1
|
Yin J, Liu M, Wang X, Miao H, He W, Liu W, Yu Z, Zhang Q, Bai J, Cheng Y, Ni B. Brief biology and pathophysiology of Tekt bundles. Cell Adh Migr 2025; 19:2465421. [PMID: 39949046 PMCID: PMC11834534 DOI: 10.1080/19336918.2025.2465421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Tektins, a family of microtubule-stabilizing proteins, are critical for cilia and flagella assembly in mammals. They maintain doublet microtubule stability and ciliary/flagellar motility. Loss of Tekt1-5 causes microtubule instability, impaired motility, and diseases like infertility, retinal degeneration, Mainzer-Saldino syndrome, and diabetic nephropathy. Pathophysiological stimuli regulate Tektin expression through transcriptional, posttranscriptional, translational, and posttranslational modifications. This review summarizes the latest findings on Tektin functions and their role in diseases.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Min Liu
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiao Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wenjuan He
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei Liu
- Department of Immunology, Army Medical University, Chongqing, China
| | - Zhongying Yu
- Department of Urology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Qinghua Zhang
- Reproductive Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jialian Bai
- School of Artificial Intelligence and Big Data, Chongqing Industry Polytechnic College, Chongqing, China
| | - Yimei Cheng
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Hull JJ, Le KP, Schutze IX, Heu CC, Gross RJ, Fabrick PG, Rodriguez JA, Hull AM, Langhorst D, Fabrick JA, Brent CS. RNAi-Mediated Knockdown of Tektins Does Not Affect Male Fertility in Lygus hesperus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70053. [PMID: 40170425 DOI: 10.1002/arch.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025]
Abstract
Mirid plant bugs (Hemiptera: Miridae), including Lygus hesperus (western tarnished plant bug), are key pests of numerous agricultural crops. While management of this pest relies heavily on chemical insecticides, the evolution of resistance and environmental concerns underscore the need for new and more effective approaches. Genetic-based strategies that target male fertiliy are currently being evaluated for population suppression. However, a lack of candidate gene targets with appropriate function, specifically in non-model species like L. hesperus, has hindered progress in the development and application of such approaches. Given their conserved role in stabilization of the flagella axoneme and association with sperm motility in many organisms, members of the tektin gene family represent logical targets for genetic-based sterilization. Here, we identified four homologs of the non-vertebrate tektin family from L. hesperus and used RNA interference-mediated knockdown to assess their roles in male fertility. Although transcription of the four tektins was predominantly in the testis, knockdown had negligible effects on either sperm abundance or male fertility. Our results suggest that tektins do not play a critical role in sperm fertilization of eggs in L. hesperus and are thus likely poor targets for genetic-based sterilization approaches in this species.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Kevin P Le
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Peter G Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Joseph A Rodriguez
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Aiden M Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| |
Collapse
|
3
|
Sharma I, Padmanabhan A. Mechano-regulation of germline development, maintenance, and differentiation. BBA ADVANCES 2024; 6:100127. [PMID: 39720163 PMCID: PMC11667016 DOI: 10.1016/j.bbadva.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Biochemical signaling arising from mechanical force-induced physical changes in biological macromolecules is a critical determinant of key physiological processes across all biological lengths and time scales. Recent studies have deepened our understanding of how mechano-transduction regulates somatic tissues such as those in alveolar, gastrointestinal, embryonic, and skeleto-muscular systems. The germline of an organism has a heterogeneous composition - of germ cells at different stages of maturation and mature gametes, often supported and influenced by their accessory somatic tissues. While biochemical signaling underlying germline functioning has been extensively investigated, a deeper interest in their mechanical regulation has been gaining traction in recent years. In this review, we delve into the myriad ways in which germ cell development, maintenance, and functions are regulated by mechanical forces.
Collapse
Affiliation(s)
- Ishani Sharma
- Department of Biology, Trivedi School of Biosciences, Ashoka University, No. 2 Rajiv Gandhi Educational City, Sonipat, Haryana 131029, India
| | - Anup Padmanabhan
- Department of Biology, Trivedi School of Biosciences, Ashoka University, No. 2 Rajiv Gandhi Educational City, Sonipat, Haryana 131029, India
| |
Collapse
|
4
|
Geng XY, Jin HJ, Xia L, Wang BB, Chen SR. Tektin bundle interacting protein, TEKTIP1, functions to stabilize the tektin bundle and axoneme in mouse sperm flagella. Cell Mol Life Sci 2024; 81:118. [PMID: 38448737 PMCID: PMC10917850 DOI: 10.1007/s00018-023-05081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 03/08/2024]
Abstract
Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.
Collapse
Affiliation(s)
- Xin-Yan Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Hui-Juan Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lan Xia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Bin-Bin Wang
- Center for Genetics, National Research Institute of Family Planning, Beijing, 100081, China.
- Graduate School of Peking Union Medical College &, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China.
| | - Su-Ren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
5
|
Ma Y, Wu B, Chen Y, Ma S, Wang L, Han T, Lin X, Yang F, Liu C, Zhao J, Li W. CCDC146 is required for sperm flagellum biogenesis and male fertility in mice. Cell Mol Life Sci 2023; 81:1. [PMID: 38038747 PMCID: PMC11072088 DOI: 10.1007/s00018-023-05025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Multiple morphological abnormalities of the flagella (MMAF) is a severe disease of male infertility, while the pathogenetic mechanisms of MMAF are still incompletely understood. Previously, we found that the deficiency of Ccdc38 might be associated with MMAF. To understand the underlying mechanism of this disease, we identified the potential partner of this protein and found that the coiled-coil domain containing 146 (CCDC146) can interact with CCDC38. It is predominantly expressed in the testes, and the knockout of this gene resulted in complete infertility in male mice but not in females. The knockout of Ccdc146 impaired spermiogenesis, mainly due to flagellum and manchette organization defects, finally led to MMAF-like phenotype. Furthermore, we demonstrated that CCDC146 could interact with both CCDC38 and CCDC42. It also interacts with intraflagellar transport (IFT) complexes IFT88 and IFT20. The knockout of this gene led to the decrease of ODF2, IFT88, and IFT20 protein levels, but did not affect CCDC38, CCDC42, or ODF1 expression. Additionally, we predicted and validated the detailed interactions between CCDC146 and CCDC38 or CCDC42, and built the interaction models at the atomic level. Our results suggest that the testis predominantly expressed gene Ccdc146 is essential for sperm flagellum biogenesis and male fertility, and its mutations might be associated with MMAF in some patients.
Collapse
Affiliation(s)
- Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Tingting Han
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Xiaolei Lin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Fulin Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Tai L, Yin G, Huang X, Sun F, Zhu Y. In-cell structural insight into the stability of sperm microtubule doublet. Cell Discov 2023; 9:116. [PMID: 37989994 PMCID: PMC10663601 DOI: 10.1038/s41421-023-00606-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/21/2023] [Indexed: 11/23/2023] Open
Abstract
The propulsion for mammalian sperm swimming is generated by flagella beating. Microtubule doublets (DMTs) along with microtubule inner proteins (MIPs) are essential structural blocks of flagella. However, the intricate molecular architecture of intact sperm DMT remains elusive. Here, by in situ cryo-electron tomography, we solved the in-cell structure of mouse sperm DMT at 4.5-7.5 Å resolutions, and built its model with 36 kinds of MIPs in 48 nm periodicity. We identified multiple copies of Tektin5 that reinforce Tektin bundle, and multiple MIPs with different periodicities that anchor the Tektin bundle to tubulin wall. This architecture contributes to a superior stability of A-tubule than B-tubule of DMT, which was revealed by structural comparison of DMTs from the intact and deformed axonemes. Our work provides an overall molecular picture of intact sperm DMT in 48 nm periodicity that is essential to understand the molecular mechanism of sperm motility as well as the related ciliopathies.
Collapse
Affiliation(s)
- Linhua Tai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Huang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Chen Z, Shiozaki M, Haas KM, Skinner WM, Zhao S, Guo C, Polacco BJ, Yu Z, Krogan NJ, Lishko PV, Kaake RM, Vale RD, Agard DA. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking. Cell 2023; 186:5041-5053.e19. [PMID: 37865089 PMCID: PMC10842264 DOI: 10.1016/j.cell.2023.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/23/2023]
Abstract
To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kelsey M Haas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Will M Skinner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shumei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Bastin BR, Meha SM, Khindurangala L, Schneider SQ. Cooption of regulatory modules for tektin paralogs during ciliary band formation in a marine annelid larva. Dev Biol 2023; 503:95-110. [PMID: 37557946 DOI: 10.1016/j.ydbio.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Tektins are a highly conserved family of coiled-coil domain containing proteins known to play a role in structure, stability and function of cilia and flagella. Tektin proteins are thought to form filaments which run the length of the axoneme along the inner surface of the A tubule of each microtubule doublet. Phylogenetic analyses suggest that the tektin family arose via duplications from a single tektin gene in a unicellular organism giving rise to four and five tektin genes in bilaterians and in spiralians, respectively. Although tektins are found in most metazoans, little is known about their expression and function outside of a handful of model species. Here we present the first comprehensive study of tektin family gene expression in any animal system, in the spiralian annelid Platynereis dumerilii. This indirect developing species retains a full ancient spiralian complement of five tektin genes. We show that all five tektins are expressed almost exclusively in known ciliary structures following the expression of the motile cilia master regulator foxJ1. The three older bilaterian tektin-1, tektin-2, and tektin-4 genes, show a high degree of spatial and temporal co-regulation, while the spiralian specific tektin-3/5A and tektin-3/5B show a delay in onset of expression in every ciliary structure. In addition, tektin-3/5B transcripts show a restricted subcellular localization to the most apical region near the multiciliary arrays. The exact recapitulation of the sequence of expression and localization of the five tektins at different times during larval development indicates the cooption of a fixed regulatory and cellular program during the formation of each ciliary band and multiciliated cell type in this spiralian.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Steffanie M Meha
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Lalith Khindurangala
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Liu S, Bian YC, Wang WL, Liu TJ, Zhang T, Chang Y, Xiao R, Zhang CL. Identification of hub genes associated with spermatogenesis by bioinformatics analysis. Sci Rep 2023; 13:18435. [PMID: 37891374 PMCID: PMC10611713 DOI: 10.1038/s41598-023-45620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Spermatogenesis is a complex process related to male infertility. Till now, the critical genes and specific mechanisms have not been elucidated clearly. Our objective was to determine the hub genes that play a crucial role in spermatogenesis by analyzing the differentially expressed genes (DEGs) present in non-obstructive azoospermia (NOA) compared to OA and normal samples using bioinformatics analysis. Four datasets, namely GSE45885, GSE45887, GSE9210 and GSE145467 were used. Functional enrichment analyses were performed on the DEGs. Hub genes were identified based on protein-protein interactions between DEGs. The expression of the hub genes was further examined in the testicular germ cell tumors from the TCGA by the GEPIA and validated by qRT-PCR in the testes of lipopolysaccharide-induced acute orchitis mice with impaired spermatogenesis. A total of 203 DEGs including 34 up-regulated and 169 down-regulated were identified. Functional enrichment analysis showed DEGs were mainly involved in microtubule motility, the process of cell growth and protein transport. PRM2, TEKT2, FSCN3, UBQLN3, SPATS1 and GTSF1L were identified and validated as hub genes for spermatogenesis. Three of them (PRM2, FSCN3 and TEKT2) were significantly down-regulated in the testicular germ cell tumors and their methylation levels were associated with the pathogenesis. In summary, the hub genes identified may be related to spermatogenesis and may act as potential therapeutic targets for NOA and testicular germ cell tumors.
Collapse
Affiliation(s)
- Shuang Liu
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Yan-Chao Bian
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Wan-Lun Wang
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Tong-Jia Liu
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Ting Zhang
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Yue Chang
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China
| | - Rui Xiao
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot, 010059, Inner Mongolia Autonomous Region, China.
| | - Chuan-Ling Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
10
|
Chi RPA, Xu X, Li JL, Xu X, Hu G, Brown P, Willson C, Kirsanov O, Geyer C, Huang CL, Morgan M, DeMayo F. WNK1 is required during male pachynema to sustain fertility. iScience 2023; 26:107616. [PMID: 37694147 PMCID: PMC10485039 DOI: 10.1016/j.isci.2023.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
WNK1 is an important regulator in many physiological functions, yet its role in male reproduction is unexplored. In the male germline, WNK1 is upregulated in preleptotene spermatocytes indicating possible function(s) in spermatogenic meiosis. Indeed, deletion of Wnk1 in mid-pachytene spermatocytes using the Wnt7a-Cre mouse led to male sterility which resembled non-obstructive azoospermia in humans, where germ cells failed to complete spermatogenesis and produced no sperm. Mechanistically, we found elevated MTOR expression and signaling in the Wnk1-depleted spermatocytes. As MTOR is a central mediator of translation, we speculated that translation may be accelerated in these spermatocytes. Supporting this, we found the acrosome protein, ACRBP to be prematurely expressed in the spermatocytes with Wnk1 deletion. Our study uncovered an MTOR-regulating factor in the male germline with potential implications in translation, and future studies will aim to understand how WNK1 regulates MTOR activity and impact translation on a broader spectrum.
Collapse
Affiliation(s)
- Ru-pin Alicia Chi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Paula Brown
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Cynthia Willson
- Integrated Laboratory Systems LLC, Research Triangle Park, NC 27709, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology at the Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Christopher Geyer
- Department of Anatomy & Cell Biology at the Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa, IA 52242, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Francesco DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| |
Collapse
|
11
|
Wang Z, Jin C, Li P, Li Y, Tang J, Yu Z, Jiao T, Ou J, Wang H, Zou D, Li M, Mang X, Liu J, Lu Y, Li K, Zhang N, Yu J, Miao S, Wang L, Song W. Identification of quiescent FOXC2 + spermatogonial stem cells in adult mammals. eLife 2023; 12:RP85380. [PMID: 37610429 PMCID: PMC10446825 DOI: 10.7554/elife.85380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
In adult mammals, spermatogenesis embodies the complex developmental process from spermatogonial stem cells (SSCs) to spermatozoa. At the top of this developmental hierarchy lie a series of SSC subpopulations. Their individual identities as well as the relationships with each other, however, remain largely elusive. Using single-cell analysis and lineage tracing, we discovered both in mice and humans the quiescent adult SSC subpopulation marked specifically by forkhead box protein C2 (FOXC2). All spermatogenic progenies can be derived from FOXC2+ SSCs and the ablation of FOXC2+ SSCs led to the depletion of the undifferentiated spermatogonia pool. During germline regeneration, FOXC2+ SSCs were activated and able to completely restore the process. Germ cell-specific Foxc2 knockout resulted in an accelerated exhaustion of SSCs and eventually led to male infertility. Furthermore, FOXC2 prompts the expressions of negative regulators of cell cycle thereby ensures the SSCs reside in quiescence. Thus, this work proposes that the quiescent FOXC2+ SSCs are essential for maintaining the homeostasis and regeneration of spermatogenesis in adult mammals.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Zhang
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Wang Z, Fang K, Wan Y, Yin Y, Li M, Xu K, Li T, Cao Y, Lv Y, Lu G, Liu H, Huang T. TTC6-Mediated Stabilization of the Flagellum Annulus Ensures the Rapid and Directed Motion of Sperm. Cells 2023; 12:2091. [PMID: 37626901 PMCID: PMC10453820 DOI: 10.3390/cells12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sperm motility and structural integrity are essential for successful fertilization in vivo, and any hindrance of the correct assembly of the axoneme and peri-axonemal structures in the sperm flagellum can lead to fertility problems. While there has been considerable advancement in studying diseases related to the flagellum, the underlying mechanisms that control sperm movement are not yet fully understood. In this study, we reveal that the tetratricopeptide repeat protein 6 (Ttc6) gene, expressed mainly in the testes, plays a crucial role in maintaining male fertility in mice. We further demonstrate that the knockout of Ttc6 in mice results in decreased sperm motility and induces an abnormal circular swimming pattern, consequently leading to male subfertility. Morphological analysis showed an atypical hairpin-like appearance of the spermatozoa, and ultrastructural studies showed unsheathed flagella at the juncture between the midpiece and principal piece. Collectively, these findings suggest that TTC6 plays an essential role in maintaining the stability of the annulus region of the sperm flagellum, thus ensuring the swift and directed motion of sperm.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- The Model Animal Research Centre, Shandong University, Jinan 250010, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Shandong Key Laboratory of Reproductive Medicine, Shandong First Medical University, Jinan 250012, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| |
Collapse
|
13
|
Leung MR, Zeng J, Wang X, Roelofs MC, Huang W, Zenezini Chiozzi R, Hevler JF, Heck AJR, Dutcher SK, Brown A, Zhang R, Zeev-Ben-Mordehai T. Structural specializations of the sperm tail. Cell 2023; 186:2880-2896.e17. [PMID: 37327785 PMCID: PMC10948200 DOI: 10.1016/j.cell.2023.05.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Sperm motility is crucial to reproductive success in sexually reproducing organisms. Impaired sperm movement causes male infertility, which is increasing globally. Sperm are powered by a microtubule-based molecular machine-the axoneme-but it is unclear how axonemal microtubules are ornamented to support motility in diverse fertilization environments. Here, we present high-resolution structures of native axonemal doublet microtubules (DMTs) from sea urchin and bovine sperm, representing external and internal fertilizers. We identify >60 proteins decorating sperm DMTs; at least 15 are sperm associated and 16 are linked to infertility. By comparing DMTs across species and cell types, we define core microtubule inner proteins (MIPs) and analyze evolution of the tektin bundle. We identify conserved axonemal microtubule-associated proteins (MAPs) with unique tubulin-binding modes. Additionally, we identify a testis-specific serine/threonine kinase that links DMTs to outer dense fibers in mammalian sperm. Our study provides structural foundations for understanding sperm evolution, motility, and dysfunction at a molecular level.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Jianwei Zeng
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Marc C Roelofs
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Tzviya Zeev-Ben-Mordehai
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
14
|
Zhou L, Liu H, Liu S, Yang X, Dong Y, Pan Y, Xiao Z, Zheng B, Sun Y, Huang P, Zhang X, Hu J, Sun R, Feng S, Zhu Y, Liu M, Gui M, Wu J. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 2023; 186:2897-2910.e19. [PMID: 37295417 DOI: 10.1016/j.cell.2023.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Lunni Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Haobin Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Pengyu Huang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xixi Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jin Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Rui Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
15
|
Qu R, Zhang Z, Wu L, Li Q, Mu J, Zhao L, Yan Z, Wang W, Zeng Y, Liu R, Dong J, Li Q, Sun X, Wang L, Sang Q, Chen B, Kuang Y. ADGB variants cause asthenozoospermia and male infertility. Hum Genet 2023; 142:735-748. [PMID: 36995441 DOI: 10.1007/s00439-023-02546-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Asthenozoospermia is one of the main factors leading to male infertility, but the genetic mechanisms have not been fully elucidated. Variants in the androglobin (ADGB) gene were identified in an infertile male characterized by asthenozoospermia. The variants disrupted the binding of ADGB to calmodulin. Adgb-/- male mice were infertile due to reduced sperm concentration (< 1 × 106 /mL) and motility. Spermatogenesis was also abnormal, with malformation of both elongating and elongated spermatids, and there was an approximately twofold increase in apoptotic cells in the cauda epididymis. These exacerbated the decline in sperm motility. It is surprising that ICSI with testicular spermatids allows fertilization and eventually develops into blastocyst. Through mass spectrometry, we identified 42 candidate proteins that are involved in sperm assembly, flagella formation, and sperm motility interacting with ADGB. In particular, CFAP69 and SPEF2 were confirmed to bind to ADGB. Collectively, our study suggests the potential important role of ADGB in human fertility, revealing its relevance to spermatogenesis and infertility. This expands our knowledge of the genetic causes of asthenozoospermia and provides a theoretical basis for using ADGB as an underlying genetic marker for infertile males.
Collapse
Affiliation(s)
- Ronggui Qu
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qun Li
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Lin Zhao
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjing Wang
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Yang Zeng
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Ruyi Liu
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jie Dong
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Qiaoli Li
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Wang
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Qing Sang
- The Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering and the Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China.
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China.
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
16
|
Xiong M, Yin L, Gui Y, Lv C, Ma X, Guo S, Wu Y, Feng S, Fan X, Zhou S, Wang L, Wen Y, Wang X, Xie Q, Namekawa SH, Yuan S. ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. J Cell Biol 2023; 222:e202206067. [PMID: 36930220 PMCID: PMC10040813 DOI: 10.1083/jcb.202206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xv Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingzhen Xie
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology, Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Mirshahvaladi S, Topraggaleh TR, Bucak MN, Rahimizadeh P, Shahverdi A. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility. Cell Tissue Res 2023:10.1007/s00441-023-03744-y. [PMID: 36847810 DOI: 10.1007/s00441-023-03744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/23/2023] [Indexed: 02/28/2023]
Abstract
Asthenozoospermia, characterized by low sperm motility, is one of the most common causes of male infertility. While many intrinsic and extrinsic factors are involved in the etiology of asthenozoospermia, the molecular basis of this condition remains unclear. Since sperm motility results from a complex flagellar structure, an in-depth proteomic analysis of the sperm tail can uncover mechanisms underlying asthenozoospermia. This study quantified the proteomic profile of 40 asthenozoospermic sperm tails and 40 controls using TMT-LC-MS/MS. Overall, 2140 proteins were identified and quantified where 156 proteins have not been described earlier in sperm tail. There were 409 differentially expressed proteins (250 upregulated and 159 downregulated) in asthenozoospermia which by far is the highest number reported earlier. Further, bioinformatics analysis revealed several biological processes, including mitochondrial-related energy production, oxidative phosphorylation (OXPHOS), citric acid cycle (CAC), cytoskeleton, stress response, and protein metabolism altered in asthenozoospermic sperm tail samples. Collectively, our findings reveal the importance of mitochondrial energy production and induced stress response as potential mechanisms involved in the loss of sperm motility in asthenozoospermia.
Collapse
Affiliation(s)
- Shahab Mirshahvaladi
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Tohid Rezaei Topraggaleh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mustafa Numan Bucak
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Pegah Rahimizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Division of Experimental Surgery, McGill University, Montreal, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
18
|
Elango K, Karuthadurai T, Kumaresan A, Sinha MK, Ebenezer Samuel King JP, Nag P, Sharma A, Raval K, Paul N, Talluri TR. High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality. 3 Biotech 2023; 13:60. [PMID: 36714547 PMCID: PMC9877259 DOI: 10.1007/s13205-023-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Seminal plasma proteins are the major extrinsic factors that can modulate the sperm quality and functions. The present study was carried out to compare the proteomic profiles of seminal plasma from breeding bulls producing good and poor quality semen in an effort to understand the possible proteins associated with semen quality. A total of 910 and 715 proteins were detected in the seminal plasma of poor and good quality semen producing bulls, respectively. A total of 705 proteins were common to both the groups, in which 380 proteins were upregulated and 89 proteins were downregulated in the seminal plasma of poor quality semen, while 236 proteins were co-expressed. The proteins negatively influencing sperm functions such as CCL2, UQCRC2, and SAA1 were among the top ten upregulated proteins in the seminal plasma of poor quality semen. Proteins having a positive role in sperm functions (NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2) were among the top ten downregulated proteins in the seminal plasma of poor quality semen. The upregulation of oxidation-reduction process-related proteins, histone proteins (HIST3H2A, H2AFJ, H2AFZ, H2AFX, HIST2H2AB, H2AFV, HIST1H2AC, HIST2H2AC, LOC104975684, LOC524236, LOC614970, LOC529277), and ubiquinol-cytochrome-c reductase proteins (UQCRB, UQCRFS1, UQCRQ, UQCRC1, UQCRC2) indicate deranged oxidation-reduction equilibrium, chromatin condensation and spermatogenesis in poor quality semen producing bulls. The expression of proteins essential for motile cilium (CCDC114, CFAP206, TEKT4), chromatin integrity (PRM2), gamete fusion (IZUMO4, EQTN), hyperactivation, tyrosine phosphorylation, and capacitation [PI3K-Akt signalling pathway-related proteins (COL1A1, COL2A1, COL1A2, SPP1, PDGFA, NGF)] were down regulated in poor quality semen producing bulls. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03474-6.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| |
Collapse
|
19
|
Meng Z, Meng Q, Gao T, Zhou H, Xue J, Li H, Wu Y, Lv J. Identification of bi-allelic KIF9 loss-of-function variants contributing to asthenospermia and male infertility in two Chinese families. Front Endocrinol (Lausanne) 2023; 13:1091107. [PMID: 36686457 PMCID: PMC9846173 DOI: 10.3389/fendo.2022.1091107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Asthenozoospermia (AZS) is a leading cause of male infertility, affecting an estimated 18% of infertile patients. Kinesin proteins function as molecular motors capable of moving along microtubules. The highly conserved kinesin family member 9 (KIF9) localizes to the central microtubule pair in the flagella of Chlamydomonas cells. The loss of KIF9 expression in mice has been linked to AZS phenotypes. Methods Variant screening was performed by whole exome sequencing from 92 Chinese infertile patients with AZS. Western blot was used to was used for analyzing of candidate proteins expression. Patients' sperm samples were stained with immunofluorescent to visualise proteins localization and were visualised by transmission electron microscopy (TEM) to determine axoneme structures. Co-immunoprecipitation assay was used to verify the binding proteins of KIF9. In vitro fertilization (IVF) was used to evaluate the efficiency of clinical treatment. Results Bi-allelic KIF9 loss-of-function variants were identified in two unrelated Chinese males exhibiting atypical sperm motility phenotypes. Both of these men exhibited typical AZS and suffered from infertility together with the complete absence of KIF9 expression. In contrast to these KIF9-deficient patients, positive KIF9 staining was evident throughout the flagella of sperm from normal control individuals. KIF9 was able to interact with the microtubule central pair (CP) component hydrocephalus-inducing protein homolog (HYDIN) in human samples. And KIF9 was undetectable in spermatozoa harboring CP deletions. The morphologicy of KIF9-deficient spermatozoa appeared normal under gross examination and TEM. Like in mice, in vitro fertilization was sufficient to overcome the fertility issues for these two patients. Discussion These findings indicate that KIF9 associates with the central microtubules in human sperm and that it functions to specifically regulate flagellar swinging. Overall, these results offer greater insight into the biological functions of KIF9 in the assembly of the human flagella and its role in male fertility.
Collapse
Affiliation(s)
- Zhixiang Meng
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiajia Xue
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jinxing Lv
- Center for Reproduction, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
| |
Collapse
|
20
|
Zhang X, Zheng R, Liang C, Liu H, Zhang X, Ma Y, Liu M, Zhang W, Yang Y, Liu M, Jiang C, Ren Q, Wang Y, Chen S, Yang Y, Shen Y. Loss-of-function mutations in CEP78 cause male infertility in humans and mice. SCIENCE ADVANCES 2022; 8:eabn0968. [PMID: 36206347 PMCID: PMC9544341 DOI: 10.1126/sciadv.abn0968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Centrosomal protein dysfunction might cause ciliopathies. However, the role of centrosomal proteins in male infertility remains poorly defined. Here, we identified a pathogenic splicing mutation in CEP78 in male infertile patients with severely reduced sperm number and motility, and the typical multiple morphological abnormalities of the sperm flagella phenotype. We further created Cep78 knockout mice, which showed an extremely low sperm count, completely aberrant sperm morphology, and approximately null sperm motility. The infertility of the patients and knockout mice could not be rescued by an intracytoplasmic sperm injection treatment. Mechanistically, CEP78 might regulate USP16 expression, which further stabilizes Tektin levels via the ubiquitination pathway. Cep78 knockout mice also exhibited impairments in retina and outer hair cells of the cochlea. Collectively, our findings identified nonfunctional CEP78 as an indispensable factor contributing to male infertility and revealed a role for this gene in regulating retinal and outer hair cell function in mice.
Collapse
Affiliation(s)
- Xueguang Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Zheng
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chen Liang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haotian Liu
- Department of Otolaryngology–Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaozhen Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yongyi Ma
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China
| | - Mohan Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Man Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qingjia Ren
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Suren Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Sukhan ZP, Hossen S, Cho Y, Lee WK, Kho KH. Hdh-Tektin-4 Regulates Motility of Fresh and Cryopreserved Sperm in Pacific Abalone, Haliotis discus hannai. Front Cell Dev Biol 2022; 10:870743. [PMID: 35547812 PMCID: PMC9081794 DOI: 10.3389/fcell.2022.870743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
As structural components of sperm, tektins are thought to play a fundamental role in sperm flagellar motility. In this study, Tektin-4 (Hdh-TEKT4) gene was successfully cloned and characterized from the testis tissue in Pacific abalone, Haliotis discus hannai. The full-length cDNA of Hdh-TEKT4 was 1,983 bp, with a coding region of 1,350 bp encoding 51.83 kDa putative protein of 449 deduced amino acids. Hdh-TEKT4 contains a tektin domain including a nonapeptide signature motif (RPGVDLCRD). Fluorescence in situ hybridization revealed that Hdh-TEKT4 localized in the spermatids of Pacific abalone testis. qRT-PCR analysis showed that Hdh-TEKT4 was predominantly expressed in testis tissues. Hdh-TEKT4 mRNA expression was upregulated during the fully mature testicular developmental stage in both seasonal development and EAT exposed abalone. Furthermore, mRNA expression of Hdh-TEKT4 was significantly higher in sperm with higher motility than in sperm with lower motility during peak breeding season, induced spawning activity stages, and after cryopreservation in different cryoprotectants. Taken together, these results indicate that the expression of Hdh-TEKT4 in Pacific abalone sperm might have a positive correlation with sperm motility.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
23
|
Paris JR, Whiting JR, Daniel MJ, Ferrer Obiol J, Parsons PJ, van der Zee MJ, Wheat CW, Hughes KA, Fraser BA. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat Commun 2022; 13:1233. [PMID: 35264556 PMCID: PMC8907176 DOI: 10.1038/s41467-022-28895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis. Extreme colour pattern variation in male Trinidadian guppies are influenced by natural selection and sexual selection. Here, the authors phenotype and genotype four guppy lineages finding that colour pattern is associated with a diverse haplotype on an autosome.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - James R Whiting
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Mitchel J Daniel
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Joan Ferrer Obiol
- Departament de Microbiologia, Genètica i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paul J Parsons
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,NERC Environmental Omics Facility, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mijke J van der Zee
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
24
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
25
|
Gui M, Farley H, Anujan P, Anderson JR, Maxwell DW, Whitchurch JB, Botsch JJ, Qiu T, Meleppattu S, Singh SK, Zhang Q, Thompson J, Lucas JS, Bingle CD, Norris DP, Roy S, Brown A. De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell 2021; 184:5791-5806.e19. [PMID: 34715025 PMCID: PMC8595878 DOI: 10.1016/j.cell.2021.10.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.
Collapse
Affiliation(s)
- Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Farley
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Priyanka Anujan
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dale W Maxwell
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - J Josephine Botsch
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore
| | - Shimi Meleppattu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Thompson
- Biomedical Imaging Unit, Southampton General Hospital, Southampton, UK; Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, School of Clinical and Experimental Medicine, Southampton, UK
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119288 Singapore, Singapore.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Azhar M, Altaf S, Uddin I, Cheng J, Wu L, Tong X, Qin W, Bao J. Towards Post-Meiotic Sperm Production: Genetic Insight into Human Infertility from Mouse Models. Int J Biol Sci 2021; 17:2487-2503. [PMID: 34326689 PMCID: PMC8315030 DOI: 10.7150/ijbs.60384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Declined quality and quantity of sperm is currently the major cause of patients suffering from infertility. Male germ cell development is spatiotemporally regulated throughout the whole developmental process. While it has been known that exogenous factors, such as environmental exposure, diet and lifestyle, et al, play causative roles in male infertility, recent progress has revealed abundant genetic mutations tightly associated with defective male germline development. In mammals, male germ cells undergo dramatic morphological change (i.e., nuclear condensation) and chromatin remodeling during post-meiotic haploid germline development, a process termed spermiogenesis; However, the molecular machinery players and functional mechanisms have yet to be identified. To date, accumulated evidence suggests that disruption in any step of haploid germline development is likely manifested as fertility issues with low sperm count, poor sperm motility, aberrant sperm morphology or combined. With the continually declined cost of next-generation sequencing and recent progress of CRISPR/Cas9 technology, growing studies have revealed a vast number of disease-causing genetic variants associated with spermiogenic defects in both mice and humans, along with mechanistic insights partially attained and validated through genetically engineered mouse models (GEMMs). In this review, we mainly summarize genes that are functional at post-meiotic stage. Identification and characterization of deleterious genetic variants should aid in our understanding of germline development, and thereby further improve the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Muhammad Azhar
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Saba Altaf
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Islam Uddin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Jinbao Cheng
- The 901th hospital of Joint logistics support Force of PLA, Anhui, China
| | - Limin Wu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Xianhong Tong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| |
Collapse
|
27
|
Sun Z, Wang B, Chen C, Li C, Zhang Y. 5-HT6R null mutatrion induces synaptic and cognitive defects. Aging Cell 2021; 20:e13369. [PMID: 33960602 PMCID: PMC8208783 DOI: 10.1111/acel.13369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Serotonin 6 receptor (5-HT6R) is a promising target for a variety of human diseases, such as Alzheimer's disease (AD) and schizophrenia. However, the detailed mechanism underlying 5-HT6R activity in the central nervous system (CNS) is not fully understood. In the present study, 5-HT6R null mutant (5-HT6R-/- ) mice were found to exhibit cognitive deficiencies and abnormal anxiety levels. 5-HT6R is considered to be specifically localized on the primary cilia. We found that the loss of 5-HT6R affected the Sonic Hedgehog signaling pathway in the primary cilia. 5-HT6R-/- mice showed remarkable alterations in neuronal morphology, including dendrite complexity and axon initial segment morphology. Neurons lacking 5-HT6R exhibited increased neuronal excitability. Our findings highlight the complexity of 5-HT6R functions in the primary ciliary and neuronal physiology, supporting the theory that this receptor modulates neuronal morphology and transmission, and contributes to cognitive deficits in a variety of human diseases, such as AD, schizophrenia, and ciliopathies.
Collapse
Affiliation(s)
- Zehui Sun
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Bingjie Wang
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Chen Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Chenjian Li
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Yan Zhang
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina,PKU/IDG McGovern Institute for Brain ResearchBeijingChina
| |
Collapse
|
28
|
Liu Q, Guo Q, Guo W, Song S, Wang N, Chen X, Sun A, Yan L, Qiao J. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis. Cell Death Dis 2021; 12:478. [PMID: 33980814 PMCID: PMC8116340 DOI: 10.1038/s41419-021-03755-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qianying Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shi Song
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Nan Wang
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Andi Sun
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,grid.506261.60000 0001 0706 7839Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Gamallat Y, Fang X, Mai H, Liu X, Li H, Zhou P, Han D, Zheng S, Liao C, Yang M, Li Y, Zuo L, Sun L, Hu H, Li N. Bi-allelic mutation in Fsip1 impairs acrosome vesicle formation and attenuates flagellogenesis in mice. Redox Biol 2021; 43:101969. [PMID: 33901807 PMCID: PMC8099781 DOI: 10.1016/j.redox.2021.101969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Fibrous sheath interacting protein 1 (Fsip1) is a cytoskeletal structural protein of the sperm flagellar proteome. A few studies have reported that it plays a vital role in the tumorigenesis and cancer progression. However, little is known about the role of Fsip1 in spermatogenesis and mammalian sperm flagellogenesis. Fsip1 protein showed the highest expression in round spermatids, and was translocated from nucleus to the anterior region of the elongating spermatid head. To investigate its role we constructed homozygous Fsip1 null (Fsip1−/−) mice. We found that the homozygous Fsip1−/− mutant mice were infertile, with a low sperm count and impaired motility. Interestingly, a subtle phenotype characterized by abnormal head shape, and flagella deformities was observed in the sperm of Fsip1−/− mutant mice similar to the partial globozoospermia phenotype. Electron microscopy analysis of Fsip1−/− sperm revealed abnormal accumulation of mitochondria, disrupted axoneme and retained cytoplasm. Testicular sections showed increased cytoplasmic vacuoles in the elongated spermatid of Fsip1–/–mice, which indicated an intraflagellar transport (IFT) defect. Using proteomic approaches, we characterized the cellular components and the mechanism underlying this subtle phenotype. Our result indicated that Fsip1–/–downregulates the formation of acrosomal membrane and vesicles proteins, intraflagellar transport particles B, and sperm flagellum components. Our results suggest that Fsip1 is essential for normal spermiogenesis, and plays an essential role in the acrosome biogenesis and flagellogenesis by attenuating intraflagellar transport proteins. Disruption of Fsip1 leads to infertility with partial globozoospermia phenotype. Homozygous deletion of Fsip1 alters spermiogenesis. Fsip1 Knockout disrupts acrosome vesicle formation. Fsip1 motif analysis involves in internal fertilization.
Collapse
Affiliation(s)
- Yaser Gamallat
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanran Mai
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaonan Liu
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China; Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
30
|
Vitorino Carvalho A, Soler L, Thélie A, Grasseau I, Cordeiro L, Tomas D, Teixeira-Gomes AP, Labas V, Blesblois E. Proteomic Changes Associated With Sperm Fertilizing Ability in Meat-Type Roosters. Front Cell Dev Biol 2021; 9:655866. [PMID: 33898456 PMCID: PMC8063615 DOI: 10.3389/fcell.2021.655866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of male fertility remains unclear, especially in chickens, where decades of genetic selection increased male fertility variability as a side effect. As transcription and translation are highly limited in sperm, proteins are key molecules defining their functionality, making proteomic approaches one of the most adequate methods to investigate sperm capacity. In this context, it is interesting to combine complementary proteomic approaches to maximize the identification of proteins related to sperm-fertilizing ability. In the present study, we aimed at identifying proteins related to fertility in meat-type roosters, showing fertility variability. Fertile roosters (fertility rates higher than 70% after artificial insemination) differed from subfertile roosters (fertility rates lower than 40%) in their sperm mass motility. Fertile and subfertile sperm protein contents were compared using two complementary label-free quantitative proteomic methods: Intact Cell MALDI-TOF-Mass Spectrometry and GeLC-MS/MS. Combining the two strategies, 57 proteins were identified as differentially abundant. Most of them were described for the first time as differentially abundant according to fertility in this species. These proteins were involved in various molecular pathways including flagellum integrity and movement, mitochondrial functions, sperm maturation, and storage in female tract as well as oocyte-sperm interaction. Collectively, our data improved our understanding of chicken sperm biology by revealing new actors involved in the complexity of male fertility that depends on multiple cell functions to reach optimal rates. This explains the inability of reductionist in vitro fertility testing in predicting male fertility and suggests that the use of a combination of markers is a promising approach.
Collapse
Affiliation(s)
| | - Laura Soler
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
| | - Aurore Thélie
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
| | | | - Luiz Cordeiro
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Valérie Labas
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
| | | |
Collapse
|
31
|
Lavoie-Ouellet C, Clark MÈ, Ruiz J, Saindon AA, Leclerc P. The protein phosphatase with EF-hand domain 1 is a calmodulin-binding protein that interacts with proteins involved in sperm capacitation, binding to the zona pellucida, and motility. Mol Reprod Dev 2021; 88:302-317. [PMID: 33783058 DOI: 10.1002/mrd.23467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Spermatozoa are highly specialized cells whose fertilizing and motility functions highly depend on intracellular Ca2+ -mediated events and protein posttranslational modifications like phosphorylation. Our group previously identified PPEF1, the Ser/Thr phosphatase with EF-hand domain 1, among calmodulin-affinity pulled down sperm proteins. As the mammalian ortholog of the Drosophila phosphatase rdgC that dephosphorylates rhodopsin, PPEF1 has been studied mostly in the retina. The presence and importance of this Ca2+ /calmodulin-binding protein phosphatase has not been studied in sperm or testicular functions despite its high expression level. In this study, we show that PPEF1 is present in testicular germ cells, and in mouse, human and bull spermatozoa where it is localized predominantly in the neck and acrosome areas. Different transcript variants encoding four predicted isoforms were detected by reverse transcription polymerase chain reaction in bull testis, spermatocytes and spermatids. Phosphatase activity of immunoprecipitated sperm PPEF1 was detected using the substrate pNPP and analysis of the coimmunoprecipitated proteins reveal an enrichment in the biological processes of sperm capacitation, binding to the zona pellucida and motility. Although this is the first demonstration of the presence of PPEF1 in sperm and testicular germ cells, its involvement in sperm fertilizing ability and motility, and the mechanisms regulating its activity remain to be further investigated.
Collapse
Affiliation(s)
- Camille Lavoie-Ouellet
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Marie-Ève Clark
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Juliana Ruiz
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Andrée-Anne Saindon
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Pierre Leclerc
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
32
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Oura S, Kazi S, Savolainen A, Nozawa K, Castañeda J, Yu Z, Miyata H, Matzuk RM, Hansen JN, Wachten D, Matzuk MM, Prunskaite-Hyyryläinen R. Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility. PLoS Genet 2020; 16:e1008954. [PMID: 32785227 PMCID: PMC7444823 DOI: 10.1371/journal.pgen.1008954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/24/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
The flagellum is essential for sperm motility and fertilization in vivo. The axoneme is the main component of the flagella, extending through its entire length. An axoneme is comprised of two central microtubules surrounded by nine doublets, the nexin-dynein regulatory complex, radial spokes, and dynein arms. Failure to properly assemble components of the axoneme in a sperm flagellum, leads to fertility alterations. To understand this process in detail, we have defined the function of an uncharacterized gene, Cfap97 domain containing 1 (Cfap97d1). This gene is evolutionarily conserved in mammals and multiple other species, including Chlamydomonas. We have used two independently generated Cfap97d1 knockout mouse models to study the gene function in vivo. Cfap97d1 is exclusively expressed in testes starting from post-natal day 20 and continuing throughout adulthood. Deletion of the Cfap97d1 gene in both mouse models leads to sperm motility defects (asthenozoospermia) and male subfertility. In vitro fertilization (IVF) of cumulus-intact oocytes with Cfap97d1 deficient sperm yielded few embryos whereas IVF with zona pellucida-free oocytes resulted in embryo numbers comparable to that of the control. Knockout spermatozoa showed abnormal motility characterized by frequent stalling in the anti-hook position. Uniquely, Cfap97d1 loss caused a phenotype associated with axonemal doublet heterogeneity linked with frequent loss of the fourth doublet in the sperm stored in the epididymis. This study demonstrates that Cfap97d1 is required for sperm flagellum ultra-structure maintenance, thereby playing a critical role in sperm function and male fertility in mice.
Collapse
Affiliation(s)
- Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Samina Kazi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julio Castañeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Zhifeng Yu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryan M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jan N. Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | | |
Collapse
|
34
|
Ramesha KP, Mol P, Kannegundla U, Thota LN, Gopalakrishnan L, Rana E, Azharuddin N, Mangalaparthi KK, Kumar M, Dey G, Patil A, Saravanan K, Behera SK, Jeyakumar S, Kumaresan A, Kataktalware MA, Prasad TSK. Deep Proteome Profiling of Semen of Indian Indigenous Malnad Gidda (Bos indicus) Cattle. J Proteome Res 2020; 19:3364-3376. [DOI: 10.1021/acs.jproteome.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kerekoppa P. Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Uday Kannegundla
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Nizamuddin Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Arun Patil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kumar Saravanan
- Proteomics Facility, Thermo Fisher Scientific India Pvt. Ltd., Bangalore 560066, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sakthivel Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Arumugam Kumaresan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Mukund A. Kataktalware
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | |
Collapse
|
35
|
Peng L, Fu W, Wu X, He S, Zhao H, Liu J, Liu W, Xiao Y. Bisexual Fertile Triploid Zebrafish (Danio rerio): a Rare Case. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:443-455. [PMID: 32307628 DOI: 10.1007/s10126-020-09964-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have suggested that artificially induced triploid zebrafish are exclusively male-biased. Owing to greatly inhibited gonadal development for the artificially induced triploid fish, they are regarded to be sterile in general. In this article, partially fertile bisexual triploid zebrafish are produced by suppressing extrusion of the second polar body by heat shock. Histological observation confirms that the early gonadal development of these triploid zebrafish is normal. Backcrossing and self-crossing are used to demonstrate that both the female and male triploid zebrafish have partial reproductive ability. Their dynamic of chromosomes during meiosis is revealed from the chromosome preparations of gonads. Examination of the expressed gonadal development-related genes shows some molecular evidence of the normal gonadal development in the triploid zebrafish. Clearly, these fertile bisexual triploid zebrafish can provide a unique system to study sex determination, as well as aneuploidy associated human diseases such as infertility and pregnancy loss.
Collapse
Affiliation(s)
- Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xianlong Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Sheng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
- School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Heidary Z, Saliminejad K, Zaki-Dizaji M, Khorram Khorshid HR. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility. HUM FERTIL 2020; 23:83-92. [PMID: 30198353 DOI: 10.1080/14647273.2018.1504325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infertility is a worldwide problem affecting about 15% of couples trying to conceive. Asthenozoospermia (AZS) is one of the major causes of male infertility, diagnosed by reduced sperm motility, and has no effective therapeutic treatment. To date, a few genes have been found to be associated with AZS in humans and mice, but in most of cases its molecular aetiology remains unknown. Genetic causes of AZS may include chromosomal abnormalities, specific mutations of nuclear and mitochondrial genes. However recently, epigenetic factors, altered microRNAs expression signature, and proteomics have shed light on the pathophysiological basis of AZS. This review article summarises the reported genetic causes of AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Centre University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
37
|
Absence of murine CFAP61 causes male infertility due to multiple morphological abnormalities of the flagella. Sci Bull (Beijing) 2020; 65:854-864. [PMID: 36659204 DOI: 10.1016/j.scib.2020.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 01/21/2023]
Abstract
Impaired flagellar development and impaired motility of sperm is a cause of infertility in males. Several genes, including those of the AKAP, CCDC, CFAP, and DNAH families, among others, are involved in the "multiple morphological abnormalities of the flagella" (MMAF) phenotype; these are the most common causes of male infertility. The Cilia-and flagella-associated protein (CFAP) family includes six members reported to cause MMAF phenotypes: CFAP43, CFAP44, CFAP69, CFAP65, CFAP70, and CFAP251. Here, we found that cilia-and flagella-associated protein 61 (Cfap61) is highly expressed specifically in murine testes and show that the Cfap61-knockout male mice demonstrate MMAF phenotype, including sperm with short, coiled, and irregular flagella. Deletion of Cfap61 resulted in severe morphological and behavior abnormalities in sperm, reduced total sperm counts, impaired sperm motility, and led to male infertility. Notably, absence of Cfap61 impaired sperm flagella ultrastructural abnormalities on account of numerous distortions in multiple flagellum components. Immunostaining experiments in wild-type mice and healthy adult humans indicated that Cfap61 is initially localized at the neck of sperm, where it potentially functions in flagellum formation, and is later localized to the midpiece of the sperm. Thus, our study provides compelling evidence that dysregulation of Cfap61 affects sperm flagellum development and induces male infertility in mice. Further investigations of the CFAP61 gene in humans alongside clinical evidence showing MMAF phenotype in humans should contribute to our understanding of developmental processes underlying sperm flagellum formation and the pathogenic mechanisms that cause male infertility.
Collapse
|
38
|
Li W, Tan H, Liu J, Hu J, Cui J, Wang S, Liu Q, Hu F, Ren L, Tao M, Zhao R, Yang C, Qin Q, Liu S. Comparative analysis of testis transcriptomes associated with male infertility in triploid cyprinid fish. Reprod Fertil Dev 2019; 31:248-260. [PMID: 30086823 DOI: 10.1071/rd18034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/24/2018] [Indexed: 12/21/2022] Open
Abstract
Spermatogenesis involves a series of cellular transformations and thousands of regulated genes. Previously, we showed that the triploid fish (3nBY) cannot produce mature spermatozoa. In the present study, evaluation of the testis microstructure revealed that germ cells of 3nBY could develop into round spermatids, but then degenerated, resulting in male infertility. In this study we comparatively analysed the testis transcriptomes from 3nBY and its diploid parent YB and identified a series of differentially expressed genes (DEGs) that were enriched in the Wnt signalling pathway and the apoptotic and ubiquitin-mediated proteolysis processes in 3nBY. Gene ontology functional analyses revealed that some DEGs in 3nBY were directly associated with the process of gamete generation, development and sperm flagellum assembly. In addition, the expression of a number of genes related to meiosis (Inhibitor Of DNA Binding 2 (ID2), Ovo Like Transcriptional Repressor 1 (OVOL1)), mitochondria (ATP1b (ATPase Na+/K+ Transporting Subunit Beta 1), ATP2a (ATPase, Ca++ Transporting, Cardiac Muscle, Slow Twitch 2), ATP5a (ATP Synthase F1 Subunit Alpha), Mitochondrially Encoded Cytochrome C Oxidase I (COX1), NADH Dehydrogenase Subunit 4 (ND4)) and chromatin structure (Histone 1 (H1), Histone 2a (H2A), Histone 2b (H2B), Histone 3 (H3), Histone 4 (H4)) was lower in the testes of 3nBY, whereas the expression of genes encoding ubiquitin (Ubiquitin Conjugating Enzymes (UBEs), Ring Finger Proteins (RNFs)) and apoptosis (CASPs (Caspase 3, Caspase 7,Caspase 8), BCLs (B-Cell Lymphoma 3, B-Cell CLL/Lymphoma 2, B Cell CLL/Lymphoma 10)) proteins involved in spermatid degeneration was higher. These data suggest that the disrupted expression of genes associated with spermatogenesis and the increased expression of mitochondrial ubiquitin, which initiates cell apoptosis, may result in spermatid degeneration in male 3nBY. This study provides information regarding the potential molecular regulatory mechanisms underlying male infertility in polyploid fish.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| |
Collapse
|
39
|
Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol 2019; 17:e3000398. [PMID: 31408454 PMCID: PMC6691984 DOI: 10.1371/journal.pbio.3000398] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
In most mammals, the male to female sex ratio of offspring is about 50% because half of the sperm contain either the Y chromosome or X chromosome. In mice, the Y chromosome encodes fewer than 700 genes, whereas the X chromosome encodes over 3,000 genes. Although overall gene expression is lower in sperm than in somatic cells, transcription is activated selectively in round spermatids. By regulating the expression of specific genes, we hypothesized that the X chromosome might exert functional differences in sperm that are usually masked during fertilization. In this study, we found that Toll-like receptors 7/8 (TLR7/8) coding the X chromosome were expressed by approximately 50% of the round spermatids in testis and in approximately 50% of the epididymal sperm. Especially, TLR7 was localized to the tail, and TLR8 was localized to the midpiece. Ligand activation of TLR7/8 selectively suppressed the mobility of the X chromosome–bearing sperm (X-sperm) but not the Y-sperm without altering sperm viability or acrosome formation. The difference in sperm motility allowed for the separation of Y-sperm from X-sperm. Following in vitro fertilization using the ligand-selected high-mobility sperm, 90% of the embryos were XY male. Likewise, 83% of the pups obtained following embryo transfer were XY males. Conversely, the TLR7/8-activated, slow mobility sperm produced embryos and pups that were 81% XX females. Therefore, the functional differences between Y-sperm and X-sperm motility were revealed and related to different gene expression patterns, specifically TLR7/8 on X-sperm. The Toll-like receptors TLR7 and TLR8 are encoded by the X chromosome and expressed in X-containing sperm but not Y-containing sperm. TLR7/8 ligands suppress the motility of X-containing sperm, indicating that this receptor can differentially affect sperm function on the basis of the sex chromosome they bear.
Collapse
|
40
|
Bastin BR, Schneider SQ. Taxon-specific expansion and loss of tektins inform metazoan ciliary diversity. BMC Evol Biol 2019; 19:40. [PMID: 30704394 PMCID: PMC6357514 DOI: 10.1186/s12862-019-1360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022] Open
Abstract
Background Cilia and flagella are complex cellular structures thought to have first evolved in a last ciliated eukaryotic ancestor due to the conserved 9 + 2 microtubule doublet structure of the axoneme and associated proteins. The Tektin family of coiled-coil domain containing proteins was previously identified in cilia of organisms as diverse as green algae and sea urchin. While studies have shown that some Tektins are necessary for ciliary function, there has been no comprehensive phylogenetic survey of tektin genes. To fill this gap, we sampled tektin sequences broadly among metazoan and unicellular lineages in order to determine how the tektin gene complements evolved in over 100 different extant species. Results Using Bayesian and Maximum Likelihood analyses, we have ascertained with high confidence that all metazoan tektins arose from a single ancestral tektin gene in the last common ancestor of metazoans and choanoflagellates. Gene duplications gave rise to two tektin genes in the metazoan ancestor, and a subsequent expansion to three and four tektin genes in early bilaterian ancestors. While all four tektin genes remained highly conserved in most deuterostome and spiralian species surveyed, most tektin genes in ecdysozoans are highly derived with extensive gene loss in several lineages including nematodes and some crustaceans. In addition, while tektin-1, − 2, and − 4 have remained as single copy genes in most lineages, tektin-3/5 has been duplicated independently several times, notably at the base of the spiralian, vertebrate and hymenopteran (Ecdysozoa) clades. Conclusions We provide a solid description of tektin evolution supporting one, two, three, and four ancestral tektin genes in a holozoan, metazoan, bilaterian, and nephrozoan ancestor, respectively. The isolated presence of tektin in a cryptophyte and a chlorophyte branch invokes events of horizontal gene transfer, and that the last common ciliated eukaryotic ancestor lacked a tektin gene. Reconstructing the evolutionary history of the tektin complement in each extant metazoan species enabled us to pinpoint lineage specific expansions and losses. Our analysis will help to direct future studies on Tektin function, and how gain and loss of tektin genes might have contributed to the evolution of various types of cilia and flagella. Electronic supplementary material The online version of this article (10.1186/s12862-019-1360-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Present Address: Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
41
|
Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun 2019; 10:433. [PMID: 30683861 PMCID: PMC6347614 DOI: 10.1038/s41467-018-08182-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
Aberrant sperm flagella impair sperm motility and cause male infertility, yet the genes which have been identified in multiple morphological abnormalities of the flagella (MMAF) can only explain the pathogenic mechanisms of MMAF in a small number of cases. Here, we identify and functionally characterize homozygous loss-of-function mutations of QRICH2 in two infertile males with MMAF from two consanguineous families. Remarkably, Qrich2 knock-out (KO) male mice constructed by CRISPR-Cas9 technology present MMAF phenotypes and sterility. To elucidate the mechanisms of Qrich2 functioning in sperm flagellar formation, we perform proteomic analysis on the testes of KO and wild-type mice. Furthermore, in vitro experiments indicate that QRICH2 is involved in sperm flagellar development through stabilizing and enhancing the expression of proteins related to flagellar development. Our findings strongly suggest that the genetic mutations of human QRICH2 can lead to male infertility with MMAF and that QRICH2 is essential for sperm flagellar formation.
Collapse
|
42
|
Protein profile of Dabry's sturgeon (Acipenser dabryanus) spermatozoa and relationship to sperm quality. Anim Reprod Sci 2018; 201:1-11. [PMID: 30587384 DOI: 10.1016/j.anireprosci.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022]
Abstract
Knowledge of conditions affecting sperm quality is essential for efficient culture of fish for commercial purposes and conservation of species. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry were used to characterize the proteomic profile of Acipenser dabryanus spermatozoa relative to motility and fertilization capacity. There were differential amounts of protein in 313 spots in spermatozoa of males classified to have relatively greater or lesser spermatozoa quality. The functions of 43 of 50 selected proteins were identified. The proteins in 14 spots were involved in metabolism, and of these, proteins in 11 spots were highly abundant in spermatozoa of males categorized to have spermatozoa of greater quality, including pyruvate kinase, enolase B, phosphoglycerate kinase, lactate dehydrogenase, cytosolic malate dehydrogenase, brain creatine kinase b, Ckmb protein, and nucleoside diphosphate kinase. The proteins involved in mechanics of flagellum movement were identified, including the dynein intermediate chain, radial spoke head 1 homolog; ropporin-1-like, Bardet-Biedl syndrome 5, ADP-ribosylation factor-like protein 3, tektin-4, gamma-actin, and tubulin cytoskeleton proteins to be differentially abundant in spermatozoa that were classified relatively greater or lesser quality. Heat shock proteins, copper/zinc superoxide dismutase and peroxiredoxins, which are involved in stress response were of differential abundance in spermatozoa from males with spermatozoa in the two different classification groups. Proteins were also detected that are involved in protein folding and binding, or hydrolase activity. The results are valuable for the prediction of sperm quality and for reproduction management in A. dabryanus and other threatened species.
Collapse
|
43
|
Zheng Z, Zhou X, Cai Y, Chen E, Zhang X, Wang O, Wang Q, Liu H. TEKT4 Promotes Papillary Thyroid Cancer Cell Proliferation, Colony Formation, and Metastasis through Activating PI3K/Akt Pathway. Endocr Pathol 2018; 29:310-316. [PMID: 30251060 DOI: 10.1007/s12022-018-9549-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid carcinoma is the most common malignancy of the endocrine system worldwide, but its molecular mechanisms remain unclear. Some diseases are associated with TEKT4 gene. However, its role in thyroid carcinoma has yet to be fully examined. This study was designed to investigate the function of TEKT4 in papillary thyroid cancer (PTC). The effect of TEKT4 on aggressive behavior of PTC cell lines, namely, TPC1 and BCPAP, transfected with small interfering RNA was identified through cell proliferation, colony formation, migration, and invasion. Our previous study revealed that TEKT4 may be vital in PTC. In in vitro experiments, TEKT4 downregulation suppressed cell proliferation, colony formation, cell migration, and invasion. Our data also indicated that tumor-suppressing role of TEKT4 knockdown in PTC cell lines was associated with the silence of the PI3K/Akt pathway. Our study revealed that TEKT4 shows important biological implications and is worthy of further study.
Collapse
Affiliation(s)
- Zhouci Zheng
- Departments of Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofen Zhou
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yefeng Cai
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Endong Chen
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohua Zhang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ouchen Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxuan Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Haiguang Liu
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
44
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|
45
|
Jin C, Zhang Y, Wang ZP, Wang XX, Sun TC, Li XY, Tang JX, Cheng JM, Li J, Chen SR, Deng SL, Liu YX. EZH2 deletion promotes spermatogonial differentiation and apoptosis. Reproduction 2018; 154:615-625. [PMID: 28982932 DOI: 10.1530/rep-17-0302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.
Collapse
Affiliation(s)
- Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Changsha Reproductive Medicine Hospital, Changsha, China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Cheng Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Hu F, Xu K, Zhou Y, Wu C, Wang S, Xiao J, Wen M, Zhao R, Luo K, Tao M, Duan W, Liu S. Different expression patterns of sperm motility-related genes in testis of diploid and tetraploid cyprinid fish†. Biol Reprod 2018; 96:907-920. [PMID: 28340181 PMCID: PMC5441299 DOI: 10.1093/biolre/iox010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Sperm motility is an important standard to measure the fertility of male. In our previous study, we found that the diploid spermatozoa from allotetraploid hybrid (4nAT) had longer durations of rapid and slow progressive motility than haploid spermatozoa from common carp (COC). In this study, to explore sperm motility-related molecular mechanisms, we compared the testis tissues transcriptomes from 2-year-old male COC and 4nAT. The RNA-seq data revealed that 2985 genes were differentially expressed between COC and 4nAT, including 2216 upregulated and 769 downregulated genes in 4nAT. Some differentially expressed genes, such as tubulin genes, dynein, axonemal, heavy chain(dnah) genes, mitogen-activated protein kinase(mapk) genes, tektin 4, FOX transcription factors, proteasome genes, and ubiquitin carboxyl-terminal hydrolase(uchl) genes, are involved in the regulation of cell division, flagellar and ciliary motility, gene transcription, cytoskeleton, energy metabolism, and the ubiquitin–proteasome system, suggesting that these genes were related to sperm motility of the 4nAT. We confirmed the differential expression of 12 such genes in 4nAT by quantitative PCR. By western blotting, we also confirmed increased expression of Uchl3 in 4nAT testis. In addition, we identified 1915 and 2551 predicted long noncoding RNA (lncRNA) transcripts from testis tissue transcriptomes of COC and 4nAT, respectively. Of these, 1575 lncRNAs were specifically expressed in 4nAT and 939 were specifically expressed in COC. This study provides insights into the transcriptome profile of testis tissues from diploid and tetraploid, which are useful for research on regulatory mechanisms behind sperm motility in male polyploidy.
Collapse
Affiliation(s)
- Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Kang Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Yunfan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Min Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Wei Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, P. R. of China.,College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. of China
| |
Collapse
|
47
|
Budamagunta MS, Guo F, Sun N, Shibata B, FitzGerald PG, Voss JC, Hess JF. Production of recombinant human tektin 1, 2, and 4 and in vitro assembly of human tektin 1. Cytoskeleton (Hoboken) 2017; 75:3-11. [PMID: 29108134 DOI: 10.1002/cm.21418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022]
Abstract
Proteins predicted to be composed of large stretches of coiled-coil structure have often proven difficult to crystallize for structural determination. We have successfully applied EPR spectroscopic techniques to the study of the structure and assembly of full-length human vimentin assembled into native 11 nm filaments, in physiologic solution, circumventing the limitations of crystallizing shorter peptide sequences. Tektins are a small family of highly alpha helical filamentous proteins found in the doublet microtubules of cilia and related structures. Tektins exhibit several similarities to intermediate filaments (IFs): moderate molecular weight, highly alpha helical, hypothesized to be coiled-coil, and homo- and heteromeric assembly into long smooth filaments. In this report, we show the application of IF research methodologies to the study of tektin structure and assembly. To begin in vitro studies, expression constructs for human tektins 1, 2, and 4 were synthesized. Recombinant tektins were produced in E. coli and purified by chromatography. Preparations of tektin 1 successfully formed filaments. The recombinant human tektin 1 was used to produce antibodies which recognized an antigen in mouse testes, most likely present in sperm flagella. Finally, we report the creation of seven mutants to analyze predictions of coiled-coil structure in the rod 1A domain of tektin 1. Although this region is predicted to be coiled-coil, our EPR analysis does not reflect the parallel, in register, coiled-coil structure as demonstrated in vimentin and kinesin. These results document that tektin can be successfully expressed and assembled in vitro, and that SDSL EPR techniques can be used for structural analysis.
Collapse
Affiliation(s)
- M S Budamagunta
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, 95616
| | - F Guo
- Department of Molecular and Cellular Biology, University of California, Davis, California, 95616
| | - N Sun
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - B Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - P G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - J C Voss
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, 95616
| | - J F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| |
Collapse
|
48
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
49
|
TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 2017. [PMID: 28630322 PMCID: PMC5502601 DOI: 10.1073/pnas.1621279114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the "9+2" microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex (N-DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated-Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N-DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1-null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1-null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.
Collapse
|
50
|
Asghari A, Marashi SA, Ansari-Pour N. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst Biol Reprod Med 2017; 63:100-112. [DOI: 10.1080/19396368.2016.1263367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arvand Asghari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|