1
|
Xin J, Liu S. Identifying hub genes and dysregulated pathways in Duchenne muscular dystrophy. Int J Neurosci 2025; 135:375-387. [PMID: 38179963 DOI: 10.1080/00207454.2024.2302551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
PURPOSE The aim of this study was to identify the hub genes and dysregulated pathways in the progression of duchenne muscular dystrophy (DMD) and to unveil detailedly the cellular and molecular mechanisms associated with DMD for developing efficacious treatments in the future. MATERIAL AND METHODS Three mRNA microarray datasets (GSE13608, GSE38417 and GSE109178) were downloaded from Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) between DMD and normal tissues were obtained via R package. Function enrichment analyses were implemented respectively using DAVID online database. The network analysis of protein-protein interaction network (PPI) was conducted using String. Cytoscape and String were used to analyse modules and screen hub genes. The expression of the identified hub genes was confirmed in mdx mice through using qRT-PCR. RESULTS In total, 519 DEGs were identified, consisting of 393 upregulated genes and 126 downregulated genes. The enriched functions and pathways of the DEGs mainly involve extracellular matrix organization, collagen fibril organization, interferon-gamma-mediated signaling pathway, muscle contraction, endoplasmic reticulum lumen, MHC class II receptor activity, phagosome, graft-versus-host disease, cardiomyocytes, calcium signaling pathway. Twelve hub genes were discovered and biological process analysis proved that these genes were mainly enriched cell cycle, cell division. The result of qRT-PCR suggested that increase in expression of CD44, ECT2, TYMS, MAGEL2, HLA-DMA, SERPINH1, TNNT2 was confirmed in mdx mice and the downregulation of ASB2 and LEPREL1 was also observed. CONCLUSION In conclusion, DEGs and hub genes identified in the current research help us probe the molecular mechanisms underlying the pathogenesis and progression of DMD, and provide candidate targets for diagnosis and treatment of DMD.
Collapse
Affiliation(s)
- Jianzeng Xin
- College of life sciences, Yantai University, Yantai, P. R. China
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai, P. R. China
| |
Collapse
|
2
|
Pomeroy J, Borczyk M, Kawalec M, Hajto J, Carlson E, Svärd S, Verma S, Bareke E, Boratyńska-Jasińska A, Dymkowska D, Mellado-Ibáñez A, Laight D, Zabłocki K, Occhipinti A, Majewska L, Angione C, Majewski J, Yegutkin GG, Korostynski M, Zabłocka B, Górecki DC. Spatiotemporal diversity in molecular and functional abnormalities in the mdx dystrophic brain. Mol Med 2025; 31:108. [PMID: 40114059 PMCID: PMC11924731 DOI: 10.1186/s10020-025-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration and neuropsychiatric abnormalities. Loss of full-length dystrophins is both necessary and sufficient to initiate DMD. These isoforms are expressed in the hippocampus, cerebral cortex (Dp427c), and cerebellar Purkinje cells (Dp427p). However, our understanding of the consequences of their absence, which is crucial for developing targeted interventions, remains inadequate. We combined RNA sequencing with genome-scale metabolic modelling (GSMM), immunodetection, and mitochondrial assays to investigate dystrophic alterations in the brains of the mdx mouse model of DMD. The cerebra and cerebella were analysed separately to discern the roles of Dp427c and Dp427p, respectively. Investigating these regions at 10 days (10d) and 10 weeks (10w) followed the evolution of abnormalities from development to early adulthood. These time points also encompass periods before onset and during muscle inflammation, enabling assessment of the potential damage caused by inflammatory mediators crossing the dystrophic blood-brain barrier. For the first time, we demonstrated that transcriptomic and functional dystrophic alterations are unique to the cerebra and cerebella and vary substantially between 10d and 10w. The common anomalies involved altered numbers of retained introns and spliced exons across mdx transcripts, corresponding with alterations in the mRNA processing pathways. Abnormalities in the cerebra were significantly more pronounced in younger mice. The top enriched pathways included those related to metabolism, mRNA processing, and neuronal development. GSMM indicated dysregulation of glucose metabolism, which corresponded with GLUT1 protein downregulation. The cerebellar dystrophic transcriptome, while significantly altered, showed an opposite trajectory to that of the cerebra, with few changes identified at 10 days. These late defects are specific and indicate an impact on the functional maturation of the cerebella that occurs postnatally. Although no classical neuroinflammation markers or microglial activation were detected at 10 weeks, specific differences indicate that inflammation impacts DMD brains. Importantly, some dystrophic alterations occur late and may therefore be amenable to therapeutic intervention, offering potential avenues for mitigating DMD-related neuropsychiatric defects.
Collapse
Affiliation(s)
- Joanna Pomeroy
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Hajto
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Samuel Svärd
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Anna Boratyńska-Jasińska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alvaro Mellado-Ibáñez
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - David Laight
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Loydie Majewska
- Department of Pediatrics, McGill University, McGill Health Centre Glen Site, 1001 Decarie Blvd, EM02210, Montreal, QC, H4A 3J1, Canada
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz C Górecki
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
3
|
Pérez-López DO, Burke MJ, Hakim CH, Teixeira JA, Han J, Yue Y, Ren Z, Sun J, Chen SJ, Herzog RW, Yao G, Duan D. Circulatory CCL2 distinguishes Duchenne muscular dystrophy dogs. Dis Model Mech 2025; 18:dmm052137. [PMID: 40084478 DOI: 10.1242/dmm.052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
To establish a minimally invasive approach to studying body-wide muscle inflammation in the canine Duchenne muscular dystrophy (DMD) model, we evaluated 13 cytokines/chemokines in frozen sera from 90 affected (239 sera) and 73 normal (189 sera) dogs (0.00 to 45.2 months of age). Linear mixed-effects model analysis suggested that ten cytokines/chemokines were significantly elevated in affected dogs, including interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Further, cytokine/chemokine elevation coincided with the onset of muscle disease. Importantly, only CCL2 showed consistent changes at all ages, with the most pronounced increase occurring between 3 and 9 months. To study the effects of sample storage and type, we compared fresh versus frozen, and serum versus plasma, samples from the same dog. Similar readings were often obtained in fresh and frozen sera. Although plasma readings were significantly lower for many cytokines/chemokines, this did not compromise the robustness of CCL2 as a biomarker. Our study establishes a baseline for using circulatory cytokines/chemokines as biomarkers in canine DMD studies.
Collapse
Affiliation(s)
- Dennis O Pérez-López
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - James A Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Zewei Ren
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Jianguo Sun
- Department of Statistics, University of Missouri, Columbia, MO 65212, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Boccanegra B, Lenti R, Mantuano P, Conte E, Tulimiero L, Piercy RJ, Cappellari O, Hildyard JCW, De Luca A. Determination of qPCR reference genes suitable for normalizing gene expression in a novel model of Duchenne muscular dystrophy, the D2-mdx mouse. PLoS One 2024; 19:e0310714. [PMID: 39535998 PMCID: PMC11560031 DOI: 10.1371/journal.pone.0310714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked neuromuscular disorder arising from mutations in the dystrophin gene, leading to a progressive muscle wasting and disability. Currently there is no universal therapy, and there is thus a strong interest in preclinical studies for finding novel treatments. The most widely used and characterized mouse model for DMD is the C57BL/10ScSn-Dmdmdx/J (BL10-mdx), but this model exhibits mild pathology and does not replicate key features of human disease. The D2.B10-Dmdmdx/J (D2-mdx) mouse is a more recent model which seems to better mimics the complex human DMD phenotype. However, the D2-mdx mouse remains less extensively characterised than its BL10-mdx counterpart. Quantitative PCR analysis of gene expression is an important tool to monitor disease progression and evaluate therapeutic efficacy, but measurements must be normalised to stably expressed reference genes, which should ideally be determined and validated empirically. We examined gene expression in the gastrocnemius (GC), diaphragm (DIA) and heart in the D2-mdx mouse, the BL10-mdx mouse, and appropriate strain-matched wild-type controls (D2-wt and BL10-wt), from 4 to 52 weeks of age, using a large panel of candidate references (ACTB, AP3D1, CSNK2A2, GAPDH, HPRT1, PAK1IP1, RPL13A, SDHA, and in the heart, also HTATSF1 and HMBS). Data was analyzed using GeNorm, Bestkeeper, deltaCt and Normfinder algorithms to identify stable references under multiple possible scenarios. We show that CSNK2A2, AP3D1 and ACTB represent strong universal reference genes in both GC and DIA, regardless of age, muscle type, strain and genotype, while HTATSF1 and SDHA are optimal for the heart. GAPDH, HPRT1 and RPL13A were conversely revealed to be poor references, showing tissue-, age- or disease-specific changes in expression. Our results illustrate the importance of determining appropriate reference genes for specific comparative scenarios, but also reconfirm that universal panels can nevertheless be identified for normalising gene expression studies in even complex pathological states.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Lisamaura Tulimiero
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Richard J. Piercy
- Department of Clinical Sciences and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, United Kingdom
| | - Ornella Cappellari
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - John C. W. Hildyard
- Department of Clinical Sciences and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, United Kingdom
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
5
|
Wang X, Zhou X, Li C, Qu C, Shi Y, Li CJ, Kang X. Integrative analysis of whole genome bisulfite and transcriptome sequencing reveals the effect of sodium butyrate on DNA methylation in the differentiation of bovine skeletal muscle satellite cells. Genomics 2024; 116:110959. [PMID: 39521294 DOI: 10.1016/j.ygeno.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Butyric acid as a short-chain fatty acid (SCFA) is one of the key microbial metabolites of ruminants. Numerous studies indicate that butyrate is crucial in muscle growth and development, and plays an important molecular regulatory role mainly by inhibiting histone deacetylation. DNA methylation, a major epigenetic modification, is involved in cell differentiation. Butyrate, in addition to its role in acetylation modifications, can alter the DNA methylation status of cells. However, the impact of butyrate on the DNA methylation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. In this study, we developed a differentiation model of SMSCs and employed RNA sequencing (RNA-seq) alongside whole genome bisulfite sequencing (WGBS) to explore the effects of butyrate treatment on DNA methylation status and its relationship with gene expression. Treatment of SMSCs with sodium butyrate (NaB) at 1.0 mM for 2 days significantly inhibited the expression of DNA methyltransferases (DNMT1, DNMT2, DNMT3A) at the mRNA and protein levels while promoting the expression of demethylases (TET1, TET2, TET3) at mRNA levels. WGBS identified 4292 differentially methylated regions (DMRs), comprising 2294 hypermethylated and 1998 hypomethylated regions. These DMRs were significantly enriched in the MAPK, cAMP, and Wnt signaling pathways, all of which are implicated in myogenesis and development. Combining RNA-seq and WGBS data revealed a total of 130 overlapping genes, including MDFIC, CREBBP, DMD, LTBP2 and KLF4. These genes are predominantly involved in regulating the FoxO, MAPK, PI3K-Akt, and Wnt signaling pathways. This study provides new insights into the effects of butyrate-mediated DNA methylation on SMSC development and enhances our understanding of butyrate as an epigenetic modifier beyond its role in acetylation.
Collapse
Affiliation(s)
- Xiaowei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia Yinchuan 750002, China
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chang Qu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
6
|
Morales ED, Wang D, Burke MJ, Han J, Devine DD, Zhang K, Duan D. Transcriptional changes of genes encoding sarcoplasmic reticulum calcium binding and up-taking proteins in normal and Duchenne muscular dystrophy dogs. BMC Musculoskelet Disord 2024; 25:811. [PMID: 39402529 PMCID: PMC11472500 DOI: 10.1186/s12891-024-07927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cytosolic calcium overload contributes to muscle degradation in Duchenne muscular dystrophy (DMD). The sarcoplasmic reticulum (SR) is the primary calcium storage organelle in muscle. The sarco-endoplasmic reticulum ATPase (SERCA) pumps cytosolic calcium to the SR during muscle relaxation. Calcium is kept in the SR by calcium-binding proteins. METHODS Given the importance of the canine DMD model in translational studies, we examined transcriptional changes of SERCA (SERCA1 and SERCA2a), SERCA regulators (phospholamban, sarcolipin, myoregulin, and dwarf open reading frame), and SR calcium-binding proteins (calreticulin, calsequestrin 1, calsequestrin 2, and sarcalumenin) in skeletal muscle (diaphragm and extensor carpi ulnaris) and heart (left ventricle) in normal and affected male dogs by droplet digital PCR before the onset (≤ 2-m-old), at the active stage (8 to 16-m-old), and at the terminal stage (30 to 50-m-old) of the disease. Since many of these proteins are expressed in a fiber type-specific manner, we also evaluated fiber type composition in skeletal muscle. RESULTS In affected dog skeletal muscle, SERCA and its regulators were down-regulated at the active stage, but calcium-binding proteins (except for calsequestrin 1) were upregulated at the terminal stage. Surprisingly, nominal differences were detected in the heart. We also examined whether there exists sex-biased expression in 8 to 16-m-old dogs. Multiple transcripts were significantly downregulated in the heart and extensor carpi ulnaris muscle of female dogs. In fiber type analysis, we found significantly more type I fiber in the diaphragm of 8 to 16-m-old affected dogs, and significantly more type II fibers in the extensor carpi ulnaris of 30 to 50-m-old affected dogs. However, no difference was detected between male and female dogs. CONCLUSIONS Our study adds new knowledge to the understanding of muscle calcium regulation in normal and dystrophic canines.
Collapse
Affiliation(s)
- Emily D Morales
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongxin Wang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Drake D Devine
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Sothers H, Hu X, Crossman DK, Si Y, Alexander MS, McDonald MLN, King PH, Lopez MA. Late-Stage Skeletal Muscle Transcriptome in Duchenne muscular dystrophy shows a BMP4-Induced Molecular Signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590266. [PMID: 38712206 PMCID: PMC11071434 DOI: 10.1101/2024.04.19.590266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease due to loss-of-function mutations in the DYSTROPHIN gene. DMD-related skeletal muscle wasting is typified by an aberrant immune response involving upregulation of TGFβ family of cytokines. We previously demonstrated that bone morphogenetic protein 4 (BMP4) is increased in DMD and BMP4 stimulation induces a 20-fold upregulation of Smad8 transcription. However, the role of BMP4 in severely affected DMD skeletal muscle is unknown. We hypothesized that transcriptomic signatures in severely affected human DMD skeletal muscle are driven by BMP4 signaling. Transcriptomes from skeletal muscle biopsies of late-stage DMD vs. non-DMD controls and C2C12 muscle cells with or without BMP4 stimulation were generated by RNA-Seq and analyzed for single transcript differential expression as well as by Ingenuity Pathway Analysis and weighted gene co-expression network analyses. A total of 2,328 and 5,291 transcripts in the human muscle and C2C12 muscle cells, respectively, were differentially expressed. We identified an overlapping molecular signature of 1,027 genes dysregulated in DMD muscle that were induced in BMP4-stimulated C2C12 muscle cells. Highly upregulated DMD transcripts that overlapped with BMP4-stimulated C2C12 muscle cells included ADAMTS3, HCAR2, SERPING1, SMAD8 , and UNC13C. The DMD transcriptome was characterized by dysregulation of pathways involving immune function, extracellular matrix remodeling, and metabolic/mitochondrial function. In summary, we define a late-stage DMD skeletal muscle transcriptome that substantially overlaps with the BMP4-induced molecular signature in C2C12 muscle cells. This supports BMP4 as a disease-driving regulator of transcriptomic changes in late-stage DMD skeletal muscle and expands our understanding of the evolution of dystrophic signaling pathways and their associated gene networks that could be explored for therapeutic development.
Collapse
|
8
|
Xie Z, Liu C, Sun C, Lu Y, Wu S, Liu Y, Wang Q, Wan Y, Wang Y, Yu M, Meng L, Deng J, Zhang W, Wang Z, Yang C, Yuan Y, Xie Z. A novel biomarker of fibrofatty replacement in dystrophinopathies identified by integrating transcriptome, magnetic resonance imaging, and pathology data. J Cachexia Sarcopenia Muscle 2024; 15:98-111. [PMID: 38146684 PMCID: PMC10834313 DOI: 10.1002/jcsm.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND We aimed to analyse genome-wide transcriptome differences between Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients and identify biomarkers that correlate well with muscle magnetic resonance imaging (MRI) and histological fibrofatty replacement in both patients, which have not been reported. METHODS One hundred and one male patients with dystrophinopathies (55 DMD and 46 BMD) were enrolled. Muscle-derived genome-wide RNA-sequencing was performed in 31 DMD patients, 29 BMD patients, and 11 normal controls. Fibrofatty replacement was scored on muscle MRI and histological levels in all patients. A unique pipeline, single-sample gene set enrichment analysis combined with Spearman's rank correlations (ssGSEA-Cor) was developed to identify the most correlated gene signature for fibrofatty replacement. Quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, and single-nucleus RNA-sequencing (snRNA-seq) were performed in the remaining patients to validate the most correlated gene signature. RESULTS Comparative transcriptomic analysis revealed that 31 DMD muscles were characterized by a significant increase of inflammation/immune response and extracellular matrix remodelling compared with 29 BMD muscles (P < 0.05). The ssGSEA-Cor pipeline revealed that the gene set of CDKN2A and CDKN2B was the most correlated gene signature for fibrofatty replacement (histological rs = 0.744, P < 0.001; MRI rs = 0.718, P < 0.001). Muscle qRT-PCR confirmed that CDKN2A mRNA expression in both 15 DMD (median = 25.007, P < 0.001) and 12 BMD (median = 5.654, P < 0.001) patients were significantly higher than that in controls (median = 1.101), while no significant difference in CDKN2B mRNA expression was found among DMD, BMD, and control groups. In the 27 patients, muscle CDKN2A mRNA expression respectively correlated with muscle MRI (rs = 0.883, P < 0.001) and histological fibrofatty replacement (rs = 0.804, P < 0.001) and disease duration (rs = 0.645, P < 0.001) and North Star Ambulatory Assessment total scores (rs = -0.698, P < 0.001). Muscle western blot analysis confirmed that both four DMD (median = 2.958, P < 0.05) and four BMD (median = 1.959, P < 0.01) patients had a significantly higher level of CDKN2A protein expression than controls (median = 1.068). The snRNA-seq analysis of two DMD muscles revealed that CDKN2A was mainly expressed in fibro-adipogenic progenitors, satellite cells, and myoblasts. CONCLUSIONS We identify CDKN2A expression as a novel biomarker of fibrofatty replacement, which might be a new target for antifibrotic therapy in dystrophinopathies.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Chang Liu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chengyue Sun
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Yanyu Lu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Shiyi Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yilin Liu
- Department of PathologyPeking Union Medical College HospitalBeijingChina
| | - Qi Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yalan Wan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yikang Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Meng Yu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Lingchao Meng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Jianwen Deng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Wei Zhang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhaoxia Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yun Yuan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhiying Xie
- Department of NeurologyPeking University First HospitalBeijingChina
| |
Collapse
|
9
|
Vidal J, Fernandez EA, Wohlwend M, Laurila P, Lopez‐Mejia A, Ochala J, Lobrinus AJ, Kayser B, Lopez‐Mejia IC, Place N, Zanou N. Ryanodine receptor type 1 content decrease-induced endoplasmic reticulum stress is a hallmark of myopathies. J Cachexia Sarcopenia Muscle 2023; 14:2882-2897. [PMID: 37964752 PMCID: PMC10751419 DOI: 10.1002/jcsm.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Decreased ryanodine receptor type 1 (RyR1) protein levels are a well-described feature of recessive RYR1-related myopathies. The aim of the present study was twofold: (1) to determine whether RyR1 content is also decreased in other myopathies and (2) to investigate the mechanisms by which decreased RyR1 protein triggers muscular disorders. METHODS We used publicly available datasets, muscles from human inflammatory and mitochondrial myopathies, an inducible muscle-specific RYR1 recessive mouse model and RyR1 knockdown in C2C12 muscle cells to measure RyR1 content and endoplasmic reticulum (ER) stress markers. Proteomics, lipidomics, molecular biology and transmission electron microscopy approaches were used to decipher the alterations associated with the reduction of RyR1 protein levels. RESULTS RYR1 transcripts were reduced in muscle samples of patients suffering from necrotizing myopathy (P = 0.026), inclusion body myopathy (P = 0.003), polymyositis (P < 0.001) and juvenile dermatomyositis (P < 0.001) and in muscle samples of myotonic dystrophy type 2 (P < 0.001), presymptomatic (P < 0.001) and symptomatic (P < 0.001) Duchenne muscular dystrophy, Becker muscular dystrophy (P = 0.004) and limb-girdle muscular dystrophy type 2A (P = 0.004). RyR1 protein content was also significantly decreased in inflammatory myopathy (-75%, P < 0.001) and mitochondrial myopathy (-71%, P < 0.001) muscles. Proteomics data showed that depletion of RyR1 protein in C2C12 myoblasts leads to myotubes recapitulating the common molecular alterations observed in myopathies. Mechanistically, RyR1 protein depletion reduces ER-mitochondria contact length (-26%, P < 0.001), Ca2+ transfer to mitochondria (-48%, P = 0.002) and the mitophagy gene Parkinson protein 2 transcripts (P = 0.037) and induces mitochondrial accumulation (+99%, P = 0.005) and dysfunction (P < 0.001). This was associated to the accumulation of deleterious sphingolipid species. Our data showed increased levels of the ER stress marker chaperone-binding protein/glucose regulated protein 78, GRP78-Bip, in RyR1 knockdown myotubes (+45%, P = 0.046), in mouse RyR1 recessive muscles (+58%, P = 0.001) and in human inflammatory (+96%, P = 0.006) and mitochondrial (+64%, P = 0.049) myopathy muscles. This was accompanied by increased protein levels of the pro-apoptotic protein CCAAT-enhancer-binding protein homologous protein, CHOP-DDIT3, in RyR1 knockdown myotubes (+27%, P < 0.001), mouse RyR1 recessive muscles (+63%, P = 0.009), human inflammatory (+50%, P = 0.038) and mitochondrial (+51%, P = 0.035) myopathy muscles. In publicly available datasets, the decrease in RYR1 content in myopathies was also associated to increased ER stress markers and RYR1 transcript levels are inversely correlated with ER stress markers in the control population. CONCLUSIONS Decreased RyR1 is commonly observed in myopathies and associated to ER stress in vitro, in mouse muscle and in human myopathy muscles, suggesting a potent role of RyR1 depletion-induced ER stress in the pathogenesis of myopathies.
Collapse
Affiliation(s)
- Jeremy Vidal
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Eric A. Fernandez
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Martin Wohlwend
- Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Andrea Lopez‐Mejia
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Julien Ochala
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alexander J. Lobrinus
- Institute of PathologyLausanne University Hospital (CHUV)LausanneSwitzerland
- Department of Clinical PathologyUniversity Hospital GenevaGenevaSwitzerland
| | - Bengt Kayser
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
10
|
Wang L, Gao P, Li C, Liu Q, Yao Z, Li Y, Zhang X, Sun J, Simintiras C, Welborn M, McMillin K, Oprescu S, Kuang S, Fu X. A single-cell atlas of bovine skeletal muscle reveals mechanisms regulating intramuscular adipogenesis and fibrogenesis. J Cachexia Sarcopenia Muscle 2023; 14:2152-2167. [PMID: 37439037 PMCID: PMC10570087 DOI: 10.1002/jcsm.13292] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/23/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis. METHODS Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate heterogeneities and differentiation processes of individual cell types and differences between cattle breeds. Experiments were conducted to validate the function and specificity of identified key regulatory and marker genes. Integrated analysis with multiple published human and non-human primate datasets was performed to identify common mechanisms. RESULTS A total of 32 708 cells and 21 clusters were identified, including fibro/adipogenic progenitor (FAP) and other resident and infiltrating cell types. We identified an endomysial adipogenic FAP subpopulation enriched for COL4A1 and CFD (log2FC = 3.19 and 1.92, respectively; P < 0.0001) and a perimysial fibrogenic FAP subpopulation enriched for COL1A1 and POSTN (log2FC = 1.83 and 0.87, respectively; P < 0.0001), both of which were likely derived from an unspecified subpopulation. Further analysis revealed more progressed adipogenic programming of Wagyu FAPs and more advanced fibrogenic programming of Brahman FAPs. Mechanistically, NAB2 drives CFD expression, which in turn promotes adipogenesis. CFD expression in FAPs of young cattle before the onset of intramuscular adipogenesis was predictive of IMF contents in adulthood (R2 = 0.885, P < 0.01). Similar adipogenic and fibrogenic FAPs were identified in humans and monkeys. In aged humans with metabolic syndrome and progressed Duchenne muscular dystrophy (DMD) patients, increased CFD expression was observed (P < 0.05 and P < 0.0001, respectively), which was positively correlated with adipogenic marker expression, including ADIPOQ (R2 = 0.303, P < 0.01; and R2 = 0.348, P < 0.01, respectively). The specificity of Postn/POSTN as a fibrogenic FAP marker was validated using a lineage-tracing mouse line. POSTN expression was elevated in Brahman FAPs (P < 0.0001) and DMD patients (P < 0.01) but not in aged humans. Strong interactions between vascular cells and FAPs were also identified. CONCLUSIONS Our study demonstrates the feasibility of beef cattle as a model for studying IMF and IMC. We illustrate the FAP programming during intramuscular adipogenesis and fibrogenesis and reveal the reliability of CFD as a predictor and biomarker of IMF accumulation in cattle and humans.
Collapse
Affiliation(s)
- Leshan Wang
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Peidong Gao
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Chaoyang Li
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Qianglin Liu
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Zeyang Yao
- Department of Computer ScienceOld Dominion UniversityNorfolkVAUSA
| | - Yuxia Li
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Xujia Zhang
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Jiangwen Sun
- Department of Computer ScienceOld Dominion UniversityNorfolkVAUSA
| | | | - Matthew Welborn
- School of Veterinary MedicineLouisiana State UniversityBaton RougeLAUSA
| | - Kenneth McMillin
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| | | | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteINUSA
| | - Xing Fu
- School of Animal ScienceLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
11
|
Ford H, Liu Q, Fu X, Strieder-Barboza C. White Adipose Tissue Heterogeneity in the Single-Cell Era: From Mice and Humans to Cattle. BIOLOGY 2023; 12:1289. [PMID: 37886999 PMCID: PMC10604679 DOI: 10.3390/biology12101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Adipose tissue is a major modulator of metabolic function by regulating energy storage and by acting as an endocrine organ through the secretion of adipokines. With the advantage of next-generation sequencing-based single-cell technologies, adipose tissue has been studied at single-cell resolution, thus providing unbiased insight into its molecular composition. Recent single-cell RNA sequencing studies in human and mouse models have dissected the transcriptional cellular heterogeneity of subcutaneous (SAT), visceral (VAT), and intramuscular (IMAT) white adipose tissue depots and revealed unique populations of adipose tissue progenitor cells, mature adipocytes, immune cell, vascular cells, and mesothelial cells that play direct roles on adipose tissue function and the development of metabolic disorders. In livestock species, especially in bovine, significant gaps of knowledge remain in elucidating the roles of adipose tissue cell types and depots on driving the pathogenesis of metabolic disorders and the distinct fat deposition in VAT, SAT, and IMAT in meat animals. This review summarizes the current knowledge on the transcriptional and functional cellular diversity of white adipose tissue revealed by single-cell approaches and highlights the depot-specific function of adipose tissue in different mammalian species, with a particular focus on recent findings and future implications in cattle.
Collapse
Affiliation(s)
- Hunter Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
| | - Qianglin Liu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Xing Fu
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA; (Q.L.); (X.F.)
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA;
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
12
|
Suárez-Calvet X, Fernández-Simón E, Natera D, Jou C, Pinol-Jurado P, Villalobos E, Ortez C, Monceau A, Schiava M, Codina A, Verdu-Díaz J, Clark J, Laidler Z, Mehra P, Gokul-Nath R, Alonso-Perez J, Marini-Bettolo C, Tasca G, Straub V, Guglieri M, Nascimento A, Diaz-Manera J. Decoding the transcriptome of Duchenne muscular dystrophy to the single nuclei level reveals clinical-genetic correlations. Cell Death Dis 2023; 14:596. [PMID: 37673877 PMCID: PMC10482944 DOI: 10.1038/s41419-023-06103-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.
Collapse
Affiliation(s)
- Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Daniel Natera
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Patricia Pinol-Jurado
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Carlos Ortez
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Anna Codina
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - José Verdu-Díaz
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Rasya Gokul-Nath
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jorge Alonso-Perez
- Neuromuscular Disease Unit. Neurology Department. Hospital Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Andrés Nascimento
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain.
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK.
| |
Collapse
|
13
|
Heezen LGM, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nat Commun 2023; 14:4909. [PMID: 37582915 PMCID: PMC10427630 DOI: 10.1038/s41467-023-40555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the DMD gene, leading to lack of dystrophin. Chronic muscle damage eventually leads to histological alterations in skeletal muscles. The identification of genes and cell types driving tissue remodeling is a key step to developing effective therapies. Here we use spatial transcriptomics in two Duchenne muscular dystrophy mouse models differing in disease severity to identify gene expression signatures underlying skeletal muscle pathology and to directly link gene expression to muscle histology. We perform deconvolution analysis to identify cell types contributing to histological alterations. We show increased expression of specific genes in areas of muscle regeneration (Myl4, Sparc, Hspg2), fibrosis (Vim, Fn1, Thbs4) and calcification (Bgn, Ctsk, Spp1). These findings are confirmed by smFISH. Finally, we use differentiation dynamic analysis in the D2-mdx muscle to identify muscle fibers in the present state that are predicted to become affected in the future state.
Collapse
Affiliation(s)
- L G M Heezen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Han X, Ji G, Wang N, Yi L, Mao Y, Deng J, Wu H, Ma S, Han J, Bu Y, Fang P, Liu J, Sun F, Song X. Comprehensive analysis of m 6A regulators characterized by the immune microenvironment in Duchenne muscular dystrophy. J Transl Med 2023; 21:459. [PMID: 37434186 DOI: 10.1186/s12967-023-04301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked, incurable, degenerative neuromuscular disease that is exacerbated by secondary inflammation. N6-methyladenosine (m6A), the most common base modification of RNA, has pleiotropic immunomodulatory effects in many diseases. However, the role of m6A modification in the immune microenvironment of DMD remains elusive. METHODS Our study retrospectively analyzed the expression data of 56 muscle tissues from DMD patients and 26 from non-muscular dystrophy individuals. Based on single sample gene set enrichment analysis, immune cells infiltration was identified and the result was validated by flow cytometry analysis and immunohistochemical staining. Then, we described the features of genetic variation in 26 m6A regulators and explored their relationship with the immune mircoenvironment of DMD patients through a series of bioinformatical analysis. At last, we determined subtypes of DMD patients by unsupervised clustering analysis and characterized the molecular and immune characteristics in different subgroups. RESULTS DMD patients have a sophisticated immune microenvironment that is significantly different from non-DMD controls. Numerous m6A regulators were aberrantly expressed in the muscle tissues of DMD and inversely related to most muscle-infiltrating immune cell types and immune response-related signaling pathways. A diagnostic model involving seven m6A regulators was established using LASSO. Furthermore, we determined three m6A modification patterns (cluster A/B/C) with distinct immune microenvironmental characteristics. CONCLUSION In summary, our study demonstrated that m6A regulators are intimately linked to the immune microenvironment of muscle tissues in DMD. These findings may facilitate a better understanding of the immunomodulatory mechanisms in DMD and provide novel strategies for the treatment.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yafei Mao
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jinliang Deng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jingzhe Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yi Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, 050000, Hebei, People's Republic of China
| | - Juyi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Fanzhe Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Ichiseki T, Shimasaki M, Ueda S, Hirata H, Souma D, Kawahara N, Ueda Y. Efficacy of Rectal Systemic Administration of Mesenchymal Stem Cells to Injury Sites via the CXCL12/CXCR4 Axis to Promote Regeneration in a Rabbit Skeletal Muscle Injury Model. Cells 2023; 12:1729. [PMID: 37443763 PMCID: PMC10340610 DOI: 10.3390/cells12131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been transplanted directly into lesions or injected intravenously. The administration of MSCs using these delivery methods requires specialized knowledge, techniques, and facilities. Here, we describe intrarectal systemic administration of MSCs, a simple, non-invasive route for homing to the injury sites to promote the regeneration of skeletal muscle injuries. Using a cardiotoxin (CTX)-induced rabbit skeletal muscle injury model, homing to the site of muscle injury was confirmed by intrarectal administration of MSCs; the time required for homing after intrarectal administration was approximately 5 days. In addition, the C-X-C chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor-4 (CXCR4) axis was found to be involved in the homing process. Histopathological examinations showed that skeletal muscle regeneration was promoted in the MSCs-administered group compared to the CTX-only group. Myosin heavy polypeptide 3 (Myh3) expression, an indicator of early muscle regeneration, was detected earlier in the intrarectal MSCs group compared to the CTX-only group. These findings indicate that intrarectal administration of MSCs is effective in homing to the injured area, where they promote injury repair. Since intrarectal administration is a simple and non-invasive delivery route, these findings may be valuable in future research on stem cell therapy.
Collapse
Affiliation(s)
- Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Miyako Shimasaki
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan;
| | - Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Hiroaki Hirata
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Daisuke Souma
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku 920-0293, Japan; (S.U.)
| | - Yoshimichi Ueda
- Department of Pathology, Keiju Medical Center, 94, Tomioka-machi, Nanao 926-0816, Japan
| |
Collapse
|
16
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
17
|
Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci 2023; 24:ijms24119434. [PMID: 37298386 DOI: 10.3390/ijms24119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
18
|
Gόrecki DC, Rumney RMH. The P2X7 purinoceptor in pathogenesis and treatment of dystrophino- and sarcoglycanopathies. Curr Opin Pharmacol 2023; 69:102357. [PMID: 36842388 DOI: 10.1016/j.coph.2023.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 02/26/2023]
Abstract
Dystrophinopathy and sarcoglycanopathies are incurable diseases caused by mutations in the genes encoding dystrophin or members of the dystrophin associated protein complex (DAPC). Restoration of the missing dystrophin or sarcoglycans via genetic approaches is complicated by the downsides of personalised medicines and immune responses against re-expressed proteins. Thus, the targeting of disease mechanisms downstream from the mutant protein has a strong translational potential. Acute muscle damage causes release of large quantities of ATP, which activates P2X7 purinoceptors, resulting in inflammation that clears dead tissues and triggers regeneration. However, in dystrophic muscles, loss of α-sarcoglycan ecto-ATPase activity further elevates extracellular ATP (eATP) levels, exacerbating the pathology. Moreover, seemingly compensatory P2X7 upregulation in dystrophic muscle cells, combined with high eATP leads to further damage. Accordingly, P2X7 blockade alleviated dystrophic damage in mouse models of both dystrophinopathy and sarcoglycanopathy. Existing P2X7 blockers could be re-purposed for the treatment of these highly debilitating diseases.
Collapse
Affiliation(s)
- Dariusz C Gόrecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| |
Collapse
|
19
|
Jama A, Alshudukhi AA, Burke S, Dong L, Kamau JK, Voss AA, Ren H. Lipin1 plays complementary roles in myofibre stability and regeneration in dystrophic muscles. J Physiol 2023; 601:961-978. [PMID: 36715084 PMCID: PMC9992338 DOI: 10.1113/jp284085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by dystrophin mutations, leading to the loss of sarcolemmal integrity, and resulting in progressive myofibre necrosis and impaired muscle function. Our previous studies suggest that lipin1 is important for skeletal muscle regeneration and myofibre integrity. Additionally, we discovered that mRNA expression levels of lipin1 were significantly reduced in skeletal muscle of DMD patients and the mdx mouse model. To understand the role of lipin1 in dystrophic muscle, we generated dystrophin/lipin1 double knockout (DKO) mice, and compared the limb muscle pathology and function of wild-type B10, muscle-specific lipin1 deficient (lipin1Myf5cKO ), mdx and DKO mice. We found that further knockout of lipin1 in dystrophic muscle exhibited a more severe phenotype characterized by increased necroptosis, fibrosis and exacerbated membrane damage in DKO compared to mdx mice. In barium chloride-induced muscle injury, both lipin1Myf5cKO and DKO showed prolonged regeneration at day 14 post-injection, suggesting that lipin1 is critical for muscle regeneration. In situ contractile function assays showed that lipin1 deficiency in dystrophic muscle led to reduced specific force production. Using a cell culture system, we found that lipin1 deficiency led to elevated expression levels of necroptotic markers and medium creatine kinase, which could be a result of sarcolemmal damage. Most importantly, restoration of lipin1 inhibited the elevation of necroptotic markers in differentiated primary lipin1-deficient myoblasts. Overall, our data suggests that lipin1 plays complementary roles in myofibre stability and muscle function in dystrophic muscles, and overexpression of lipin1 may serve as a potential therapeutic strategy for dystrophic muscles. KEY POINTS: We identified that lipin1 mRNA expression levels are significantly reduced in skeletal muscles of Duchenne muscular dystrophy patients and mdx mice. We found that further depletion of lipin1 in skeletal muscles of mdx mice induces more severe dystrophic phenotypes, including enhanced myofibre sarcolemma damage, muscle necroptosis, inflammation, fibrosis and reduced specific force production. Lipin1 deficiency leads to elevated expression levels of necroptotic markers, whereas restoration of lipin1 inhibits their expression. Our results suggest that lipin1 is functionally complementary to dystrophin in muscle membrane integrity and muscle regeneration.
Collapse
Affiliation(s)
- Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Abdullah A. Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Steve Burke
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Lixin Dong
- Mumetel LLC, University Technology Park at IIT, Chicago, IL, USA
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Andrew Alvin Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
20
|
Downregulation of Dystrophin Expression Occurs across Diverse Tumors, Correlates with the Age of Onset, Staging and Reduced Survival of Patients. Cancers (Basel) 2023; 15:cancers15051378. [PMID: 36900171 PMCID: PMC10000051 DOI: 10.3390/cancers15051378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Altered dystrophin expression was found in some tumors and recent studies identified a developmental onset of Duchenne muscular dystrophy (DMD). Given that embryogenesis and carcinogenesis share many mechanisms, we analyzed a broad spectrum of tumors to establish whether dystrophin alteration evokes related outcomes. Transcriptomic, proteomic, and mutation datasets from fifty tumor tissues and matching controls (10,894 samples) and 140 corresponding tumor cell lines were analyzed. Interestingly, dystrophin transcripts and protein expression were found widespread across healthy tissues and at housekeeping gene levels. In 80% of tumors, DMD expression was reduced due to transcriptional downregulation and not somatic mutations. The full-length transcript encoding Dp427 was decreased in 68% of tumors, while Dp71 variants showed variability of expression. Notably, low expression of dystrophins was associated with a more advanced stage, older age of onset, and reduced survival across different tumors. Hierarchical clustering analysis of DMD transcripts distinguished malignant from control tissues. Transcriptomes of primary tumors and tumor cell lines with low DMD expression showed enrichment of specific pathways in the differentially expressed genes. Pathways consistently identified: ECM-receptor interaction, calcium signaling, and PI3K-Akt are also altered in DMD muscle. Therefore, the importance of this largest known gene extends beyond its roles identified in DMD, and certainly into oncology.
Collapse
|
21
|
Wei Y, Su Q, Li X. Identification of hub genes related to Duchenne muscular dystrophy by weighted gene co-expression network analysis. Medicine (Baltimore) 2022; 101:e32603. [PMID: 36596079 PMCID: PMC9803489 DOI: 10.1097/md.0000000000032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The study was aimed to analyze the potential gene modules and hub genes of Duchenne muscular dystrophy (DMD) by weighted gene co-expression network analysis. METHODS Based on the muscular dystrophy tissue expression profiling microarray GSE13608 from gene expression omnibus, gene co-expression modules were analyzed using weighted gene co-expression network analysis, gene modules related to DMD were screened, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed, and signature genes in the modules were screened. The protein-protein interaction network was constructed through Cytoscape, and hub genes were identified. The expression of hub genes in DMD versus normal muscle tissue was calculated in GSE6011. RESULTS 12 co-expressed gene modules were identified, among which black module was significantly related to DMD. The characteristic genes in the module were enriched in the regulation of immune effector processes, immune response mediated by immunoglobulin, immune response mediated by B cells, etc. SERPING1, F13A1, C1S, C1R, and HLA-DPA1 were considered as hub genes in protein-protein interaction network. Analysis of GSE6011 shows that expression of SERPING1, F13A1, C1S, C1R, and HLA-DPA1 in tissues of DMD patients were higher than normal. CONCLUSION SERPING1, F13A1, C1S, C1R, and HLA-DPA1 may participate in the development of DMD by regulating innate immunity and inflammation, and they are expected to be a potential biomarker and novel therapeutic targets for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaohong Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- * Correspondence: Xiaohong Li, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China (e-mail: )
| |
Collapse
|
22
|
Fujikura Y, Yamanouchi K, Sugihara H, Hatakeyama M, Abe T, Ato S, Oishi K. Ketogenic diet containing medium-chain triglyceride ameliorates transcriptome disruption in skeletal muscles of rat models of duchenne muscular dystrophy. Biochem Biophys Rep 2022; 32:101378. [PMID: 36386439 PMCID: PMC9661647 DOI: 10.1016/j.bbrep.2022.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a myopathy characterized by progressive muscle weakness caused by a mutation in the dystrophin gene on the X chromosome. We recently showed that a medium-chain triglyceride-containing ketogenic diet (MCTKD) improves skeletal muscle myopathy in a CRISPR/Cas9 gene-edited rat model of DMD. We examined the effects of the MCTKD on transcription profiles in skeletal muscles of the model rats to assess the underlying mechanism of the MCTKD-induced improvement in DMD. DMD rats were fed MCTKD or normal diet (ND) from weaning to 9 months, and wild-type rats were fed with the ND, then tibialis anterior muscles were sampled for mRNA-seq analysis. Pearson correlation heatmaps revealed a one-node transition in the expression profile between DMD and wild-type rats. A total of 10,440, 11,555 and 11,348 genes were expressed in the skeletal muscles of wild-type and ND-fed DMD rats the MCTKD-fed DMD rats, respectively. The MCTKD reduced the number of DMD-specific mRNAs from 1624 to 1350 and increased the number of mRNAs in common with wild-type rats from 9931 to 9998. Among 2660 genes were differentially expressed in response to MCTKD intake, the mRNA expression of 1411 and 1249 of them was respectively increased and decreased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that the MCTKD significantly suppressed the mRNA expression of genes associated with extracellular matrix organization and inflammation. This suggestion was consistent with our previous findings that the MCTKD significantly suppressed fibrosis and inflammation in DMD rats. In contrast, the MCTKD significantly increased the mRNA expression of genes associated with oxidative phosphorylation and ATP production pathways, suggesting altered energy metabolism. The decreased and increased mRNA expression of Sln and Atp2a1 respectively suggested that Sarco/endoplasmic reticulum Ca2+-ATPase activation is involved in the MCTKD-induced improvement of skeletal muscle myopathy in DMD rats. This is the first report to examine transcription profiles in the skeletal muscle of CRISPR/Cas9 gene-edited DMD model rats and the effect of MCTKD feeding on it. We evaluated the effects of an MCTKD on the global transcriptome of DMD rats. DMD rats are suitable models of human DMD for assessing transcriptome changes. MCTKD suppressed fibrosis and inflammatory pathways at the transcriptional level. MCTKD upregulated oxidative phosphorylation and ATP production pathways. MCTKD might activate SERCA at the transcriptional level.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Corresponding author. Laboratory of Veterinary Physiology, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | - Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoru Ato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Chiba, Noda, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Kashiwa, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
23
|
Riddell DO, Hildyard JCW, Harron RCM, Hornby NL, Wells DJ, Piercy RJ. Serum inflammatory cytokines as disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Dis Model Mech 2022; 15:dmm049394. [PMID: 36444978 PMCID: PMC9789403 DOI: 10.1242/dmm.049394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease, caused by mutations in the dystrophin gene, characterised by cycles of muscle degeneration, inflammation and regeneration. Recently, there has been renewed interest specifically in drugs that ameliorate muscle inflammation in DMD patients. The DE50-MD dog is a model of DMD that closely mimics the human DMD phenotype. We quantified inflammatory proteins in serum from wild-type (WT) and DE50-MD dogs aged 3-18 months to identify biomarkers for future pre-clinical trials. Significantly higher concentrations of C-C motif chemokine ligand 2 (CCL2), granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2), keratinocyte chemotactic-like (KC-like, homologous to mouse CXCL1), TNFα (or TNF), and interleukins IL2, IL6, IL7, IL8 (CXCL8), IL10, IL15 and IL18 were detected in DE50-MD serum compared to WT serum. Of these, CCL2 best differentiated the two genotypes. The relative level of CCL2 mRNA was greater in the vastus lateralis muscle of DE50-MD dogs than in that of WT dogs, and CCL2 was expressed both within and at the periphery of damaged myofibres. Serum CCL2 concentration was significantly associated with acid phosphatase staining in vastus lateralis biopsy samples in DE50-MD dogs. In conclusion, the serum cytokine profile suggests that inflammation is a feature of the DE50-MD phenotype. Quantification of serum CCL2 in particular is a useful non-invasive biomarker of the DE50-MD phenotype.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Rachel C. M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Natasha L. Hornby
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| |
Collapse
|
24
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
25
|
Wang LR, Fan X, Goh WWB. Protocol to identify functional doppelgängers and verify biomedical gene expression data using doppelgangerIdentifier. STAR Protoc 2022; 3:101783. [PMID: 36317174 PMCID: PMC9617193 DOI: 10.1016/j.xpro.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Functional doppelgängers (FDs) are independently derived sample pairs that confound machine learning model (ML) performance when assorted across training and validation sets. Here, we detail the use of doppelgangerIdentifier (DI), providing software installation, data preparation, doppelgänger identification, and functional testing steps. We demonstrate examples with biomedical gene expression data. We also provide guidelines for the selection of user-defined function arguments. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).
Collapse
Affiliation(s)
- Li Rong Wang
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Xiuyi Fan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Centre for Biomedical Informatics, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Vu Hong A, Bourg N, Sanatine P, Poupiot J, Charton K, Gicquel E, Massourides E, Spinazzi M, Richard I, Israeli D. Dlk1-Dio3 cluster miRNAs regulate mitochondrial functions in the dystrophic muscle in Duchenne muscular dystrophy. Life Sci Alliance 2022; 6:6/1/e202201506. [PMID: 36265896 PMCID: PMC9585966 DOI: 10.26508/lsa.202201506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by impaired expression of dystrophin. Whereas mitochondrial dysfunction is thought to play an important role in DMD, the mechanism of this dysfunction remains to be clarified. Here we demonstrate that in DMD and other muscular dystrophies, a large number of Dlk1-Dio3 clustered miRNAs (DD-miRNAs) are coordinately up-regulated in regenerating myofibers and in the serum. To characterize the biological effect of this dysregulation, 14 DD-miRNAs were simultaneously overexpressed in vivo in mouse muscle. Transcriptomic analysis revealed highly similar changes between the muscle ectopically overexpressing 14 DD-miRNAs and the mdx diaphragm, with naturally up-regulated DD-miRNAs. Among the commonly dysregulated pathway we found repressed mitochondrial metabolism, and oxidative phosphorylation (OxPhos) in particular. Knocking down the DD-miRNAs in iPS-derived skeletal myotubes resulted in increased OxPhos activities. The data suggest that (1) DD-miRNAs are important mediators of dystrophic changes in DMD muscle, (2) mitochondrial metabolism and OxPhos in particular are targeted in DMD by coordinately up-regulated DD-miRNAs. These findings provide insight into the mechanism of mitochondrial dysfunction in muscular dystrophy.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Nathalie Bourg
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Peggy Sanatine
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Jerome Poupiot
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Karine Charton
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Evelyne Gicquel
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | | | - Marco Spinazzi
- Neuromuscular Reference Center, Department of Neurology, CHU d’Angers, Angers, France,Institute of Neurobiology and Neuropathology CHU d’Angers, Angers, France
| | - Isabelle Richard
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - David Israeli
- Genethon, Evry, France .,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| |
Collapse
|
27
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
28
|
Boulinguiez A, Duhem C, Mayeuf-Louchart A, Pourcet B, Sebti Y, Kondratska K, Montel V, Delhaye S, Thorel Q, Beauchamp J, Hebras A, Gimenez M, Couvelaere M, Zecchin M, Ferri L, Prevarskaya N, Forand A, Gentil C, Ohana J, Piétri-Rouxel F, Bastide B, Staels B, Duez H, Lancel S. NR1D1 controls skeletal muscle calcium homeostasis through myoregulin repression. JCI Insight 2022; 7:153584. [PMID: 35917173 PMCID: PMC9536258 DOI: 10.1172/jci.insight.153584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impairs SERCA-dependent SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracts the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from Duchenne myopathy patients display lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorates SR calcium homeostasis, and improves muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic interest for mitigating myopathy.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Duhem
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Alicia Mayeuf-Louchart
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Benoit Pourcet
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Yasmine Sebti
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Kateryna Kondratska
- U1003 - PHYCEL - Physiologie Cellulaire, University Lille, Inserm,, Villeneuve d'Ascq, France
| | - Valérie Montel
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale,, Lille, France
| | - Stéphane Delhaye
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Quentin Thorel
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Justine Beauchamp
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Aurore Hebras
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marion Gimenez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marie Couvelaere
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Mathilde Zecchin
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lise Ferri
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Natalia Prevarskaya
- U1003 - PHYCEL - Physiologie Cellulaire, University Lille, Inserm, Villeneuve d'Ascq, France
| | - Anne Forand
- INSERM U845, Université Paris Descartes, Paris, France
| | | | - Jessica Ohana
- MyoLine, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Bruno Bastide
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale,, Lille, France
| | - Bart Staels
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Helene Duez
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Steve Lancel
- U1011-EGID, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
29
|
Rumney RMH, Róg J, Chira N, Kao AP, Al-Khalidi R, Górecki DC. P2X7 Purinoceptor Affects Ectopic Calcification of Dystrophic Muscles. Front Pharmacol 2022; 13:935804. [PMID: 35910348 PMCID: PMC9333129 DOI: 10.3389/fphar.2022.935804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ectopic calcification (EC) of myofibers is a pathological feature of muscle damage in Duchenne muscular dystrophy (DMD). Mineralisation of muscle tissue occurs concomitantly with macrophage infiltration, suggesting a link between ectopic mineral deposition and inflammation. One potential link is the P2X7 purinoceptor, a key trigger of inflammation, which is expressed on macrophages but also up-regulated in dystrophic muscle cells. To investigate the role of P2X7 in dystrophic calcification, we utilised the Dmd mdx-βgeo dystrophin-null mouse model of DMD crossed with a global P2X7 knockout (P2rx7 -/- ) or with our novel P2X7 knockin-knockout mouse (P2x7 KiKo ), which expresses P2X7 in macrophages but not muscle cells. Total loss of P2X7 increased EC, indicating that P2X7 overexpression is a protective mechanism against dystrophic mineralisation. Given that muscle-specific P2X7 ablation did not affect dystrophic EC, this underlined the role of P2X7 receptor expression on the inflammatory cells. Serum phosphate reflected dystrophic calcification, with the highest serum phosphate levels found in genotypes with the most ectopic mineral. To further investigate the underlying mechanisms, we measured phosphate release from cells in vitro, and found that dystrophic myoblasts released less phosphate than non-dystrophic cells. Treatment with P2X7 antagonists increased phosphate release from both dystrophic and control myoblasts indicating that muscle cells are a potential source of secreted phosphate while macrophages protect against ectopic mineralisation. Treatment of cells with high phosphate media engendered mineral deposition, which was decreased in the presence of the P2X7 agonist BzATP, particularly in cultures of dystrophic cells, further supporting a protective role for P2X7 against ectopic mineralisation in dystrophic muscle.
Collapse
Affiliation(s)
- Robin M. H. Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Justyna Róg
- Department of Biochemistry, Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Chira
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Alexander P. Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Rasha Al-Khalidi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Dariusz C. Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
30
|
Walsh CJ, Batt J, Herridge MS, Mathur S, Bader GD, Hu P, Khatri P, Dos Santos CC. Comprehensive multi-cohort transcriptional meta-analysis of muscle diseases identifies a signature of disease severity. Sci Rep 2022; 12:11260. [PMID: 35789175 PMCID: PMC9253003 DOI: 10.1038/s41598-022-15003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle diseases share common pathological features suggesting common underlying mechanisms. We hypothesized there is a common set of genes dysregulated across muscle diseases compared to healthy muscle and that these genes correlate with severity of muscle disease. We performed meta-analysis of transcriptional profiles of muscle biopsies from human muscle diseases and healthy controls. Studies obtained from public microarray repositories fulfilling quality criteria were divided into six categories: (i) immobility, (ii) inflammatory myopathies, (iii) intensive care unit (ICU) acquired weakness (ICUAW), (iv) congenital muscle diseases, (v) chronic systemic diseases, (vi) motor neuron disease. Patient cohorts were separated in discovery and validation cohorts retaining roughly equal proportions of samples for the disease categories. To remove bias towards a specific muscle disease category we repeated the meta-analysis five times by removing data sets corresponding to one muscle disease class at a time in a "leave-one-disease-out" analysis. We used 636 muscle tissue samples from 30 independent cohorts to identify a 52 gene signature (36 up-regulated and 16 down-regulated genes). We validated the discriminatory power of this signature in 657 muscle biopsies from 12 additional patient cohorts encompassing five categories of muscle diseases with an area under the receiver operating characteristic curve of 0.91, 83% sensitivity, and 85.3% specificity. The expression score of the gene signature inversely correlated with quadriceps muscle mass (r = -0.50, p-value = 0.011) in ICUAW and shoulder abduction strength (r = -0.77, p-value = 0.014) in amyotrophic lateral sclerosis (ALS). The signature also positively correlated with histologic assessment of muscle atrophy in ALS (r = 0.88, p-value = 1.62 × 10-3) and fibrosis in muscular dystrophy (Jonckheere trend test p-value = 4.45 × 10-9). Our results identify a conserved transcriptional signature associated with clinical and histologic muscle disease severity. Several genes in this conserved signature have not been previously associated with muscle disease severity.
Collapse
Affiliation(s)
- C J Walsh
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J Batt
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - M S Herridge
- Interdepartmental Division of Critical Care, University Health Network, University of Toronto, Toronto, ON, Canada
| | - S Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - G D Bader
- The Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - P Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - P Khatri
- Stanford Institute for Immunity, Transplantation and Infection (ITI), Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, USA
| | - C C Dos Santos
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada. .,Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Wang LR, Choy XY, Goh WWB. Doppelgänger Spotting in Biomedical Gene Expression Data. iScience 2022; 25:104788. [PMID: 35992056 PMCID: PMC9382272 DOI: 10.1016/j.isci.2022.104788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Doppelgänger effects (DEs) occur when samples exhibit chance similarities such that, when split across training and validation sets, inflates the trained machine learning (ML) model performance. This inflationary effect causes misleading confidence on the deployability of the model. Thus, so far, there are no tools for doppelgänger identification or standard practices to manage their confounding implications. We present doppelgangerIdentifier, a software suite for doppelgänger identification and verification. Applying doppelgangerIdentifier across a multitude of diseases and data types, we show the pervasive nature of DEs in biomedical gene expression data. We also provide guidelines toward proper doppelgänger identification by exploring the ramifications of lingering batch effects from batch imbalances on the sensitivity of our doppelgänger identification algorithm. We suggest doppelgänger verification as a useful procedure to establish baselines for model evaluation that may inform on whether feature selection and ML on the data set may yield meaningful insights. Doppelgänger effects inflate the machine learning performance Doppelgänger effects exist in RNA-Seq and microarray gene expression data Developed doppelgangerIdentifier, a software to identify and verify doppelgängers Provide guidelines for proper doppelgänger identification
Collapse
Affiliation(s)
- Li Rong Wang
- School of Computer Science and Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xin Yun Choy
- School of Computer Science and Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Wilson Wen Bin Goh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Centre for Biomedical Informatics, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Corresponding author
| |
Collapse
|
32
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Han X, Han J, Wang N, Ji G, Guo R, Li J, Wu H, Ma S, Fang P, Song X. Identification of Auxiliary Biomarkers and Description of the Immune Microenvironmental Characteristics in Duchenne Muscular Dystrophy by Bioinformatical Analysis and Experiment. Front Neurosci 2022; 16:891670. [PMID: 35720684 PMCID: PMC9204148 DOI: 10.3389/fnins.2022.891670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a genetic muscle disorder characterized by progressive muscle wasting associated with persistent inflammation. In this study, we aimed to identify auxiliary biomarkers and further characterize the immune microenvironment in DMD. Methods Differentially expressed genes (DEGs) were identified between DMD and normal muscle tissues based on Gene Expression Omnibus (GEO) datasets. Bioinformatical analysis was used to screen and identify potential diagnostic signatures of DMD which were further validated by real-time quantitative reverse transcription PCR (RT-qPCR). We also performed single-sample gene-set enrichment analysis (ssGSEA) to characterize the proportion of tissue-infiltrating immune cells to determine the inflammatory state of DMD. Results In total, 182 downregulated genes and 263 upregulated genes were identified in DMD. C3, SPP1, TMSB10, TYROBP were regarded as adjunct biomarkers and successfully validated by RT-qPCR. The infiltration of macrophages, CD4+, and CD8+ T cells was significantly higher (p < 0.05) in DMD compared with normal muscle tissues, while the infiltration of activated B cells, CD56dim natural killer cells, and type 17 T helper (Th17) cells was lower. In addition, the four biomarkers (C3, SPP1, TMSB10, TYROBP) were strongly associated with immune cells and immune-related pathways in DMD muscle tissues. Conclusion Analyses demonstrated C3, SPP1, TMSB10, and TYROBP may serve as biomarkers and enhance our understanding of immune responses in DMD. The infiltration of immune cells into the muscle microenvironment might exert a critical impact on the development and occurrence of DMD.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jingzhe Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jing Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
34
|
Zhang X, Lee J, Goh WWB. An Investigation of How Normalisation and Local Modelling Techniques Confound Machine Learning Performance In a Mental Health Study. Heliyon 2022; 8:e09502. [PMID: 35663731 PMCID: PMC9156999 DOI: 10.1016/j.heliyon.2022.e09502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 01/12/2023] Open
Abstract
Machine learning (ML) is increasingly deployed on biomedical studies for biomarker development (feature selection) and diagnostic/prognostic technologies (classification). While different ML techniques produce different feature sets and classification performances, less understood is how upstream data processing methods (e.g., normalisation) impact downstream analyses. Using a clinical mental health dataset, we investigated the impact of different normalisation techniques on classification model performance. Gene Fuzzy Scoring (GFS), an in-house developed normalisation technique, is compared against widely used normalisation methods such as global quantile normalisation, class-specific quantile normalisation and surrogate variable analysis. We report that choice of normalisation technique has strong influence on feature selection. with GFS outperforming other techniques. Although GFS parameters are tuneable, good classification model performance (ROC-AUC > 0.90) is observed regardless of the GFS parameter settings. We also contrasted our results against local modelling, which is meant to improve the resolution and meaningfulness of classification models built on heterogeneous data. Local models, when derived from non-biologically meaningful subpopulations, perform worse than global models. A deep dive however, revealed that the factors driving cluster formation has little to do with the phenotype-of-interest. This finding is critical, as local models are often seen as a superior means of clinical data modelling. We advise against such naivete. Additionally, we have developed a combinatorial reasoning approach using both global and local paradigms: This helped reveal potential data quality issues or underlying factors causing data heterogeneity that are often overlooked. It also assists to explain the model as well as provides directions for further improvement.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jimmy Lee
- North Region & Department of Psychosis, Institute of Mental Health, 539747, Singapore
- Corresponding author.
| | - Wilson Wen Bin Goh
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
- Centre for Biomedical Informatics, Nanyang Technological University, 636921, Singapore
- Corresponding author.
| |
Collapse
|
35
|
Stirm M, Fonteyne LM, Shashikadze B, Stöckl JB, Kurome M, Keßler B, Zakhartchenko V, Kemter E, Blum H, Arnold GJ, Matiasek K, Wanke R, Wurst W, Nagashima H, Knieling F, Walter MC, Kupatt C, Fröhlich T, Klymiuk N, Blutke A, Wolf E. Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscul Disord 2022; 32:543-556. [DOI: 10.1016/j.nmd.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
|
36
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
37
|
Vera CD, Zhang A, Pang PD, Wu JC. Treating Duchenne Muscular Dystrophy: The Promise of Stem Cells, Artificial Intelligence, and Multi-Omics. Front Cardiovasc Med 2022; 9:851491. [PMID: 35360042 PMCID: PMC8960141 DOI: 10.3389/fcvm.2022.851491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/20/2023] Open
Abstract
Muscular dystrophies are chronic and debilitating disorders caused by progressive muscle wasting. Duchenne muscular dystrophy (DMD) is the most common type. DMD is a well-characterized genetic disorder caused by the absence of dystrophin. Although some therapies exist to treat the symptoms and there are ongoing efforts to correct the underlying molecular defect, patients with muscular dystrophies would greatly benefit from new therapies that target the specific pathways contributing directly to the muscle disorders. Three new advances are poised to change the landscape of therapies for muscular dystrophies such as DMD. First, the advent of human induced pluripotent stem cells (iPSCs) allows researchers to design effective treatment strategies that make up for the gaps missed by conventional “one size fits all” strategies. By characterizing tissue alterations with single-cell resolution and having molecular profiles for therapeutic treatments for a variety of cell types, clinical researchers can design multi-pronged interventions to not just delay degenerative processes, but regenerate healthy tissues. Second, artificial intelligence (AI) will play a significant role in developing future therapies by allowing the aggregation and synthesis of large and disparate datasets to help reveal underlying molecular mechanisms. Third, disease models using a high volume of multi-omics data gathered from diverse sources carry valuable information about converging and diverging pathways. Using these new tools, the results of previous and emerging studies will catalyze precision medicine-based drug development that can tackle devastating disorders such as DMD.
Collapse
Affiliation(s)
- Carlos D. Vera
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Paul D. Pang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Joseph C. Wu
| |
Collapse
|
38
|
Laurila PP, Luan P, Wohlwend M, Zanou N, Crisol B, Imamura de Lima T, Goeminne LJE, Gallart-Ayala H, Shong M, Ivanisevic J, Place N, Auwerx J. Inhibition of sphingolipid de novo synthesis counteracts muscular dystrophy. SCIENCE ADVANCES 2022; 8:eabh4423. [PMID: 35089797 PMCID: PMC8797791 DOI: 10.1126/sciadv.abh4423] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/01/2021] [Indexed: 05/29/2023]
Abstract
Duchenne muscular dystrophy (DMD), the most common muscular dystrophy, is a severe muscle disorder, causing muscle weakness, loss of independence, and premature death. Here, we establish the link between sphingolipids and muscular dystrophy. Transcripts of sphingolipid de novo biosynthesis pathway are up-regulated in skeletal muscle of patients with DMD and other muscular dystrophies, which is accompanied by accumulation of metabolites of the sphingolipid pathway in muscle and plasma. Pharmacological inhibition of sphingolipid synthesis by myriocin in the mdx mouse model of DMD ameliorated the loss in muscle function while reducing inflammation, improving Ca2+ homeostasis, preventing fibrosis of the skeletal muscle, heart, and diaphragm, and restoring the balance between M1 and M2 macrophages. Myriocin alleviated the DMD phenotype more than glucocorticoids. Our study identifies inhibition of sphingolipid synthesis, targeting multiple pathogenetic pathways simultaneously, as a strong candidate for treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Department of Physiology, Faculty of Biology-Medicine, University of Lausanne, Lausanne, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ludger J. E. Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, Department of Physiology, Faculty of Biology-Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G. Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2021; 22:12985. [PMID: 34884796 PMCID: PMC8657486 DOI: 10.3390/ijms222312985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca2+) mishandling. Ca2+ release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals. The study objective was to determine whether altered RYR1-mediated Ca2+ release contributes to myogenic differentiation impairment in DMD patients. The comparison of primary cultured myoblasts from six boys with DMD and five healthy controls highlighted delayed myoblast differentiation in DMD. Silencing RYR1 expression using specific si-RNA in a healthy control induced a similar delayed differentiation. In DMD myotubes, resting intracellular Ca2+ concentration was increased, but RYR1-mediated Ca2+ release was not changed compared with control myotubes. Incubation with the RYR-calstabin interaction stabilizer S107 decreased resting Ca2+ concentration in DMD myotubes to control values and improved calstabin1 binding to the RYR1 complex. S107 also improved myogenic differentiation in DMD. Furthermore, intracellular Ca2+ concentration was correlated with endomysial fibrosis, which is the only myopathologic parameter associated with poor motor outcome in patients with DMD. This suggested a potential relationship between RYR1 dysfunction and motor impairment. Our study highlights RYR1-mediated Ca2+ leakage in human DMD myotubes and its key role in myogenic differentiation impairment. RYR1 stabilization may be an interesting adjunctive therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Pierre Meyer
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Cécile Notarnicola
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Stefan Matecki
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Gérald Hugon
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Jérémy Salvador
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Mirna Khalil
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - Léonard Féasson
- Myology Unit, Reference Center for Neuromuscular Diseases Euro-NmD, Inter-University Laboratory of Human Movement Sciences—EA7424, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Claude Cances
- Reference Center for Neuromuscular Diseases AOC, Pediatric Neurology Department, Toulouse University Hospital, 3100 Toulouse, France;
- Pediatric Clinical Research Unit, Pediatric Multi-thematic Module CIC 1436, Toulouse Children’s Hospital, 31300 Toulouse, France
| | - Jérôme Cottalorda
- Pediatric Orthopedic and Plastic Surgery Department, Montpellier University Hospital, 34295 Montpellier, France;
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Diseases Paris Nord-Ile-de-France-Est, Pediatric Neurology Department, Necker Enfant Malades University Hospital, Assistance Publique des Hôpitaux de Paris Centre, Paris University, 75019 Paris, France;
| | - Jean-Marie Cuisset
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Lille University Hospital, 59000 Lille, France;
| | - Pascal Sabouraud
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Reims University Hospital, 51100 Reims, France;
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Hugues Chevassus
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - François Rivier
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| |
Collapse
|
40
|
Becker muscular dystrophy: case report, review of the literature, and analysis of differentially expressed hub genes. Neurol Sci 2021; 43:243-253. [PMID: 34731335 DOI: 10.1007/s10072-021-05499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/21/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Becker muscular dystrophy (BMD) is a genetic and progressive neuromuscular disease caused by mutations in the dystrophin gene with no available cure. A case report and comprehensive review of BMD cases aim to provide important clues for early diagnosis and implications for clinical practice. Genes and pathways identified from microarray data of muscle samples from patients with BMD help uncover the potential mechanism and provide novel therapeutic targets for dystrophin-deficient muscular dystrophies. METHODS We describe a BMD family with a 10-year-old boy as the proband and reviewed BMD cases from PubMed. Datasets from the Gene Expression Omnibus database were downloaded and integrated with the online software. RESULTS The systematic review revealed the clinical manifestations and mutation points of the dystrophin gene. Gene ontology analysis showed that extracellular matrix organization and extracellular structure organization with enrichment of upregulated genes coexist in three datasets. We present the first report of TUBA1A involvement in the development of BMD/Duchenne muscular dystrophy (DMD). DISCUSSION This study provides important implications for clinical practice, uncovering the potential mechanism of the progress of BMD/DMD, and provided new therapeutic targets.
Collapse
|
41
|
Guadagnin E, Mohassel P, Johnson KR, Yang L, Santi M, Uapinyoying P, Dastgir J, Hu Y, Dillmann A, Cookson MR, Foley AR, Bönnemann CG. Transcriptome analysis of collagen VI-related muscular dystrophy muscle biopsies. Ann Clin Transl Neurol 2021; 8:2184-2198. [PMID: 34729958 PMCID: PMC8607456 DOI: 10.1002/acn3.51450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To define the transcriptomic changes responsible for the histologic alterations in skeletal muscle and their progression in collagen VI‐related muscular dystrophy (COL6‐RD). Methods COL6‐RD patient muscle biopsies were stratified into three groups based on the overall level of pathologic severity considering degrees of fibrosis, muscle fiber atrophy, and fatty replacement of muscle tissue. Using microarray and RNA‐Seq, we then performed global gene expression profiling on the same muscle biopsies and compared their transcriptome with age‐ and sex‐matched controls. Results COL6‐RD muscle biopsy transcriptomes as a group revealed prominent upregulation of muscle extracellular matrix component genes and the downregulation of skeletal muscle and mitochondrion‐specific genes. Upregulation of the TGFβ pathway was the most conspicuous change across all biopsies and was fully evident even in the mildest/earliest histological group. There was no difference in the overall transcriptional signature between the different histologic groups but polyserial analysis identified relative changes along with COL6‐RD histological severity. Interpretation Overall, our study establishes the prominent dysregulation of extracellular matrix genes, TGFβ signaling, and its downstream cellular pathways at the transcriptomic level in COL6‐RD muscle.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural Information Technology & Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, BG 10 RM 5S223, Bethesda, Maryland, 20892, USA
| | - Lin Yang
- Division of Biomedical Informatics, Department of Biomedical Engineering, University of Florida, 1064 Center Drive, NEB 364, Gainsville, Florida, 32611, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, 324 South 34th Street, Philadelphia, Pennsylvania, 19104, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA.,Atlantic Health System, Goryeb Children's Hospital, Morristown, New Jersey, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Allissa Dillmann
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, 35 Convent Drive, BG 35 RM 1A116, Bethesda, Maryland, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, BLDG 35 RM 2A116, Bethesda, Maryland, 20892, USA
| |
Collapse
|
42
|
Zabłocka B, Górecki DC, Zabłocki K. Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences. Int J Mol Sci 2021; 22:11040. [PMID: 34681707 PMCID: PMC8537421 DOI: 10.3390/ijms222011040] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca2+ concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.
Collapse
Affiliation(s)
- Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dariusz C. Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
43
|
Tulangekar A, Sztal TE. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021; 9:biomedicines9101366. [PMID: 34680483 PMCID: PMC8533596 DOI: 10.3390/biomedicines9101366] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive, X-linked, neuromuscular disorder caused by mutations in the dystrophin gene. In DMD, the lack of functional dystrophin protein makes the muscle membrane fragile, leaving the muscle fibers prone to damage during contraction. Muscle degeneration in DMD patients is closely associated with a prolonged inflammatory response, and while this is important to stimulate regeneration, inflammation is also thought to exacerbate muscle damage. Neutrophils are one of the first immune cells to be recruited to the damaged muscle and are the first line of defense during tissue injury or infection. Neutrophils can promote inflammation by releasing pro-inflammatory cytokines and compounds, including myeloperoxidase (MPO) and neutrophil elastase (NE), that lead to oxidative stress and are thought to have a role in prolonging inflammation in DMD. In this review, we provide an overview of the roles of the innate immune response, with particular focus on mechanisms used by neutrophils to exacerbate muscle damage and impair regeneration in DMD.
Collapse
|
44
|
Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021; 12:5428-5439. [PMID: 34424816 PMCID: PMC8806931 DOI: 10.1080/21655979.2021.1967029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a mutant dystrophin protein. DMD patients undergo gradual progressive paralysis until death. Chronic glucocorticoid therapy remains one of the main treatments for DMD, despite the significant side effects. However, its mechanisms of action remain largely unknown. We used bioinformatics tools to identify pathogenic genes involved in DMD and glucocorticoid target genes. Two gene expression profiles containing data from DMD patients and healthy controls (GSE38417 and GSE109178) were downloaded for further analysis. Differentially expressed genes (DEGs) between DMD patients and controls were identified using GEO2R, and glucocorticoid target genes were predicted from the Pharmacogenetics and Pharmacogenomics Knowledge Base. Surprisingly, only one gene, CXCL12 (C-X-C motif chemokine ligand 12), was both a glucocorticoid target and a DEG. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, Gene Ontology term enrichment analysis, and gene set enrichment analysis were performed. A protein-protein interaction network was constructed and hub genes identified using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape. Enriched pathways involving the DEGs, including CXCL12, were associated with the immune response and inflammation. Levels of CXCL12 and its receptor CXCR4 (C-X-C motif chemokine receptor 4) were increased in X-linked muscular dystrophy (mdx) mice (DMD models) but became significantly reduced after prednisone treatment. Metformin also reduced the expression of CXCL12 and CXCR4 in mdx mice. In conclusion, the CXCL12-CXCR4 pathway may be a potential target for DMD therapy.
Collapse
Affiliation(s)
- Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
45
|
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22168954. [PMID: 34445659 PMCID: PMC8396646 DOI: 10.3390/ijms22168954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.
Collapse
|
46
|
Validation of Chemokine Biomarkers in Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11080827. [PMID: 34440571 PMCID: PMC8401931 DOI: 10.3390/life11080827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease involving complex skeletal muscle pathogenesis. The pathogenesis is triggered by sarcolemma instability due to the lack of dystrophin protein expression, leading to Ca2+ influx, muscle fiber apoptosis, inflammation, muscle necrosis, and fibrosis. Our lab recently used two high-throughput multiplexing techniques (e.g., SomaScan® aptamer assay and tandem mass tag-(TMT) approach) and identified a series of serum protein biomarkers tied to different pathobiochemical pathways. In this study, we focused on validating the circulating levels of three proinflammatory chemokines (CCL2, CXCL10, and CCL18) that are believed to be involved in an early stage of muscle pathogenesis. We used highly specific and reproducible MSD ELISA assays and examined the association of these chemokines with DMD pathogenesis, age, disease severity, and response to glucocorticoid treatment. As expected, we confirmed that these three chemokines were significantly elevated in serum and muscle samples of DMD patients relative to age-matched healthy controls (p-value < 0.05, CCL18 was not significantly altered in muscle samples). These three chemokines were not significantly elevated in Becker muscular dystrophy (BMD) patients, a milder form of dystrophinopathy, when compared in a one-way ANOVA to a control group but remained significantly elevated in the age-matched DMD group (p < 0.05). CCL2 and CCL18 but not CXCL10 declined with age in DMD patients, whereas all three chemokines remained unchanged with age in BMD and controls. Only CCL2 showed significant association with time to climb four steps in the DMD group (r = 0.48, p = 0.038) and neared significant association with patients' reported outcome in the BMD group (r = 0.39, p = 0.058). Furthermore, CCL2 was found to be elevated in a serum of the mdx mouse model of DMD, relative to wild-type mouse model. This study suggests that CCL2 might be a suitable candidate biomarker for follow-up studies to demonstrate its physiological significance and clinical utility in DMD.
Collapse
|
47
|
Luan P, D'Amico D, Andreux PA, Laurila PP, Wohlwend M, Li H, Imamura de Lima T, Place N, Rinsch C, Zanou N, Auwerx J. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med 2021; 13:13/588/eabb0319. [PMID: 33827972 DOI: 10.1126/scitranslmed.abb0319] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy, and despite advances in genetic and pharmacological disease-modifying treatments, its management remains a major challenge. Mitochondrial dysfunction contributes to DMD, yet the mechanisms by which this occurs remain elusive. Our data in experimental models and patients with DMD show that reduced expression of genes involved in mitochondrial autophagy, or mitophagy, contributes to mitochondrial dysfunction. Mitophagy markers were reduced in skeletal muscle and in muscle stem cells (MuSCs) of a mouse model of DMD. Administration of the mitophagy activator urolithin A (UA) rescued mitophagy in DMD worms and mice and in primary myoblasts from patients with DMD, increased skeletal muscle respiratory capacity, and improved MuSCs' regenerative ability, resulting in the recovery of muscle function and increased survival in DMD mouse models. These data indicate that restoration of mitophagy alleviates symptoms of DMD and suggest that UA may have potential therapeutic applications for muscular dystrophies.
Collapse
Affiliation(s)
- Peiling Luan
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Pénélope A Andreux
- Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Martin Wohlwend
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hao Li
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, Quartier UNIL-Centre, Faculty of Biology-Medicine, University of Lausanne, Bâtiment Synathlon, 1015 Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis SA, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, 1015 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Quartier UNIL-Centre, Faculty of Biology-Medicine, University of Lausanne, Bâtiment Synathlon, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
48
|
Tsonaka R, Signorelli M, Sabir E, Seyer A, Hettne K, Aartsma-Rus A, Spitali P. Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models. Hum Mol Genet 2021; 29:745-755. [PMID: 32025735 PMCID: PMC7104681 DOI: 10.1093/hmg/ddz309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.
Collapse
Affiliation(s)
- Roula Tsonaka
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Mirko Signorelli
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Ekrem Sabir
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | | | - Kristina Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
49
|
Lombardo SD, Basile MS, Ciurleo R, Bramanti A, Arcidiacono A, Mangano K, Bramanti P, Nicoletti F, Fagone P. A Network Medicine Approach for Drug Repurposing in Duchenne Muscular Dystrophy. Genes (Basel) 2021; 12:genes12040543. [PMID: 33918694 PMCID: PMC8069953 DOI: 10.3390/genes12040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease caused by a lack of dystrophin, leading to membrane instability, cell damage, and inflammatory response. However, gene-editing alone is not enough to restore the healthy phenotype and additional treatments are required. In the present study, we have first conducted a meta-analysis of three microarray datasets, GSE38417, GSE3307, and GSE6011, to identify the differentially expressed genes (DEGs) between healthy donors and DMD patients. We have then integrated this analysis with the knowledge obtained from DisGeNET and DIAMOnD, a well-known algorithm for drug–gene association discoveries in the human interactome. The data obtained allowed us to identify novel possible target genes and were used to predict potential therapeutical options that could reverse the pathological condition.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- Department of Structural & Computational Biology at the Max Perutz Labs, University of Vienna, 1010 Vienna, Austria;
| | - Maria Sofia Basile
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (P.B.)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (P.B.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (P.B.)
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (A.A.); (K.M.); (P.F.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (A.A.); (K.M.); (P.F.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.S.B.); (R.C.); (A.B.); (P.B.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (A.A.); (K.M.); (P.F.)
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (A.A.); (K.M.); (P.F.)
| |
Collapse
|
50
|
Gorban AN, Tyukina TA, Pokidysheva LI, Smirnova EV. Dynamic and thermodynamic models of adaptation. Phys Life Rev 2021; 37:17-64. [PMID: 33765608 DOI: 10.1016/j.plrev.2021.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The concept of biological adaptation was closely connected to some mathematical, engineering and physical ideas from the very beginning. Cannon in his "The wisdom of the body" (1932) systematically used the engineering vision of regulation. In 1938, Selye enriched this approach by the notion of adaptation energy. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. Selye did not use the language of mathematics systematically, but the formalization of his phenomenological theory in the spirit of thermodynamics was simple and led to verifiable predictions. In 1980s, the dynamics of correlation and variance in systems under adaptation to a load of environmental factors were studied and the universal effect in ensembles of systems under a load of similar factors was discovered: in a crisis, as a rule, even before the onset of obvious symptoms of stress, the correlation increases together with variance (and volatility). During 30 years, this effect has been supported by many observations of groups of humans, mice, trees, grassy plants, and on financial time series. In the last ten years, these results were supplemented by many new experiments, from gene networks in cardiology and oncology to dynamics of depression and clinical psychotherapy. Several systems of models were developed: the thermodynamic-like theory of adaptation of ensembles and several families of models of individual adaptation. Historically, the first group of models was based on Selye's concept of adaptation energy and used fitness estimates. Two other groups of models are based on the idea of hidden attractor bifurcation and on the advection-diffusion model for distribution of population in the space of physiological attributes. We explore this world of models and experiments, starting with classic works, with particular attention to the results of the last ten years and open questions.
Collapse
Affiliation(s)
- A N Gorban
- Department of Mathematics, University of Leicester, Leicester, UK; Lobachevsky University, Nizhni Novgorod, Russia.
| | - T A Tyukina
- Department of Mathematics, University of Leicester, Leicester, UK.
| | | | - E V Smirnova
- Siberian Federal University, Krasnoyarsk, Russia.
| |
Collapse
|