68. [PMID: 26266425 PMCID: PMC4584285 DOI: 10.3390/membranes5030352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
Abstract
In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.
Collapse
|
28
|
Cil O, Esteva-Font C, Tas ST, Su T, Lee S, Anderson MO, Ertunc M, Verkman AS. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int 2015; 88:311-20. [PMID: 25993324 PMCID: PMC4523423 DOI: 10.1038/ki.2015.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.
Collapse
Affiliation(s)
- Onur Cil
- 1] Departments of Medicine and Physiology, University of California, San Francisco, CA, USA [2] Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Sadik Taskin Tas
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tao Su
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Mert Ertunc
- Department of Pharmacology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Esteva-Font C, Phuan PW, Lee S, Su T, Anderson MO, Verkman AS. Structure-activity analysis of thiourea analogs as inhibitors of UT-A and UT-B urea transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:1075-80. [PMID: 25613743 PMCID: PMC4364388 DOI: 10.1016/j.bbamem.2015.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
Small-molecule inhibitors of urea transporter (UT) proteins in kidney have potential application as novel salt-sparing diuretics. The urea analog dimethylthiourea (DMTU) was recently found to inhibit the UT isoforms UT-A1 (expressed in kidney tubule epithelium) and UT-B (expressed in kidney vasa recta endothelium) with IC50 of 2-3 mM, and was shown to have diuretic action when administered to rats. Here, we measured UT-A1 and UT-B inhibition activity of 36 thiourea analogs, with the goal of identifying more potent and isoform-selective inhibitors, and establishing structure-activity relationships. The analog set systematically explored modifications of substituents on the thiourea including alkyl, heterocycles and phenyl rings, with different steric and electronic features. The analogs had a wide range of inhibition activities and selectivities. The most potent inhibitor, 3-nitrophenyl-thiourea, had an IC50 of ~0.2 mM for inhibition of both UT-A1 and UT-B. Some analogs such as 4-nitrophenyl-thiourea were relatively UT-A1 selective (IC50 1.3 vs. 10 mM), and others such as thioisonicotinamide were UT-B selective (IC50>15 vs. 2.8 mM).
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Tao Su
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132-4136, USA
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA.
| |
Collapse
|
30
|
Esteva-Font C, Anderson MO, Verkman AS. Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 2015; 11:113-23. [PMID: 25488859 PMCID: PMC4743986 DOI: 10.1038/nrneph.2014.219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Lee S, Esteva-Font C, Phuan PW, Anderson MO, Verkman AS. Discovery, synthesis and structure-activity analysis of symmetrical 2,7-disubstituted fluorenones as urea transporter inhibitors. MEDCHEMCOMM 2015; 6:1278-1284. [PMID: 26191399 DOI: 10.1039/c5md00198f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kidney urea transporters are targets for development of small-molecule inhibitors with action as salt-sparing diuretics. A cell-based, functional high-throughput screen identified 2,7-bisacetamido fluorenone 3 as a novel inhibitor of urea transporters UT-A1 and UT-B. Here, we synthesized twenty-two 2,7-disubstituted fluorenone analogs by acylation. Structure-activity relationship analysis revealed: (a) the carbonyl moiety at C9 is required for UT inhibition; (b) steric limitation on C2, 7-substituents; and (c) the importance of a crescent-shape structure. The most potent fluorenones inhibited UT-A1 and UT-B urea transport with IC50 ~ 1 μM. Analysis of in vitro metabolic stability in hepatic microsomes indicated metabolism of 2,7-disubstituted fluorenones by reductase and subsequent elimination. Computational docking to a homology model of UT-A1 suggested UT inhibitor binding to the UT cytoplasmic domain at a site that does not overlap with the putative urea binding site.
Collapse
Affiliation(s)
- Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| |
Collapse
|
32
|
Ren H, Wang Y, Xing Y, Ran J, Liu M, Lei T, Zhou H, Li R, Sands JM, Yang B. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters. Am J Physiol Renal Physiol 2014; 307:F1363-72. [PMID: 25298523 DOI: 10.1152/ajprenal.00421.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.
Collapse
Affiliation(s)
- Huiwen Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanhua Wang
- Renal Division, Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Yongning Xing
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Neuroscience Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China; and
| | - Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianluo Lei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jeff M Sands
- Renal Division, Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
33
|
Esteva-Font C, Cil O, Phuan PW, Su T, Lee S, Anderson MO, Verkman AS. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors. FASEB J 2014; 28:3878-90. [PMID: 24843071 PMCID: PMC4139901 DOI: 10.1096/fj.14-253872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 11/11/2022]
Abstract
Urea transport (UT) proteins of the UT-A class are expressed in epithelial cells in kidney tubules, where they are required for the formation of a concentrated urine by countercurrent multiplication. Here, using a recently developed high-throughput assay to identify UT-A inhibitors, a screen of 50,000 synthetic small molecules identified UT-A inhibitors of aryl-thiazole, γ-sultambenzosulfonamide, aminocarbonitrile butene, and 4-isoxazolamide chemical classes. Structure-activity analysis identified compounds that inhibited UT-A selectively by a noncompetitive mechanism with IC50 down to ∼1 μM. Molecular modeling identified putative inhibitor binding sites on rat UT-A. To test compound efficacy in rats, formulations and administration procedures were established to give therapeutic inhibitor concentrations in blood and urine. We found that intravenous administration of an indole thiazole or a γ-sultambenzosulfonamide at 20 mg/kg increased urine output by 3-5-fold and reduced urine osmolality by ∼2-fold compared to vehicle control rats, even under conditions of maximum antidiuresis produced by 1-deamino-8-D-arginine vasopressin (DDAVP). The diuresis was reversible and showed urea > salt excretion. The results provide proof of concept for the diuretic action of UT-A-selective inhibitors. UT-A inhibitors are first in their class salt-sparing diuretics with potential clinical indications in volume-overload edemas and high-vasopressin-associated hyponatremias.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| | - Onur Cil
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| | - Puay-Wah Phuan
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| | - Tao Su
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| | - Sujin Lee
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A S Verkman
- Department of Medicine and Department of Physiology, University of California, San Francisco, California, USA and
| |
Collapse
|
34
|
Abstract
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators.
Collapse
|
35
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
36
|
Abstract
Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of ligand-bound proteins, molecular dynamics simulations, and functional data on permeation and inhibition by a broad range of urea analogs and other small molecules, provides insight into the structural basis of urea permeation and selectivity.
Collapse
Affiliation(s)
- Elena J. Levin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
37
|
Verkman AS, Esteva-Font C, Cil O, Anderson MO, Li F, Li M, Lei T, Ren H, Yang B. Small-molecule inhibitors of urea transporters. Subcell Biochem 2014; 73:165-77. [PMID: 25298345 PMCID: PMC4306426 DOI: 10.1007/978-94-017-9343-8_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or 'urearetics,' in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done.
Collapse
Affiliation(s)
- Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143-0521, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Esteva-Font C, Phuan PW, Anderson MO, Verkman AS. A small molecule screen identifies selective inhibitors of urea transporter UT-A. CHEMISTRY & BIOLOGY 2013; 20:1235-44. [PMID: 24055006 PMCID: PMC3890325 DOI: 10.1016/j.chembiol.2013.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 01/24/2023]
Abstract
Urea transporter (UT) proteins, including UT-A in kidney tubule epithelia and UT-B in vasa recta microvessels, facilitate urinary concentrating function. A screen for UT-A inhibitors was developed in MDCK cells expressing UT-A1, water channel aquaporin-1, and YFP-H148Q/V163S. An inwardly directed urea gradient produces cell shrinking followed by UT-A1-dependent swelling, which was monitored by YFP-H148Q/V163S fluorescence. Screening of ~90,000 synthetic small molecules yielded four classes of UT-A1 inhibitors with low micromolar half-maximal inhibitory concentration that fully and reversibly inhibited urea transport by a noncompetitive mechanism. Structure-activity analysis of >400 analogs revealed UT-A1-selective and UT-A1/UT-B nonselective inhibitors. Docking computations based on homology models of UT-A1 suggested inhibitor binding sites. UT-A inhibitors may be useful as diuretics ("urearetics") with a mechanism of action that may be effective in fluid-retaining conditions in which conventional salt transport-blocking diuretics have limited efficacy.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | | | | | | |
Collapse
|
39
|
Abstract
This study extends permeability (P) data on chloride, urea and water in red blood cells (RBC), and concludes that the urea transporter (UT-B) does not transport water. P of chick, duck, Amphiuma means, dog and human RBC to (36)Cl(-), (14)C-urea and (3)H2O was determined under self-exchange conditions. At 25°C and pH 7.2-7.5, PCl is 0.94 × 10(-4)-2.15 × 10(-4) cm s(-1) for all RBC species at [Cl]=127-150 mmol l(-1). In chick and duck RBC, P(urea) is 0.84 × 10(-6) and 1.65 × 10(-6) cm s(-1), respectively, at [urea]=1-500 mmol l(-1). In Amphiuma, dog and human RBC, P(urea) is concentration dependent (1-1000 mmol l(-1), Michaelis-Menten-like kinetics; K1/2;=127, 173 and 345 mmol l(-1)), and values at [urea]=1 mmol l(-1) are 29.5 × 10(-6), 467 × 10(-6) and 260 × 10(-6) cm s(-1), respectively. Diffusional water permeability, Pd, was 0.84 × 10(-3) (chick), 5.95 × 10(-3) (duck), 0.39 × 10(-3) (Amphiuma), 3.13 × 10(-3) (dog) and 2.35 × 10(-3) cm s(-1) (human). DIDS, DNDS and phloretin inhibit PCl by >99% in all RBC species. PCMBS, PCMB and phloretin inhibit P(urea) by >99% in Amphiuma, dog and human RBC, but not in chick and duck RBC. PCMBS and PCMB inhibit Pd in duck, dog and human RBC, but not in chick and Amphiuma RBC. Temperature dependence, as measured by apparent activation energy, EA, of PCl is 117.8 (duck), 74.9 (Amphiuma) and 89.6 kJ mol(-1) (dog). The EA of P(urea) is 69.6 (duck) and 53.3 kJ mol(-1) (Amphiuma), and that of Pd is 34.9 (duck) and 32.1 kJ mol(-1) (Amphiuma). The present and previous RBC studies indicate that anion (AE1), urea (UT-B) and water (AQP1) transporters only transport chloride (all species), water (duck, dog, human) and urea (Amphiuma, dog, human), respectively. Water does not share UT-B with urea, and the solute transport is not coupled under physiological conditions.
Collapse
Affiliation(s)
- Jesper Brahm
- Department of Cellular and Molecular Medicine, The Faculty of Health, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
40
|
Liu Y, Esteva-Font C, Yao C, Phuan PW, Verkman AS, Anderson MO. 1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): new analogs and binding model. Bioorg Med Chem Lett 2013; 23:3338-41. [PMID: 23597791 PMCID: PMC3954708 DOI: 10.1016/j.bmcl.2013.03.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
The kidney urea transport protein UT-B is an attractive target for the development of small-molecule inhibitors with a novel diuretic ('urearetic') action. Previously, two compounds in the triazolothienopyrimidine scaffold (1a and 1c) were reported as UT-B inhibitors. Compound 1c incorporates a 1,1-difluoroethyl group, which affords improved microsomal stability when compared to the corresponding ethyl-substituted compound 1a. Here, a small focused library (4a-4f) was developed around lead inhibitor 1c to investigate the requirement of an amidine-linked thiophene in the inhibitor scaffold. Two compounds (4a and 4b) with nanomolar inhibitory potency (IC50≈40 nM) were synthesized. Computational docking of lead structure 1c and 4a-4f into a homology model of the UT-B cytoplasmic surface suggested binding with the core heterocycle buried deep into the hydrophobic pore region of the protein.
Collapse
Affiliation(s)
- Y. Liu
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132-4236, United States
| | - C. Esteva-Font
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, United States
| | - C. Yao
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, United States
| | - P. W. Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, United States
| | - A. S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, United States
| | - M. O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132-4236, United States
| |
Collapse
|
41
|
Li F, Lei T, Zhu J, Wang W, Sun Y, Chen J, Dong Z, Zhou H, Yang B. A novel small-molecule thienoquinolin urea transporter inhibitor acts as a potential diuretic. Kidney Int 2013; 83:1076-86. [PMID: 23486518 DOI: 10.1038/ki.2013.62] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urea transporters (UTs) are a family of membrane channel proteins that are specifically permeable to urea and play an important role in intrarenal urea recycling and in urine concentration. Using an erythrocyte osmotic lysis assay, we screened a small-molecule library for inhibitors of UT-facilitated urea transport. A novel class of thienoquinolin UT-B inhibitors were identified, of which PU-14 had potent inhibition activity on human, rabbit, rat, and mouse UT-B. The half-maximal inhibitory concentration of PU-14 on rat UT-B-mediated urea transport was ∼0.8 μmol/l, and it did not affect urea transport in mouse erythrocytes lacking UT-B but inhibited UT-A-type urea transporters, with 36% inhibition at 4 μmol/l. PU-14 showed no significant cellular toxicity at concentrations up to its solubility limit of 80 μmol/l. Subcutaneous delivery of PU-14 (at 12.5, 50, and 100 mg/kg) to rats caused an increase of urine output and a decrease of the urine urea concentration and subsequent osmolality without electrolyte disturbances and liver or renal damages. This suggests that PU-14 has a diuretic effect by urea-selective diuresis. Thus, PU-14 or its analogs might be developed as a new diuretic to increase renal fluid clearance in diseases associated with water retention without causing electrolyte imbalance. PU-14 may establish 'chemical knockout' animal models to study the physiological functions of UTs.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shayakul C, Clémençon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med 2013; 34:313-22. [PMID: 23506873 DOI: 10.1016/j.mam.2012.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 12/12/2012] [Indexed: 11/27/2022]
Abstract
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Collapse
Affiliation(s)
- Chairat Shayakul
- Renal Unit, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | |
Collapse
|
43
|
Cil O, Ertunc M, Onur R. The diuretic effect of urea analog dimethylthiourea in female Wistar rats. Hum Exp Toxicol 2012; 31:1050-5. [PMID: 23023029 DOI: 10.1177/0960327112459205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urea plays an important role in the urinary concentrating mechanism in the kidney by contributing greatly in the generation of hyperosmolar medulla due to the presence of urea transporters, which mediate facilitated transport of urea. In this study, we investigated the possible diuretic effect of urea analog and urea transporter inhibitor, dimethylthiourea (DMTU), in rats. Female Wistar rats were divided into two groups, group 1 (control group, n = 7) rats were injected with saline intraperitoneally (i.p.), while group 2 (DMTU group, n = 7) rats were injected with 500 mg/kg DMTU (i.p.) and an additional dose of 125 mg/kg DMTU after 8 h. DMTU administration induced an approximately three times increase in daily urine volume (p < 0.001) and decreased urine osmolality to approximately 35% of controls (p < 0.0001). DMTU also increased free water clearance (p < 0.0001) without a significant change in osmolar clearance. DMTU treatment caused an increase in urea clearance (p < 0.05) and fractional excretion of urea (p < 0.05) with a decrease in serum urea concentration (p < 0.001). DMTU had no effect on creatinine clearance or serum electrolytes, creatinine levels and osmolality. With these findings, we report for the first time that DMTU has a prominent diuretic effect with increased urea excretion, which may be explained by the inhibitory effect of the drug on urea transporters. Our findings suggest that DMTU may be used as a diuretic agent and also could be used as a lead compound for the development of novel diuretics.
Collapse
Affiliation(s)
- O Cil
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | | | | |
Collapse
|
44
|
Abstract
Urea is exploited as a nitrogen source by bacteria, and its breakdown products, ammonia and bicarbonate, are employed to counteract stomach acidity in pathogens such as Helicobacter pylori. Uptake in the latter is mediated by UreI, a UAC (urea amide channel) family member. In the present paper, we describe the structure and function of UACBc, a homologue from Bacillus cereus. The purified channel was found to be permeable not only to urea, but also to other small amides. CD and IR spectroscopy revealed a structure comprising mainly α-helices, oriented approximately perpendicular to the membrane. Consistent with this finding, site-directed fluorescent labelling indicated the presence of seven TM (transmembrane) helices, with a cytoplasmic C-terminus. In detergent, UACBc exists largely as a hexamer, as demonstrated by both cross-linking and size-exclusion chromatography. A 9 Å (1 Å=0.1 nm) resolution projection map obtained by cryo-electron microscopy of two-dimensional crystals shows that the six protomers are arranged in a planar hexameric ring. Each exhibits six density features attributable to TM helices, surrounding a putative central channel, while an additional helix is peripherally located. Bioinformatic analyses allowed individual TM regions to be tentatively assigned to the density features, with the resultant model enabling identification of residues likely to contribute to channel function.
Collapse
|
45
|
Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol 2012; 23:1210-20. [PMID: 22491419 PMCID: PMC3380644 DOI: 10.1681/asn.2011070751] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 11/03/2022] Open
Abstract
Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTB(inh)-14, fully and reversibly inhibited urea transport with IC(50) values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTB(inh)-14 competed with urea binding at an intracellular site on the UT-B protein. UTB(inh)-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTB(inh)-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H(2)O lower in UTB(inh)-14-treated mice than vehicle-treated mice. UTB(inh)-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTB(inh)-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport.
Collapse
Affiliation(s)
- Chenjuan Yao
- Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
46
|
Anderson MO, Zhang J, Liu Y, Yao C, Phuan PW, Verkman AS. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J Med Chem 2012; 55:5942-50. [PMID: 22694147 PMCID: PMC3590912 DOI: 10.1021/jm300491y] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urea transporters, which include UT-B in kidney microvessels, are potential targets for development of drugs with a novel diuretic ('urearetic') mechanism. We recently identified, by high-throughput screening, a triazolothienopyrimidine UT-B inhibitor, 1, that selectively and reversibly inhibited urea transport with IC(50) = 25.1 nM and reduced urinary concentration in mice ( Yao et al. J. Am. Soc. Nephrol. , in press ). Here, we analyzed 273 commercially available analogues of 1 to establish a structure-activity series and synthesized a targeted library of 11 analogues to identify potent, metabolically stable UT-B inhibitors. The best compound, {3-[4-(1,1-difluoroethyl)benzenesulfonyl]thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-yl}thiophen-2-ylmethylamine, 3k, had IC(50) of 23 and 15 nM for inhibition of urea transport by mouse and human UT-B, respectively, and ∼40-fold improved in vitro metabolic stability compared to 1. In mice, 3k accumulated in kidney and urine and reduced maximum urinary concentration. Triazolothienopyrimidines may be useful for therapy of diuretic-refractory edema in heart and liver failure.
Collapse
Affiliation(s)
- Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132-4136, United States.
| | | | | | | | | | | |
Collapse
|
47
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|
48
|
von Morze C, Bok RA, Sands JM, Kurhanewicz J, Vigneron DB. Monitoring urea transport in rat kidney in vivo using hyperpolarized ¹³C magnetic resonance imaging. Am J Physiol Renal Physiol 2012; 302:F1658-62. [PMID: 22492940 PMCID: PMC3378100 DOI: 10.1152/ajprenal.00640.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/30/2012] [Indexed: 11/22/2022] Open
Abstract
Urea functions as a key osmolyte in the urinary concentrating mechanism of the inner medulla. The urea transporter UT-A1 is upregulated by antidiuretic hormone, facilitating faster equilibration of urea between the lumen and interstitium of the inner medullary collecting duct, resulting in the formation of more highly concentrated urine. New methods in dynamic nuclear polarization, providing ∼50,000-fold enhancement of nuclear magnetic resonance signals in the liquid state, offer a novel means to monitor this process in vivo using magnetic resonance imaging. In this study, we detected significant signal differences in the rat kidney between acute diuretic and antidiuretic states, using dynamic (13)C magnetic resonance imaging following a bolus infusion of hyperpolarized [(13)C]urea. More rapid medullary enhancement was observed under antidiuresis, consistent with known upregulation of UT-A1.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
49
|
Stewart G. The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol 2012; 164:1780-92. [PMID: 21449978 DOI: 10.1111/j.1476-5381.2011.01377.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes - urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters.
Collapse
Affiliation(s)
- Gavin Stewart
- School of Biology & Environmental Science, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
50
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|